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Self-Triggered Feedback Control Systems
With Finite-Gain � Stability

Xiaofeng Wang, Member, IEEE, and Michael D. Lemmon, Member, IEEE

Abstract—This paper examines a class of real-time control sys-
tems in which each control task triggers its next release based on
the value of the last sampled state. Prior work [1] used simula-
tions to demonstrate that self-triggered control systems can be re-
markably robust to task delay. This paper derives bounds on a
task’s sampling period and deadline to quantify how robust the
control system’s performance will be to variations in these param-
eters. In particular we establish inequality constraints on a con-
trol task’s period and deadline whose satisfaction ensures that the
closed-loop system’s induced � gain lies below a specified per-
formance threshold. The results apply to linear time-invariant sys-
tems driven by external disturbances whose magnitude is bounded
by a linear function of the system state’s norm. The plant is regu-
lated by a full-information controller. These results can serve
as the basis for the design of soft real-time systems that guarantee
closed-loop control system performance at levels traditionally seen
in hard real-time systems.

Index Terms—Finite-gain � stability, real-time control systems,
self-triggered.

I. INTRODUCTION

C OMPUTER-CONTROLLED systems are often imple-
mented using periodic tasks satisfying hard real-time

constraints. Under a periodic task model, consecutive invo-
cations (also called jobs) of a task are released in a periodic
manner. If the task model satisfies a hard real-time constraint,
then each job completes its execution by a specified dead-
line. Hard real-time periodic task models allow the control
system designer to treat the computer-controlled system as a
discrete-time system, for which there are a variety of mature
controller synthesis methods.

Periodic task models may be undesirable in many situations.
Traditional approaches for estimating task periods and deadlines
are very conservative, so the control task may have greater uti-
lization than it actually needs. This results in significant over-
provisioning of the real-time system hardware. With such high
utilization, it may be difficult to schedule other tasks on the same
processing system. Secondly, it should be noted that real-time
scheduling over networked systems may be poorly served by the
periodic task model. In many networked systems, tasks are fin-
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ished only after information has been successfully transported
across the network. It can be expensive to provide hard real-time
guarantees on message delivery in communication networks.
This is particularly true for wireless sensor-actuator networks.
In these applications, it may be better to consider alternatives to
periodic task models that can more effectively balance the real-
time system’s computational cost against the control system’s
performance as suggested in [2], [3].

This paper considers a self-triggered task model in which
each task determines the release of its next job. In reality, one
might consider periodic task models as self-triggered tasks since
many implementations release tasks upon expiration of a one-
shot timer that was started by the previous invocation of the task.
Under a periodic task model, the period of this one-shot timer is
always a constant value. This paper, however, considers a more
adaptive form of self-triggering in which the value loaded into
the one-shot timer is actually a function of the system state sam-
pled by the current job. Under this “state-based” self-triggering,
each task releases its next job based on the system state. We can
therefore consider “state-based” self-triggering as a closed-loop
form of releasing tasks for execution, whereas periodic task
models release their jobs in an open-loop fashion. For simplicity,
this paper refers to a “state-based” self-triggered task model as
“self-triggered”.

Self-triggering provides a more flexible way of adjusting task
periods. Since task periods are based on the system’s current
state, it is possible to reduce control task utilization during pe-
riods of time when the system is sitting happily at its equilib-
rium point. The question here is precisely how much freedom
do we have in adjusting task periods in response to variations
in the system state. This paper answers that question by pro-
viding bounds on the task periods and deadlines required to as-
sure a specified level of stability. Our results pertain to linear
time-invariant systems with state feedback. Since our controller
seeks to ensure stability, we use a full-information con-
troller in our analysis. We also assume that the system has a
process noise whose magnitude is bounded by a linear function
of the norm of the system state. Under these assumptions we ob-
tain the bounds for the task periods and deadlines as functions of
the system state. Taking advantage of these bounds, a self-trig-
gered scheme is presented where the periods and deadlines are
uniformly bounded from below by a positive constant. On the
basis of simulation results, these bounds appear to be tight and
relatively easy to compute, so it may be possible to use them in
actual real-time control systems.

The remainder of this paper is organized as follows. Section II
reviews the prior work related to self-triggered feedback. Sec-
tion III introduces the system model. The main contributions
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of the paper are summarized in Section IV and their develop-
ment is detailed in Sections V and VI. Section V derives a suf-
ficient threshold condition that can serve as an event trigger
for state sampling. Section VI presents a self-triggering scheme
and proves that it is stable. Simulations are shown in Sec-
tion VII. Finally, conclusions and future work are presented in
Section VIII.

II. PRIOR WORK

To the best of our knowledge there is relatively little prior
work examining state-based self-triggered feedback control. A
self-triggered task model was introduced by Velasco et al. [4]
in which a heuristic rule was used to adjust task periods. A
self-triggered task model was also introduced by Lemmon et al.
[1] which chose task periods based on a Lyapunov-based tech-
nique. But the authors did not provide analytic bounds for task
periods and the task delays were considered only in the simu-
lation results. Other than these two papers, we are aware of no
other serious work looking at self-triggered feedback schemes.
There is, however, a great deal of related work dealing with
so-called event-triggered feedback, sample period selection, and
real-time control system co-design. We will review each of these
areas in more detail below and then discuss their relationship to
the self-triggered task models.

Traditional methods for sample period selection [5] are usu-
ally based on Nyquist sampling. Nyquist sampling ensures that
the sampled signal can be perfectly reconstructed from its sam-
ples. In practice, however, feedback within the control system
means the system’s performance will be somewhat insensitive
to errors in the feedback signal, so that perfect reconstruction
is much more than we require in a feedback control system.
An alternative approach to the sample period selection problem
makes use of Lyapunov techniques. This was done in Zheng
et al. [6] for a class of nonlinear sampled-data system. Nesic
et al. [7] used input-to-state stability (ISS) techniques to bound
the inter-sample behavior of nonlinear systems. stability of
sampled-data systems was considered in [8]. Further work was
done in [9], [10] where upper bounds on the sampling periods
were provided, known as the maximal allowable transfer in-
terval (MATI).

