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Abstract: Short-interval scanning of patients offers a detailed understanding of the
natural progression of tumor tissue, as revealed through imaging markers such as
contrast enhancement and edema, prior to therapy. Following treatment, short-interval
scanning can also provide evidence of attenuation of growth rates. We present a
longitudinal imaging study of a patient with glioblastoma multiforme (GBM) scanned
15 times in 104 days on a 3 T MR scanner. Images were analyzed independently by
two automated algorithms capable of creating detailed maps of tumor changes as well
as volumetric analysis. The algorithms, a nearest-neighbor-based tissue segmentation
and a surface-modeling algorithm, tracked the patient’s response to temozolomide,
showing an attenuation of growth. The need for surrogate imaging end-points, of
which growth rates are an example, is discussed. Further, the strengths of these algo-
rithms, the insight gained by short-interval scanning, and the need for a better under-
standing of imaging markers are also described. Index Terms: Glioma—
Algorithms—Brain, tumors—Magnetic resonance imaging.

Malignancies of the CNS account for 1% of all human
cancers (1). Nonetheless, these malignancies have an
enormous impact on the individuals affected by them and
their families. Despite extensive research efforts, the
prognosis for patients with glioblastoma multiforme
(GBM) remains dismal. Reported median survival is <1
year (2).

Researchers traditionally have investigated the dis-
ease’s effect on normal tissue in a “snap-shot” fashion
utilizing imaging as macroscopy, histopathology as tis-
sue morphology, and molecular biology to define mecha-
nisms. Malignant gliomas have been well characterized
with regard to imaging and histopathology. These tumors
are beginning to be better characterized through molecu-
lar biology, especially with advent of high throughput
systems for analyzing tissue genetics. Attempts have
been made to integrate these fields as each one advances
over the years, with limited success. Ideally, dynamic

integration of these fields would provide a clearer char-
acterization of the biologic processes involving tumor
and the surrounding normal tissue. This improved char-
acterization will not only help in investigating the basic
tissue and molecular mechanisms but will also lead to
improved monitoring of these changes in patients and
better monitoring of their reaction to treatment.

The broader goal of this work is to improve analysis of
tumor progression and therapeutic response. Tracking a
patient’s response to therapy through short-interval scan-
ning and growth rate alteration is the specific means of
doing so.

One way toward a better understanding of CNS tu-
mors as they appear through MRI is correlating imaging
markers with tumor histopathology. This may be accom-
plished through alignment of postmortem tissue with
premortem MR scans. This has already been accom-
plished in Alzheimer disease (AD), where an AD atlas
couples MRI to histopathology, thus providing a power-
ful tool for researchers with potential applications in di-
agnosis and evaluation of therapy efficacy (3,4). Tissue
correlation may also be accomplished through MR guid-
ance of biopsy and subsequent correlation of features to
imaging markers; this method may be used to adjust
therapy as well.

In the future, to further advance our understanding of
tumor imaging, it may be necessary to apply multimo-
dality analysis. Evaluating T1-weighted postcontrast,
T2-weighted, apparent diffusion coefficient, proton den-
sity, and MR spectroscopy (MRS) data may prove effec-
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tive in dissecting information on underlying tumor biol-
ogy and provide markers that single modality imaging
cannot do. Computer algorithms that maintain stereotax-
ic space are ideally suited to do so, as imaging data from
multiple sources can be interpreted and correlated in a
common 3D coordinate system. Stereotaxic space allows
for the development of volumetric maps. Applied across
the scan interval, volumetric maps can be used to derive
maps tracking rates of change in contrast-enhancing tu-
mor tissue, for instance. Maps illustrating growth rates
and changes in these rates may be derived and may func-
tion as new imaging markers. Growth rates, determined
through volumetric analysis of contrast-enhancing tissue
across time, for example, can predict response as well as
survival (5). As part of this study, we track the attenua-
tion in growth of contrast-enhancing tissue following the
addition of temozolomide to a patient’s therapy regimen.

