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Abstract

We re-examine the estimate of αs and of the QCD condensates from e+e− → I = 1 hadrons
data. We conclude that e+e− at low energies gives a value of Λ compatible with the one
from LEP and from tau inclusive decay. Using a τ -like inclusive process and QCD spectral
sum rules, we estimate the size of the D=4 to 9 condensates by a fitting procedure without

invoking stability criteria. We find 〈αsG
2〉 = (7.1± 0.7)10−2 GeV4, ραs〈ūu〉

2 = (5.8± 0.9)10−4

GeV6, which confirm previous sum rules estimate based on stability criteria. The corrections
due to the D = 8 condensates and to instantons on the vector component of τ -decay are
respectively δ

(8)
1 = −(1.5 ± 0.6)10−2(1.78/Mτ)

8 and δ
(9)
1 = −(7.0± 26.5)10−4(1.78/Mτ )

9, which

indicate that the δ
(8)
1 is one order magnitude higher than the vacuum saturation value, while

the D ≥ 9 instanton-like contribution to the the vector component of the τ -decay width is a
negligible correction. We also show that, due to the correlation between the D = 4 and 1/M2

τ

contributions in the ratio of the Laplace sum rules, the present value of the gluon condensate
already excludes the recent estimate of the 1/M2

τ -term from FESR in the axial-vector channel.
Combining our non-perturbative results with the resummed perturbative corrections to the
τ -width Rτ , we deduce from the present data αs(Mτ ) = 0.33 ± 0.03.
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1 Introduction

Measurements of the QCD scale Λ and of the q2-evolution of the QCD coupling are one of the
most important test of perturbative QCD. At present LEP and τ -decay data [1]-[7] indicate
that the value of αs is systematically higher than the one extracted from deep-inelastic low-
energy data. The existing estimate of αs from QCD spectral sum rules [8] à la SVZ [9] in
e+e− data [10, 11] also favours the low value of αs from deep-inelastic scattering 1, which is,
however, in contradiction with the recent CVC-test performed by [13] using e+e− data. It is
therefore essential to test the reliability of the low-energy predictions before speculating on the
phenomenological consequences implied by the previous discrepancy. Deep-inelastic scattering
processes need a better control of the parton distributions, the higher-twist and instanton-like
contributions in order to be competitive with LEP and tau-decay measurements. In addition,
perturbative corrections in these processes should be pushed so far such that the remaining
uncertainties will only be due to the re-summation of the perturbative series at large order.
Indeed, the τ -decay rate has been calculated including the α3

s-term [3], while an estimate [14]
and a measurement [15] of the α4

s coefficient is done. Moreover, a resummation of the (β1αs)
n

of the perturbative series is now available [16]. The QCD spectral sum rule (QSSR) [8] à
la SVZ [9] applied to the I = 1 part of the e+e− → hadrons total cross-section has a QCD
expression very similar to the τ -decay inclusive width, such that on a theoretical basis, one can
have a good control of it. In a previous paper [17], we have derived in a model-independent
way the running mass of the strange quark from the difference between the I = 1 and I = 0
parts of the e+e− → hadrons total cross-section. In this paper, we pursue this analysis by
re-examining the estimate of αs and of the condensates including the instanton-like and the
marginal D=2-like operators obtained from the I = 1 channel of the e+e− data. In so doing, we
re-examine the exponential Laplace sum rule used by [10] in e+e−, which is a generalization of
the ρ-meson sum rule studied originally by SVZ [9]. We also expect that the Laplace sum rule
gives a more reliable result than the FESR due to the presence of the exponential weight factor
which suppresses the effects of higher meson masses in the sum rule. This is important in the
particular channel studied here as the data are very inaccurate above 1.4–1.8 GeV, where the
optimal result from FESR satisfies the so-called heat evolution test [11, 18, 19]. That makes
the FESR prediction strongly dependent on the way the data in this region are parametrized,
a feature which we have examined [13, 20] for criticizing the work of [21]. We also test the
existing and controversial results [18, 19] of the D = 2-type operator obtained from QSSR.
Combining our different non-perturbative results with the recent resummed perturbative series
[16], we re-estimate the value of αs from τ -decays.