The sampling periods determined by the aforecited methods
can be conservative because they are essentially “open-loop.”
Sample periods are selected before the system is deployed, so
this selection must ensure adequate behavior over a wide range
of possible input disturbances. As a result, these selected periods
may be shorter than necessary. This fact was demonstrated by
Tabuada et al. [11] where sampling instants were determined
on-line using the current system state. In this case, the average
sampling periods of Tabuada’s event-triggered scheme appeared
to be significantly longer than what one would have chosen
using traditional estimates of the MATI.

Another related research direction viewed sample period se-
lection as a “co-design” problem that involves both the control
system and the real-time system. In this case, sample periods
are selected to minimize some penalty on control system perfor-
mance subject to a schedulability condition. Early statements of
this problem may be found in Seto et al. [12] with more recent
studies in [13] and [14]. The penalty function is often a perfor-

mance index for an infinite horizon optimal control problem.
It has, however, been demonstrated [15] that under slow sam-
pling such indices may not be monotone functions of the sam-
pling period. As a result, it only appears to be feasible to do
off-line determination of these “optimal” sampling periods. In-
stead of considering quadratic cost functions, [16] presented an
approach to maximize the stability radius subject to a schedula-
bility condition. Although this approach can enlarge the family
of stabilizing controllers, it did not provide a direct relationship
between the sampling periods and the control performance of
the systems.

The prior work on co-design really focuses on optimizing
performance subject to scheduling constraints. The scheduling
constraints are Liu-Layland [17] schedulability conditions for
earliest deadline first (EDF) scheduling. It is not always clear,
however, that these are the best set of constraints to be using.
This paper actually derives a set of constraints on both the pe-
riods and deadlines that we can then use as a quality-of-service
(QoS) constraint that the real-time scheduler needs to meet. We
do not address the schedulability of these QoS constraints in this
paper, though that is an important research issue that we are still
studying.

In recent years, a number of researchers have proposed aperi-
odic and sporadic task models in which tasks are event-triggered
[18]. By event-triggering, we usually mean that the system state
is sampled when some function of the system state exceeds a
threshold. The idea of event-triggered feedback has appeared
under a variety of names, such as interrupt-based feedback [19],
Lebesgue sampling [20], or state-triggered feedback [11]. Event
triggering usually requires some form of hardware event de-
tector to generate a hardware interrupt to release the control
task. This can be done using either custom analog integrated cir-
cuits (ASIC’s) or floating point gate array (FPGA) processors.
Event triggering provides a useful way of adaptively adjusting
task periods at run time, provided the cost associated with using
ASIC/FPGA hardware is acceptable. In some applications, how-
ever, it may be unreasonable or impractical to retrofit an existing
system with such “event detectors”. In these cases, a software
approach such as the self-triggered scheme presented in this
paper may be more appropriate.

The prior work on event-triggered feedback is probably most
closely related to this paper’s work. In particular, the bounds
we derive are based on variations of the event-triggering condi-
tions used by Tabuada et al. [11]. The techniques used in this
paper are similar to the input-to-state stability (ISS) methods
used in [9], [10] for bounding the MATI. Compared with the
prior work in [1], this paper derives explicit bounds on the task
sampling periods and deadlines, which appear to be tight and
computationally efficient. Based on these bounds, we present a
practical self-triggered scheme, where the sampling periods and
deadlines are uniformly bounded from below by a positive con-
stant. These bounds provide less conservative sampling times
than those obtained using the MATI estimates in [9]. Moreover,
in many cases the average sampling periods generated by our
approach are less conservative than those generated by [11]. Fi-
nally, a major contribution in this paper is an explicit state-de-
pendent bound on the acceptable delay, something which is not
found in either [9], [10], or [11].
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III. SYSTEM MODEL

Consider a linear time-invariant system whose state
satisfies the initial value problem,

where is the non-zero initial state,
is a control input and is an exogenous

disturbance function in . In the above equation, ,
, and are real matrices of appropriate

dimensions.
Since we are interested in controllers that are finite-gain

stable, we assume there exists a full-information controller
that asymptotically stabilizes the unforced system. In particular,
we assume there exists a symmetric positive semi-definite ma-
trix such that

(1)

has an asymptotically stable equilibrium. The matrix satisfies
the algebraic Riccati equation (ARE) [21, p. 138],

(2)

where

(3)

(4)

for some real constant . For notational convenience the
system matrix of the closed-loop system ((1)) will be denoted
as . The state feedback gain matrix is

.
If we consider the standard storage function

given by for all then the preceding as-
sumptions about allow us to show that the storage function’s
directional derivative satisfies the dissipative inequalities,

(5)

for all . Recall that a linear system, , is said to be finite-gain
stable from to if is a linear operator from back

into . The induced gain of is

(6)

Satisfaction of the dissipative inequality in (5) is sufficient to
show that the system characterized by the state equation

(7)

is finite-gain stable from the disturbance to
with an induced gain less than .

Fig. 1. Relationship between task period (� ), delay (� ), release time (� ),
and finishing time (� ).