Imaging modalities such as MRS and PET are valu-
able tools in their own right and as complements to MRI
and tissue maps derived from them. MRS and PET pro-
vide information on the physiology and metabolic activ-
ity of tissues and are therefore more tissue specific than
MRI. MRS and PET, however, require additional time to
acquire, have poorer resolution, and provide none of the
information on subtle focal changes that MRI does. In
addition, volumetric PET studies usually cannot be per-
formed longitudinally owing to radiation exposure.
Rather than simply providing volumetric information,
tissue and surface maps capture the boundary geometry
of the tumor in 3D and allow the direct mapping of focal
or regional change in the stereotaxic space. This ap-
proach, in conjunction with other mapping approaches,
allows for targeted biopsy and resection, correlation or
segmentation of other modality data, and the definition
of profiles of particularly aggressive growth.

The long-term goal of the longitudinal study of ma-

lignant gliomas, of which this study is part, is to further
our understanding of imaging markers, how these mark-
ers respond to therapy, and better define the tumor proper
in imaging data. The specific goal of this study is,
through short-interval scanning, to track dynamic
changes in contrast-enhancing tumor tissue in a patient
with GBM, thereby gaining greater insight into the re-
sponse of imaging markers to therapy.

METHODS AND CLINICAL BACKGROUND

Clinical Background

The patient participating in this study, a 59-year-old
man, presented with seizures. A contrast-enhancing le-
sion was observed on CT and MR in the right temporal
lobe. The patient underwent a gross total resection. The
lesion was categorized as a GBM with oligodendro-
glioma components by a neuropathologist. The patient
subsequently received regional radiation therapy and ad-
juvant chemotherapy, which included Accutane 100
mg/m2/day × 21days, with 7 days off. During this
9-month period, the patient was judged on three separate
occasions by a neuroradiologist to have stable disease
based on MRI. A new lesion was identified approxi-
mately a year after the presentation of symptoms. The
patient underwent a fluorodeoxyglucose (FDG) PET
study. It was not possible, based on FDG-PET, to deter-
mine whether the enhancement represented tumor or ra-
diation necrosis. As part of an ongoing longitudinal
study, an imaging plan had been devised in which a
patient with a suspect lesion would undergo multiple
scans at a frequency of approximately one scan per week
in an attempt to capture the progression of a lesion and
the response of the lesion to therapy or therapy modifi-
cations. Having recently had an ambiguous PET scan,
this patient was chosen to be an appropriate case for
implementation of the protocol. The patient signed an
informed Internal Review Board approval consent.

Images

Images for this study were acquired using a 3.0 T MR
system (Signa 5.x Echospeed; GE Medical Systems, Mil-
waukee, WI, U.S.A.). The following images were col-
lected: T1-weighted 3D volumes (TR/TE/NEX 400/10/2
ms, slice thickness 3 mm, interslice gap 0, matrix 256 ×
192, 24 cm field of view) and proton density
(TR/TE/NEX 5,000/18/2, slice thickness 3 mm, inter-
slice gap 0, 256 × 192 matrix, 24 cm field of view).
Postcontrast T1-weighted images were acquired imme-
diately following the administration of 20 ml of Gd-
DTPA, an MR contrast agent (Magnevist; Berlex Labo-
ratories, Wayne, NJ, U.S.A.). The patient was scanned
on 15 occasions at intervals ranging from 2 to 21 days.
The scan interval was 7 days in most instances.

Image Processing

All scans were RF corrected to eliminate signal fluc-
tuations due to distortions in the magnetic field of the

FIG. 1. Tracking contrast enhancement volume. The graph illus-
trates the change in volume of contrast-enhancing tissue across
time. Addition of temozolomide to the therapy regimen began on
day 45. Note the attenuation of growth rates following the initia-
tion of treatment.
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scanner (6). SGI 180 MHz (R10000) workstations were
used to align and segment the images. Image volumes
were manually aligned using six parameter rigid trans-
formation to a population-based average brain data set
(7,8) in Talairach stereotaxic space (9). Software devel-
oped at UCLA was used for manually assisted image
registration. Manual alignment offered better registration
of internal anatomically relevant structures than more
automated alignment software (10). To perform tissue
classification, the following protocol was followed: One
hundred sixty tags representing points in white matter,
gray matter, CSF, background, tumor, and edema were
selected. Segmentation was performed through the use of
population-based tissue maps. Population-based tissue
maps, containing probabilistic information on tissue lo-
cation in stereotaxic space, were automatically aligned
with scan data, adjusted for herniation effects with non-
linear registration, and used to determine a Gaussian
mixture distribution reflecting the intensities of specific
tissue classes at each time point in the scan series. Tissue

