
Semi-Automatically Annotating Semantic Web Services (Extended Abstract)

Andreas Heß Eddie Johnston Nicholas Kushmerick
Computer Science Department, University College Dublin, Ireland

{andreas.hess, eddie.johnston, nick}@ucd.ie

Overview
The semantic Web Services vision requires that each ser-
vice be annotated with semantic metadata. Various meta-
data languages (such as OWL-S (DAML-S Coalition 2003))
have been proposed to fill this “semantic gap”. However,
manually creating such metadata is tedious and error-prone.
Software engineers, accustomed to tools that automatically
generate WSDL, might not want to invest the required effort.

This extended abstract describes ASSAM, a tool that as-
sists a user in creating semantic metadata for Web Ser-
vices. ASSAM’s capabilities to automatically create seman-
tic metadata are supported by two machine learning algo-
rithms. First, we have developed an iterative relational clas-
sification algorithm for semantically classifying Web Ser-
vices, their operations, and input and output messages. Sec-
ond, to aggregate the data returned by multiple semantically
related Web Services, we have developed a schema mapping
algorithm based ensembles of string distance metrics.

The remainder of this paper is organized as follows: (1)
We describe the WSDL annotator application. This compo-
nent of ASSAM uses machine learning to provide the user
with suggestions on how to annotate the elements in the
WSDL. (2) We describe and evaluate the iterative relational
classification algorithm that provides these suggestions. (3)
We describe and evaluate OATS, a schema mapping algo-
rithm specifically designed for the Web Services context.

This extended abstract merely summarizes our efforts; for
details and a discussion of related work, see (Heß & Kush-
merick 2004; Johnston & Kushmerick 2004; Heß, Johnston,
& Kushmerick 2004).

ASSAM: A Tool for Web Service Annotation
One of the central parts of ASSAM is the WSDL annotator
application. The WSDL annotator is a tool that enables the
user to semantically annotate a Web Service using a point-
and-click interface. The key feature of the WSDL annotator
is the ability to suggest which ontological class to use to
annotate each element in the WSDL.

ASSAM is designed primarily for users who want to an-
notate many similar services. These users could be end-
users wanting to integrate several similor Web Services into
his or her business processes, or the administrators of a cen-
tralized semantic Web Service registry. Our tool could also

be useful for programmers who are only interested in anno-
tating a single Web Service they have created. In order to
make his or her service compatible with existing services, a
developer might want to annotate it with the same ontology
that has already been used for some other Web Services. The
developer could import the existing Web Services in AS-
SAM and use them as training data in order to obtain rec-
ommendations on how to annotate his or her own service.

Fig. 1 shows the ASSAM application. Note that our ap-
plication’s key novelty—the suggested annotations created
automatically by our machine learning algorithm—is shown
in the small pop-up window.

The left column in the main window contains a list of Web
Services and the category ontology. Web Services can be
associated with a category by clicking on a service in a list
and then on a node in the category tree. When the user has
selected a service and wants to focus on annotating it this
part of the window can be hidden.

The middle of the window contains a tree view of the
WSDL. Port types, operations, messages and complex XML
schema types are parsed from the WSDL and shown in a tree
structure. The original WSDL file is also shown as well as
plain text descriptions from the occasional documentation
tags within the WSDL or a plain text description of the ser-
vice as a whole, such as often offered by a UDDI registry or
a Web Service indexing web site.

When the user clicks on an element in the WSDL tree
view, the corresponding ontology is shown in the right col-
umn and the user can select an appropriate class by clicking
on an element in the ontology view. Currently, different on-
tologies for datatypes and operations are used. At present
we allow annotation for operations, message parts and XML
schema types and their elements. Port types or messages
cannot be annotated, because there is no real semantic mean-
ing associated with the port type or the message itself that is
not covered by the annotation of the operations or the mes-
sage parts.

Because we do not handle composition and workflow in
our machine learning approach, the generated process model
consists only of one atomic process per operation. The gen-
erated profile is a subclass from the assigned category of the
service as a whole – the category ontology services as pro-
file hierarchy. The concept file contains a representation of
the annotated XML schema types in OWL-S. Note that it is

Figure 1: ASSAM uses machine learning to annotate Web Services with semantic metadata.

up to the ontology designer to take care that the datatype on-
tology makes sense and that it is consistent. No inference
checks are done on the side of our tool.

