Semi-Automatically Annotating Semantic Web Services (Extended Abstract)

Andreas Hel3 Eddie Johnston Nicholas Kushmerick
Computer Science Department, University College Dublin, Ireland
{andreas.hess, eddie.johnston, hi@ucd.ie

Overview be useful for programmers who are only interested in anno-
The semantic Web Services vision requires that each ser- tating a single Web Service they have created. In order to

vice be annotated with semantic metadata. Various meta- ke his or her service compatible with existing services, a
data languages (such as OWL-S (DAML-S Coalition 2003)) developer might want to annotate it with the same qntology
have been proposed to fill this “semantic gap”. However, that has already b_een used for Some other Web Services. The
manually creating such metadata is tedious and error-prone. gevelop%r COUI% import the _eX|sdt|ng Wedeerwceg in AS-
Software engineers, accustomed to tools that automatically AM and use them as training data in order to obtain rec-
generate WSDL, might not want to invest the required effort. omr_nendatlonS on how to annota_te h_|s or her own service.
This extended abstract describes ASSAM, a tool that as- . 19: 1 shows the ASSAM application. Note that our ap-
sists a user in creating semantic metadata for Web Ser- pllcatlon's key novelty—thg suggegted annotations created
vices. ASSAM's capabilities to automatically create seman- automatically by our machine learning algorithm—is shown

tic metadata are supported by two machine learning algo- in the small POP-up wmdow: . : .
rithms. First, we have developed an iterative relational clas- _ 1 he leftcolumniin the main window contains a list of Web

sification algorithm for semantically classifying Web Ser- Services and the category ontology. Web Services can be
vices, their operations, and input and output messages. Sec-associated with a category by clicking on a service in a list
ond, to aggregate the data returned by multiple semantically @nd then on a node in the category tree. When the user has
related Web Services, we have developed a schema mappingselected a service and wants to focus on annotating it this
algorithm based ensembles of string distance metrics. part of the window can be hidden. _

The remainder of this paper is organized as follows: (1) _ 'he middle of the window contains a tree view of the
We describe the WSDL annotator application. This compo- WSDL. Porttypes, operations, messages and complex XML
nent of ASSAM uses machine learning to provide the user Schematypes are parsed from the WSDL and shown in a tree
with suggestions on how to annotate the elements in the Structure. The original WSDL file is also shown as well as
WSDL. (2) We describe and evaluate the iterative relational Plain teéxt descriptions from the occasional documentation
classification algorithm that provides these suggestions. (3) t&gs within the WSDL or a plain text description of the ser-
We describe and evaluate OATS, a schema mapping algo- Vice as awholel, such as often_offered by a UDDI registry or
rithm specifically designed for the Web Services context. & Web Service indexing web site. _

This extended abstract merely summarizes our efforts; for When the user clicks on an element in the WSDL tree
details and a discussion of related work, see (HeR & Kush- View, the corresponding ontology is shown in the right col-
merick 2004: Johnston & Kushmerick 2004: He3, Johnston, Umn and the user can select an appropriate class by clicking

& Kushmerick 2004). on an element in the ontology view. Currently, different on-
tologies for datatypes and operations are used. At present
ASSAM: A Tool for Web Service Annotation we allow annotation for operations, message parts and XML

schema types and their elements. Port types or messages

One of the central parts of ASSAM is the WSDL annotator cannot be annotated, because there is no real semantic mean-
application. The WSDL annotator is a tool that enables the ing associated with the port type or the message itself that is
user to semantically annotate a Web Service using a point- not covered by the annotation of the operations or the mes-
and-click interface. The key feature of the WSDL annotator sage parts.
is the ability to suggest which ontological class to use to Because we do not handle composition and workflow in
annotate each element in the WSDL. our machine learning approach, the generated process model