types were differentiated through the use of a nearest-
neighbor algorithm, the accuracy of which was con-
firmed by tagging points in each anatomically relevant
region. Tissue maps for tumor were generated and manu-
ally adjusted so that class boundaries between tissue
types could be better delineated. For the surface-
modeling algorithm, the following steps were per-
formed: An operator defined the boundaries of the
contrast-enhancing tumor. Traced points were then
converted by a surface-modeling algorithm into a tiled
parametric mesh model. The algorithm uniformly re-
digitized the points at each level in adjacent sections
and reconstructed the surface using triangular tiles (11).
Volumes were then determined from the 3D mesh
models.

RESULTS

The volumes of contrast enhancement were deter-
mined and followed (Fig. 1). Initially, the volume more

FIG. 2. Slice comparison across time (axial level in mm, Talairach space). This figure illustrates the change in the border of contrast-
enhancing tissue across time. As stereotaxic space is maintained, the change at each slice level may be followed. This is useful in
distinguishing subtle advances of the border of contrast-enhancing tissue.
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than tripled over a 34 day period during which time the
patient was scanned six times.

In this case, the patient was treated with temozolo-
mide, an imidazotetrazine derivative, which is related to
mitozolomide. Temozolomide, a prodrug, degrades in
physiological solutions to form the methylating cytotoxic
derivative MTIC [5-(3-methyltriazen-1-yl)imidazole-4-
carboxamide]. The binding of MTIC to DNA guanine
bases is thought to be responsible for the antitumor effect
of the drug (12). The patient, already receiving Accutane
(100 mg/m2/day × 21 days, 7 days off), was started on
temozolomide (200 mg/m2/day × 5 days, 23 days off) on
day 45. After the administration of temozolomide, the
volume increased further, though the rate of increase
decreased and a plateau was reached on day 55 (volume
� 3.3 cm3 as determined by the tissue segmentation
algorithm; 4.0 cm3 as determined by the surface-
modeling approach). By graphing the volumetric data
across time, an alteration in the growth rate of the tumor,
as evident by the slope of the graph, is clear (Figs. 1 and
2). The growth rate from the time of the initial scan until
the start of therapy (day 10 to 45) was estimated to be 1.5
cm3/month. The rate of growth decreased somewhat in
the 11 days following therapy to 1.4 cm3/month (day 45
to 56). By the next scanning date, day 63 of the study,
growth, as measured by the volume change in contrast
enhancement, had plateaued. From this point through the
remainder of the study, the volume oscillated around the

volume obtained on day 54. Radiologically, the tumor
would be described as stable disease. This alteration in
the course of tumor growth, as captured by short-interval
repeat scanning, illustrates the temporal relationship of
the initiation of therapy and the effect of therapy. The
change in tumor is clearly captured by the surface-
modeling algorithm (Fig. 3). Differential growth rates
may be derived from the surface model volumes as well
(Fig. 4). Patterns of differential growth allow regions of
rapid growth to be segregated from more stable areas.
For the growth data to be useful in the planning of sur-
gery or guiding biopsy, stereotaxic space must be main-
tained across time. The surface-modeling algorithm is
able to do this (Fig. 5).

DISCUSSION

To more fully understand tumor changes and provide
effective treatments to combat tumor growth, a better
definition of tumor on MRI is needed. Histopathologic
correlation between biopsy tissue and imaging, as well as
a greater understanding of imaging markers both prior to
and subsequent to therapy, will aid substantially in
achieving this goal. Short-interval scanning also provides
a means to achieve this goal: (a) it provides detailed
information about the natural progression of tumor
growth prior to therapy; (b) it closely follows the tem-
poral sequence of how and when imaging markers re-

FIG. 3. Surface mesh models across time. The surface-modeling algorithm generates mesh models that, when examined across time,
reveal differential growth patterns. This figure illustrates the models as seen from above and from the side. Details of focal change may
be determined from the growth patterns derived from the mesh models.
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spond once therapy is initiated; and (c) it yields growth
rate, a surrogate marker that may be used to judge the
efficacy of therapy. In this study, a patient with GBM
was followed prior to and subsequent to treatment with
temozolomide, revealing modulation in the 3D profile of
growth.

