
Tadhg O’Meara and
Ahmed Patel
University College Dublin

IEEE INTERNET COMPUTING 1089-7801/01/$10.00 ©2001 IEEE http://computer.org/internet/ MARCH • APRIL 2001 27

Se
ar

ch
 T

ec
hn

ol
og

ie
s

A Topic-Specific Web
Robot Model Based
on Restless Bandits

Web search engine design is pri-
marily concerned with two
distinct processes: ranking and

indexing.1 Ranking returns a list of the
most relevant documents in response to a
given query. Efficient ranking requires
indexing, in which search engines con-
struct and maintain a database, or index,
of available documents.

Document acquisition can follow either
a push or pull model. In the push model,
publishers submit documents to a search
engine for indexing. In the pull model,
search engines acquire documents. Web
robots—Web crawlers or spiders—acquire
documents from Web servers by following
hyperlinks. Robots require little or no
cooperation from document publishers,
and give search engines control over what
is indexed. Today, most robots attempt to
build an index of all documents on the
Web, or of a representative sample. In the
future, however, the use of topic-specific
Web robots, which automatically build
and maintain indexes of topically related
Web pages, will increase significantly.

In this article, we outline the potential
role of topic-specific robots in distributed
search engine design, and we model the
complex problem of automatically con-
structing and maintaining topic-specific
Web indexes. Experimental results estab-
lish the viability of a topic-specific Web
robot design based on the restless bandit
model. The results indicate that our pro-
posed algorithm is a good foundation on
which to build a complete solution.

A Distributed Search
Architecture
Search engine design that can scale with
Web growth is a long-standing research
goal. Today’s predominant engines (such
as AltaVista, Fast, Google, and Inktomi)
employ a centralized search architecture.
Each provides a ranking service for all
queries in the search services market. The
ranking, indexing, and database compo-
nents of these engines can be distributed
across many computers. Efficient distrib-
ution is achieved by enabling the ranking
and indexing processes to access and con-

Constructing and maintaining topic-specific Web indexes

is modeled by a restless-bandits generalization and

resolved by a reinforcement-learning algorithm.

trol the complete document database.2 Consequent-
ly, although these systems scale to large numbers of
computers and can process and index numerous
queries and documents, such scaling requires cen-
tralized control of the underlying database.

As the Web continues to grow, the network and
hardware resources required to build and maintain
a database of the entire Web are becoming too
complex and expensive for any single organiza-
tion. In a survey of the most popular search ser-
vices, Lawrence and Giles estimated that no single
engine indexed more than 16 percent of the pub-
licly indexable Web.1 Combined, the 11 largest
engines indexed only 42 percent.

Alleviating this bottleneck requires an architec-
ture that enables a scalable distribution of the rank-
ing and indexing loads in the presence of multiple

ownership and distributed control of the underly-
ing databases. An example architecture is the Open
Architecture Server for Information Search, a dis-
tributed search engine research project. The goal of
the Oasis project was to enable a scalable, low-
entry-cost market of competitive search services.3

To achieve this, the Oasis consortium designed an
architecture and protocols for a distributed system
of independently owned and controlled topic-
specific search engines.

Oasis:Topic-Specific Search
Figure 1 shows the basic Oasis architecture. Each
engine ranks and indexes only queries and docu-
ments relevant to a selected topic. The ranking and
indexing functions are performed by the query
processor and Web robot components, respectively.

Each engine can directly access and control only
its own document database. Engines, however, can
propagate queries to remote engines using their
query brokers, allowing indirect access to remote
databases through the associated engines’ ranking
services. The engine directory component provides
advance knowledge of a remote engine’s services.
Engines cooperate by propagating queries that are
not relevant to their own database. Engines compete
for queries through their selection of topics and the
quality of their databases and ranking mechanisms.

To enable a scalable distribution of the ranking
and indexing processes, we chose a topic-specific
distribution of the system database. In this system,
each query need be propagated only to a few of the
most relevant engines. This contrasts with a non-
topic-specific system where each engine is equally
likely to index documents relevant to any given
query. Consequently, in systems like Desire,4 in
which the database is distributed by geographic or
network domain, each query must be propagated
to and processed by all engines.