Iterative Relational Classification
We now describe the machine learning algorithms behind
ASSAM’s annotation wizard. We cast the problem of clas-
sifying operations and datatypes in a Web Service as a text
classification problem. Our tool learns from Web Services
with existing semantic annotation. Given this training data,
a machine learning algorithm can generalize and predict se-
mantic labels for previously unseen Web Services.

Terminology. Before describing our approach in detail,
we begin with some terminology. By introducing this ter-
minology we do not advocate a new standard. Instead we
believe that our approach is generic and independent of the
actual format used for the semantic Web Service description.

We use the termcategoryto denote the semantic mean-
ing of the service as a whole. The category ontology corre-
sponds to a profile hierarchy in OWL-S. The termdomain
denotes the semantic meaning of a single operation. An
operation in WSDL usually maps to an atomic process in
OWL-S, but there is no direct relation of the domain of an
operation to OWL-S, as atomic processes are only character-
ized through their inputs, outputs, preconditions and effects.
Finally, the termdatatypedenotes the semantic type of a sin-
gle input/output variable. This usage is intended to map on
to, for example, a property in an ontology, and should not
be confused with low-level syntactic datatypes such as “in-
teger” or “string”.

For information retrieval or classification tasks the objects
that are classified or searched are usually referred to asdocu-
ments. When we use the worddocument, we mean the Web

Service’s WSDL representation. We usedocument partto
denote an object within the Web Service that we want to
classify: operations, input and output messages, and XML
schema types.

Iterative Classification Ensemble. The basic idea behind
our approach is to exploit the fact that there are dependen-
cies between the category of a Web Service, the domains
of its operations and the datatypes of its input and output
parameters. In previous work (Heß & Kushmerick 2003),
we exploited these dependencies in a Bayesian setting and
evaluated it on Web forms. In this paper, we present an gen-
eralization to the iterative classification algorithm proposed
by (Neville & Jensen 2003).

Like any classification system, our algorithm is based on
a set of features of the services, operations and parameters.
Following (Neville & Jensen 2003), we distinguish between
intrinsic andextrinsic features. The intrinsic features of a
document part are simply its name and other text that is asso-
ciated with it (e.g., text from the occasionaldocumenta-
tion tags). Extrinsic features derive from the relationship
between different parts of a document. We use the semantic
classes of linked document parts as extrinsic features.

Initially, when no annotations for a service exist, the ex-
trinsic features are unknown. After the first pass, where clas-
sifications are made based on the intrinsic features, the val-
ues of the extrinsic features are set based on the previous
classifications. Of course, these classifications may be par-
tially incorrect. The classification process is repeated until a
certain termination criterion (e.g. convergence) is met.

Our iterative algorithm differs in several ways from
Neville and Jensen’s algorithm. In their approach, one single
classifier is trained on all (intrinsic and extrinsic) features. In
a variety of tasks, ensembles of several classifiers have been

shown to be more effective (e.g., (Dietterich 2000)). For this
reason, we train two separate classifiers, one on the intrin-
sic features (“A”) and one on the extrinsic features (“B”),
and vote together their predictions. Another advantage of
combining the evidence in that way is that the classifier can-
not be mislead by missing features in the beginning when
the extrinsic features are yet unknown, because the classifier
trained on the extrinsic features is simply not used for the
first pass.

We also introduce a second mode for incorporating the
extrinsic features: We train a set of classifiers on the intrinsic
features of the datatypes, but each of them is only on the
subset of the instances that belong to one specific category.

More precisely, once we have classified the category of a
service, we use the classifier for the datatypes that has been
trained on instances from that category1. To avoid biasing
the algorithm too strongly, we still combine the results of
the Aspec classifier with theA classifier in each iteration.
For each level we use eitherB or theAspec classifiers, but
not both. We chose theAspec method for the datatypes and
theB method for the category and the domain.

We did not exploit every possible dynamic extrinsic fea-
ture. We usedstatic extrinsic features on the domain and
datatype level by incorporating text from children nodes:
Text associated with messages was added to the text used by
the operations classifier, and text associated with elements of
complex types were added to the text used by the datatype
classifier classifying the complex type itself. The features
we used and the feedback structures for the dynamic features
are based on preliminary tests. We used a fixed number of 5
iterations.

In the evaluation section, we report results for this setup.
For a more detailed discussion of the parameters of our al-
gorithm and their effects the reader is referred to our paper
(Heß & Kushmerick 2004) that describes the algorithm in
greater detail from a machine learning point of view.

Evaluation. We evaluated our algorithm using a leave-
one-out methodology. We compared it against a baseline
classifier with the same setup for the static features, but with-
out using the dynamic extrinsic features.

