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Abstract: We consider the problem of d-dimensional searching (d ≥ 3) for four query
types: range, partial range, exact match and partial match searching. Let N be the
number of points, s be the number of keys specified in a partial match and partial
range query and t be the number of points retrieved. We present a data structure with
worst case time complexities O(t + logd−2

N), O(t + (d − s) + logs
N), O(d +

√
log N)

and O(t + (d− s) + s
√

log N) for each of the aforementioned query types respectively.

We also present a second, more concrete solution for exact and partial match queries,
which achieves the same query time but has different space requirements. The proposed
data structures are considered in the RAM model of computation.
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1 Introduction

A geometric retrieval system must respond to a query by initiating a search

operation, followed by the retrieval of all objects requested by the query. The

objective of this paper is to propose efficient data structures, in the RAM model

of computation, that facilitate the operations of geometric retrieval. In particu-

lar, we consider the operations of range searching, partial range searching, exact

and partial match.

Let S be a collection of N points, each of which is an ordered d-tuple

(r1, . . . , rd) of values ri, 1 ≤ i ≤ d. Each component of the d-tuple is called

an attribute or a key. A retrieval request is the specification of certain condi-

tions that must be satisfied by the keys of the retrieved records. The queries

considered, are categorized as follows:

– Range query specifies d ranges, one for each key.

– Partial range query specifies s < d key ranges, with the remaining d − s

unspecified.

– Exact match query specifies an exact value for each key.

– Partial match query specifies s < d key values, with the remaining d−s ones

unspecified.



The last two types of queries can are special cases of the general range query,

if we allow the exact range [x, x] and the infinite range (−∞,∞), as a possible

query range for each key. As a result, an exact match query can be represented

as a general range query, in which all d ranges are exact. In the same manner, a

partial match query has only s exact ranges.

In this paper we consider the unit-cost RAM with a word length of w bits,

which models what we program in imperative programming languages such as C.

The words of the RAM are addressable and these addresses are stored in memory

words, imposing that w ≥ log N . As a result, the universe U consists of integers

in the range 0 . . . 2w − 1. It is also assumed that the RAM can perform the

standard AC0 operations of addition, subtraction, comparison, bitwise Boolean

operations and shifts, as well as multiplications in constant worst-case time on

O(w)-bit operands. One of the basic features of the RAM is that the content of

the elements are used for addressing, which is one of the basic differences with

other comparison based models (such as PM).

The problem of range searching is one of the most extensively studied prob-

lems in computational geometry. In the static case, a set of N points in the d-

dimensional space is given and the goal is to preprocess them in a data structure,

so that for any query range, the points inside this range can be found efficiently.

Numerous solutions for this problem have been suggested (see the survey paper

of Agarwal [4]). In the RAM model of computation, the best solution [12] needs

O(logd−2 N + t) time to retrieve the output and uses O(N logd−1 N) space. In

the Pointer Machine model of computation, the best general solution is based

on the layered range tree [19]. This is a modified version of the range tree,

which exploits the benefits of the fractional cascading technique, and requires

O(n logd−1 N) storage and O(logd−1 N) query time.

In the 2-dimensional case, assuming that the query ranges are of the form

[a, b]×(−∞, c], the problem can be solved optimally in O(N) space and O(log N+

t) time, by using the priority search tree of McCreight [18]. If the stored points

have integer coordinates in the range [1, M ] × R (the grid assumption), then

more efficient solutions can be obtained. Overmars [20], has presented a struc-

ture with O(log log M + t) time and O(N) space, but with a very expensive

preprocessing phase. In the same paper, he has presented an alternative solution

with O(
√

log M+t) query time, O(M) space and O(N log N) preprocessing time.

A different solution with O(log log M + t) query time and O(M + N) space and

preprocessing time, has been presented by Fries et al. [10]. All these solutions rely

on modifications and extensions of the priority search tree structure. Note that

in the special case in which the query ranges are of the form (−∞, a]× (−∞, b],

a more efficient solution can be obtained by using the window list structure of

Chazelle [6]. This solution has O(N + M) space and O(t) query time.