This study is novel in terms of the frequency, the
number of scans, and the application of tissue segmen-
tation and surface-modeling algorithms to determine re-
sponse to therapy. Studies, including that of Ross et al.
(13), assessing response to therapy, have been performed
previously in animal models. Through frequent scanning,
we were able to follow the natural progression of the
tumor prior to therapy. Subsequent to treatment, an at-
tenuation of growth followed by cessation in growth was
observed. Short-interval scanning provided a means to
determine the temporal relation of therapy to a marked,
observable response.

Despite initial growth in contrast-enhancing volume
after therapy, determining growth rate across time clearly
showed that therapy was effective. The natural progres-
sion of tumor had been altered and growth had ceased.
Growth rates may then serve as a surrogate marker for
response. The response might not have been appreciated
had it not been for the tight interval between scans. An
increase in volume, depending on when the scan was
taken, might have been interpreted as therapy failure and
an effective therapy might then have been discontinued
to the detriment of the patient. With the addition of

growth rates to the small arsenal of imaging markers,
more data will be available for the evaluation of thera-
pies. In this case study, we demonstrated that the tissue
segmentation and surface-modeling algorithms were able
to track change through short-interval scanning. Future
studies may be designed to accommodate a greater num-
ber of patients and include histopathologic correlation
from stereotaxically guided biopsy with the imaging re-
sults, specifically the results of the surface-modeling al-
gorithm. In the case of this study, the patient’s tumor had
stabilized, so there was no medical indication to perform
stereotaxically guided biopsy.

It is worth noting that contrast enhancement volume is
not tumor proper itself. Rather, enhancement represents a
breakdown of the blood-brain barrier with subsequent
extravasation of contrast enhancement into the surround-
ing parenchyma. Contrast enhancement may therefore
serve as an adjunct marker for tumor volume. It is used
partially for this purpose clinically. A method used by
the Eastern Cooperative Oncology Group and the Radia-
tion Treatment Group determines response to therapy
based on the area of contrast enhancement in a single MR
slice (14). In a study by Filipek et al. (5), growth rates, as
measured by change in contrast enhancement, were sen-
sitive enough to predict response.

Segmentation

Contrast enhancement volumes were determined inde-
pendently by two algorithms: tissue classification and

FIG. 4. Vector maps (ref. 4) illustrate both the magnitude and the direction of tumor growth during a time interval. They track change on
a point-by-point basis and reveal a heterogeneous growth profile across the tumor surface. The 3D displacement vectors (pink colors:
high growth; blue colors: low growth) reveal aggressive growth that is attenuated after change of therapy.
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surface modeling (Figs. 3, 5, and 6). Both algorithms
have been successfully applied previously to segmenta-
tion of brain tissue. The segmentation models generated
by the algorithm may be analyzed across time, thereby
revealing patterns of differential growth in tumor (Figs. 3
and 4). The segmentation models are generated in such a
manner that stereotaxic space is maintained (Fig. 5). This
allows for alignment of data from other imaging modali-
ties such as PET and MRS.

Defining surface-to-surface correspondences to model
anatomic changes across time is complex. In cases where
the same anatomy is present at both time points, a para-
metric grid, with a specific grid structure, may be over-
laid over each surface and correspondences inferred by
matching corresponding grid locations across time. To
accommodate more complex correspondences between a
specific region of one surface and a specific region of
another, we previously developed a set of mathematical
algorithms that are capable of explicitly matching land-

mark points and curves within surfaces, while also
matching the entire surface geometry exactly (15). Al-
though these methods can be used powerfully to match
gyral patterns of the cortical surface from one subject or
one time point to another (15), in this work we used a
simpler correspondence model, based on parametric
grids, owing to the difficulty of establishing meaningful
boundary correspondences in cases of infiltrative growth.
We are currently validating additional methods for map-
ping boundary change based on deformable surfaces, us-
ing anatomic information to constrain the matching of
stable and recurrent regions of tumors.