2 αs from e+e− → I = 1 hadrons data

Existing estimates of αs or Λ from different aspects of QSSR sum rules for e+e− → I = 1
hadrons data [10, 11] lead to values much smaller than the present LEP and τ -decay measure-
ments [3]-[7]. However, such results contradict the stability-test on the extraction of αs from
τ -like inclusive decay [13] obtained using CVC in e+e− [22] for different values of the τ -mass.
In the following, we shall re-examine the reliability of these sum rule results. We shall not re-
consider the result from FESR [11] due to the drawbacks of this method mentioned previously,

1However, new results of jet studies in deep-inelastic ep-scattering at HERA for photon momentum transfer
10 ≤ Q2 [GeV2] ≤ 4000 give a value of αs [12] compatible with the LEP-average.
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and also, because the FESR-analysis has been re-used recently [18, 19] for a determination of
the D = 2-type operator, which we shall come back later on. Λ3 and the condensates have been
extracted in [10] from the Laplace sum rule:

L1 ≡
2

3
τ
∫

∞

4m2
π

ds e−sτRI=1(s) (1)

and from its τ ≡ 1/M2 derivative:

L2 ≡
2

3
τ 2
∫

∞

4m2
π

ds s e−sτRI=1(s), (2)

where:

RI ≡
σ(e+e− → I hadrons)

σ(e+e− → µ+µ−)
. (3)

In the chiral limit mu = md = 0, the QCD expressions of the sum rule can be written as:

Li = 1 +
∑

D=0,2,4,...

∆
(D)
i . (4)

The perturbative corrections can be deduced from the ones of RI=1 obtained to order α3
s :

RI=1(s) =
3

2

{

1 + as + F3a
2
s + F4a

3
s + O(a4

s)
}

, (5)

where, for 3 flavours: F3 = 1.623 [23], F4 = 6.370 [24]; the expression of the running coupling
to three-loop accuracy is:

as(ν) = a(0)
s

{

1 − a(0)
s

β2

β1
log log

ν2

Λ2

+
(

a(0)
s

)2
[
β2

2

β2
1

log2 log
ν2

Λ2
−
β2

2

β2
1

log log
ν2

Λ2
−
β2

2

β2
1

+
β3

β1
] + O(a3

s)

}

, (6)

with:

a(0)
s ≡

1

−β1 log (ν/Λ)
(7)

and βi are the O(ai
s) coefficients of the β-function in the MS-scheme for nf flavours:

β1 = −
11

2
+

1

3
nf

β2 = −
51

4
+

19

12
nf

β3 =
1

64

[

− 2857 +
5033

9
nf −

325

27
n2

f

]

. (8)

For three flavours, we have:

β1 = −9/2, β2 = −8, β3 = −20.1198. (9)

In the chiral limit, the D = 2-contribution vanishes. It has also been proved recently [16] that
renormalon-type contributions induced by the resummation of the QCD series at large order
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cannot induce such a term. In the chiral limit, the D = 4 non-perturbative corrections read
[9, 3]:

∆
(4)
1 =

π

3
τ 2〈αsG

2〉
(

1 −
11

18

αs

π

)

∆
(4)
2 = −∆

(4)
1 . (10)

The D = 6 non-perturbative corrections read [9]:

∆
(6)
1 = −

448π3

81
τ 3ρ〈ūu〉2

∆
(6)
2 = −2∆

(6)
1 . (11)

We shall use the conservative values of the condensates [8, 3]:

〈αsG
2〉 = (0.06 ± 0.03) GeV 4 ρ〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6, (12)

and high values of Λ from LEP and tau-decay data [1]-[4] for 3 flavours:

Λ3 = 375+105
−85 MeV, (13)

corresponding to αs(MZ) = 0.118 ± 0.06. The phenomenological side of the sum rule has
been parametrized using analogous data as [10] and updated using the data used in [13]. The
confrontation of the QCD and the phenomenological sides of the sum rules is done in Fig.1a
and in Fig. 2a for a giving value of Λ3 = 375 MeV and varying the condensates in the range
given previously. One can conclude that one has a good agreement between the two sides of
L1 for M ≥ 0.8 GeV and of L2 for M ≥ 1.0 ∼ 1.2 GeV. The effects of the condensates are
important below 1 GeV for L1 and below 1.3 GeV for L2. In Fig. 1b and Fig. 2b, we fix the
condensates at their central values and we vary Λ3 in the range given above. One can notice
that a value of Λ3 as high as 525 MeV is still allowed by the data, while the shape of the QCD
curve for L2 changes drastically for a high value of Λ3. This phenomena is not informative as,
below 1 GeV, higher dimension condensates can already show up and may break the Operator
Product Expansion (OPE). By comparing these results with the ones of [10], one can notice
that our QCD prediction for L1 corresponding to the previous set of parameters is as good as
the fit of [10], while for that of L2, the agreement between the two sides of the sum rule is
obtained here at a slightly larger value of M for high-values of Λ3. However, what is clear from
our analysis is that the exponential Laplace sum rules do not exclude values of Λ3 obtained
from LEP and τ -decay data, though they cannot give a more precise information on the real
value of Λ3 if the condensates are left as free-parameters in the analysis. It is also informative
and reassuring, that our analysis supports the value of Λ3 obtained from τ -decay and used via
CVC [22] for e+e−, in order to test the stability of the prediction for different values of the
τ -mass [13] from the expression which we shall discuss below.

3 The condensates from τ-like decays

In so doing, we shall work with the vector component of the τ decay-like quantity deduced from
CVC [22]:

Rτ,1 ≡
3 cos2 θc

2πα2
SEW

∫ M2
τ

0
ds

(

1 −
s

M2
τ

)2 (

1 +
2s

M2
τ

)

s

M2
τ

σe+e−→ I=1, (14)
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where SEW = 1.0194 is the electroweak correction from the summation of the leading-log
contributions [25]. This quantity has been used in [13] in order to test the stability of the αs-

Table 1: Phenomenological estimate of Rτ,1

Mτ [GeV] Rτ,1

1.0 1.608 ± 0.064
1.2 1.900 ± 0.075
1.4 1.853 ± 0.072
1.6 1.793 ± 0.070
1.8 1.790 ± 0.081
2.0 1.818 ± 0.097

prediction obtained at the τ -mass of 1.78 GeV. It has also been used to test CVC for different
exclusive channels [13, 26]. Here, we shall again exploit this quantity in order to deduce model-

independent informations on the values of the QCD condensates. The QCD expression of Rτ,1

reads:

Rτ,1 =
3

2
cos2 θcSeW



1 + δEW + δ(0) +
∑

D=2,4,...

δ
(D)
1



 , (15)

where δEW = 0.0010 is the electroweak correction coming from the constant term [27]; the
perturbative corrections read [3]:

δ(0) =

(

as ≡
αs(Mτ )

π

)

+ 5.2023a2
s + 26.366a3

s + ..., (16)

The a4
s coefficient has also been estimated to be about 103 [14, 15], though we shall use (78 ±

25)a4
s where the error reflects the uncalculated higher order terms of the D-function, while the

first term is induced by the lower order coefficients after the use of the Cauchy integration. In
the chiral limit mi = 0, the quadratic mass-corrections contributing to δ

(2)
1 vanish. Moreover,

it has been proved [16] that the summation of the perturbative series cannot induce such a
term, while the one induced eventually by the freezing mechanism is safely negligible [28, 18].
Therefore, we shall neglect this term in the first step of our analysis. We shall test, later on,
the internal consistency of the approach if a such term is included into the OPE. In the chiral
limit mi = 0, the D = 4 contributions read [3]:

δ
(4)
1 =

11

4
πa2

s

〈αsG
2〉

M4
τ

, (17)

which, due to the Cauchy integral and to the particular s-structure of the inclusive rate, the
gluon condensate starts at O(a2

s). This is a great advantage compared with the ordinary sum
rule discussed previously. The D = 6 contributions read [3]:

δ
(6)
1 ≃ 7

256π3

27

ραs〈ψ̄iψi〉
2

M6
τ

, (18)
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The contribution of the D = 8 operators in the chiral limit reads [3]:

δ
(8)
1 = −

39π2

162

〈αsG
2〉2

M8
τ

. (19)

The phenomenological parametrization of Rτ,1 has been done using the same data input as
in [18, 13]. We give in Table 1 its value for different values of the tau mass. Neglecting the
D = 4-contribution which is of the order α2

s, we perform a two-parameter fit of the data for
each value of Λ3 corresponding to the world average value of αs(MZ) = 0.118± 0.006 [1, 2] and
by letting the D = 6 and D = 8 condensates as free-parameters. We show the results of the
fitting procedure in Table 2 for different values of Λ3. The errors take into account the effects

Table 2: Estimates of d6 and d8 from Rτ,1 for different values of Λ3

Λ3 [MeV] d6 [GeV6] −d8 [GeV8]

480 −.07 ± 0.43 1.15 ± 0.40
375 0.27 ± 0.34 0.69 ± 0.31
290 0.58 ± 0.29 0.83 ± 0.27

of the τ -mass moved from 1.6 to 2.0 GeV, which is a negligible effect, and the one due to the
data. One can notice that the estimate of the D = 8 condensates is quite accurate, while the
one of the D = 6 is not very conclusive for Λ3 ≤ 350 MeV. Indeed, only above this value, one
sees that the D = 6 contribution is clearly positive as expected from the vacuum saturation
estimate . This fact also explains the anomalous low value of −d8 around this transition region.
Using the average value of Λ3 in Eq. (13), we can deduce the result:

d8 ≡M8
τ δ

(8)
1 = −(0.85 ± 0.18)GeV8 d6 ≡M6

τ δ
(6)
1 = (0.34 ± 0.20)GeV6, (20)

which we shall improve again later on once we suceed to fix the value of d6.

4 The condensates from the ratio of the Laplace sum

rules

Let us now improve the estimate of the D = 6 condensates. In so doing, one can remark that,
though there are large discrepancies in the estimate of the absolute values of the condensates
from different approaches, there is a consensus in the estimate of the ratio of the D = 4 over
the D = 6 condensates 2:

r46[GeV−2] ≡
〈αsG

2〉

ραs〈ūu〉2
= 94.80 ± 23 [29]

2We have multiplied the original error given by [30] by a factor 10. The constraint obtained in [31] is not
very conclusive as it leads to r46 ≤ 110 GeV−2 and does not exclude ≤ 0 value of the condensates.
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96.20 ± 35 [11]

114.6 ± 16 [30]

92.50 ± 50 [32]. (21)

from which we deduce the average:

r46 = (105.9 ± 11.9) GeV−2. (22)

We use the previous informations on d8 and r46 for fitting the value of the D = 4 condensates
from the ratio of the Laplace sum rules:

R(τ) ≡ τ−2L2

L1

, (23)

used previously by [29] for a simultaneous estimate of the D = 4 and D = 6 condensates. We
recall that the advantage of this quantity is its less sensitivity to the leading order perturbative
corrections. The phenomenological value of R(τ) is given in Fig. 2. Using a one-parameter fit,
we deduce:

〈αsG
2〉 = (6.1 ± 0.7)10−2 GeV4. (24)

Then, we re-inject this value of the gluon condensate into the tau-like width in Eq. (14), from
which we re-deduce the value of the D = 8 condensate. After a re-iteration of this procedure,
we deduce our final results:

〈αsG
2〉 = (7.1 ± 0.7)10−2 GeV4 d8 = −(1.5 ± 0.6) GeV8. (25)

Using the mean value of r46, we also obtain:

ραs〈ūu〉
2 = (5.8 ± 0.9)10−4 GeV6. (26)

