
116 Hasselbring

Chapter VIII

The Role of Standards
for Interoperating

Information Systems
Wilhelm Hasselbring

INFOLAB, Tilburg University

Copyright © 2000, Idea Group Publishing.

INTRODUCTION
For integrating heterogeneous information systems, semantic interoperability

is necessary to ensure that exchange of information makes sense — that the
provider and requester of information have a common understanding of the
‘meaning’ of the requested services and data. Effective exchange of information
between heterogeneous systems needs to be based on a common understanding of
the transferred data. This paper discusses the role of domain-specific standards for
managing semantic heterogeneity among dissimilar information sources. The
process of integrating such heterogeneous information systems is also discussed in
this context, whereby standards play a central role for ‘initiating’ top-down pro-
cesses by means of defining common data models for the involved information
sources.

BACKGROUND
Traditionally, the integration of heterogeneous information systems proceeds

in a bottom-up process. Information stored in existing legacy systems is analyzed
with respect to potential overlaps, whereby overlapping data in dissimilar systems
describes the same or related information. The overlapping areas of related
information sources are subsequently integrated. The integration is usually real-
ized by means of mediators, federated database systems or such-like system
architectures. Typical goals for the integration of existing systems are the develop-
ment of global applications that access the data from multiple sources as well as
consistency management of information that is stored in related systems.

Let us consider digital libraries as an example domain where the integration
of existing information sources is one of the central problems to be solved (Schatz
& Chen, 1996). As one result of a bottom-up integration of those existing informa-

Standards for Interoperating Information Systems 117

tion sources, the structure of the merged common data model (schema) is deter-
mined by the overlaps among the local data models, and not by the requirements
of global applications. The maintenance of such integrated models is a problem,
because those merged models rapidly become very complex; usually more com-
plex than required for the actual integration goals. This situation can lead to severe
scalability problems with respect to execution performance, usability and mainte-
nance.

ISSUES, CONTROVERSIES AND PROBLEMS WITH
THE TRADITIONAL BOTTOM-UP INTEGRATION
PROCESS

Various approaches for integrating heterogeneous information systems —
e.g., federated database systems or mediator and agent architectures — have been
proposed (Hurson, Bright & Pakzad, 1993, Elmagarmid, Rusinkiewicz & Sheth,
1998, Sheth, 1998, Wiederhold, 1996, Jennings & Wooldridge, 1998). We illustrate
the traditional bottom-up process of integrating such heterogeneous information
systems, by means of schema integration in federated database systems (Sheth &
Larson, 1990). A federated database system is an integration of autonomous
database systems, where both local applications and global applications accessing
multiple database systems are supported. For federated database systems, the
traditional three-level schema architecture must be extended to support the dimen-
sions of distribution, heterogeneity, and autonomy. The five-level-schema-archi-
tecture of Sheth & Larson (1990) is generally accepted as the basic structure for
schema integration in federated database systems or at least for comparison with
other architectures of specific federated database systems (Conrad, Eaglestone,
Hasselbring, Roantree, Saltor, Schönhoff, Strässler & Vermeer 1997).

Figure␣ 1 illustrates the bottom-up process for constructing the schema archi-
tecture in federated database systems which starts with an analysis of information
stored in the local systems. To explain the schema types displayed in Figure␣ 1): A
local schema is the conceptual schema of a component database system, which is
expressed in the (native) data model of that component database system. In a first
step, the local schemas are translated into component schemas in the canonical data
model of the federation layer. Then, export schemas are filtered from the compo-
nent schemas and merged into a common federated schema. A component schema
is a local schema transformed into the so-called canonical data model of the
federation layer. The component, export and federated schemas are defined in this
canonical data model. An export schema is derived from a component schema and
defines an interface to the local data that is made available to the federation. A
federated schema is the result of the integration of multiple export schemas, and thus
provides a uniform interface for global applications. An external schema is a specific
view on a federated schema or on a local schema, which serves as a specific interface
for applications (local or global). To keep it simple, no external schemas are shown
in Figure␣ 1. For local applications, external schemas can be filtered from the local
schemas. For global applications, external schemas are filtered from the federated
schema.