The tissue classification approach is based on a near-
est-neighbor algorithm. The nearest neighbor is a robust,
well tested algorithm, capable of segmenting tissue into
white matter, gray matter, CSF, edema, and tumor, as
represented by contrast enhancement (Fig. 6). The algo-
rithm is stable (16–19). It is also one of the quickest
algorithms in terms of both operator input and execution

FIG. 5. As the mesh models reveal differential growth and stereotaxic space is maintained, the surface-modeling algorithm may be used
to guide biopsy of a specific region of the tumor, for example, the most aggressive region. This may in turn provide information on the
genetic heterogeneity of the tumor, which may be used to direct therapy decisions. For example, if a resistance mechanism were found
to be present in a particularly aggressive region of the tumor, this information could be used to appropriately direct therapy decisions.
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time (16,17). The algorithm detects anatomically rel-
evant structures in cases where more automated algo-
rithms have more difficulty (11,18). These properties
may make the nearest-neighbor algorithm well suited for
large-scale trials where volume analysis algorithms may
provide data on the efficacy of therapy. Further, en-
hancement volumes as determined by the algorithm are
highly correlated with manually defined volumes (3).
Recently, Kaus et al. (19) accurately determined the vol-
umes of meningiomas and low-grade gliomas through
the application of the nearest-neighbor algorithm.

A surface-modeling algorithm has been used for de-
tecting asymmetry in cortical patterns, for analyzing cor-
pus callosum morphology in schizophrenic patients (20),
and in mapping growth rates of the corpus callosum in
children (18). Contrast enhancement volumes as deter-
mined through the use of the surface-modeling algorithm
are highly correlated with enhancement volumes deter-
mined manually (21). Capable of tracking change on a
point-by-point basis, the surface-modeling algorithm is
able to generate highly detailed maps of focal change in

enhancement volume across time (Fig. 2). The detailed
nature of the maps and the fact that the spatial relation-
ship is stereotaxically maintained make the surface-
modeling algorithm well suited for a particular purpose:
taking a biopsy from a specific tumor region. Underlying
differential tumor growth may relate to genetic or cellu-
lar heterogeneity of the tumor. Knowledge of the genetic
composition of a tumor would provide an additional ba-
sis for therapy decisions by the clinician. Specifically, a
genetic analysis of an aggressive region of tumor show-
ing the presence of a drug resistance mechanism would
allow the clinician to make appropriate therapy choices.

As good as the surface-modeling algorithm is at esti-
mating change in tumor tissue and as helpful as stereo-
taxically guided biopsy may potentially be in determin-
ing the genetic heterogeneity of tumor tissue, any dis-
cussion on tumor growth would be incomplete without
recognizing that there are multiple factors that affect tu-
mor growth. Biomechanical factors such as the growth of
tumor in the area of least resistance have been shown to
be important determinants in the spread of tumor tissue

FIG. 6. Nearest-neighbor algorithm tissue classification. Volumetric analysis with the nearest-neighbor tissue classification algorithm is
accomplished by generating a tissue segmentation map. From the segmentation map, a binary component map may be generated. In this
figure, slices of raw postcontrast T1-weighted MR images (A), tissue segmentation maps (B), and binary tumor maps (C) are shown
across time. The algorithm, though not operator-free, reliably generates volumes for contrast-enhancing tissue.
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(22). Wasserman et al. (23) developed a comprehensive
model for patient-specific in vivo tumor growth. This
model incorporates mechanical influences and important
factors such as cell adhesiveness, oxygen distribution,
production of lytic enzymes, pH, and immune system
responses in determining tumor growth. As tumor
growth is multifactorial, and given that growth may pref-
erentially occur into the area of least resistance rather
than from the most malignant region, it is difficult to
draw the conclusion that the area of greatest tumor
growth is the most malignant. Nonetheless, important
information about the genetic nature of the tumor may be
obtained through stereotaxically guided biopsy, and this
information may aid the clinician in choosing a course of
therapy.

CONCLUSION

Short-interval scanning reveals natural tumor progres-
sion prior to therapy. After therapy, short-interval scan-
ning clearly demonstrated cessation of growth in this
case. Tracking tumor growth clearly showed the effect of
therapy. As such, growth rates may serve as a surrogate
end-point for determination of therapy response. The
volumetric measurements, forming the basis on which
growth were determined, were achieved by indepen-
dently applying a tissue segmentation algorithm and a
surface-modeling algorithm. Finally, short-interval scan-
ning may provide a better understanding of imaging
markers, which may prove useful in evaluating new
therapies.
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