To determine the upper bound of improvement that can
be achieved using the extrinsic features, we tested our algo-
rithm with the correct class labels given as the extrinsic fea-
tures. This tests the performance of predicting a class label
for a document part when not only the intrinsic features but
also the dynamic features, the labels for all other document
parts, are known.

We also compared it against a non-ensemble setup, where
the extrinsic features are not added using a separate classifier
but rather are just appended to the static features. Classifica-
tion is then done with a single classifier. This setup closely

1To avoid over-specialization, these classifiers are actually not
trained on instances from a single category, but rather on instances
from a complete top-level branch of the hierarchically organized
category ontology. Note that this is the only place where we make
use of the fact that the class labels are organized as an ontology,
and we do not do any further inference.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

A
cc

ur
ac

y

Tolerance, Category

Baseline

3

3
3 3 3

3

3
Assam

+

+
+

+ + +

+
Ceiling

2

2 2
2

2 2

2
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Domain

3

3

3
3

3
3

+

+
+

+ + +

2

2

2
2 2 2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
Datatypes

3

3

3
3

3 3

+

+
+

+ + +

2

2

2
2

2
2

Figure 2: Accuracy of our algorithm on the three kinds of
semantic metadata as a function of prediction tolerance.

resembles the original algorithm proposed by Neville and
Jensen. Again, the same set of static features was used.

In the evaluation we ignored all classes with one or two
instances, such as occurred quite frequently on the datatype
level. The distributions are still quite skewed and there is a
large number of classes. There are 22 classes on the category
level, 136 classes on the domain level and 312 classes on the
datatype level.

Fig. 2 show the accuracy for categories, domains and
datatypes. In mixed-initiative scenario such as our semi-
automated ASSAM tool, it is not necessary to be be per-
fectly accurate. Rather, we strive only to ensure that that
the correct ontology class is in the top few suggestions. We
therefore show how the accuracy increases when we allow a
certain tolerance. For example, if the accuracy for tolerance
9 is 0.9, then 90% of the time, the correct answer is in the
top 10 predictions.

We could not achieve good results with the non-ensemble
setup. This setup scored worse than the baseline. For the
datatypes, even the ceiling accuracy was below the baseline.

Note that on the category level incorporating the addi-
tional evidence from the extrinsic features does not help. In
fact, for some tolerance values the ceiling accuracy is even
worse than the baseline.

On the datatype level, our algorithm achieves 31.2% accu-
racy, where as the baseline scores only at 24.5%. Thus, our
algorithm improves performance by almost one third. The
overall performance might be considered quite low, but due
to the high number of classes it is a very hard classification
problem. Given that in two of three cases the user has to
choose only between 10 class labels rather than between all
312 labels in the datatype ontology we are still convinced
that this could save a considerable amount of workload. On
the domain level, our approach increases the accuracy for
exact matches from 26.3% to 28%.

Aggregating data from Web Services
ASSAM uses the machine learning technique just described
to create semantic metadata that could assist (among other
applications) a data integration system that must identify

and invoke a set of Web Services operations that can an-
swer some query. In order to automatically aggregate the
resulting heterogeneous data into some coherent structure,
we are currently developing OATS (Operation Aggregation
Tool for Web Services), a schema matching algorithm that is
specifically suited to aggregating data from Web Services.

While most schema matching algorithms don’t consider
instance data, those that do take as input whatever data hap-
pens to be available. In contrast, OATS actively probes Web
Services with a small set of related queries, which results in
contextually similar data instances and greatly simplifies the
matching process. Another novelty of OATS is the use of
ensembles of distance metrics for matching instance data to
overcome the limitations of any one particular metric. Fur-
thermore, OATS can exploit training data to discover which
distance metrics are more accurate for each semantic cate-
gory.

As an example, consider two very simple Web Service op-
erations that return weather information. The first operation
may return data such as

<weather><hi>87</hi><lo>56</lo>

<gusts>NE, 11 mph</gusts></weather>

while the second operation may return data such as
<fcast><tmax>88</tmax><tmin>57</tmin>

<wndspd>10 mph (N)</wndspd></fcast>

The goal of data aggregation is to consolidate this heteroge-
neous data into a single coherent structure.