This paper considers a sampled-data implementation of the
closed-loop system in (7). This means that the plant’s control,

, is computed by a computer task. This task is characterized
by two monotone increasing sequences of time instants; the re-
lease time sequence and the finishing time sequence

. We say these two sequences are admissible if
for all . The time denotes the time

when the th invocation of a control task (also called a job) is re-
leased for execution on the computer’s central processing unit
(CPU). At this time, we assume that the system state is sam-
pled so that also represents the th sampling time instant.
The time denotes the time when then th job has finished
executing. Each job of the control task computes the control
based on the last sampled state. Upon finishing, the control job
outputs this control to the plant. The control signal used by the
plant is held constant by a zero-order hold (ZOH) until the next
finishing time . This means that the sampled-data system
under study satisfies the following set of state equations,

(8)

for and all . The state trajectories
satisfying (8) are continuous so that the initial state at time

is simply . In the following discussion, we
will present a self-triggering scheme which ensures finite-gain

stability of the sampled-data system in (8) from to .
We let denote the th inter-release time

( . can therefore be interpreted as a time-
varying “sampling” period by control engineers and a time-
varying “task” period by real-time system engineers. We let

denote the time interval between the th job’s
release and finishing time. Control engineers would view
as the “delay” of the th job whereas real-time system engi-
neers would view as the “jitter” of the th job. If the control
task satisfies a hard real-time constraint, then the delay is re-
quired to lie below a specified “deadline”. Fig. 1 illustrates the
relationship between the task period, , the delay , the task
finishing time , and the release time . The -axis in Fig. 1 is
time with the period ( ), delay ( ), finishing time ( ), and
release ( ) marked on the axis. The black rectangles above the
time axis mark intervals over which the task is executing.

IV. SUMMARY OF CONTRIBUTIONS

The main contribution of this paper is a detailed analysis
of self-triggering schemes that were first presented in [1]. The
findings of this analysis are summarized in theorem 6.10. This
“self-triggering” theorem states that the closed-loop sampled-
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data system is stable for the disturbance to the state if
the task’s st release time is generated by

(9)

and the delay satisfies

(10)

In the above equations, is a function of the system state at
release times , , the delay , and a parameter . The
function can be taken as a requirement on the task’s deadline
and it is a function of the state at time and two parameters (
and ). These two parameters can be used to control the relative
length of the job’s period and deadline.

The self-triggering theorem shows that the bounding func-
tions and have the following forms,

where is a real constant, and are class functions, and
bounds a function of the system state as it evolves over the

delay time . Note that the form of these results is reminiscent
of the MATI bounds obtained in [9]. The main difference is that
our bounds are now functions of the previously sampled states.

The other major contributions of the paper are simulation re-
sults showing that the bounds in theorem 6.10 do not appear to
be overly conservative. These simulations demonstrate that the
sampling period generated by the self-triggered controller can
be significantly longer than the bound on MATI in [9] for the
same system. For systems that evolve over a wide set of time
scales, the self-triggered scheme has longer sampling periods
than the event-triggered scheme proposed in [11]. Simulation
results demonstrate that a self-triggered scheme with an average
sampling period of has better disturbance rejection than pe-
riodically triggered systems with the same sampling period of

. Self-triggered schemes, of course, have a higher computa-
tional cost (as measured by floating point operations per update)
than periodically triggered schemes with the same sampling pe-
riod. But for systems with similar disturbance rejection levels,
computer utilization (as measured by the ratio of computation
time and task period) is comparable between self-triggered and
periodically triggered systems. All of these empirical findings
appear to support the conjecture that the bounds presented in
theorem 6.10 are not overly conservative.

V. STABILITY

Consider the sampled-data system in (8) with a set of ad-
missible release and finishing time sequences. For all , de-
fine the th job’s error function by

. This error represents the difference be-
tween the current system state and the system state at the last re-

lease time, . This section presents two inequality constraints
on (see theorem 5.1 and corollary 5.2 below) whose satis-
faction is sufficient to ensure that the sampled-data system’s
gain is less than for some parameter .

The following theorem states that if a function of the state
error and state satisfies a certain inequality constraint,
then the closed-loop system in (8) is finite-gain stable.

Theorem 5.1: Consider the sampled-data system in (8) with
admissible release and finishing time sequences. Let
and be any real constant in the interval with the matrix

as given in (3). If

(11)

holds for all and any , then the
sampled-data system is finite-gain stable from to with a
gain less than .

Proof: Consider the storage function given
by for where is a symmetric positive
semi-definite matrix satisfying the algebraic Riccati equation
((2)). The directional derivative of for is

Insert into the above equation to obtain

(12)

By the assumption in (11), we know that (12) can be rewritten
as

(13)

which holds for all and is sufficient to ensure the sampled-data
system is finite-gain stable from to with a gain less than

.
In our following work, we will find it convenient to use a

slightly weaker sufficient condition for stability which is
only a function of the state error . The following corollary
states this result.

Corollary 5.2: Consider the sampled-data system in (8)
with admissible sequences of release and finishing times. Let

and be a real matrix that satisfies (3). For any
, let

(14)
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(15)

If the state error trajectory satisfies

(16)

for and all , then the sampled data
system is finite-gain stable from to with a gain less than

.
Proof: Equation (16) can be rewritten as

This can be rewritten to obtain

This inequality is the sufficient condition in theorem 5.1 so we
can conclude that the sampled-data system is stable from
to with a gain less than .

Remark 5.3: The inequalities in (11) or (16) can both be
used as the basis for an event-triggered feedback control system
(Section II). Note that both inequalities are trivially satisfied at

. If we let the delay, , be zero for each job, then by trig-
gering the release times anytime before the inequali-
ties in (11) or (16) are violated, we will ensure the sampled-data
system’s induced gain remains below . The resulting
event-triggered feedback system is very similar to the state-trig-
gering scheme proposed by Tabuada et al. [11] for asymptotic
stability. The main difference between that result and this one is
that our proposed event-triggering condition provides a stronger
assurance on the sampled-data system’s performance as mea-
sured by its induced gain.

VI. ADMISSIBLE RELEASE AND FINISHING TIMES

This section establishes sufficient conditions for the existence
of admissible sequences of release and finishing times that en-
sure the sampled data system in (8) is stable with a specified
gain. These conditions take the form of admissible bounds
on the task sampling periods, , and task delays, . Based
on these bounds, we present a self-triggered scheme, where
the sampling periods and deadlines are uniformly bounded
from below by a positive constant. The following assumption

is placed on the disturbance to ensure these bounds are
nonzero.