Open Problems
A system based on topic-specific engines does have
its problems. Efficient query routing, for example,
requires accurate advance knowledge about an
engine’s topic orientation. Another problem is
automatic service management—that is, how can
each engine automatically select its own topic spe-
cialization for the benefit of all?

It is also much harder to build and maintain Web
databases by topic than by geographic or network
domain. One approach pools acquired document
descriptions using standard Web robots and
selects documents from this central pool in a
topic-specific manner. This approach can be

28 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Web
browser

444

Query
broker

Query
processor

Document
database

Topic-specific
Web robot

Engine
directory

Oasis
engine

User

1

1

2

3

1

1

5

Web
server

Web
server

Web
server

Oasis
engine

Oasis
engine

1
2
3
4
5

User queries and results
Query processing
Database updates
Document requests
Service descriptions

Figure 1.The Oasis architecture.The architecture consists
of a distributed system of search engines, each specializ-
ing in a selected topic. Engines cooperate by propagat-
ing queries not relevant to their selected topics and
compete for queries through their selection of topics.

implemented by systems like Harvest.5 Such an
approach, however, makes the resultant data-
bases’ quality a function of collective network
and hardware resources. For truly independent
ownership and control, each engine must con-
struct and maintain its own database. In the
Oasis project, we designed a heuristic-based,
topic-specific Web robot algorithm for this pur-
pose.6 In this article, we describe a more formal
approach in hopes of obtaining closer to optimal
performance.

Topic-Specific Web Robots
A topic-specific Web robot aims to schedule docu-
ment requests to maximize the quality of its topic-
specific document database as quickly as possible.
For convenience, we refer to a topic-specific docu-
ment database as a collection.

A collection’s quality derives from the relevance
of its document entries and the number of out-of-
date entries. Since there is an optimal request
schedule for any given relevance scoring function,
we do not consider the accuracy of the function
here. Naturally, however, any topic-specific Web
robot is only as good as its scoring function; for-
tunately, the information retrieval field has exten-
sively researched this problem. The function used
in this article is based on the standard vector space
model and has been shown to provide good
results.6

The topic-specific Web robot problem can be
decomposed into two separate decisions:

■ what documents to request, and
■ how many concurrent requests to make.

Concurrent requests are necessary to fully utilize
system throughput by hiding network latency.

Model Components
Figure 2 illustrates a basic Web robot model. The
main components are the request controller and the
fetcher controller. The request controller decides
what documents to request by scheduling requests
using a prioritized queue. The fetcher controller
decides how many concurrent requests to make by
adjusting the number of document fetchers serv-
ing the request queue. When a fetcher finishes with
a request, it places the Web server’s response in a
buffer called the response queue.

The response processor services the response
queue and outputs the results to both the request
controller and the document collection. The request
controller results include relevance scores and links
extracted from retrieved documents. The document
collection results include instructions to add, mod-
ify, or delete document entries. The request con-
troller schedules requests to include the most rele-
vant documents in the collection and to discover
modifications to existing collection documents as
soon as possible.

Two sources impose constraints on this schedule:

■ Due to the graph structure of documents on the
Web, a document cannot be requested unless a
document containing a link to it has previous-
ly been retrieved.

■ A robot sending a large number of requests to
the same Web server in rapid succession, called
rapid fire requests, can cause degradation in
Web server performance. To avoid RFRs, a Web

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 29

Restless Bandits

Single-server FIFO response queue

Response
processor

Request controller Fetcher controller

Response
Fetchers

Processed response

Web robot

Web

Multiserver prioritized request queue

Document
collection

Figure 2. Basic Web robot model.The problems of deciding which documents to request and how
many concurrent requests to make are resolved by the request and fetcher controllers, respectively.

30 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

robot must observe a given minimum time
between requests to the same server.

We can model the fetcher controller as a single-
server queuing problem. The controller attempts to
minimize both the response processor’s idle time
and the response queue’s size. To do this, the con-
troller adjusts the response arrival rate by decid-
ing, on either a response arrival or departure event,
whether to service a new request. This decision is
based on the number of requests currently in ser-
vice and the size of the response queue. We are
investigating the use of average reward reinforce-
ment-learning algorithms to solve this problem.