The major difference between traditional schema match-
ing and our Web Service aggregation task is that we can ex-
ert some control over the instance data. Our OATS algo-
rithm probes each operation with arguments that correspond
to the same real-world entity. For example, to aggregate op-
erationo1 that maps a ZIP code to its weather forecast, and
operationo2 that maps a latitude/longitude pair to its fore-
cast, OATS could first select a specific location (e.g., Seat-
tle), and then queryo1 with “98125” (a Seattle ZIP code),
and queryo2 with “47.45N/122.30W” (Seattle’s geocode).
Probing each operation with the related arguments should
ensure that the instance data of related elements will closely
correspond, increasing the chances of identifying matching
elements.

As in ILA (Perkowitz & Etzioni 1995), this probe-based
approach is based on the assumption that the operations
overlap, i.e, there exists a set of real-world entities that are
covered by all of the sources to be aggregated. For example,
while two weather Web Service need not over exactly the
same locations in order to be aggregated, we do assume that
there exists a set of locations covered by both.

The OATS algorithm. The input to the OATS algorithm
is a set of Web Service operationsO = {o1, o2, . . . , on},
a set of probe objectsP = {p1, . . . , pm}, sufficient meta-
data about the operations so that each operation can be in-
voked on each probe (V = {v1, . . . , vn}, wherevi is a
mapping from a probepk ∈ P to the input parameters that
will invoke oi on pk)2, and a set of string distance metrics

2In our experiments, probes are encoded as a table of at-
tribute/value pairs, andvi is the set of attributes needed byoi.

D = {d1, d2, . . .}.
When invoked, an operationoi ∈ O generates data with

elementsEi = {ei
1, e

i
2, . . .}. Let E = ∪iEi be all the op-

erations’ elements. The output of the OATS algorithm is a
partition ofE.

One of the distinguishing features of our algorithm is the
use of an ensemble of distance metrics for matching ele-
ments. For example, when comparing thegusts andwnd-
spd instance data above, it makes sense to use a token based
matcher such as TFIDF, but when comparinghi andtmax ,
an edit-distance based metric such as Levenshtein is more
suitable. The OATS algorithm calculates similarities based
on the average similarities of an ensemble of distance met-
rics. Later, we describe an extension to OATS which assigns
weights to distance metrics according to how well they cor-
relate with a set of training data.

The OATS algorithm proceeds as follows. Each of then
operations are invoked with the appropriate parameters for
each of them probe objects. The resultingnm XML doc-
uments are stored in a three-dimensional tableT : T [i, j, k]
stores the value returned for elementei

j ∈ Ei by operation
oi for probepk.

Each element is then compared with every other ele-
ment. The distance between an element pair(ei

j , e
i′

j′) ∈
E × E is calculated for each string distance metricd` ∈
D, and these values are merged to provide an ensem-
ble distance value for these elements. The similarity be-
tween two elementsei

j ∈ Ei andei′

j′ ∈ Ei′ is defined as

D(ei
j , e

i′

j′) = 1
|D|

∑
`(d̄`(ei

j , e
i′

j′) − m(d̄`))/R(d̄`), where

d̄`(ei
j , e

i′

j′) = 1
m

∑
k d`(T [i, j, k], T [i′, j′, k]), M(d̄`) =

max(ei
j
,ei′

j′)
d̄`(ei

j , e
i′

j′), m(d̄`) = min(ei
j
,ei′

j′)
d̄`(ei

j , e
i′

j′), and

R(d̄`) = M(d̄`)−m(d̄`).
By computing the average distanced̄` overm related sets

of element pairs, we are minimizing the impact of any spuri-
ous instance data. Before merging the distance metrics, they
are normalized relative to the most similar and least similar
pairs, as different metrics produce results in different scales.

To get the ensemble similarityD(ei
j , e

i′

j′) for any pair,
we combine the normalized distances for eachdj . In the
standard OATS algorithm, this combination is simply an un-
weighted average. We also show below how weights can be
adaptively tuned for each element-metric pair.

Given the distances between each pair of elements, the fi-
nal step of the OATS algorithm is to cluster the elements.
This is done using the standard hierarchical agglomerative
clustering (HAC) approach. Initially, each element is as-
signed to its own cluster. Next, the closest pair of clusters is
found (using the single, complete, or average link methods)
and these are merged. The previous step is repeated until
some termination condition is satisfied. At some point in the
clustering, all of the elements which are considered similar
by our ensemble of distance metrics will be merged, and fur-
ther iterations would only force together unrelated clusters.
It is at this point that we should stop clustering. Our imple-
mentation relies on a user-specified termination threshold.