Assumption 6.1: Consider the sampled-data system in (8).
Assume that there exists a positive real constant so that

for all .
Remark 6.2: Assumption 6.1 consists of a restricted class

of signals whose norm is bounded by a linear function of the
state’s norm. The more precise way to state this assumption is

for all , which means that
depends on as well as . But, to make the notation con-

sistent, we still use to denote the disturbance instead of
. Such disturbances may arise in uncertain systems when

there are unmodeled dynamics caused by fluctuations in plant
parameters.

For notational convenience let be given
as

(17)

where is a matrix square root and is defined in (14).
We refer to as the th job’s “trigger signal”. Note that is
dependent on the parameter . In the following discussion, we
assume has full rank by properly choosing . It also implies
that has full rank. Notice that always holds and,
if has full rank, , will be both positive definite, where

is defined in (15).
We define the function given by

(18)

where . So if we can guarantee for any that

(19)

for all for any , then the hypotheses
in corollary 5.2 are satisfied and we can conclude that the sam-
pled-data system is finite-gain stable from to with a gain
less than .

The first major result examines what happens if we use (19) as
the basis for an event-triggered feedback control system. In par-
ticular, let us assume that the th job’s release, , is precisely
that time when under the assumption that
the th job’s delay, , is zero. The following theorem states a
lower bound on the sampling period for which a sampled-data
system with zero delay (i.e., ) has an induced gain
less than .

Theorem 6.3: Consider the sampled-data system in (8) satis-
fying assumption 6.1. Assume that has full rank and for some

that the sequence of release times satisfy

(20)

where for all .
The sequence of release and finishing times is admissible and

the sampled-data system is finite-gain stable from to
with a gain less than . Furthermore, the task sampling pe-
riods satisfy

(21)
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where is a real constant

(22)

and is a real-valued function given by

(23)
Proof: Let . The

time derivative of for satisfies

(24)

where the righthand sided derivative is used when . Since
, , and

, we can bound the preceding (24) as

(25)

where and are defined in (22) and (23),
respectively.

The initial condition is . Using this in the dif-
ferential inequality in (25) yields,

(26)

for all since for all .
By assumption (i.e., no task delay) and

, so we can conclude that

(27)

where is the task sampling period for job
. Solving (27) for yields (21). The righthand side of in-

equality (21) is clearly strictly greater than zero, which implies
that . Therefore which im-
plies that the sequence of finishing and release times is ad-
missible. Finally we know that for all

and all , which by
corollary 5.2 implies that the system is stable from to
with a gain less than .

Remark 6.4: Note that the righthand side of (21) will always
be strictly greater than zero. We can therefore conclude that if

Fig. 2. Time history of � ��� with non-zero task delay.

we trigger release times when , then
the sampling period can never be zero.

Remark 6.5: The admissibility of sequences and
can be restated in terms of the sequences

and . By definition, the release and finishing time se-
quences are admissible if and only if for all .
Clearly this holds if and only if for all .

The previous theorem presumes there is no task delay (i.e.,
). Under this assumption, theorem 6.3 states that trig-

gering release times when (20) holds assures the closed-loop
system’s induced gain. This theorem, however, also provides
a lower bound on the task sampling period, which suggests that
we can also use theorem 6.3 as the basis for state-based self-trig-
gered feedback. In this scenario, if the th job would set the next
job’s release time as

(28)

then we are again assured that the system’s induced gain is
less than .

The problem faced in using (28) for self-triggering is the as-
sumption of no task delay. In many applications, the task delay
may not be small enough to neglect. If we consider non-zero
delay, then the triggering signals appear as shown in Fig. 2. This
figure shows the time history for the triggering signals, ,

, and . With non-zero delay, we can partition the time in-
terval into two subintervals and .
The differential equations associated with subintervals
and are

and

respectively. In a manner similar to the proof of theorem 6.3,
we can use differential inequalities to bound for all

and thereby determine sufficient conditions assuring
the admissibility of the release/finishing times while preserving
the closed-loop system’s -stability. The next two lemmas
(lemma 6.6 and 6.8) characterize the behavior of over
these two subintervals. We then use lemma 6.8 to establish suf-
ficient conditions assuring the -stability of the sampled-data
system with non-zero delay. The proofs of these lemmas have
been moved to the paper’s appendix .

Lemma 6.6: Consider the sampled-data system in (8) sat-
isfying assumption 6.1. Assume that has full rank and for
some , . Given some , let
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, , and
be real-valued functions given by

(29)

and (30)

(31)

respectively, where is a positive real constant given by (22)
and is given by (18). If the th finishing time
satisfies

(32)

for all , then the th trigger signal, , satisfies

(33)

for all .
Remark 6.7: In lemma 6.6, serves as

a bound on the maximal allowable delay. Since we are consid-
ering non-zero delays, we would like to
be strictly away from zero. To ensure that, we need to guar-
antee is bounded by a positive constant
from above. The upper bound of can
be obtained provided that and

hold. This is because

Because , the inequality above implies

which means
since . With the fact that

is bounded by a positive constant from
above, it is easy to show that is greater
than a positive constant, if holds.

Lemma 6.8: Consider the sampled-data system in (8) satis-
fying assumption 6.1. Assume has full rank. For a given in-
teger and some , assume that .
For any , let

(34)

where is given by

(35)

if

(36)

then

(37)

(38)

According to lemma 6.8, for a positive constant ,
if and

hold, we will always have
and .

We will use this fact below to characterize a self-triggering
scheme that preserves the sampled-data system induced
gain. Theorem 6.10 formally states this self-triggering scheme.
The proof of theorem 6.10 requires the following lemma which
shows that the upper bound for delays given in lemma 6.6 is
bounded below by a positive function of . In that case,
the deadline for can be predicted at time . The proof of
this lemma will be found in the paper’s appendix .