118 Hasselbring

The translation from local to component schemas eliminates the data model
heterogeneity among the various local schemas. Since the component and export
schemas are provided in a canonical data model, no model translation is needed on
the federation layer. However, many discrepancies between the export schemas
may exist. For example, similar entities may be specified at different abstraction
levels, or equivalent attributes may have different data types.

As one characteristic result obtained by a bottom-up construction of the
schema architecture, the structure of the common federated schema is determined
by the overlaps among the local schemas. Those schemas overlap when the intersec-
tions of the corresponding extensions are not empty. For instance, most object-
oriented integration approaches resolve semantical overlappings by introducing
generalized classes such that the original inheritance hierarchies are sub-hierar-
chies of the resulting merged hierarchy (upward-inheritance principle (Dayal &
Hwang, 1984, Schrefl & Neuhold, 1988). These approaches take over the inherit-
ance hierarchies from the local schemas to the integrated schema level and adapt
them to each other. Consequently, the resulting merged hierarchies become need-
lessly complex.

We illustrate these problems by means of a small example for bottom-up
integration of two digital library databases (this example is adopted from Schmitt
& Saake (1998)). The first local database to be integrated is a library database storing
information about publications, where books and journal papers are special types
of publications (see Figure␣ 2(a)). The second local database is a project publication
database which stores information about publications related to a project. In the
project database, books and technical reports are considered non-refereed publica-
tions (see Figure␣ 2(b)).

Figure 1: Bottom-up integration on the schema level. The arrows illustrate the
development process that starts with the local data models of some existing legacy
systems.

Standards for Interoperating Information Systems 119

Figure 2: Local schemas of the library (a) and project publication (b) databases as well as
the integrated schema as a result of merging (c). The schemas are modeled in the UML
notation for class diagrams (Booch, Rumbaugh, & Jacobson 1999).

Integrating these local databases requires an analysis of the extensional
overlappings among the classes to be integrated, whereby the extension of a class
represents the set of possible objects. For this example, we assume that the Publica-
tion extensions of both databases overlap such that the corresponding merged
class’ extension represents the union of the local extensions. Some publications in
the project publication database are published simultaneously as a technical report
and as a journal paper. For simplicity, we assume that attribute conflicts are already
resolved, i.e., attributes with identical names have the same semantics.

By means of a decomposition of the extensional overlappings into base
extensions and their subsequent integration, an integrated schema (Figure␣ 2(c))

120 Hasselbring

with seven classes can be constructed, whereas the project publication database
contains only five classes and the three classes for the library database are almost
identical to a subset of the project’s classes. Due to the upward-inheritance
principle, the integrated schema contains (approximately) the sum of the classes
contained in the individual component schemas. For reducing this complexity
within the integrated schema, classes may be merged (Schmitt & Saake, 1998):

Vertical merging means merging a class with its direct superclass. In Figure␣ 2(c),
the classes Journal-P and ProJournal-P could be merged vertically. This
vertical merging would change Volume into an optional attribute within the
merged class (in the local databases all attributes are mandatory, i.e., NULL
values are not allowed).

Horizontal merging means merging classes that have a direct specialization
relation to the same superclass. In Figure␣ 2(c), the classes Book and Non-
Refereed could be merged horizontally. This horizontal merging would
change both Pubnr and ISBN into optional attributes within the merged class;
thus again introducing optional attributes. Furthermore, the additional integ-
rity constraint would be introduced, which requires at least one attribute in
the merged class holding a valid value.
To summarize: This small example illustrates the fact that with the traditional

bottom-up process, merged class hierarchies are usually more complex than the
integrated local schemas. Optimizing these merged hierarchies with respect to
minimizing the number of classes may introduce new constraints; thus, complicat-
ing the common federated schema. These problems are largely due to the upward-
inheritance principle, i.e., the original inheritance hierarchies are sub-hierarchies of
the resulting merged hierarchy. New integrity constraints and optional attributes
are often introduced.