We consider these results as an improvement and a confirmation of the previous result in
Eq. (12). It is also informative to compare these results with the ALEPH and CLEO II
measurements of these condensates from the moments distributions of the τ -decay width. The
most accurate measurement leads to [5]:

〈αsG
2〉 = (7.8 ± 3.1)10−2 GeV4, (27)

while the one of d6 has the same absolute value as previously but comes with the wrong sign.
Our value of d8 is in good agreement with the one d8 ≃ −0.95 GeV8 in [13, 6] obtained from
the same quantity, but it is about one order of magnitude higher than the vacuum saturation
estimate proposed by [33] and about a factor 5 higher than the CLEO II measurement. However,
it is lower by a factor 2∼3 than the FESR result from the vector channel [32] 3 . The discrepancy
with the vacuum saturation indicates that this approximation is very crude, while the one with
the FESR is not very surprising. Indeed, the FESR approach done in the vector and axial-
vector channels [11, 32] tends always to overestimate the values of the QCD condensates. The
discrepancy with the CLEO II measurement can be understood from the wrong sign of the
D = 6 condensate obtained there and to its correlation with the D = 8 one.

3In the normalization of [32], our value of d8 translates into C8〈O8〉 = (0.18 ± 0.04) GeV8.
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5 Instanton contribution

Let us now extract the size of the instanton-like contribution by assuming that it acts like a
D ≥ 9 operator. A good place for doing it is Rτ,1 as, in the Laplace sum rules, this contribution
is suppressed by a 8! factor. Using the previous values of the D = 6 and D = 8 condensates,
we deduce:

δ
(9)
1 = −(7.0 ± 26.5)10−4(1.78/Mτ)

9, (28)

which, though inaccurate indicates that the instanton contribution is negligible for the vector
current and has been overestimated in [34] (δinst

V ≈ 0.03 ∼ 0.05). Our result supports the negli-
gible effects found from an alternative phenomenological [35] (δinst

V ≈ 3× 10−3) and theoretical
[36] (δinst

V ≈ 2× 10−5) analysis. Further cancellations in the sum of the vector and axial-vector
components of the tau widths are however expected [34, 35] (δinst ≈ 1

20
δinst
V ).

6 Test of the size of the 1/M 2
τ -term

Table 3: Estimates of 〈αsG
2〉 from R(τ) for different values of d2

d2 [GeV]2 [18] 〈αsG
2〉102 [GeV4] −d2 [GeV]2 [19] 〈αsG

2〉102 [GeV4]

0.03 7.8 ± 0.5
0.05 8.1 ± 0.5 0.2 3.2 ± 0.29
0.07 8.6 ± 0.5 0.3 1.2 ± 0.29
0.09 9.1 ± 0.5 0.4 −0.7 ± 0.6

Let us now study the size of the 1/M2
τ -term. From the QCD point of view, its possible ex-

istence from the resummation of the PTS due to renormalon contributions [28] has not been
confirmed [16], while some other arguments [28, 37] advocating its existence are not convincing.
Postulating its existence (whatever its origin!), [18] has estimated the strength of this term by
using FESR and the ratio of moments R(τ). As already mentioned earlier, the advantage in
working with the ratio is that the leading order perturbative corrections disappear such that
in a compromise region where the high-dimension condensates are still negligible, there is a
possibility to pick up the 1/M2

τ -contribution. Indeed, using usual stability criteria and allowing

a large range of values around the optimal result, [18] has obtained the conservative value:

d2 ≡ C2 ≡ δ
(2)
1 M2

τ ≃ (0.03 ∼ 0.08) GeV2, (29)

while the estimate of [18] from FESR applied to the vector current has not been very conclusive,
as it leads to the inaccurate value:

d2 ≃ (0.02 ± 0.12) GeV2. (30)

However, the recent FESR analysis from the axial-vector current obtained at about the same
value of the continuum threshold tc satisfying the so-called evolution test [11], is surprisingly