Lemma 6.9: Consider the sampled-data system in (8) satis-
fying assumption 6.1. Assume that has full rank and for a
constant , the release time and satisfy

(39)

for any given . Then given by (29) satisfies

(40)

where and is a real-valued
function given by

(41)

With the preceding technical lemma we can now state a self-
triggered feedback scheme which can guarantee the sampled-
data system’s induced gain. The basis for this self-triggering
scheme will be found in the following theorem.

Theorem 6.10: Consider the sampled-data system in (8) sat-
isfying assumption 6.1. Assume has full rank. For given

and , we assume that
• The initial release and finishing times satisfy
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• For any non-negative integer , the release times are gen-
erated by the following recursion,

(42)

and the finishing times satisfy

(43)

where is given in (35) and is given in (41). Then the se-
quence of release times, , and finishing time, ,
will be admissible and the sampled-data system is finite-gain
stable from to with an induced gain less than .

Proof: From the definition of in (41), we can easily see
that for any non-negative integer . We can
therefore use (43) to conclude that the interval

is nonempty for all .
Next, we insert (42) into (43) to show that

(44)

for all non-negative integers .
With the preceding two preliminary results, we now consider

the following statement about the th job. This statement is that
1) ,
2) for all ,
3) and for all .

We now use mathematical induction to show that under the the-
orem’s hypotheses, this statement holds for all non-negative in-
tegers .

First consider the base case when . According to the
definition of ((35)) we know that

We can therefore combine (43) and (42) to obtain

(45)

which establishes the first part of the inductive statement when
.

Next note that

(46)

If we use the fact that in (42) and (46), we can
see that the hypotheses of lemma 6.8 are satisfied. This means
that for all which completes
the second part of the inductive statement for .

Now define the time

Equation (46) again implies that the hypotheses of lemma 6.8
are satisfied, so that

(47)

From (44), we know that . We can also combine (43)
and (45) to conclude that . We therefore know that

which combined with (47) implies that

This therefore establishes the last part of the inductive statement
for .

We now turn to the general case for any . For a given let
us assume that the statement holds. This means that

(48)

(49)

(50)

Now consider the st job. Because (49) is true, the hy-
pothesis of lemma 6.9 is satisfied which means there exists a
function (given by (41)) such that

We can use this in (43) to obtain

(51)

From (51) and the fact that we know that the hy-
potheses of lemma 6.8 hold and we can conclude that

(52)

(53)

Combining (43) with (52) yields which
establishes the first part of the statement for the case .
Equation (53) is the second part of the statement.

Finally let

Following our prior argument for the case when , we know
that the validity of (51) satisfies the hypotheses of lemma 6.8.
We can therefore conclude that

(54)

According to (44), . We can therefore combine
(43) and (52) to show that and therefore con-
clude that . Combining this ob-
servation with (54) yields for all

which completes the third part of the induc-
tive statement for case .

We may therefore use mathematical induction to conclude
that the inductive statement holds for all non-negative integers

. The first part of the statement, of course, simply means that
the sequences and are admissible. The third
part of the inductive statement implies that the hypotheses of
corollary 5.2 are satisfied, thereby ensuring that the system’s
induced gain is less than .

Remark 6.11: serves as the deadline for the
delay in theorem 6.10.
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Remark 6.12: As is evident from the way it was constructed,
controls the next job’s release time. We might therefore expect

to see a larger result in larger sampling periods. This is indeed
confirmed by the analysis. Since

and since is an increasing function of we can see that larger
result in larger sampling periods.
Remark 6.13: By our construction of the parameter , we see

that it controls the current job’s finishing time. Since this

and since is an increasing function of , we can expect to see
the allowable delay increase as we increase . Note also that
is a decreasing function of so that adopting a longer sampling
period by increasing will have the effect of reducing the max-
imum allowable task delay.

Remark 6.14: From the previous two remarks we see that the
parameters and can be used to control the task’s deadline
and period. One way to choose and is to enforce real-time
schedulability constraints such as those discussed in [22]. As a
“rule of thumb” a reasonable strategy is to choose and so that

and are as large as possible; as this makes the task easier to
schedule under an earliest-deadline first (EDF) scheduling dis-
cipline. This suggests that and may be seen as parameters in
a scheduling-controller co-design method similar in philosophy
to the approach introduced in [12]. We are currently working to
see if this idea indeed provides a useful formalism for the sys-
tematic co-design of real-time self-triggered control systems.

Remark 6.15: The prior techniques can also be applied to
self-triggered systems in which , thereby relaxing
assumption 6.1. In this case, however, it is easy to see that the
bounds on sampling periods and deadlines will asymptotically
go to zero, thereby leading to “chattering” behavior. A topic
for future research is how best to address this issue when we
can only guarantee the disturbance is uniformly bounded by a
constant.

The following corollary to the above theorem shows that
the task periods and deadlines generated by our self-triggered
scheme are all bounded away from zero. This is important in
establishing that our scheme does not generate infinite sampling
frequencies.

Corollary 6.16: Let the assumptions in theorem 6.10 hold.
Then there exist two positive constants such that

and .
Proof: From theorem 6.10, we know

Therefore, by lemma 6.6,

Let us first take a look at . From (42), we have

It is easy to show that

holds.

VII. SIMULATION

This section presents the results of simulation studies that em-
pirically compare the performance of self-triggered controllers
against periodically triggered and event-triggered controllers.
This section’s main finding is that self-triggered systems appear
to generate longer sampling periods than the bound on MATI
presented in [9]. The simulation results suggest that periodi-
cally-triggered systems with a sampling period have worse
disturbance rejection abilities (as measured by energy in the
tracking error) than self-triggered systems whose average sam-
pling period is equal to . Finally we provide examples illus-
trating that the self-triggering’s computational cost (as mea-
sured by the ratio of the task’s execution time over period) is
comparable and sometimes better than the computational cost
of periodically triggered systems using the the bound on MATI
in [9].

The remainder of this section is organized as follows. Sec-
tion VII-A describes the system under study. Simulations of
the system’s self-triggered controller will be found in Sec-
tion VII-B. The performance of the self-triggered system is
then compared against comparable event-triggered schemes
(Section VII-C) and periodically-triggered schemes (Sec-
tion VII-D). A discussion of self-triggering’s computational
cost is found in Section VII-E.