Under those traditional integration paradigms (Batini, Lenzerini & Navathe,
1986), the integrated view/schema depends directly on the source schemas. An
integration engineer defines the desired integrated view by examining all the
existing systems to be integrated. The bottom-up approach is to sum up the
capacity of existing information systems in one global model. As a result, the
usability and maintainability of such integrated schemas can become a serious
problem.

SOLUTIONS AND RECOMMENDATIONS
To approach a more ‘ideal’ top-down integration process, we start with a look

at domain-specific software development before the top-down integration process
is discussed in Subsection␣ 4.2. A combined ‘yo-yo’ approach is discussed in
Subsection␣ 4.3. Appendix␣ A presents a list of some domain-specific standards that
are relevant for interoperability of information systems.

Domain engineering
Domain engineering is an activity for building reusable components, whereby

the systematic creation of domain models and architectures is addressed. Domain
engineering aims at supporting application engineering which uses the domain
models and architectures to build concrete systems. The emphasis is on reuse and

Standards for Interoperating Information Systems 121

product lines. The Domain-Specific Software Architecture (DSSA) (Taylor, Tracz &
Coglianese, 1995) engineering process was introduced to promote a clear distinc-
tion between domain and application requirements. A Domain-Specific Software
Architecture consists of a domain model and a reference architecture as modeled
in the blue part of Figure␣ 3. The DSSA process consists of domain analysis,
architecture modeling, design, and implementation stages as illustrated in Fig-
ure␣ 4.

Domain models represent the set of requirements that are common to systems
within a specific domain. Usually, those systems can be grouped into product lines
(Dikel, Kane, Ornburn, Loftus, and Wilson, 1997), for instance, for the insurance or
banking domain. There may be many domains, or areas of expertise, represented
in a single product line and a single domain may span multiple product lines.
Domain analysis is the process of identifying, collecting, organizing, and represent-
ing the relevant information in a domain, based upon the study of existing systems
and their development histories and knowledge captured from domain experts.
Figure␣ 3 illustrates the relations between some roles (domain experts and applica-
tion engineers) and the artifacts in the DSSA engineering process.

The architecture of a software system defines that system in terms of compo-
nents and interactions/connections among those components. It is not the design of
that system which is more detailed. The architecture shows the correspondence
between the requirements and the constructed system, thereby providing some
rationale for the design decisions (Shaw & Garlan, 1996). Reference architectures
are the structures used to build systems in a product line. The domain model
characterizes the problem space, while the reference architecture addresses the solution
space (design). The reference requirements within the domain model define the
(generic) functional requirements for applications in a domain.

In application engineering, a developer uses the domain models within the
product line to understand the capabilities offered by the reference architecture
and specifies a system for development. The developer then uses the reference
architecture to build the system. An architectural model is developed in this phase
from which detailed design and implementation can be done. Application engi-
neers use the domain models with the users to elicit information about particular
systems and to define the requirements for the planned software systems. By so
doing, the models frame the userÕs needs in terms of existing models. Those needs
not covered by a domain model are new requirements. Once a tentative set of
features have been identified, the engineers analyze the interaction among the
features to assess feasibility and identify additional requirements and contexts not
described in a domain model. The domain engineers may choose to update a
domain model with the new requirements. As indicated by the dashed arrows in
Figure␣ 4, various forms of feedback are possible.

Domain engineering and application engineering are complementary, inter-
acting, parallel processes that comprise a reuse-oriented software production. An
application engineering process should develop software systems from reusable
components created by a domain engineering process (see Figure␣ 4). The focus of
application engineering is a single system whereas the focus of domain engineering
is on multiple related systems within a domain. Typical application engineering

122 Hasselbring

Figure 4: The DSSA engineering process. In application engineering, software systems
are developed from reusable components created by a domain engineering process. As
indicated by the dashed arrows, various forms of feedback are possible.