ASSAM is designed primarily for users who want to an- consists only of one atomic process per operation. The gen-
notate many similar services. These users could be end- erated profile is a subclass from the assigned category of the
users wanting to integrate several similor Web Services into service as a whole — the category ontology services as pro-
his or her business processes, or the administrators of a cen-file hierarchy. The concept file contains a representation of
tralized semantic Web Service registry. Our tool could also the annotated XML schema types in OWL-S. Note that it is

a¥ala) WSDL Annotator

- Category WSDL - Tree View [Data types L/ 4p)
g Converter - — —
C . R v X¥ SendFreeFAX -- Send_Fax > C Credit_Card_Holdel
- C Geograph|cal_|nformat|on| | ¥ &+ freeFaxRequest M

. _ L) b C Back_Account_Hole
¥ C Communication /5 Sender (string) -- Sender_

) = - ¥ C Receiver
b C Instant_Messaging 2 ToMum (string) - Fax_Nui *
v C Fax = - : : P Fax_Number_R,~
= Name (strinnd —- Receiver P Mobile_Type_R
loutBoxFAXsenc . — p Instant- Mess-ag
InterFAX Send (Fi v — = T
S ~Description — D Mnohila. Mumhbar]
e e nlll O O O Annotation Wizard |
= dial 1+areacode+number.
~Service List Non-numerics within the string are | ToNum
1gnored. i
loutBox SendFax (SMS) q = |Fax_Number_Receiver ;
\) Mobile_Number_Receiver !

loutBoxFAXsend (Fax)

~WSDL - Text View—————— :
AbiCabIT (Bank_Code_Lookup Options I

can be fqg

AcademicVerifier (E-Mail_Verii ot used Skip => /L
AccelerationUnitconvertor (Pht ”;‘;gggumentauom T FSEnmErTvame—
AngleUnitconvertor (Physical_ + <part name=" " type="i Y P Instant_Messag ¥
Py G L= B [{))< >

A

Figure 1: ASSAM uses machine learning to annotate Web Services with semantic metadata.

up to the ontology designer to take care that the datatype on- Service’s WSDL representation. We udecument parto
tology makes sense and that it is consistent. No inference denote an object within the Web Service that we want to
checks are done on the side of our tool. classify: operations, input and output messages, and XML
schema types.
Iterative Relational Classification

We now describe the machine learning algorithms behind |terative Classification Ensemble. The basic idea behind
ASSAM's annotation wizard. We cast the problem of clas- our approach is to exploit the fact that there are dependen-
sifying operations and datatypes in a Web Service as a text cies between the category of a Web Service, the domains
classification problem. Our tool learns from Web Services of its operations and the datatypes of its input and output
with existing semantic annotation. Given this training data, parameters. In previous work (HeR & Kushmerick 2003),
a machine learning algorithm can generalize and predict se- we exploited these dependencies in a Bayesian setting and
mantic labels for previously unseen Web Services. evaluated it on Web forms. In this paper, we present an gen-
eralization to the iterative classification algorithm proposed
Terminology. Before describing our approach in detail, by (Neville & Jensen 2003).
we begin with some terminology. By introducing this ter- Like any classification system, our algorithm is based on
minology we do not advocate a new standard. Instead we a set of features of the services, operations and parameters.
believe that our approach is generic and independent of the Following (Neville & Jensen 2003), we distinguish between
actual format used for the semantic Web Service description. intrinsic and extrinsicfeatures. The intrinsic features of a
We use the terncategoryto denote the semantic mean- document part are simply its name and other text that is asso-
ing of the service as a whole. The category ontology corre- ciated with it (e.g., text from the occasior@cumenta-
sponds to a profile hierarchy in OWL-S. The tedomain tion tags). Extrinsic features derive from the relationship
denotes the semantic meaning of a single operation. An between different parts of a document. We use the semantic
operation in WSDL usually maps to an atomic process in classes of linked document parts as extrinsic features.
OWL-S, but there is no direct relation of the domain of an Initially, when no annotations for a service exist, the ex-
operation to OWL-S, as atomic processes are only character- trinsic features are unknown. After the first pass, where clas-
ized through their inputs, outputs, preconditions and effects. sifications are made based on the intrinsic features, the val-
Finally, the terndatatypedenotes the semantic type of asin- ues of the extrinsic features are set based on the previous
gle input/output variable. This usage is intended to map on classifications. Of course, these classifications may be par-
to, for example, a property in an ontology, and should not tially incorrect. The classification process is repeated until a
be confused with low-level syntactic datatypes such as “in- certain termination criterion (e.g. convergence) is met.