A. System Model

The following simulation results were generated for event-
triggered and self-triggered feedback systems. The plant was
an inverted pendulum on top of a moving cart. The plant’s lin-
earized state equations were

where was the cart mass, was the mass of the pendulum
bob, was the length of the pendulum arm, and was grav-
itational acceleration. For these simulations, we let ,

, , and . The system state was the vector
where was the cart’s position and

was the pendulum bob’s angle with respect to the vertical. The
control input was generated by either an event-triggered or
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Fig. 3. State trajectories of continuous-time closed-loop system ((1)).

self-triggered controller. The function was an external distur-
bance to the system. The system’s initial state was the vector

.
We designed a continuous-time state feedback control system

((1)) in which the performance level, , was set to 200. Solving
the Riccati equation in (2) yielded a positive definite matrix
such that the state-feedback gains were

(55)

The state trajectory of the resulting closed-loop system is de-
noted below as . Fig. 3 plots the system states as a function of
time under the assumption that for all . Fig. 3 is there-
fore the impulse response of the inverted pendulum system.

B. Self-Triggered Feedback

The simulations in this subsection are for the self-triggered
feedback scheme associated with (42) and (43) in theorem 6.10
with . In this case, the task release times were generated
at time using the equation

and the finishing times were assumed to satisfy

which means the delays are equal to the deadlines. The plant
is the inverted pendulum plant of the preceding subsection in
which the external disturbance was again zero. The and

parameters were chosen to be 0.65 and 0.7, respectively.
In comparing the performance of the self-triggered versus the

continuous-time system, we examine the “normalized” error,
Let denote the self-triggered system’s response and let
denote the continuous-time system’s response. The normalized
self-triggered system’s error, is defined by

(56)

Fig. 4. Normalized state error versus time for a self-triggered systems with
���� � � and a self-triggered system with ������ � ������ ���� (� �
���, � � ����).

Fig. 5. Sampling period and predicted deadline for a self-triggered system in
which � � ��� and � � ����.

where and is the positive definite matrix sat-
isfying the algebraic Riccati (2). This normalization of the state
error allows us to fairly measure those states (i.e., the pendulum
bob angle) that are most directly affected when input distur-
bances exist.

Fig. 4 plots the normalized error, of the self-trig-
gered system assuming and .
For both cases, the normalized error is small over time, thereby
suggesting that the continuous-time and self-triggered systems
have nearly identical impulse responses.

Fig. 5 plots the task periods, , (crosses) and deadlines, ,
(dots) generated by the self-triggered scheme assuming

. The sampling periods range between 0.021 and 0.185 sec-
onds. Note that these sampling periods show significant vari-
ability. The shortest and most aggressive sampling periods oc-
curred in response to the system’s non-zero initial condition.
Longer and relatively constant sampling periods were generated
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Fig. 6. Sample periods and predicted deadlines versus time for a self-triggered
system (� � ���, � � ����, and ������ � ������ ���� ).

once the system state has returned to the neighborhood of the
system’s equilibrium point. This seems to confirm the conjec-
ture that self-triggering can effectively adjust sampling periods
in response to changes in the control system’s external inputs.

Fig. 6 plots the sample periods, (crosses), and predicted
deadlines (dots), generated by the self-triggered system when it
is driven by the disturbance where .
After the initial transient in the system’s response, the sampling
periods converge to a periodic signal in which the sample pe-
riods range between 0.037 and 0.092. It is interesting to note
that shows significant periodic variation. Other simulations
have shown similar results. These observations suggest that the
choice of “optimal” sampling period has its own dynamic that
leads to a periodic variation in sampling periods. One interesting
issue for future research is whether or not we can take advantage
of this variability in scheduling multiple real-time control tasks.

Figs. 7 and 8 show what happens to task periods and dead-
lines when we varied and . In Fig. 7, and was varied
between 0.1, 0.4 and 0.65. The top two plots show histograms
of the sampling period (left) and deadline (right) for .
The middle two plots are histograms of the sampling periods
and deadlines for . The bottom two plots display results
when . Examining the three histograms on the left side
of Fig. 7 shows little change in sampling period as a function of
. The three histograms on the right side of Fig. 7 show signif-

icant variation in deadline as a function of . These results are
consistent with our earlier discussion in remark 6.13. Recall that

controls the time when the th task finishes. So by changing
we expect to see a large impact on the predicted deadline ( )

and little impact on the task period.
Fig. 8 is similar to Fig. 7 except that we keep fixed at 0.1

and vary from 0.15 (bottom) to 0.4 (middle) to 0.9 (top). These
histograms show that as we increase we also enlarge the task
periods. Recall that controls the time interval so that
what we observe in the simulation is again consistent with our
comments in remark 6.12. As we increase the sampling period,
however, we can expect smaller predicted deadlines because the

Fig. 7. Histogram of sample period and predicted deadline for a self-triggered
system in which � � ��� and � � ����� ��	� �����.

Fig. 8. Histogram of sample period and predicted deadline for a self-triggered
system in which � � ��� and � � ��������	��
�.

average sampling frequency is lower. This too is seen in the
histograms on the righthand side of Fig. 8.

The results in this subsection clearly show that we can effec-
tively bound the task periods and deadlines in a way that pre-
serves the closed-loop system’s stability. An interesting fu-
ture research topic concerns how we might use these bounds on
period and deadline in a systematic manner to schedule multiple
real-time control tasks.

C. Comparison Against Event-Triggered Feedback

This subsection compares the self-triggered scheme against
two event-triggered schemes; our own event-triggered scheme
in theorem 6.3 and the event-triggered scheme in [11]. To make
a fair comparison, we set and so self-triggering
occurs with zero delay.