Performance Evaluation
Because we want to maximize the collection’s
quality as soon as possible, we can calculate the
performance of any request schedule as the inte-
gral of the resultant collection quality over the
schedule’s duration. This calculation lets us focus
on collection quality measures at any time.

To specify a performance measurement for a
request schedule, we derive measurements similar
to those used in information retrieval. We assume
that all retrieved documents are added to the col-
lection. The only limit on collection size is imposed
by the combination of limited system throughput
and the requirement that entries be kept up-to-date.

We define two main facets of collection quality:

■ recall refers to the number and relevance of
documents in the collection with respect to the
documents on the Web;

■ freshness refers to the number of out-of-date
document entries in the collection with respect
to the collection’s size.

Collection recall and freshness are defined analo-
gously to the standard measurements of recall and
precision employed in information retrieval. We
define the recall and freshness of collection C at
time t as

(1)

respectively, where r(i)∈ℜ+ is the relevance score
of document i, Ct is the set of document entries
in the collection, and Vt is the set of documents
on the Web at time t. Document modifications are
viewed as simultaneous additions and deletions

to Vt . We define collection freshness as a func-
tion of document relevance because we assume
that the importance of maintaining an up-to-date
entry is proportional to its relevance to the
collection.

Given that recall and freshness measure two dif-
ferent aspects of collection quality, it is not clear
how to measure collection quality in terms of a sin-
gle number. We propose to measure a collection’s
quality as the minimum of its recall and freshness
R(Ct) and F(Ct):

M(Ct) = min [R(Ct), F(Ct)] , (2)

where

(3)

is the performance of the request schedule µ of
duration T, and C µ

t is the collection state resulting
from µ at instantaneous time t.

Directly optimizing this measurement in the
online case is problematic because the set of docu-
ments existing on the Web at any given time is
unknown. Instead, we use Pµ to evaluate the per-
formance of schedules generated for a known sub-
graph and try to maximize the expected discount-
ed reward function.

Dynamic Programming Algorithms
Reinforcement learning refers to a broad collection
of techniques including learning automata and
simulation-based dynamic programming (DP)
algorithms.7 We are interested here in the latter.

The principal elements of a DP problem are

■ a dynamic system whose state transition
depends on a control, and

■ a cost or reward that accumulates additively
over time.8

When at state x, the control u must be chosen from
a given set U(x). At state x, the choice of a control
u specifies the state transition probability pxy(u) to
the next state y. At the kth transition, we incur a
reward γ k g(x, u, y), where g is a given reward func-
tion and 0 < γ < 1 is a discount factor.

A policy is a sequence of controls defined by a
function µ mapping states into controls with
µ(x) ∈ U(x). For infinite horizon problems, where
the reward accumulates indefinitely, DP algorithms
try to find the policy defined by µ that maximizes
the expected discounted reward starting from an
initial state x

P M dt
t

T

Cµ µ= ()∫0

R C

r i

r i
F C

r i

r i
t

i C V

i V

t

i C V

i C

t t

t

t t

t

() =

()

() () =

()

()
∈ ∩()

∈

∈ ∩()

∈

∑

∑

∑

∑
,

(4)

The value or reward-to-go of the optimal policy
starting from state x is denoted by J* (x); that is,

(5)

Markov Decision Process
When the state transition probabilities depend
only on the current state and control, for a fixed
policy the sequence of visited states xk becomes a
Markov chain, and the dynamic system is referred
to as a Markov decision process (MDP). The exis-
tence of the Markov property enables the follow-
ing recursive formulation of J * (x), known as Bell-
man’s equation:

(6)

To represent the value of a specific state-control
pair (x,u), the Q-value form of Bellman’s equation
for the optimal policy is given as:

(7)

Q*(x,u) represents the value of choosing control
u in state x and thereafter following the optimal
policy. Once Q*(x,u) is known for all u, the optimal
policy in state x is simply to select the control u
that maximizes Q*(x,u).

To calculate the value function for a given poli-
cy, and so to find the optimal policy, computational-
based DP methods require a priori knowledge of the
reward function and state transition probabilities.
Simulation-based DP methods do not. These meth-
ods estimate the value function for a given policy
by using the policy to generate a number of simu-
lated system trajectories and associated rewards.