7



very precise [19] and disagrees in sign and magnitude with our previous estimate from the ratio
of moments. Assuming a quadratic dependence in Λ3, the result of [19] reads:

d2 ≃ −(0.3 ± 0.1) GeV2, (31)

which is surprisingly very precise taking into account the fact that the spectral function of
the axial-vector current is not better measured than that of the vector current. We test the
reliability of this result, by remarking that d2 (if it exists!) is strongly correlated to d4 in the
analysis of the ratio of Laplace sum rules R(τ), while it is not the case between d2 or d4 with
d6 and d8. Using our previous values of d6 and d8, one can study the variation of d4 given the
value of d2. The results given in Table 3 indicate that the present value of the gluon condensate
excludes the value of d2 in Eq. (31) and can only permit a negligible fluctuation around zero
of this contribution, which is should not exceed the value 0.03 ∼ 0.05. This result rules out
the possibility to have a sizeable 1/M2

τ -term [28, 37] and justifies its neglection in the analysis
of the τ -width. More precise measurement of the gluon condensate or more statistics in the
τ -decay data will improve this constraint.

7 Sum of the non-perturbative corrections to Rτ

Using our previous estimates, it is also informative to deduce the sum of the non-perturbative
contributions to the decay widths of the observed heavy lepton of mass 1.78 GeV. In so doing,
we add the contributions of operators of dimensions D = 4 to D = 9 and we neglect the
expected small δ(2)-contribution. For the vector component of the tau hadronic width, we
obtain 4:

δNP
V ≡

9
∑

D=4

δ
(D)
1 = (2.38 ± 0.89)10−2, (32)

while using the expression of the corrections for the axial-vector component given in [3], we
deduce:

δNP
A = −(7.95 ± 1.12)10−2, (33)

and then:

δNP ≡
1

2
(δNP

V + δNP
A ) = −(2.79 ± 0.62)10−2, (34)

Our result confirms the smallness of the non-perturbative corrections measured by the ALEPH
and CLEO II groups [5]:

δNP = (0.3 ± 0.5)10−2, (35)

though the exact size of the experimental number is not yet very conclusive.

8 Implication on the value of αs from Rτ

Before combining the previous non-perturbative results with the perturbative correction to Rτ ,
let us test the accuracy of the resummed (αsβ1)

n perturbative result of [16]. In so doing, we
fix αs(Mτ ) to be equal to 0.32 and we compare the resummed value of δ(0) including the α3

s-
corrections with the one where the coefficients have been calculated in the MS-scheme [23].

4We have used, for Mτ = 1.78 GeV, the conservative values: δ
(9)
V

≈ −δ
(9)
A

≃ −(0.7 ± 2.7)10−3 and δ(9) ≈

1/20δ
(9)
V

[34].
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Table 4: QCD predictions for Rτ using the contour coupling-expansion

αs(Mτ ) a3
s a4

s a6
s a8

s

0.26 3.364 ± 0.022 3.370 3.380 ± 0.019 3.381
0.28 3.402 ± 0.024 3.411 3.426 ± 0.019 3.426
0.30 3.442 ± 0.026 3.453 3.474 ± 0.021 3.472
0.32 3.484 ± 0.030 3.498 3.526 ± 0.023 3.520
0.34 3.526 ± 0.033 3.546 3.582 ± 0.031 3.568
0.36 3.571 ± 0.040 3.594 3.640 ± 0.045 3.613
0.38 3.616 ± 0.040 3.645 3.706 ± 0.069 3.655
0.40 3.664 ± 0.040 3.700 3.775 ± 0.108 3.685