Figure 3: Relations between some roles and artifacts in the DSSA engineering process.
Hollow diamonds indicate part-of relations. We use the UML notation for actors to
model the roles (Booch et al., 1999).

Standards for Interoperating Information Systems 123

activities include using a domain model to identify customer requirements, and a
(generic) reference architecture to specify an application architecture. Domain
engineering emphasizes on the principle of design-for-reuse whereas application
engineering should be based on the principle of design-with-reuse.

Top-Down Integration
Despite the fact that engineering of (new) global applications will usually

require the integration of existing information sources, we argue that the integra-
tion process should proceed in a top-down way starting with the data models that
are common to all the involved local systems, i.e. with domain models in the context
of a DSSA engineering process. For such a top-down integration of those heteroge-
neous information systems, we propose the use of domain-specific standards as the
basis for the common data models. Some relevant standards are listed in Appendix␣ A.

Figure␣ 5 illustrates the top-down process for constructing the schema archi-
tecture which starts with the common federated data schema that should be based
on requirements of global applications and on relevant standards. The individual
local schemas are integrated into this common schema via the component and
export schemas. Export schemas are filtered from the common federated schema,
instead of merging them into the common federated schema, as illustrated in
Figure␣ 5. Afterwards, these export schemas are mapped to the component schemas,
which are transformed into the native data models of the local systems.

To ‘hook’ a local information system’s model into a common (domain-
specific) model, the responsive integration engineer has to understand his or her
local information system and the corresponding domain model, but does not have
to understand the other local information systems and the constraints that could be

Figure 5: Top-down integration on the schema level. The arrows illustrate the
development process that starts with the common standards-based data schema.

124 Hasselbring

introduced by them into the common model using a bottom-up process. In the
domain of digital libraries, for instance, Z39.50 and the Dublin Core can be the basis
for the common models (see Appendix␣ A). The approach is to define a common
model based on the information we want to be in it. Then we map to the relevant
bits of data in the local information systems. This should result in workable
approach.

A Combined Yo-Yo Approach
In practice, we can also expect a yo-yo approach as illustrated in Figure␣ 6: the

integration process alternates with bottom-up and top-down steps. A top-down
process can be expected to support global applications — such as workflow
management or decision support functions to be supported by a data warehouse.
A bottom-up process can be expected in the case that some local systems regularly
need information from other systems — e.g., if one library system needs citation
information from another library system.

Figure 6: A combined yo-yo approach to exploit the benefits of both strategies.

The bottom-up process may provide input for extending the domain-specific
standards as indicated in Figure␣ 4. Then, a method for new information which
resides in a local information system, but was not originally intended in the
common model, is required. It should be easy to update the common model with
such a ‘yo-yo’ approach. The evolution of common ontologies for mediation of
information sharing is discussed in Kahng & McLeod (1998).

CONCLUSIONS
Some problems with the traditional bottom-up approach to the integration of

heterogeneous information system have been discussed and a ‘ideal’ top-down

Standards for Interoperating Information Systems 125

approach using domain-specific standards to achieve more usable and scalable
software architectures for heterogeneous information systems is proposed. The
bottom-up process starts with an analysis of information stored in existing legacy
systems to explore potential overlaps among information stored within the indi-
vidual components. The top-down process starts with a common data model that
should be based on domain-specific standards.

Enabling existing legacy systems to exchange information will typically start
at the bottom and designing new global applications with access to several local
systems will typically start at the top. Anyway, engineering of (new) global
applications will usually require the integration of existing information sources.
Despite this fact, we argue that the integration process should proceed in a top-
down way starting with the data models that are common to all the involved local
systems, i.e. with standards-based domain models. The combined yo-yo approach
aims at exploiting the benefits of both strategies and to serve as a migration path
form the traditional bottom-up approach towards an ideal top-down approach.