teger” or “string”. Our iterative algorithm differs in several ways from
For information retrieval or classification tasks the objects Neville and Jensen’s algorithm. In their approach, one single
that are classified or searched are usually referreddoas classifier is trained on all (intrinsic and extrinsic) features. In

ments When we use the wordocumentwe mean the Web a variety of tasks, ensembles of several classifiers have been

shown to be more effective (e.g., (Dietterich 2000)). For this
reason, we train two separate classifiers, one on the intrin- 1
sic features (4”) and one on the extrinsic featuresi™), :
and vote together their predictions. Another advantage of o8k]
combining the evidence in that way is that the classifier can-

not be mislead by missing features in the beginning when 06l

the extrinsic features are yet unknown, because the classifier
trained on the extrinsic features is simply not used for the

Accuracy

0.4 -

first pass.
We also introduce a second mode for incorporating the 02b _]
. . . o pe . f . Baseline——
extrinsic features: We train a set of classifiers on the intrinsic Assam——
features of the datatypes, but each of them is only on the P ol 11 ol 111
subset of the instances that belong to one specific category. 0246 810 0246810 0 246 810
Tolerance, Category Domain Datatypes

More precisely, once we have classified the category of a
service, we use the classifier for the datatypes that has been
trained on instances from that categloryfo avoid biasing
the algorithm too strongly, we still combine the results of
the A,,.. classifier with theA classifier in each iteration.
For each level we use eithét or the A, classifiers, but
not both. We chose thd,,.. method for the datatypes and
the B method for the category and the domain.

We did not exploit every possible dynamic extrinsic fea-

Figure 2: Accuracy of our algorithm on the three kinds of
semantic metadata as a function of prediction tolerance.

resembles the original algorithm proposed by Neville and
Jensen. Again, the same set of static features was used.

In the evaluation we ignored all classes with one or two
. T X instances, such as occurred quite frequently on the datatype
ture. We usedstatic extrinsic features on the domain and level. The distributions are still quite skewed and there is a

g:i?tgé)seo::?;feldbv)\//itIrT?T?(ragz:aatg]sgv&g)s(tagggnd (t:cr: Itlgtraetgxrt]%c;gts; b jarge number of classes. There are 22 classes on the category
- . 9 -] >1eve|, 136 classes on the domain level and 312 classes on the

the operations classifier, and text associated with elements of datatype level

ct)mp_lfgx tylpes _g_ere a;]dded to lthe text gseﬂc b)#}hefdatatype Fig. 2 show the accuracy for categories, domains and

classifier classifying the complex type itself. e features ' e ; ; -

we used and the feedback structures for the dynamic featuresgﬁgmg?es d Aréénpl\)liﬂe(i O'(r;:t'ai{“\ilse ns(fter?gggsggfy tgsbgul; esigrl-

are based on preliminary tests. We used a fixed number of 5 fectly accurate. Rather, we strive only to ensure that that

IteIrr? ttlr?(relse.valuation section, we report results for this setu the correct ontology class is in the top few suggestions. We
' P P therefore show how the accuracy increases when we allow a

For a more detailed discussion of the parameters of our al- .o olerance. For example, if the accuracy for tolerance
gorithm and their effects the reader is referred to our paper 9is 0.9, then 90% of the time, the correct answer is in the

(Hel3 & Kushmerick 2004) that describes the algorithm in top 10 predictions.

greater detail from a machine learning point of view. We could not achieve good results with the non-ensemble
setup. This setup scored worse than the baseline. For the

Evaluation. We evaluated our algorithm using a leave- datatypes, even the ceiling accuracy was below the baseline.
one-out methodology. We compared it against a baseline Note that on the category level incorporating the addi-
classifier with the same setup for the static features, but with- tional evidence from the extrinsic features does not help. In
out using the dynamic extrinsic features. fact, for some tolerance values the ceiling accuracy is even