However, largely unnoticed has remained the solution of Gabow, Bentley and



Tarjan [12], which can be used to solve the problem in O(N + M) space and

O(t) query time. Their structure relies on the Cartesian Tree of Vullemin [23],

which is in fact the predecessor of the priority search tree. They make use of

the machinery developed in [15] (see also [21]) for answering lowest common

ancestor (lca) queries for two nodes of an arbitrary tree in O(1) time. Their

algorithm retrieves each point in the query range, by executing an lca query.

Although the time complexity of the lca queries is O(1), their implementation

is quite complicated. As a result, there is a considerable time overhead for each

retrieved point.

In this paper, we present a modified priority search tree, which matches the

performance of the structure of Gabow et al. [12]. The overall solution requires

at most two lca queries for each range query and not for every point of the

answer (as the solution in [12]). Consequently, although our new structure uses

other complicated techniques (persistent lists and microset table lookup), it is

faster that the solution of [12]. This claim is validated both theoretically and

experimentally.

We also present a d-dimensional data structure, which uses as its skeleton a

range tree ([19]), with its last level being replaced by our modified priority search

tree. As a result, we achieve in a more simple and concrete way, O(t+logd−2 N)

response time for d-dimensional range queries. Consequently, we perform partial

range queries in O(t+(d−s)+logs N) time. Furthermore, an exponential search

tree [2] is used as an additional index, for each of the d dimensions of the prob-

lem. In this way, exact match and partial match queries are improved, achieving

O(t +
√

log N) and O(t + (d − s) + s
√

log N) query times respectively. These

trees are used to speed up both exact match and partial match queries, using a

set of pointers to the skeleton structure. Exponential search trees are multiway

trees that answer efficiently queries in one-dimensional space. Their combination

with a number of other techniques such as the Fusion Tree technique [11] and

the van Emde Boas trees [24], result in very fast search structures. Furthermore,

the tuples stored in these additional trees are also stored in the subtrees of the

skeleton tree itself, thus duplicating the data stored. Nevertheless, this technique

helps when partial queries are performed. In order to achieve a more concrete

structure, we give a second solution for the same problem by incorporating ex-

ponential search trees in the previous structure. In this way, space requirements

are reduced in the average case (for example in typical database files), without

affecting the retrieval times.

The remainder of the paper is organized as follows. In Section 2 the priority

search tree is described. In Section 3 we present our modified priority search

tree. In Section 4 we show how we match the O(t + logd−2 N) time, in a simpler

and more concrete manner. In Section 5 we present the first solution of our fast

exact and partial match search algorithm while in Section 6 we give a second
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Figure 1: Pb: the search path, Lb: the nodes that are left sons of nodes on Pb

and do not belong to the path.

solution for the same problem. We conclude in Section 7.

2 Preliminaries

In this section we briefly review the priority search tree of McCreight [18]. Let

S be a set of N points on the plane. We want to store them in a data structure,

so that the points that lie inside a semi-infinite strip of the form [a, b]× (−∞, c],

can be found efficiently.

The priority search tree is a binary search tree over the x-coordinates of the

points with logarithmic depth. The root of the tree contains the point p with

the minimum y-coordinate. The left (resp. right) subtree is recursively defined

for the set of points in S − {p}. The set S − {p} is partitioned equally into the

two subtrees of the root. As a result, it is easy to see, that a point is stored in a

node on the search path from the root to the leaf containing its x-coordinate.

Initially, queries with ranges that are half-infinite in both x and y directions

are considered (i.e. they are of the form (−∞, b]× (−∞, c]). This special case is

also known as quadrant range search. To answer a quadrant range query, we find

the O(log N) nodes in the search path Pb for point b. Let Lb be the left children

of these nodes that do not lie on the path (see Figure 1). In O(log N) time, the

points of the nodes of Pb

⋃

Lb that lie in the query-range can be determined.

Then, for each node of Lb storing a point inside the range query, its two children

are visited and checked whether their points lie in the range. This procedure

continues recursively, as long as points in the query-range are found.