Usually, one result of the traditional bottom-up approach to the integration of
heterogeneous information systems is that the structure of the common, merged
models is determined by the overlaps among the local models. As opposed to the
bottom-up approach, with the top-down approach the structure of the common
model is not determined by the overlaps among the local models, but by the
requirements of global applications and domain-specific standards, which can
become the basis for semantic interoperability.

Particularly, the use of domain-specific standards as the basis for the common
data model should alleviate the integration of commercial components that offer
standards-compliant interfaces. For such a top-down integration of those heteroge-
neous information systems, we propose the use of domain-specific standards as the
basis for the common data models. The use of such standards within the integration
system also encourages a (smooth) migration towards modern standards-compli-
ant systems. With standards-compliant interfaces, it becomes straightforward to
‘hook’ the local information of these subsystems into the common model. To be
successful, it is obvious that both the standards and the local applications must be
in the same domain. In any case, the selected domain-specific standards must cover
the application domains of the integrated information systems. Only extracts of the
standards will be used for actual applications. Common models should be re-
stricted to specific domains (Missier, Rusinkiewicz & Silberschatz, 1995).

To quote Kleewein (1996) on practical issues with commercial use of federated
databases:

“Schema integration is one aspect of usability that impedes federation.
There are often thousands of tables or views involved in a federation
making maintenance of a global schema difficult.”
 Starting with the global schema and basing it on standards avoids changes to

the fundamental structure of this schema making integration more usable and
scalable. Only when interoperability is based on standards will this be realizable.
Appropriate standards may enable interoperability, for instance Z39.50 and the
Dublin Core in the domain of digital libraries. To quote Paepcke, Chang, Garcia-
Molina & Winograd (1998) on the relevance of standards for interoperability for

126 Hasselbring

digital libraries worldwide:
“An appropriate standard that is widely adhered to provides a powerful
interoperability tool.”
 However, it is not easy to find those domain-specific standards that are

detailed enough to allow for real interoperability. This is an important area for
future work.

Appendix A: Some Domain-Specific Standards
This list of some relevant domain-specific standards is not meant to be

comprehensive, but representative. The standards are grouped into domains and
within groups the standards are listed in alphabetical order. References to corre-
sponding web pages are provided. Exemplary, standards for the domains of digital
libraries, healthcare, manufacturing, enterprise application integration, and elec-
tronic commerce are presented.

A.1 Digital Libraries
Dublin Core The Dublin Core is a metadata element set intended to describe

electronic information sources. Originally conceived for author-generated de-
scription of Web resources, it has attracted the attention of formal resource
description communities such as digital libraries.
More information is available at http://purl.org/dc/

Z39.50 The Z39.50 standard for searching library catalogs is a standard for the
retrieval of bibliographic records independent of the type of system on which
they are stored. The Z39.50 standard is an open systems protocol established and
maintained by the library community. This standard is the basis for open
systems connectivity among different library systems and information sources.
More information is available at http://lcweb.loc.gov/z3950/agency/

A.2 Healthcare
CEN TC 251 The scope of Working Group I (Information Models) of the Technical

Committee 251 for Health Informatics within the European Committee for
Standardization is the development of European standards to facilitate commu-
nication between independent information systems within and between organi-
zations, for health related purposes, e.g., blood transfusion, physiology, phar-
macology, psychiatry and nursing. The standards are based on information
models - generic models of aspects of health care or health care information. The
domain of this work are standards for electronic medical records and messages
to meet specific healthcare business needs for the communication of healthcare
information.
More information is available at http://www.centc251.org/

HL7 The Health Level 7 (HL7) protocol has been designed to standardize the data
transfer within hospitals. It is an application level protocol and so relates to level
seven of the ISO/OSI-protocol hierarchy. HL7 covers various aspects of data
exchange in hospitals, e.g. admission, discharge and transfer of patients, as well