To determine the upper bound of improvement that can worse than the baseline.
be achieved using the extrinsic features, we tested our algo- On the datatype level, our algorithm achieves 31.2% accu-
rithm with the correct class labels given as the extrinsic fea- racy, where as the baseline scores only at 24.5%. Thus, our
tures. This tests the performance of predicting a class label algorithm improves performance by almost one third. The
for a document part when not only the intrinsic features but overall performance might be considered quite low, but due
also the dynamic features, the labels for all other document to the high number of classes it is a very hard classification
parts, are known. problem. Given that in two of three cases the user has to

We also compared it against a non-ensemble setup, wherechoose only between 10 class labels rather than between all
the extrinsic features are not added using a separate classifie312 labels in the datatype ontology we are still convinced
but rather are just appended to the static features. Classifica-that this could save a considerable amount of workload. On
tion is then done with a single classifier. This setup closely the domain level, our approach increases the accuracy for
- exact matches from 26.3% to 28%.

1To avoid over-specialization, these classifiers are actually not

trained on instances from a single category, but rather on instances Aggregating data from Web Services
from a complete top-level branch of the hierarchically organized

category ontology. Note that this is the only place where we make ASSAM uses the machine learning technique just described
use of the fact that the class labels are organized as an ontology, to create semantic metadata that could assist (among other
and we do not do any further inference. applications) a data integration system that must identify

and invoke a set of Web Services operations that can an- D = {d,ds,...}.

swer some query. In order to_automatically aggregate the \when invoked, an operation € O generates data with
resulting heterogeneous data into some coherent structure,glementsk; — {ei b, ...}. Let E = U,E; be all the op-

we are currently developing OATS (Operation Aggregation grations’ elements. The output of the OATS algorithm is a
Tool for Web Services), a schema matching algorithm thatis pariition of .
specifically suited to aggregating data from Web Services. C . .

- . : ; ; One of the distinguishing features of our algorithm is the
: While most schema matching algprlthms don't consider use of an ensemb?e of digstance metrics forgmatchin ele-
instance data, those that do take as input whatever data hap-ments For example, when comparing gusts andwn d-g
pens to be a vailable. in contrast, OATS z_actwely_probes Wep spd inétance datg at,)ove it mak?as se%se to use atoken based
Services with a small set of related queries, which results in pt h h as TEIDE b twh fmioandt
contextually similar data instances and greatly simplifies the ma cd'(tardgutc as b d' utyv en chompi ga”ht”.‘ax '
matching process. Another novelty of OATS is the use of 2N €dit-diStance based metric such as Levensntein Is more

ensembles of distance metrics for matching instance data to suitable. The OATS allg.orithm calculates similayities based
overcome the limitations of any one particular metric. Fur- on the average S|m|I_ar|t|es of an gnsemble of dlstance met-
thermore, OATS can exploit training data to discover which "'CS: Later, we describe an extension to OATS which assigns

distance metrics are more accurate for each semantic cate—\"’eights.to distance m_e;rics according to how well they cor-
relate with a set of training data.

gory. _
As an example, consider two very simple Web Service op- The OATS algorithm proceeds as follows. Each of the
erations that return weather information. The first operation operations are invoked with the appropriate parameters for

may return data such as each of them probe objects. The resultingn XML doc-
<weather><hi>87</hi><lo>56</l0> uments are stored in a three-dimensional tabilel'[s, j, k]
<gusts>NE, 11 mph</gusts></weather> stores the value returned for elemente E; by operation
while the second operation may return data such as o; for probepy,.
<fcast><tmax>88</tmax><tmin>57</tmin> Each element is then compared with every other ele-
<wndspd>10 mph (N)</wndspd></fcast> ment. The distance between an element pe_(j:e;’,) €
The goal of data aggregation is to consolidate this heteroge- £ x F is calculated for each string distance metiic €
neous data into a single coherent structure. D, and these values are merged to provide an ensem-