The correctness of the query algorithm is proved as follows. First, observe

that nodes to the right of the search path, have points with x-coordinate larger

than b and therefore lie outside the query-range. The points of Pb may have x-

coordinate larger than b or they may have y-coordinate larger than c. In any case,

they are not reported. The nodes of Lb and their descendants have points with

x-coordinate smaller than b, so that only their y-coordinates need to be tested.

The children of nodes of Lb with y-coordinate less than c must be considered. In

particular, the reporting procedure proceeds recursively, as long as points inside

the query range are found. If a point of a node u does not lie inside the query-

range, then this point has y-coordinate larger than c. Therefore, all points in

the subtree rooted at u lie outside the query-range and they are not reported.

We can easily bound the query time by O(log N + t), since O(log N) time is

needed to visit the nodes in Pb

⋃

Lb and O(t) time is necessary for the reporting

procedure in their subtrees.

Finally, consider the general case where the query ranges are of the form

[a, b]× (−∞, c]. The query algorithm finds the nodes in the two search paths Pa

and Pb for a and b respectively. Let C be the set of nodes, consisting of all left

children of the nodes in Pa and all right children of the nodes in Pb. The nodes

of Pa

⋃

Pb

⋃

C that have points inside the query range can be determined in

O(log N) time. Then, the descendants of nodes of C are traversed recursively as

long as their points lie in the query range. Note that the nodes of C and their

descendants have x-coordinates inside the query-range and as a result only their

y-coordinates need to be considered. The correctness of the algorithm follows by

similar arguments as in the case of quadrant range queries, while the query time

is O(log N + t).

3 The Modified Priority Search Tree

3.1 Quadrant Range Search on a Grid

Let S be a set of N points on the plane with coordinates in the range [1, M ]×R.

Without loss of generality we assume that all points are distinct. We will show

how to store the points in a data structure, so that the t points in a query range

of the form (−∞, b]×(−∞, c], can be found in O(t) time. Our structure relies on

the priority search tree, which we augment with list-structures similar to those

in [20].

We store the points in a priority search tree T , of size O(N) as described

in the previous section. For convenience we will assume that the tree T is a

complete binary tree (i.e. all its leaves have depth log N). Note that if N is not

a power of 2, then we may add some dummy leaves so that T becomes complete.

We also use an array A of size M , which stores pointers to the leaves of T .

Specifically, A [i] contains a pointer to the leaf of T with maximum x-coordinate
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Figure 2: L(u): it stores the points of the nodes of Li. PL(u): it stores the points

of the nodes of Pi which have x-coordinate smaller or equal to i.

smaller or equal to i. This array is used to determine in O(1) time the leaf of

the search path Pb for b. In each leaf u of the tree with x-coordinate i we store

the lists L(u), PL(u). The list L(u) stores the points of the nodes of Li. The list

PL(u) stores the points of the nodes of Pi which have x-coordinate smaller or

equal to i. Both lists also contain pointers to the nodes of T that contain these

points. Each list L(u), PL(u), stores its nodes in increasing y-coordinate of their

points (see Figure 2).

To answer a query with a range (−∞, b] × (−∞, c] we find in O(1) time the

leaf u of the search path Pb for b. Then we traverse the list PL(u) and report

its points until we find a point with y-coordinate greater than c. We traverse

the list L(u) in the same manner and find the nodes of Lb whose points have

y-coordinate less than or equal to c. For each such node we report its point and

then we continue the reporting procedure further in its subtree, as long as we

find points inside the range.

The following theorem bounds the size and query time of our structure.

Theorem 1. Given a set of N points on the plane with coordinates in the range

[1, M ] × R we can store them in a data structure with O(M + N log N) space

that allows quadrant range queries to be answered in O(t) time, where t is the

number of reported points.

Proof. The query algorithm finds the t′ points of nodes of Pb

⋃

Lb that lie inside



the query-range in O(t′) time by simple traversals of the lists PL(u), L(u). The

search in subtrees takes O(t) additional time for reporting t points in total.

Therefore, the query algorithm needs O(t) time. Each list PL(u), L(u) stores

respectively points in the nodes of a path, and points in the left children of nodes

of a path. So the size of each list is O(log N) and the space of T is O(N log N).