Standards for Interoperating Information Systems 127

as the exchange of analysis and treatment data. The HL7 standard represents
hospital related transactions as standardized messages. HL7 is a de-facto stan-
dard for data exchange between commercial systems for hospitals.
More information is available at http://www.mcis.duke.edu/standards/HL7/
hl7.htm

A.3 Manufacturing
OMG Manufacturing DTF Within the standardization efforts of the Object Man-

agement Group (OMG) Domain Task Forces (DTF) several Business Object
Facilities are standardized. The Manufacturing DTF is one of them.
More information is available at http://www.omg.org/

STEP The STEP Standard for Product Data Exchange is a data transfer standard
which supports design, reuse, and data retention, and provides access to data
across a productÕs entire life cycle. STEP is an actual file format (i.e., a common
neutral format for exchanging CAD/CAM data among dissimilar systems).
More information is available at http://www.ukcic.org/step/ (retrieved 08-06-
1999)

Enterprise Application Integration
OAGIS The Open Applications Group is a non-profit industry consortium of

business-application software vendors. The Open Applications Group Integra-
tion Specification (OAGIS) defines inter-application integration scenarios, and
details the content required for connecting the applications. The OAGIS encom-
passes interoperability specifications for front-office, back-office, and supply-
chain business-software components.
More information is available at http://www.openapplications.org/

OMG Within the standardization efforts of the Object Management Group (OMG)
Domain-Specific Task Forces several Business Object Facilities are standardized.
The scope of the OMG’s Financial Domain Task Force (CORBAfinancials Task
Force) comprises financial services and accounting. The Insurance Working
Group is part of the OMG’s Financial Domain Task Force. The Insurance
Working Group aims at developing domain-specific interfaces that will enable
insurance companies and other financial institutions to leverage purchased
componentry and integrate their data. Another area is addressed by the Manu-
facturing Domain Task Force, whose goals are interoperable manufacturing
domain software components through CORBA technology.
More information is available at http://www.omg.org/

Electronic Commerce
With respect to the situation in the area of electronic commerce, we can quote

Andrew Tannenbaum:
“The good thing about standards is that there are so many to choose from.”
Obviously, a consolidation is required in this domain. Enterprise application

integration is highly related to electronic commerce applications.

128 Hasselbring

OMG Electronic Commerce DTF Within the standardization efforts of the Object
Management Group (OMG) Domain Task Forces (DTF) several Business Object
Facilities are standardized. The Electronic Commerce DTF is one of them.
More information is available at http://www.omg.org/

OBI The Open Buying on the Internet (OBI) Consortium is a non-profit organiza-
tion dedicated to developing open standards for business-to-business Internet
commerce. The OBI Consortium is an independent collaborative managed by
CommerceNet.
More information is available at http://www.openbuy.org/
http://www.software.ibm.com/commerce/net.commerce/obi.html

OFX Open Financial Exchange (OFX) is a specification for the electronic exchange
of financial data between financial institutions, business and consumers via the
Internet.
More information is available at http://www.ofx.net/

OTP The Open Trading Protocol (OTP) was developed by a number of organiza-
tions, working co-operatively to make widespread Internet trading a convenient
and secure reality. OTP is a protocol for the development of software products
to permit product interoperability for the electronic purchase that is indepen-
dent of the chosen payment mechanism. OTP encapsulates the payment with the
offers/invoice/receipts for payment and delivery.
More information is available at http://www.otp.org/

PIP RosettaNet is an international organization dedicated to the adoption and
deployment of open and common business interfaces in the IT industry. It
defines Partner Interface Processes (PIP) to provide common business/data
models and documents enabling system developers to implement RosettaNet
eBusiness interfaces.
More information is available at http://www.rosettanet.org/

UN/EDIFACT This standard defines the United Nations rules for Electronic Data
Interchange For Administration, Commerce and Transport, which comprises
guidelines for the electronic interchange of structured data, and in particular
that related to trade in goods and services between independent, computerized
information systems.
More information is available at http://www.unece.org/trade/untdid/
Welcome.html