Q-Learning
Watkins’ Q-learning is a well-known, simulation-
based DP algorithm.9 It repeatedly updates optimal
Q-value estimates, Q̂*(x,u), using the following
iteration:

(8)

Here, the expected value in Equation 7 is
replaced by a single sample, where y and g(x,u,y)
are generated from (x,u) by simulation. α ∈ (0,1]
is a stepsize learning parameter that decreases
over time. For each iteration, the control u is
selected as a function of the current estimate
Q*(x,u). One function often used is the ∈-greedy
algorithm. ∈-greedy selects the control that max-
imizes Q*(x,u) with probability 1 − ∈, and a ran-
dom control with probability ∈ that decreases
over time. Introducing randomness into the con-
trol selection scheme ensures proper exploration
of the state-control space and subsequent con-
vergence to the optimal Q-values.

Q-learning is considered a model-free algorithm
since it does not use an explicit model of the state
transition probabilities and associated rewards. Model-
free methods are useful to optimize control of com-
plex systems in which the system dynamics are either
difficult to model explicitly or are not sufficiently well
understood, but can be generated either by simulation
or by interaction with the real environment.

Neuro-Dynamic Programming
For many problems, the state-control space is too
large for Q-value estimates to be stored in a
lookup table representation. Consequently, neural
networks have been used to approximate the value
function estimates. The combination of DP and
neural network (NN) function approximation
methods has been referred to alternatively as con-
nectionist reinforcement learning or neuro-
dynamic programming (NDP).8

Generally, guarantees of convergence to the
optimal Q-values that exist for the lookup table
representation do not apply for an NN representa-
tion. However, experience in complex problem
domains, such as elevator dispatching,10 has shown
that convergence to near-optimal performances
can be achieved with careful selection of input fea-
tures and other parameters.

The real power of NDP approaches lies in their
generalization capabilities. By training an NDP solu-
tion on a specific problem instance, it’s often possi-
ble to achieve good performance from applying the
solution to an entire class of similar problems.8 We
want to develop a model-free NDP algorithm, which
we can train using either offline simulation or online
Web interaction, and which will subsequently gen-

ˆ* , : ˆ* ,

, , max ˆ* ,

Q x u Q x u

g x u y Q y u
u U y

() = −() () +

() + ′()

′∈ ()

1 α

α γ

Q x u

p u g x u y Q y u

x

xy
y

u U y

* ,

, , max * , ,

.

() =

() () + ′()

∀

∑ ′∈ ()
γ

J x

p u g x u y J y x
u U x

xy
y

*

max , , * , .

() =

() () + ()() ∀
∈ ()∑ γ

J x J x* max .() = ()

µ

µ

J x

E g x x x x x
N

k
k k k k

k

N

µ

γ µ

()

lim (, (),) |

=

=

→∞ +

=

−

∑ 1 0
0

1

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 31

Restless Bandits

eralize to yield good performance for previously
unseen Web subgraphs and system parameters.

Request Controller
For the Markov property to hold, the state transi-
tion probabilities of a dynamic system must depend
only on the current state and control. To model the
request controller problem as a straightforward
Markov decision process as above, the state must
consist of the set of retrieved documents at any
given time. Because the system can issue requests
to check for document modifications or deletions,
the control set for the state consists of both the
fringe (located but not yet retrieved) and retrieved
sets of documents.

A DP solution to this straightforward model of
the request controller problem is computationally
infeasible because the number of possible state-
control pairs is exponential in the number of doc-
uments in most Web graphs of interest.

For an NDP solution, it’s difficult to select features
of the retrieved document set that would usefully
differentiate between states for a neural network
approximation of the associated Q-values. Instead,
we must decompose the system’s global state into
“local” states, one for each document of interest. The
problem’s graph structure makes it natural to con-
sider each document state as including a subset of
the graph’s neighboring retrieved documents.