Learning distance metric weights. Instead of giving an
equal weight to each distance metric for all elements, it
would make sense to treat some metrics as more important
than others, depending on the characteristics of the data be-
ing compared. We now show how we can exploit training
data to automatically discover which distance metrics are
most informative for which elements. The key idea is that
a good distance metric will give a small value for pairs of
semantically related instances, while giving a large value for
unrelated pairs.

We assume access to a set of training data: a par-
tition of some set of elements and their instance data.
Based on such training data, thegoodnessof metric dj

for a non-singleton clusterC is defined asG(dj , C) =
G′(dj , C)/ 1

c

∑
C′ G′(dj , C

′), wherec is the number of non-
singleton clustersC ′ in the training data,Dintra(dj , C) is
the averageintra-cluster distance—i.e., the average distance
between pairs of elements withinC, Dinter(dj , C) is the av-
erageinter-cluster distance—i.e., the average distance be-
tween an element inC and an element outsideC, and
G′(dj , C) = Dinter(dj , C)−Dintra(dj , C). A distance met-
ric dj will have a scoreG(dj , C) > 1 if it is “good” (better
than average) at separating data from clusterC from data
outside the cluster, whileG(dj , C) < 1 suggests thatdj is a
bad metric forC.

Given these goodness values, we modify OATS in two
ways. The first approach (“binary”) gives a weight of 1 to
metrics withG > 1, and ignores metrics withG ≤ 1. The
second approach (“proportional”), assigns weights that are
proportional to the goodness values.

Evaluation. We evaluated our Web Service aggregation
tool on three groups of semantically related Web Service
operations: 31 operations providing information about ge-
ographical locations, 8 giving current weather information,
and 13 giving current stock information. To enable an ob-
jective evaluation, a reference partition was first created by
hand for each of the three groups. The partitions generated
by OATS were compared to these reference partitions. In
our evaluation, we used the definition of precision and re-
call proposed by (Heß & Kushmerick 2003) to measure the
similarity between two partitions.

We ran a number of tests on each domain. We system-
atically vary the HAC termination threshold, from one ex-
treme in which each element is placed in its own cluster, to
the other extreme in which all elements are merged into one
large cluster.

The ensemble of distance metrics was selected from Co-
hen’s SecondString library (Cohen, Ravikumar, & Fien-
berg 2003). We chose eight representative metrics, consist-
ing of a variety of character-based, token-based and hybrid
metrics: TFIDF, SlimTFIDF, Jaro, CharJaccard, Levenstein
[sic], SmithWaterman, Level2Jaro and Level2JaroWinkler.

Each probe entity is represented as a set of attribute/value
pairs. For example, Fig. 3 shows the four probes used for the
weather and location information domains. We hand-crafted
rules to match each of an operation’s inputs to an attribute.
To invoke an operation, the probe objects (ie, rows in Fig. 3)

address city state fullstate zip acode lat long icao
110 135th Avenue New York NY New York 11430 718 40.38 -74.75 KJFK

101 Harborside Drive Boston MA Massachusetts 02128 781 42.21 -71.00 KBOS
18740 Pacific Highway South Seattle WA Washington 98188 206 47.44 -122.27 KSEA

9515 New Airport Drive Austin TX Texas 78719 512 30.19 -97.67 KAUS

Figure 3: The four probe objects for the zip and weather
domains.

are searched for the required attributes.

Results. First, we show that by using an ensemble of string
metrics, we achieve better results than using the metrics sep-
arately. Fig. 4 (top) compares the ensemble approach to the
Levenshtein and TFIDF metrics individually. We report the
average performance over the three domains in two ways: F1
as a function of the HAC termination threshold, and a pre-
cision/recall curve. Note that, as expected, F1 peaks at an
intermediate value of the HAC termination threshold. The
average and maximum F1 is higher for the ensemble of met-
rics, meaning that it is much less sensitive to the tuning of
the HAC termination threshold.

We now compare the performance of OATS with our
two methods (binary and proportional) for using the learned
string metric weights. These results are based on four
probes. We used two-fold cross validation, where the set
of operations was split into two equal-sized subsets,Strain

andStest. We used just two folds due to the relatively small
number of operations.Strain was clustered according to the
reference clusters, and weights for each distance metric were
learned. Clustering was then performed on the entire set of
elements. Note that we clustered the training data along with
the test data in the learning phase, but we did not initialize
the clustering process with reference clusters for the training
data prior to testing. We measured the performance of the
clustering by calculating precision and recall for just the ele-
ments ofStest. Fig. 4 (bottom) shows F1 as a function of the
HAC termination threshold, and the precision/recall curves
for the binary and proportional learners and the original al-
gorithm. Although neither of the learning methods increase
the maximum F1, they usually increase the average F1, sug-
gesting that learning makes OATS somewhat less sensitive
to the exact setting of the HAC termination threshold.