The space of the whole structure is O(M + N log N) because of the size of the

array A.

The O(N log N) term in the space bound is due to the size of the lists PL(u)

and L(u). We can reduce the total space of these lists to O(N) by making them

persistent. Ordinary structures are ephemeral in the sense that update operations

make permanent changes to the structures. Therefore in ordinary structures it

is impossible to access their old versions (before the updates). According to the

terminology of Driscoll et al. [8] a structure is persistent, if it allows access to

older versions of the structure. There are two types of persistent data structures:

partially and fully persistent. A partially persistent data structure allows updates

of its latest version only, while a fully persistent one allows updates of any of its

versions. In [8], a general methodology is proposed for making data structures of

bounded in-degree persistent. With their method such a structure can be made

partially persistent with O(1) amortized space cost per change in the structure.

In our case a list can be made partially persistent with a O(1) amortized increase

in space per insertion/deletion.

We show how to implement the lists PL(u) using a partially persistent list.

Let u be a leaf in T and let w be its predecessor (the leaf on the left of u). We

denote by xu the x-coordinate of u and by xw, the x-coordinate of w. The two

root-to-leaf paths Pxu
, Pxw

, share the nodes from the root of T to the nearest

common ancestor of u, w. As a result, we can create PL(u) by updating PL(w)

in the following way. First we delete from list PL(w) the points that don’t lie

on Pxu
. Then we insert the points of Pxu

which have x-coordinate smaller or

equal to xu. In this way we can construct all lists as versions of a persistent list:

we begin from the leftmost leaf and construct the list PL(u) of each leaf u by

updating the one of its predecessor (see Figure 3).

The total number of insertions and deletions is O(N) because each point is

inserted and deleted only once. Therefore the space of all the lists is O(N). In

the same way, lists L(u) are constructed for all leaves in O(N) space. Therefore:

Theorem 2. Given a set of N points on the plane with coordinates in the range

[1, M ]×R we can store them in a data structure with O(N +M) space that allows

quadrant range queries to be answered in O(t) time, where t is the number of

answers.

The preprocessing time is O(M + N log N) but with a more careful imple-

mentation we can reduce this complexity to O(M + N), by using the pruning
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Figure 3: Lists PL(u) and L(u) are implemented as partially persistent lists, by

performing a sweep from left to right.

technique as in [10]. We will discuss this solution in the next subsection, in which

we show how to handle query ranges of the form [a, b] × (−∞, c].

3.2 Three-Sided Range Queries

We will show how to solve the problem, when the queries are of the form [a, b]×
(−∞, c]. That is, we want to find the points of S that lie inside a query rectangle,

which extends infinitely in the negative y-direction. First we present a simple

solution with O(t) time and O(M + N log N) space and then we show how to

reduce the space to O(N + M).

3.2.1 A Structure With O(t) Time

We will use a modified priority search tree T of size O(N) which stores the N

points of S. We denote by Tv the subtree of T with root v.

The tree structure T has the following properties:

– Each point of S is stored in a leaf of T and the points are in sorted x-order

from left to right.

– Each internal node v of T stores a point p(v) of S. The point p(v) is the point

with the minimum y-coordinate amongst the points stored in the leaves of

Tv.



– Each node v is equipped with a secondary list S(v). S(v) contains the points

stored in the leaves of Tv in increasing y-coordinate.

We also use an array A of size M which stores pointers to the leaves of T .

Specifically A [i] contains a pointer to the leaf of T with maximum x-coordinate

smaller or equal to i. With this array we can determine in O(1) time the leaves

of the search paths Pa, Pb for a and b respectively. Let u be a leaf of the tree

and let i be the x-coordinate stored in u. Pi denotes the search path for i, i.e. it

is the path from the root to u. We denote by P j
i the subpath of Pi with nodes

of depth larger than j. Similarly Lj
i (respectively Rj

i ) denotes the set of nodes

that are left (resp. right) children of nodes of P j
i and do not belong to P j

i . Note

that 0 ≤ j ≤ log N so there are log N such sets P j
i , Lj

i , Rj
i for each leaf u.