While these local state transitions will not be
strictly Markovian, we can make the transitions as
Markovian as we like by extending the document’s
neighborhood to include an arbitrary portion of
the retrieved documents. We suspect that careful-
ly selecting state features will make it unnecessary
to incorporate numerous documents in local state
representations, as simulation-based DP methods
have typically provided good performance even
when state transitions are not strictly Markovian.10

For a fringe page, state features could include the
average relevance score of its known parent pages,
the fraction of sibling pages that have been retrieved
or for which there is an outstanding request, and so
on. For a retrieved page, state features could include
the average relevance score for its known children
pages, the fraction of children pages modified since
it was last requested, and so on.

With this type of problem decomposition, how
do we calculate Q-values for local state-control
pairs and combine these values into a global con-
trol selection scheme? Fortunately, similar prob-
lems have been examined in the context of sto-
chastic project scheduling problems modeled by
restless bandits.

Restless Bandits
Restless bandits is a generalization of a classical
project-scheduling problem known as the multi-
armed bandit problem. In this problem, the state of
project i at time k is denoted by xi

k. In each project
state, there are two controls µ(x i

k) ∈{1,2} repre-
senting the decisions to activate or not to activate
the project, respectively. If µ(x i

k)=1, then project i
receives a reward of γkg(x i

k,1,x i
k
+1) where the state

transitions of project i form a Markov chain. In the
multi-armed bandit problem, the following
assumptions are made:

■ States of nonactivated projects remain fixed.
■ Rewards received depend only on the state of

the activated project.
■ Only one project can be activated at a time.

Given these assumptions, the well-known Gittins
priority-index is the optimal policy.11 This project-
by-project policy calculates an index for each pro-
ject separately and activates the project having the
maximum index at any one time. To apply this
model to the request controller problem, where
each project is a document in the graph, we must
eliminate the restrictions that the states of nonac-
tivated projects are fixed, and that only one project
can be active at any one time.

The restless-bandits generalization of the multi-
armed bandit problem removes these restrictions and
was first proposed by Whittle.12 In this context,
“restless” means that the states of nonactivated pro-
jects do not remain fixed. The restless-bandit prob-
lem is PSpace-complete.11 PSpace-completeness
most likely rules out the possibility of describing an
optimal policy explicitly. Whittle, however, described
a heuristic priority-index policy for a relaxed ver-
sion of the restless-bandits problem, where the num-
ber of active projects was constrained to be m on
average rather than fixed m. We can calculate the
Whittle index on a project-by-project basis as

(9)

where v is a “subsidy for passivity,” and the Q-val-
ues are calculated as in Equation 7 for each pro-
ject.12 The policy at any given time is to activate the
m required projects with the highest index values.

The Whittle index policy reduces to the Gittins
index policy when applied to classical multi-armed
bandits. While Whittle’s indices for the relaxed ver-
sion of the restless-bandits problem are asymptoti-
cally optimal under certain conditions,13 these con-
ditions do not hold, or have not been shown to hold,

v x Q x Q xi
k
i

k
i

k
i() = () − (), , ,1 2

32 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

for many problems. For the moment, we apply Whit-
tle’s index while noting that research into policies
with stronger performance guarantees continues.14

Request Controller Algorithm
The request controller problem requires one addi-
tion to the restless-bandits formulation: New pro-
jects can arrive as a function of the activated pro-
jects. This addition is required because when a
document is retrieved, any new links extracted are
added to the request priority queue. The value of
retrieving a given document is a function of that
document’s relevance score and also a function of
the relevance scores for the subsequent retrievals
that its own retrieval enables.

We define the following Q-value update rule for
the discrete-time case:

(10)

(10)

where uk
i is the control selected for document i and

time k, and ck+1(i) denotes the set of i’s children pages
discovered as a result of requesting i at time k. This
set excludes any of i’s children that were previously
discovered as a result of requesting another docu-
ment and consists of the null set if i is not retrieved.

We define the reward function g as follows:

(11)

where rk(i) is the last relevance score calculated for
document i at discrete-time k. This is not the only
possible definition of the reward function; howev-
er, this definition intuitively integrates the collec-
tion’s construction and maintenance.