The major difference between traditional schema match- ble distance value for these elements. The similarity be-
ing and our Web Service aggregation task is that we can ex- tween two e|ements§. € E, and 63',’, € E; is defined as
ert some control over the instance data. Our OATS algo- i iy 1 T 7 7
rithm probes each operation with arguments that corresp%nd ?(tk eﬂ_’/’) o7 2e(de(ejs €5) — m(de))/ R(de), where
to the same real-world entity. For example, to aggregate op- de(e},et,) = =3, do(T[i, j, k], T[i', j', k), M(de) =
erationo, that maps a ZIP code to its weather forecast, and 5% . ., CZe(eil,ei-/,), m(dy) = min,_; s Jg(e?,ei./,), and
operationo, that maps a latitude/longitude pair to its fore- “(egeg) T (€525 T d
cast, OATS could first select a specific location (e.g., Seat- F(d¢) = M(d¢) —m(dy). .
tle), and then query; with “98125” (a Seattle ZIP code), By computing the average distandeoverm related sets
and queryos with “47.45N/122.30W” (Seattle’s geocode). of element pairs, we are minimizing the impact of any spuri-
Probing each operation with the related arguments should ous instance data. Before merging the distance metrics, they
ensure that the instance data of related elements will closely are normalized relative to the most similar and least similar
correspond, increasing the chances of identifying matching pairs, as different metrics produce results in different scales.
elements.

As in ILA (Perkowitz & Etzioni 1995), this probe-based
approach is based on the assumption that the operations
overlap, i.e, there exists a set of real-world entities that are > ;
covered by all of the sources to be aggregated. For example, Welghted average. We also show below how weights can be
while two weather Web Service need not over exactly the adaptively tuned for each element-metric pair.
same locations in order to be aggregated, we do assume that Given the distances between each pair of elements, the fi-
there exists a set of locations covered by both. nal step of the OATS algorithm is to cluster the elements.
This is done using the standard hierarchical agglomerative
clustering (HAC) approach. Initially, each element is as-
signed to its own cluster. Next, the closest pair of clusters is

To get the ensemble similarit(ei, eZ,) for any pair,
we combine the normalized distances for edgh In the
standard OATS algorithm, this combination is simply an un-

The OATS algorithm. The input to the OATS algorithm

is a set of Web Service operatiofis = {01,09,...,0,}, . . .

a set of probe object® — {p1 o}, sufficient meta- found (using the single, complete, or average link methods)
data about the operations so that each operation can be in-21d these are merged. The previous step is repeated until
voked on each probel(— {v1,...,u,}, whereu, is a some termination condition is satisfied. At some pointin the

clustering, all of the elements which are considered similar
by our ensemble of distance metrics will be merged, and fur-
ther iterations would only force together unrelated clusters.
2In our experiments, probes are encoded as a table of at- It is at this point that we should stop clustering. Our imple-
tribute/value pairs, and; is the set of attributes needed by mentation relies on a user-specified termination threshold.

mapping from a probg;, € P to the input parameters that
will invoke o; on p;)?, and a set of string distance metrics

Learning distance metric weights. Instead of giving an
equal weight to each distance metric for all elements, it
would make sense to treat some metrics as more important
than others, depending on the characteristics of the data be-
ing compared. We now show how we can exploit training
data to automatically discover which distance metrics are
most informative for which elements. The key idea is that
a good distance metric will give a small value for pairs of
semantically related instances, while giving a large value for
unrelated pairs.

We assume access to a set of training data: a par-
tition of some set of elements and their instance data.
Based on such training data, tlg@odnessof metric d;
for a non-singleton cluste€' is defined asG(d;,C) =
G'(dj,C)/L > G'(d;, C"), wherec is the number of non-
singleton cluster€’” in the training dataDinya(d;, C) is
the averag@ntra-cluster distance—i.e., the average distance
between pairs of elements with(i, Diyer(d;, C) is the av-
erageinter-cluster distance—i.e., the average distance be-
tween an element i and an element outsid€’, and
G'(dj,C) = Dinter(dj, C') = Dingra(dj, C'). Adistance met-
ric d; will have a score=(d;,C') > 1 ifitis “good” (better
than average) at separating data from clusterom data
outside the cluster, whil&'(d;, C') < 1 suggests that; is a
bad metric forC.