REFERENCES
Batini, C., Lenzerini, M., & Navathe, S. (1986). A Comparative Analysis of

Methodologies for Database Schema Integration. ACM Computing Surveys,
18(4):323-364.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). Unified Modeling Language User

Standards for Interoperating Information Systems 129

Guide. Object Technology Series. Addison-Wesley, Reading, MA.
Conrad, S., Eaglestone, B., Hasselbring, W., Roantree, M., Saltor, F., Schönhoff, M.,

Strässler, M., & Vermeer, M. (1997). Research Issues in Federated Database
Systems (Report of EFDBS ‘97 Workshop). SIGMOD Record, 26(4):54-56.

Dayal, U. & Hwang, H.-Y. (1984). View Definition and Generalization for Database
Integration in a Multidatabase System. IEEE Transactions on Software Engineer-
ing, 10(6):628-644.

Dikel, D., Kane, D., Ornburn, S., Loftus, W., & Wilson, J. (1997). Applying software
product-line architecture. Communications of the ACM, 30(8):49-55.

Elmagarmid, A., Rusinkiewicz, M., & Sheth, A., editors (1998). Management of
Heterogenous and Autonomous Database Systems. Morgan Kaufmann.

Hurson, A.␣ R., Bright, M.␣ W., & Pakzad, S. (1993). Multidatabase Systems: An
Advanced Solution for Global Information Sharing. IEEE Computer Society Press.

Jennings, N. & Wooldridge, M., editors (1998). Agent Technology: Foundations,
Applications, and Markets. Springer-Verlag.

Kahng, J. & McLeod, D. (1998). Dynamic classificational ontologies: Mediation of
information sharing in cooperative federated database systems. In Papazoglou,
M. and Schlageter, G., editors, Cooperative Information Systems: Trends and Direc-
tions, pages 179-203. Academic Press, San Diego.

Kleewein, J. (1996). Practical issues with commercial use of federated databases. In
Proc. 22th International Conference on Very Large Data Bases (VLDB’96), page 580,
Bombay, India. Morgan Kaufmann.

Missier, P., Rusinkiewicz, M., & Silberschatz, A. (1995). Providing multidatabase
access - an association approach. In Proc. Sixth Workshop on Database Interoperability.

Paepcke, A., Chang, C.-C., Garcia-Molina, H., & Winograd, T. (1998). Interoperability
for digital libraries worldwide. Communications of the ACM, 41(4):33-43.

Schatz, B. & Chen, H. (1996). Building large-scale digital libraries. IEEE Computer,
29(5):22-26.

Schmitt, I. & Saake, G. (1998). Merging inheritance hierarchies for database
integration. In Halper, M., editor, Proc. Third IFCIS International Conference on
Cooperative Information Systems (CoopIS’98), pages 322-331, New York City, NY.
IEEE Computer Society Press.

Schrefl, M. & Neuhold, E. (1988). Object Class Definition by Generalization Using
Upward Inheritance. In Proceedings 4th International Conference on Data Engineer-
ing (ICDE’88), pages 4-13. IEEE Computer Society Press.

Shaw, M. & Garlan, D. (1996). Software architecture: perspectives on an emerging
discipline. Prentice Hall.

Sheth, A. (1998). Changing focus on interoperability in information systems: From
system, syntax, structure to semantics. In Goodchild, M., Egenhofer, M., Fegeas,
R., and Kottman, C., editors, Interoperating Geographic Information Systems. Kluwer.

Sheth, A. and Larson, J. (1990). Federated database systems for managing distrib-
uted, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183-236.

Taylor, R., Tracz, W., and Coglianese, L. (1995). Software development using
domain-specific software architectures. ACM SIGSOFT Software Engineering

130 Hasselbring

Notes, 20(5):27-38.
Wiederhold, G., editor (1996). Intelligent Integration of Information. Kluwer Aca-

demic Publishers, Boston.