Let denote the state trajectory of the event-triggered
system based on theorem 6.3 ’s threshold test. Let de-
note the normalized error (see (56)) of the event-triggered tra-
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Fig. 9. Normalized state errors versus time for a self-triggered system and an
event-triggered system (� � �, � � �, and ���� � �).

Fig. 10. Sampling period versus time for a self-triggered system and an event-
triggered system (� � �, � � �, and ���� � �).

jectory. Fig. 9 plots the normalized error for the self-triggered
system, (solid line), and the event-triggered system,

(dashed line) as functions of time for . In both
cases the normalized errors are small, though the event-trig-
gered system has a slightly larger error.

Fig. 10 plots the sampling periods generated by the self-trig-
gered scheme (top plot) and the event-triggered scheme (bottom
plot). The self-triggered sampling periods range between 0.0300
and 0.2060 with an average period of 0.1782. The event-trig-
gered sampling periods range between 0.0340 and 1.3890 with
an average period of 0.3375. Note that the self-triggered sam-
pling periods are an order of magnitude smaller than the pe-
riods of the event-triggered scheme. These results suggest that
even-triggered feedback is better able to reduce sampling period
frequency than the self-triggered feedback.

We then added a square wave input to the system to see how
the self-triggered and event-triggered systems react to external

Fig. 11. Normalized error versus time for a self-triggered system and an event-
triggered system ( � � �, � � �, and ���� � ����).

Fig. 12. Sampling period versus time for a self-triggered system and an event-
triggered system (� � �, � � � and ���� � ����).

disturbances. The results from this comparison are shown in
Fig. 11. This figure plots the time history of the normalized error
signals, (solid line) and (dashed line), for the
inverted pendulum using the input signal, where

takes the values

if
otherwise

(57)

Again, the error in the self-triggered system is smaller than that
in the event-triggered system.

Fig. 12 plots the sampling periods generated by the self-trig-
gered (top plot) and event-triggered (bottom plot) systems when

. The top plot shows that the sampling periods in the
self-triggered system readjust and get smaller when the square
wave input hits the system over the time interval . In the
event-triggered system, as shown in the bottom plot, the average
period, 0.2830, also get smaller compared with the periods in
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the bottom plot of Fig. 10, although the decrease is not very ob-
vious. These results again demonstrate the ability of self-trig-
gering and event-triggering to successfully adapt to changes in
the system’s input disturbances.

It is instructive to compare the sampling periods generated by
self-triggering (see the top plot in Fig. 10) against the periods
that would have been generated by the event-triggering scheme
in [11]. The event-triggering scheme in [11] samples the state
when

is a positive definite matrix associated with a control Lya-
punov function for the closed-loop system with
state feedback gains . Since is a control Lyapunov func-
tion, we can find a matrix such that the directional deriva-
tive of the unforced closed-loop system satisfies the inequality

. In the above equation, is the real constant

where and denote the minimum and maximum
eigenvalues of matrix , respectively. For this particular simu-
lation, we set equal to the associated with our controller to
obtain . This event-triggering threshold gener-
ates sampling periods less than . This is much smaller than
the sampling periods generated by the self-triggering scheme.

The reason for this difference is that the condition number
of the particular matrix is extremely large due to the great
difference in the time constants associated with the dynamics of
the cart and pendulum bob. Such a matrix leads to a very small

, which limits the size of the sampling periods generated by the
approach in [11]. In fact, for the inverted pendulum model with
the control gain given by (55), the smallest condition number
of matrix is 409.05. The resulting is equal to 1.35 .
If we directly consider the value of , the largest we can get
is 1.20 . The resulting sampling periods are still less than

. Therefore, for the inverted pendulum model, our event-
triggering threshold generates much longer sampling periods.

However, for different systems which allow with a small
condition number, the approach in [11] may also generate large
sampling periods. For example, for a scalar system,

, with , we get and . The
average sampling period generated by self-triggering is 0.3670
associated with , , and . The
threshold condition in [11] is for the same
and . The minimal, average, maximal sampling periods by the
approach in [11] are the same, 0.4060, which are longer than the
average period generated by our approach.

D. Comparison Against Periodically-Triggered Feedback

The simulations in this subsection compare the performance
of self-triggered and “comparable” periodically triggered feed-
back control systems using the inverted pendulum system de-
scribed above. Again to make a fair comparison, we enforce
zero delays by setting and in the self-triggered
controller.

We first compare the sampling period in the self-triggered
system with the bound on MATI given by [9]. The bound on
MATI ensuring an gain of is,

(58)

where, in the inverted pendulum model, ,
, satisfies

and is the gain for the closed-loop system (
) from to .

From (58), we compute the bound on MATI consistent with
an gain . This results in . The cor-
responding average sampling period for a self-triggered system
with gain is equal to 0.1782 (see Fig. 10). Clearly the
average period generated by the self-triggered scheme is longer
than the estimate of MATI for systems with the same induced

gain. Note that the bound on MATI obtained assuming an in-
finite-gain for is still only 0.0112 which is still much smaller
than the average sampling period generated by the self-triggered
controller.

Note that the above self-triggered system generated sampling
periods under the assumption that the noise magnitude .
For non-zero the average sampling period will decrease. For
instance if , then the average self-triggered period
shrinks to 0.0629. Though this is still larger than the bound on
MATI, it is apparent that as increases, the average period will
continue shrinking until it is less than the MATI. This appears
to be one weakness of the current result in theorem 6.10. We
believe this can be relaxed, but that will need to be addressed in
future work.

One thing worth mentioning is that the self-triggering scheme
is compared with a theoretically derived bound on the MATI [9].
This bound may be conservative due to the sampling scheme and
the conservatism of the proof techniques. It does not mean that
the actual maximal allowable transfer interval is conservative.

We should also notice that the bound on MATI can be pre-
dicted before the system is deployed by methods such as the
one in [9]. So when designers try to build physical devices, they
know exactly what the requirements are on the sampling rate.
On the contrary, it is difficult to predict ahead of time the min-
imal sampling period in self-triggered feedback systems. It may
be possible that for a short interval, the controller insists on a
sampling/control rate that the physical device cannot provide.
Therefore, how to handle such unexpected delays would be an
interesting direction to follow in the future.