Experimental Results
To test the request controller algorithm, we created
a database of Web pages using a depth-first
retrieval (to two levels) of pages pointed to by the
science subdirectory of the Yahoo! directory tree.
Yahoo! pages were excluded from the final data-
base. Nekrestyanov et al. describe constructing a

relevance scoring function for the subject “space”
in the form of a topic filter.6 Using this function,
we calculated relevance scores for each page in the
data set. We artificially constructed a start docu-
ment with the 15 URLs that gave the maximum
coverage of the graph, enabling approximately
140,000 pages to be reached from the start page.

Figure 3 illustrates the performance of different
algorithms. The performance of the schedules gen-
erated by each algorithm was evaluated using
Equation 3 where F(Ct) = 1 for all t. The optimal
schedule for the problem without constraints—for
the graph where the start node includes a link to
every document in the graph—was the performance
upper bound. The lower bound was the average
performance of 200,000 randomly generated
schedules. For comparison purposes, we also cal-
culated the fringe greedy algorithm’s performance,
which simply prioritizes requests for pages by the
pages’ relevance score.

For the request controller algorithm, all Q-values
were initially set to zero, which gave a performance
worse than the average random performance for the
initial traversals. Each document’s local state was
represented by the identity of the document respon-
sible for its discovery. After 30 traversals through the
graph, the schedule generated by the request con-
troller algorithm achieved a performance that was 96
percent of the upper-bound performance. The algo-
rithm required only seven traversals before it exceed-
ed the fringe greedy algorithm’s performance.

g x u x

r i u i

r i r i u i

r i u i

k
i

k
i

k
i

k k
i

k k k
i

k k
i

, ,

max , ,

+

+

+

() =

() =
() ()[] =

() =

1

1

1

1
1

1
0

if and first time retrieved,
if and was modified

if and was deleted,
otherwise.

ˆ , : ˆ ,

, ,

ˆ , ˆ ,
,

Q x u Q x u

g x u x

Q x u Q x u

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
j

k
j

j c ik

() = −() ()

+

() +

() + ()

+

+ + + +
∈ ()+

∑

1

1

1 1 1 1

1

α

α
γ

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 33

Restless Bandits

Upper bound
Request controller
Fringe greedy
Averaged random

115,000

110,000

105,000

100,000

95,000

90,000

85,000

80,000

75,000

70,000

65,000

Sc
he

du
le

 p
er

fo
rm

an
ce

5 10 15 20 25 30
Graph traversals

Figure 3. Performance results for different scheduling
algorithms. After only 30 traversals through the test
document graph, the request controller algorithm
based on the restless-bandits model achieved a perfor-
mance that was 96 percent of an upper bound on the
highest possible performance.

Figures 4 and 5 provide a visual comparison
between the upper bound schedule and the request
controller and fringe greedy schedules for the first
700 requests. Each point in the graphs represents
the relevance score of the document retrieved at a
given time step.

Figures 4 and 5 show that the request controller
algorithm achieves better performance than the
fringe greedy algorithm by requesting some pages
with low scores sooner. These pages might be
what Kleinberg called “hub” pages, which have
relatively little content but many links.15 Retriev-
ing these pages leads to the subsequent discovery
and retrieval of what Kleinberg called “authorita-
tive” or content-rich pages with higher relevance
scores.

These results indicate that the request controller
algorithm achieves near optimal performance using
the restless bandit model.

Conclusion and Future Work
We believe this article is the first to provide a com-
plete model of the topic-specific Web robot problem.
Results of the empirical evaluation of the algorithm
for a simplified instance of the model are encourag-
ing and lead us to believe that the developed algo-

rithm should form a good basis on which to develop
NDP-based solutions for the complete model.

To evaluate the NDP algorithm for the complete
model, we must first create a data testbed that con-
tains Web documents with modifications and dele-
tions over an extended period of time. In addition,
we must develop an algorithm that can efficiently
solve the fetcher controller problem. We are cur-
rently investigating and implementing solutions to
these problems.

One outstanding problem of interest to
researchers in other fields, particularly in project
scheduling, is finding solutions to the restless-ban-
dit problem with stronger performance guarantees
than the Whittle index employed in this work. This
problem has recently undergone a resurgence of
interest,14 and we look forward to applying the
results of this research in the future.

References

1. S. Lawrence and C.L. Giles, “Accessibility of Information

on the Web,” Nature, vol. 400, 1999, pp. 107-109.