In leaf u we store the following lists Lj , Rj : The list Lj(u) (resp. Rj(u))

stores the points p(v) of the nodes v of Lj
i (resp. Rj

i ) in increasing y-coordinate

and pointers to the respective nodes. In each leaf we also store arrays of size

log N , so that for a given j any list Lj(u), Rj(u) can be accessed in constant

time.

To answer a query with the range [a, b] × (−∞, c] we use the array A to

find the two leaves u, w of T in the search paths Pa, Pb respectively. A simple

algorithm of Harel and Tarjan [15] is used to compute the depth j of the lowest

common ancestor of u, w in O(1) time. Then, we traverse Rj−1(u), Lj−1(w) and

we find the nodes of Rj−1
a , Lj−1

b whose stored points have y-coordinate less than

c. For each such node v we traverse the list S(v) in order to report the points

stored in the leaves of Tv that satisfy the query. The following lemma ensures

the correctness of the procedure.

Lemma3. The query algorithm correctly computes the points of S inside the

range [a, b] × (−∞, c].

Proof. Since all the points of S with x-coordinates between a,b are stored in the

leaves of T between u,w it follows (by the construction of the modified priority

search tree and the used query algorithm) that the algorithm reports all the

points that lie in the query. Because only points that lie in the query range are

reported, the algorithm is correct.

Theorem 4. Given a set S of N points on the plane with coordinates in the

range [1, M ] × R we can store them in a data structure with O(M + N log N)

space that allows three-sided range queries to be answered in O(t) time, where t

is the number of reported points.

Proof. Let t′ ≤ t be the number of points in the nodes of Ra, Lb that lie inside the

query-range. The algorithm takes O(t′) time to find these points, by traversing

each corresponding list until a point outside the query range is found. Then in



O(t) time the algorithm finds the rest of the points by searching further in the

secondary lists of those nodes of Ra, Lb which have points inside the query range.

Each leaf stores log N lists Lj , Rj. By implementing these list as partially

persistent sorted lists (as in the proof of Theorem 2), the total space of these

lists is O(N log N). Also each point of S is stored in O(log N) secondary lists.

Consequently, the space of the tree structure is O(N log N). We also need O(M)

space for the array A.

3.2.2 Reducing the Space of the Structure

To reduce the space of the structure the technique of pruning is used as in

[10, 20]. However, pruning alone does not reduce the space to linear. We can

get better but not optimal results by applying pruning recursively. To get an

optimal space bound we will use a combination of pruning and table lookup.

The pruning method is as follows: Consider the nodes of T , which have

height log log N . These nodes are roots of subtrees of T of size O(log N). There

are O(N/ log N) such nodes. Let T1 be the tree whose leaves are these nodes

and let T i
2 be the subtrees of these nodes for 1 ≤ i ≤ O(N/ log N). Note that T1

has size O(N/ log N). We call T1 the first layer of the structure and the subtrees

T i
2 the second layer. T1 and each subtree T i

2 are structured as modified priority

search trees.

We implement the tree T1 and the subtrees T i
2 using the solution of the

previous section. Tree T1 needs space O(N) according to Theorem 4 since its size

is O(N/ log N). Each subtree T i
2 has O(log N) leaves and depth O(log log N).

Therefore, it needs O(log N log log N) space. The total size of subtrees in the

second layer is O(N log log N). As a result, the space used is O(N log log N) for

the whole structure and O(M) for the array.

To answer a query [a, b] × (−∞, c], array A is used to find the leaves of the

subtrees T i
2 , T j

2 on the search paths for a, b (note that both leaves may belong

to the same subtree, i.e. i may be equal to j). We query both structures as in the

previous section in O(t2) time, where t2 is the number of the reported points.

The roots of these subtrees are leaves of T1. Consequently, we can query T1 in

the same manner and find, in O(t1) time, the t1 points that lie inside the query

range.

We may apply the same pruning method to the subtrees of the second layer

and continue recursively. If we apply the method k > 1 times then the space of

the structure will be O(M + N log(k) N) and the query time is O(k + t), where

log(k) is the composition of the log function k times. If we choose k to be constant

then we can reduce the space, without affecting asymptotically the query time.