Given these goodness values, we modify OATS in two
ways. The first approach (“binary”) gives a weight of 1 to
metrics withG > 1, and ignores metrics withf < 1. The
second approach (“proportional”), assigns weights that are
proportional to the goodness values.

Evaluation. We evaluated our Web Service aggregation
tool on three groups of semantically related Web Service
operations: 31 operations providing information about ge-
ographical locations, 8 giving current weather information,
and 13 giving current stock information. To enable an ob-
jective evaluation, a reference partition was first created by
hand for each of the three groups. The partitions generated
by OATS were compared to these reference partitions. In
our evaluation, we used the definition of precision and re-
call proposed by (Hel3 & Kushmerick 2003) to measure the
similarity between two patrtitions.

We ran a number of tests on each domain. We system-
atically vary the HAC termination threshold, from one ex-
treme in which each element is placed in its own cluster, to
the other extreme in which all elements are merged into one
large cluster.

The ensemble of distance metrics was selected from Co-
hen’s SecondString library (Cohen, Ravikumar, & Fien-
berg 2003). We chose eight representative metrics, consist-
ing of a variety of character-based, token-based and hybrid
metrics: TFIDF, SIIimTFIDF, Jaro, CharJaccard, Levenstein
[sic], SmithWaterman, Level2Jaro and Level2JaroWinkler.

Each probe entity is represented as a set of attribute/value
pairs. For example, Fig. 3 shows the four probes used for the
weather and location information domains. We hand-crafted
rules to match each of an operation’s inputs to an attribute.
To invoke an operation, the probe objects (ie, rows in Fig. 3)

icao
KIFK
KBOS
KSEA
KAUS

Tat
40.38
42.21
47.44
30.19

acode
718
781
206
512

fullstate
New York
Massachusett:
Washington
Texas

address
110 135th Avenue
101 Harborside Drive
18740 Pacific Highway Soutl
9515 New Airport Drive

city
New York
Boston
Seattle
Austin

state
NY
MA
WA
1B

long
-74.75
-71.00
-122.27
-97.67

zip
11430
02128
98188
78719

Figure 3: The four probe objects for the zip and weather
domains.

are searched for the required attributes.

Results. First, we show that by using an ensemble of string
metrics, we achieve better results than using the metrics sep-
arately. Fig. 4 (top) compares the ensemble approach to the
Levenshtein and TFIDF metrics individually. We report the
average performance over the three domains in two ways: F1
as a function of the HAC termination threshold, and a pre-
cision/recall curve. Note that, as expected, F1 peaks at an
intermediate value of the HAC termination threshold. The
average and maximum F1 is higher for the ensemble of met-
rics, meaning that it is much less sensitive to the tuning of
the HAC termination threshold.

We now compare the performance of OATS with our
two methods (binary and proportional) for using the learned
string metric weights. These results are based on four
probes. We used two-fold cross validation, where the set
of operations was split into two equal-sized subs#is,i,,
andSi.s;. We used just two folds due to the relatively small
number of operationsS;,.;» was clustered according to the
reference clusters, and weights for each distance metric were
learned. Clustering was then performed on the entire set of
elements. Note that we clustered the training data along with
the test data in the learning phase, but we did not initialize
the clustering process with reference clusters for the training
data prior to testing. We measured the performance of the
clustering by calculating precision and recall for just the ele-
ments ofS;.s. Fig. 4 (bottom) shows F1 as a function of the
HAC termination threshold, and the precision/recall curves
for the binary and proportional learners and the original al-
gorithm. Although neither of the learning methods increase
the maximum F1, they usually increase the average F1, sug-
gesting that learning makes OATS somewhat less sensitive
to the exact setting of the HAC termination threshold.

Finally, we have found that accuracy improves with ad-
ditional probe queries, but that performance is beginning to
level off after just a few probes. Recall that we used up to
four probe queries. We note that accuracy improved more
between one and two queries, than between three and four.
We anticipate that the performance increase will rapidly
slow beyond a relatively small number of probes. Note that
we did not carefully select the probe objects in order to max-
imize performance. Indeed, some of the operations returned
missing elements for some probes. Our experiments suggest
that the active invocation approach makes OATS robust to
“bad” probes.