2. S. Brin and L. Page, “The Anatomy of a Large-Scale Hyper-

textual Web Search Engine,” Computer Networks and ISDN

Systems, vol. 30, no. 1-7, 1998, pp. 107-117.

3. M. Bessonov et al., “Open Architecture for Distributed

34 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Upper bound schedule
Request controller schedule

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

R
el

ev
an

ce
 s

co
re

0 100 200 300 400 500 600 700

Time step

Figure 4.The relevance of the first 700 documents retrieved by upper bound and
request controller schedules illustrates the request controller algorithm achieving
near-upper-bound performance by not always requesting documents with the high-
est relevance score first.

Search Systems,” in Lecture Notes in Computer Science,

vol. 1597, Springer-Verlag, Berlin, 1999, pp. 55–69.

4. A. Ardö and S. Lundberg, “A Regional Distributed WWW

Search and Indexing Service—the Desire Way,” Comp. Net-

works and ISDN Systems, vol. 30, no. 1-7, 1998, pp. 173-183.

5. C.M. Bowman et al., “The Harvest Information Discovery

and Access System,” Comp. Networks and ISDN Systems,

vol. 28, Dec. 1995, pp. 119–125.

6. I. Nekrestyanov et al., “Building Topic-Specific Collections

with Intelligent Agents,” in Lecture Notes in Computer Sci-

ence, vol. 1597, Springer-Verlag, Berlin, 1999, pp. 70–82.

7. L.P. Kaelbling, M.L. Littman, and A.W. Moore, “Reinforce-

ment Learning: A Survey,” J. Artificial Intelligence

Research, vol. 4, 1996, pp. 237–285.

8. D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Pro-

gramming, Athena Scientific, Belmont, Mass., 1996.

9. C.J.C.H. Watkins, Learning from Delayed Rewards, PhD dis-

sertation, Cambridge Univ., Cambridge, England, May 1989.

10. R.H. Crites and A.G. Barto, “Elevator Group Control Using

Multiple Reinforcement Learning Agents,” Machine Learn-

ing, vol. 33, Nov. 1998, pp. 235–262.

11. C.H. Papadimitriou and J.N. Tsitsiklis, “The Complexity of

Optimal Queuing Network Control,” Mathematics of Oper-

ations Research, vol. 24, May 1999, pp. 293–305.

12. P. Whittle, “Restless Bandits: Activity Allocation in a Changing

World,” J. Applied Probability, vol. 25A, 1988, pp. 287–298.

13. R. Weber and G. Weiss, “On an Index Policy for Restless Ban-

dits,” J. Applied Probability, vol. 27, Sept. 1990, pp. 637–648.

14. D. Bertsimas and J. Niño-Mora, “Restless Bandits, Linear

Programming Relaxations and a Primal-Dual Heuristic,”

Operations Research, vol. 48, no. 1, 2000.

15. J. Kleinberg, “Authoritative Sources in a Hyperlinked Envi-

ronment,” J. ACM, vol. 46, no. 5, 1999, pp. 604–632.

Ahmed Patel is a lecturer, head of the Computer Networks and

Distributed Systems Research Group, and a center director of

TELTEC Ireland in the Department of Computer Science, Uni-

versity College Dublin, Ireland. His research interests include

international networking standards, network and data secu-

rity, forensic computing, broadband communication systems,

distributed search engines, and open distributed processing

systems. He received an MS and a PhD from Trinity College,

University of Dublin.

Tadhg O’Meara is a researcher and PhD candidate in the Com-

puter Networks and Distributed Systems Research Group,

University College Dublin. His research interests include

distributed search engine design, neuro-dynamic program-

ming, and Web robot design. He received a BS and an MS

from the National University of Ireland, Galway.

Readers can contact the authors at {apatel,tadhg}@net-cs.ucd.ie.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 35

Restless Bandits

Upper bound schedule
Fringe greedy schedule

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

R
el

ev
an

ce
 s

co
re

0 100 200 300 400 500 600 700

Time step

Figure 5.The relevance of the first 700 documents retrieved by upper bound and
fringe greedy schedules illustrates the fringe greedy algorithm failing to achieve
near upper bound performance by always requesting documents with the highest
relevance score first.