The best space bound we can get is O(M + N log∗ N) but then the query time

will be O(log∗N + k). We summarize in the following:



Theorem 5. Given a set of N points on the plane with integer coordinates in

the range [1, M ] × R, we can store them in a data structure with O(M + kN +

N log(k) N) space that allows three-sided range queries to be answered in O(t+k)

time, where t is the number of answers and k is an integer parameter 2 ≤ k ≤
log∗ N .

3.2.3 Achieving Optimal Time and Space Performance

In the previous subsection we showed how to reduce the space of our structure

by recursive pruning. This process partitioned the modified priority search tree

T in a number of layers. Each layer consists of a number of disjoint subtrees of T .

The trees of the i-th layer (i > 2) have size O(log(i−1) N) each. Note that if the

structure has k layers, then each of the k − 1 higher layers has total size O(N),

while the last layer has total size O(N log(k) N). We need a more space-efficient

way to implement the last layer.

We will use a three-layered structure. We implement the first two layers as in

the previous section. The third layer consists of O(N/ log log N) modified priority

search trees, each of size less than log log N . The technique of table lookup will

be used to implement the modified priority search trees of this layer. This is

reminiscent of the way Gabow and Tarjan implement the so-called microsets for

the disjoint set union problem [13], so we accordingly will call the priority search

trees of the last layer microtrees. Like the solution in [13], that encodes amounts

of information in words of memory, we will assume that each memory cell can

hold only integers in the range [0, N ] (i.e. each memory cell has log N bits).

The microtrees are complete binary trees with m leaves, where m ≤ log log N

is a power of 2. Each microtree is a modified priority search tree, which stores

at most m points. We will assume that each microtree stores exactly m points.

If this is not the case we can add some dummy points with y-coordinate equal

to +∞. Note that the query algorithm will not report these dummy points. Let

p1, p2, . . . , pm, be the points stored in the leaves of the microtree in increasing

x-order. Let also σ = σ(1), σ(2), . . . , σ(m) be a permutation of 1, 2, . . . , m, so

that pσ(1), pσ(2), . . . , pσ(m) is the sequence of the points stored in the leaves of

the microtree in increasing y-order. This permutation can be encoded using

m log m ≤ log log N log log log N < log N bits and therefore it can be stored right

justified in one memory cell. Let k,l be two integers with 1 ≤ k ≤ l ≤ m and

output(k, l) = p′1, . . . , p
′

l−k+1, be the points pk, . . . , pl in increasing y-coordinate.

The list output(k, l) can be uniquely identified with a (l− k + 1)-tuple σ′(k, l) =

σ′(1), . . . , σ′(l− k + 1) such that σ′(i) = j iff p′i = pj. This tuple can be encoded

using at most m log m ≤ log log N log log log N < log N bits and therefore it can

be stored right justified in one memory cell. The crucial observation is that given

σ,κ,l then the tuple σ′(κ, l) is uniquely identified. Based on this observation we

build a table Answer [i, j, perm] where i,j range over all possible values between



1 and m, and perm ranges over all possible values between 1 and 2m log m. If

perm is a valid encoding of a permutation σ of a microtree and i ≤ j then the

entry Answer [i, j, perm] stores the value σ′(i, j) otherwise it stores zero.

We also need another table W with O(N/ log log N) entries such that W [i]

stores a value corresponding to the encoding of the permutation of the i-th

microtree (the microtrees of T are numbered from left to right with the values

1, . . . , B with B = O(N/ log log N)).

Given the above tables it is easy to answer a query [a, b] × (−∞, c] for the

i-th microtree. Initially, by using array A we locate the two leaves u and w of

the microtree as in Section 2. Assume that these are the k-th and the l-th leaf

of the microtree. Then in O(1) time we access s = Answer [k, l, W [i]] and we

traverse the set of nodes represented by the word s until a point with greater y-

coordinate than c is found. It is obvious that the search time is O(t), where t the

number of reported points. As a result, the time bound of the query algorithm

of the previous section is not affected.

It remains to bind the size of the tables and the time needed for their con-

struction.