Discussion

In this paper, we have presented ASSAM, a tool for annotat-
ing Semantic Web Services. We have presented the WSDL

0.6 :
Levenstein

0.5 H_Ensemble
0.4

0.3

F1

Precision

0.2

0.1

30 40 50 60 70
HAC termination threshold

proportiona

binary
untrained

F1
Precision

30 40 50 60 70

HAC termination threshold

Figure 4: OATS ensemble vs. individual distance metrics (top); OATS with vs. without adaptive distance metric weighting

Levenstein
0.9

Ensemble

0.8
0.7
0.6
0.5
0.4
0.3

0.5
Recall
0.9 T

0.6

proportiona
binary
untrained
0.7
0.6
0.5
0.4
0.3
0.2
0.1

04 05

Recall

06 07 08

(bottom); F1 as a function of the HAC termination threshold (left); precision/recall curve (right).

annotator application, which provides an easy-to-use inter-
face for manual annotation, as well as machine learning as-
sistance for semi-automatic annotation. Our application is
capable of exporting the annotations as OWL-S.

We have presented a new iterative relational classification
algorithm that combines the idea of existing iterative algo-
rithms with the strengths of ensemble learning. We have
evaluated this algorithm on a set of real Web Services and
have shown that it outperforms a simple classifier and that it
is suitable for semi-automatic annotation.

We have also shown how semantically annotated Web

discovery, composition and invocation of Web Services, but
this interoperability requires Services to be semantically an-
notated. We believe that the methods we have presented here
are a reasonable first step towards the realization of these
goals.

Acknowledgments. This research was supported by Science
Foundation Ireland and the US Office of Naval Research.

References
Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A com-

Services could be used to enhance data aggregation systems, parison of string distance metrics for name-matching tasksitin

and how Web Service aggregation can be viewed as an in-
stance of the schema matching problemwhich instance
data is particularly important We have illustrated how ac-
tively probing Web Services with a small number of inputs
can result in contextually related instance data which makes
matching easier. Our experiments demonstrate how using
an ensemble of distance metrics performs better than the ap-
plication of individual metrics. We also proposed a method
for adaptively combining distance metrics in relation to the
characteristics of the data being compared, which although

not always successful, usually increased the average F1. We

plan to examine the use of more sophisticated techniques for
aggregating the ensemble matchers.

One of the constraints of our aggregation system is that
there must be an overlap between the sources, i.e. all of the
sources must “know about” the entity being queried. Ulti-
mately, we would like our system to learn new objects from
some information sources that could be used to probe other
partially overlapping sources. We envisage a tool that, given
a set of seed Web Services and probe queries, could find
sets of related Web Services and learn new probe objects to
guery them with. Such visions would require the automated

Joint Conf. on Al, Workshop on Inf. Integr. on the \Web
DAML-S Coalition. 2003. OWL-S 1.0. White Paper.

Dietterich, T. G. 2000. Ensemble methods in machine learning.
In Lecture Notes in Computer Sciengelume 1857.

HeR, A., and Kushmerick, N. 2003. Learning to attach semantic
metadata to web services. 2md Int. Sem. Web. Conf.

HeR, A., and Kushmerick, N. 2004. Iterative ensemble classifi-
cation for relational data: A case study of semantic web services.
In European Conf. Machine Learning

HeR, A.; Johnston, E.; and Kushmerick, N. 2004. ASSAM: A tool
for semi-automatically annotating semantic Web Servicemtin
Semantic Web Conf.

Johnston, E., and Kushmerick, N. 2004. Aggregating web ser-
vices with active invocation and ensembles of string distance met-
rics. InInt. Conf. Knowledge Engineering and Knowledge Man-
agement

Neville, J., and Jensen, D. 2003. Statistical relational learning:

Four claims and a survery. Workshop SRL, Int. Joint. Conf. on
Al.

Perkowitz, M., and Etzioni, O. 1995. Category translation: Learn-
ing to understand information on the internet.Imh. Joint Conf.
on Al