Finally, we have found that accuracy improves with ad-
ditional probe queries, but that performance is beginning to
level off after just a few probes. Recall that we used up to
four probe queries. We note that accuracy improved more
between one and two queries, than between three and four.
We anticipate that the performance increase will rapidly
slow beyond a relatively small number of probes. Note that
we did not carefully select the probe objects in order to max-
imize performance. Indeed, some of the operations returned
missing elements for some probes. Our experiments suggest
that the active invocation approach makes OATS robust to
“bad” probes.

Discussion
In this paper, we have presented ASSAM, a tool for annotat-
ing Semantic Web Services. We have presented the WSDL

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

Levenstein
TFIDF

Ensemble

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenstein
TFIDF

Ensemble

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

proportional
binary

untrained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

proportional
binary

untrained

Figure 4: OATS ensemble vs. individual distance metrics (top); OATS with vs. without adaptive distance metric weighting
(bottom); F1 as a function of the HAC termination threshold (left); precision/recall curve (right).

annotator application, which provides an easy-to-use inter-
face for manual annotation, as well as machine learning as-
sistance for semi-automatic annotation. Our application is
capable of exporting the annotations as OWL-S.

We have presented a new iterative relational classification
algorithm that combines the idea of existing iterative algo-
rithms with the strengths of ensemble learning. We have
evaluated this algorithm on a set of real Web Services and
have shown that it outperforms a simple classifier and that it
is suitable for semi-automatic annotation.

We have also shown how semantically annotated Web
Services could be used to enhance data aggregation systems,
and how Web Service aggregation can be viewed as an in-
stance of the schema matching problemin which instance
data is particularly important. We have illustrated how ac-
tively probing Web Services with a small number of inputs
can result in contextually related instance data which makes
matching easier. Our experiments demonstrate how using
an ensemble of distance metrics performs better than the ap-
plication of individual metrics. We also proposed a method
for adaptively combining distance metrics in relation to the
characteristics of the data being compared, which although
not always successful, usually increased the average F1. We
plan to examine the use of more sophisticated techniques for
aggregating the ensemble matchers.

One of the constraints of our aggregation system is that
there must be an overlap between the sources, i.e. all of the
sources must “know about” the entity being queried. Ulti-
mately, we would like our system to learn new objects from
some information sources that could be used to probe other
partially overlapping sources. We envisage a tool that, given
a set of seed Web Services and probe queries, could find
sets of related Web Services and learn new probe objects to
query them with. Such visions would require the automated

discovery, composition and invocation of Web Services, but
this interoperability requires Services to be semantically an-
notated. We believe that the methods we have presented here
are a reasonable first step towards the realization of these
goals.

Acknowledgments. This research was supported by Science
Foundation Ireland and the US Office of Naval Research.

References
Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A com-
parison of string distance metrics for name-matching tasks. InInt.
Joint Conf. on AI, Workshop on Inf. Integr. on the Web.
DAML-S Coalition. 2003. OWL-S 1.0. White Paper.
Dietterich, T. G. 2000. Ensemble methods in machine learning.
In Lecture Notes in Computer Science, volume 1857.
Heß, A., and Kushmerick, N. 2003. Learning to attach semantic
metadata to web services. In2nd Int. Sem. Web. Conf.
Heß, A., and Kushmerick, N. 2004. Iterative ensemble classifi-
cation for relational data: A case study of semantic web services.
In European Conf. Machine Learning.
Heß, A.; Johnston, E.; and Kushmerick, N. 2004. ASSAM: A tool
for semi-automatically annotating semantic Web Services. InInt.
Semantic Web Conf.
Johnston, E., and Kushmerick, N. 2004. Aggregating web ser-
vices with active invocation and ensembles of string distance met-
rics. In Int. Conf. Knowledge Engineering and Knowledge Man-
agement.
Neville, J., and Jensen, D. 2003. Statistical relational learning:
Four claims and a survery. InWorkshop SRL, Int. Joint. Conf. on
AI.
Perkowitz, M., and Etzioni, O. 1995. Category translation: Learn-
ing to understand information on the internet. InInt. Joint Conf.
on AI.