We then compared the performance of the self-triggered
system and a periodically triggered system with “comparable”
task period, which is the average sampling period over the
entire time zone, 0.1782, generated by the example in Fig. 10.
The results from this comparison are shown in Fig. 13. This
figure plots the time history of the normalized errors for the
self-triggered system, (solid line), and the periodically
triggered system, (dash-dot line) for an inverted pen-
dulum with input signal where is defined in (57)
and denotes the periodically triggered system’s response.
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Fig. 13. Normalized error versus time for a self-triggered system (� � � and
� � �) and a periodically triggered system whose period was chosen from the
sample periods shown in the top plot of Fig. 10.

Fig. 13 clearly shows that the self-triggered error is sig-
nificantly smaller than the error of the periodically triggered
system. This error is a direct result of the self-triggered system’s
ability to adjust its sample period as shown in the top plot of
Fig. 12.

E. Self-Triggered System’s Computational Cost

This subsection compares the computational cost in the
self-triggered system by comparing the average utilization
of the self-triggered system against a periodically triggered
system with period equal to the MATI, . The
average utilization is the quotient of the execution time over
the average sampling period. In this section, we set and

with for the self triggered system. In this case
the average period is 0.1782.

The computational cost for one task will be measured by the
number of multiplies required for a single update of the control.
We focus on “multiplies” since they represent the most expen-
sive floating point computation. Since other parameters (such as

and ) can be computed off-line, the computational cost
for one task comes from the computation of the control, which
uses multiplies, and the prediction of the next release time,
which requires about multiplies, where is the state
dimension. The total computational cost of the self-triggered
scheme is therefore , whereas the computational cost
of the periodically triggered controller is only multiplies.

While the computational cost of self-triggering is higher
than that of periodically-triggered systems, we generally see
that self-triggered systems have longer average periods. So a
more appropriate comparison of each method’s resource usage
is provided by their “utilization” which we take here as the
quotient of the computational cost (number of multiplies) over
the sampling period. For the inverted pendulum system the

periodically triggered system’s utilization, , may therefore
be taken to be where we normalized out the cost of
the control computation. For this example (with ) we
earlier computed the MATI to be so that the
periodic system’s utilization is . The self-trig-
gered system’s utilization, , is given by where

is the average period generated by self-triggering. In our
simulations , so that the self-triggered system’s
utilization becomes . The main conclusion to be
drawn here is that even though periodically-triggered feedback
has lower computational cost per job, the average utilization of
both methods appears to be comparable.

VIII. CONCLUSION

This paper has presented a state-dependent threshold in-
equality whose satisfaction assures the induced gain of a
sampled-data linear state feedback control system. We derive
state-dependent bounds on the task periods and deadlines
enforcing this threshold inequality based on an event-trig-
gered feedback scheme. These results were used to present a
self-triggered feedback scheme with guaranteed stability.
Simulation results show that the proposed event- and self-trig-
gered feedback schemes perform better than comparable
periodically triggered feedback controllers. The results in this
paper, therefore, appear to provide a solid analytical basis for
the development of aperiodic sampled-data control systems that
adjust their periods and deadlines to variations in the system’s
external inputs.

There are a number of open directions for future study. The
bounds derived in this paper can be thought of as quality-of-con-
trol (QoC) constraints that a real-time scheduler must enforce
to assure the application’s (i.e., control system’s) performance
level. This may be beneficial in the development of soft real-
time systems for controlling multiple plants. The bounds on task
period and deadline suggest that real-time engineers can adjust
both task period and task deadline to assure task set schedula-
bility while meeting application performance requirements. It
would be interesting to see whether such bounds can be used in
generalizations of elastic scheduling algorithms [23], [24]. This
might allow us to finally build soft real-time systems providing
guarantees on application performance that have traditionally
been found only in hard real-time control systems.

To our best knowledge, this is the first rigorous examination
of what might be required to implement self-triggered feed-
back control systems. Self-triggering on single processor sys-
tems may not be very useful since event-triggers can often be
implemented in an inexpensive manner using FPGAs or custom
ASICs. If, however, we are controlling multiple plants over a
wireless network, then the inability of such networks to provide
deterministic guarantees on message delivery make the use of
self-triggered feedback much more attractive. An interesting fu-
ture research direction would explore the use of self-triggered
feedback over wireless sensor-actuator networks, which is par-
tially addressed in [9], [10], [25], and [26].
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APPENDIX

Proof of Lemma 6.6: Let
. For , the derivative of satisfies the

differential inequality,

where we use the righthand sided derivative when . The
differential inequality in (59) along with the initial condition

, allows us to conclude that

(59)

for all since for all .
The assumption in (32) can be rewritten as

(60)

is a monotone increasing function of
. Combining this fact with (59) and (60) yields

which leads to (33) holding for all .
Proof of Lemma 6.8: The hypotheses of this lemma also

satisfy the hypotheses of lemma 6.6 so we know that

(61)

By (35) and (61), we have

which implies

Assume the system state satisfies the differential
equation

for . Using an argument similar to that in lemma 6.6,
we can show that satisfies the differential inequality

(62)

Equation (61) can be viewed as an initial condition on the dif-
ferential inequality in (62). Solving the differential inequality,
we know for all ,

(63)

Because the right side of (63) is an increasing function of , we
get

(64)

for all , where the equivalence in the right side of
(64) is achieved according to the definition of in (34).

Proof of Lemma 6.9: First note that
implies that

We now use this inequality to bound and
as a function of .

An upper bound on can be obtained by
noting that
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A lower bound on is obtained by noting that

We know by the definitions of and in (14)
and(15), respectively. So the inequality above can be further
reduced as

Putting both inequalities together we see that

which completes the proof.
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