We consider the two cases where Rτ is expanded in terms of the usual coupling αs or in terms
of the contour coupling [4]. In both cases, one can notice that the approximation used in
the resummation technique tends to overestimate the perturbative correction by about 10%.
Therefore, we shall reduce sytematically by 10%, the prediction from this method from the α5

s

to α9
s contributions. We shall use the coefficient 27.46 of α4

s estimated in [14, 15]. Noting that,
to the order where the perturbative series (PTS) is estimated, one has alternate signs in the
PTS, which is an indication for reaching the asymptotic regime. Therefore, we can consider,
as the best estimate of the resummed PTS, its value at the minimum. That is reached, either
for truncating the PTS by including the α6

s or the α8
s contributions. The corresponding value

of Rτ including our non-perturbative contributions in Eq. (34) is given in Table 4. We show
for comparison the value of Rτ including the α3

s-term, where we have used the perturbative
estimate in [6] (the small difference with the previous papers [4, 13, 6, 7, 20] comes from the
different non-perturbative term used here), while the error quoted there comes from the näıve
estimate ±50a4

s. However, one can see that the estimate of this perturbative error has taken
properly the inclusion of the higher order terms, while the truncation of the series at α3

s already
gives a quite good evaluation of the PTS. One can also notice that there is negligible difference
between the PTS to order α6

s and α8
s for small values of αs, while the difference increases

for larger values. We consider as a final perturbative estimate of Rτ the one given by the
PTS including the α6

s-term at which we encounter the first minimum. The error given in this
column is the sum of the non-perturbative one from Eq. (34) with the perturbative conservative
uncertainty, which we have estimated like the effect due to the last term i.e ±34.53(−β1as/2)6

at which the minimumm is reached, which is a legitime procedure for asymptotic series [38].
We have also added to the latter the one due to the small fluctuation of the minimum of the
PTS from the inclusion of the α6

s or α8
s-terms. One can notice that for αs ≤ 0.32, the error in

Rτ is dominated by the non-perturbative one, while for larger value of αs, it is mainly due to
the one from the PTS. Using the value of Rτ in Table 4, we deduce:

αs(Mτ ) = 0.33 ± 0.030, (36)
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where we have used the experimental average [2]:

Rτ = 3.56 ± 0.03. (37)

Our result from the optimized resummed PTS is in good agreement with the most recent
estimate obtained to order α3

s [6, 5, 7]:

αs(Mτ ) = 0.33 ± 0.030. (38)

9 Conclusion

Our analysis of the isovector component of the e+e− → hadrons data has shown that there is
a consistent picture on the extraction of αs from high-energy LEP and low-energy τ and e+e−

data. It has also been shown that the values of the condensates obtained from QCD spectral
sum rules based on stability criteria are reproduced and improved by fitting the τ -like decay
widths and the ratio of the Laplace sum rules. Our estimates are in good agreement with
the determination of the condensates from the the τ -hadronic width moment-distributions [5],
which needs to be improved from accurate mesurements of the e+e− data or/and for more data
sample of the τ -decay widths which can be reached at the τ -charm factory machine. Finally,
our consistency test of the effect of the 1/M2

τ -term, whatever its origin, does not support the
recent estimate of this quantity from FESR axial-vector channel [19] and only permits a small
fluctuation around zero due to its strong correlation with the D = 4 condensate effects in
the ratio of Laplace sum rules analysis, indicating that it cannot affect in a sensible way the
accuracy of the determination of αs from tau decays. As a by-product, we have reconsidered
the estimate of αs(Mτ ) from the τ -widths taking into account the recent resummed result of
the perturbative series. Our result in Eq. (36) is a further support of the existing estimates.
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Figure captions

Fig. 1a: The Laplace sum rule L1 versus the sum rule parameter M. The dashed curves
correspond to the experimental data. The full curves correspond to the QCD prediction for
Λ3=375 MeV, 〈αsG

2〉 = 0.06 ± 0.03 GeV4 and ρ〈ūu〉2 = (3.8 ± 2.0)10−4 GeV6. Fig. 1b: The

same as Fig. 1a but for different values of Λ3 and for 〈αsG
2〉 = 0.06 GeV4 and ρ〈ūu〉2 = 3.8 10−4

GeV6. Fig. 2a: The same as Fig. 1a but for L2. Fig. 2b: The same as Fig. 1b but for

L2. Fig. 3: Experimental value of the ratio of Laplace sum rules R(τ) versus the sum rule

variable τ ≡ 1/M2.
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