Lemma6. All tables need O(N) space and can be constructed in O(N) time.

Proof. Table W has size B = O(N/ log log N). The table Answer has size

O(m22mlogm) and each entry of the table needs O(m) time to be computed.

Since m = O(log log N) the table Answer needs linear space and can be con-

structed in linear time. We also need to compute the permutation σ for every

one of the B = O(N/ log log N) microtrees and store the number that encodes

it, in the table W . This can be done in O(m) = O(log log N) time, for each

microtree, if the y-order of its points is known. All these y-orders of the points

of microtrees can be derived in O(N) time, from the y-order of all the points of

S (which is known since the points lie on a grid). Therefore the total time to

compute the table Q is O(N).

We summarize in the following:

Theorem 7. Given a set of N points on the plane with integer coordinates in

the range [1, M ]×R we can store them in a data structure with O(N +M) space

that allows three-sided range queries to be answered in O(t) time, where t is the

number of reported points. The structure can be built in O(N + M) time.

3.2.4 Theoretical Comparison

In order to compare the solution based on the use of the Cartesian Tree with our

approach, we will assume a standard RAM model of computation. The RAM

can only read, write, address, add, subtract, multiply, and divide in constant



time and only with numbers of size O(log M) bits. In this model of computa-

tion, bit-level operations dealing with O(log M) sized words can be simulated

by table lookup (the construction of these tables can be performed during an

initial preprocessing phase). We assume, in the sequel, that both algorithms will

be compared by using the number of table lookups as a measure of comparison.

1st Solution (Cartesian Tree)

Let S = {(x1, y1), (x2, y2), , (xN , yN)} be the set of stored points , x1 ≤ x2 ≤
. . . ≤ xN . A Cartesian tree T for S, is a binary tree of N nodes with each node

being labeled by a point in S. The tree T is defined recursively as follows: the root

is labeled with (xm, ym), where ym = min{yi|i = 1, . . . , N}. Its left subtree is a

Cartesian Tree for {(xi, yi)|i = 1, . . . , m− 1} and its right subtree is a Cartesian

Tree for {(xi, yi)|i = m+1, . . . , N}. Let p(v) be the point labeling the node v of T ,

px(v) be its x-coordinate and py(v) be its y-coordinate. In addition, the structure

uses an array A of size M (M denotes the universe size), which stores pointers

to the nodes of T . Specifically A [i] contains a pointer to the node of T which is

labeled with the point in S having maximum x-coordinate smaller or equal to i.

The crucial property of the above construction is that given two nodes u and w

of T with px(u) = xi, px(w) = xj , i < j, then py(lca(u, w)) = min{yt|i ≤ t ≤ j},
where the symbol lca(u, w) defines the lowest common ancestor of nodes u,w on

Cartesian Tree.

As a consequence, given a query range of the form [a, b]× (−∞, c], we firstly

use the array A to locate the two nodes u,w of T with A [a] = u, A [b] = w.

Let z = lca(u, w) with p(z) = (xi, yi). If yi > c then the query algorithm halts,

otherwise we report the point (xi, yi) and we continue recursively the same way,

by probing lca(u, u1) and lca(u2, w), where u1 is the predecessor (in symmetric

order) of z in T (that is the point that is stored in u1 is p(u1) = (xi − 1, yi − 1))

and u2 is the successor (in symmetric order) of z in T (that is the point that

is stored in u2 is p(u2) = (xi + 1, yi + 1)). The time complexity of the above

procedure (in terms of table lookups) is 2 + 2ktlca, where tlca is the number of

table lookups in order to perform a lowest common ancestor computation. In

order to compute the lowest common ancestor of two nodes in T , we will use the

algorithm described by Schieber and Vishkin [21] (this algorithm simplifies the

approach described in Harel and Tarjan [15]). We begin by giving an outline of

the solution described in [21] (our description is based on the book of Gusfield

[14]).

After an initial (linear time) preprocessing phase the following numbers are

computed for each node v of T :

– A number d(v) denoting the number given to v, according to a depth first

traversal of T .

– A number h(v) denoting the position (counting from the right) of the least



significant 1-bit in the binary representation of d(v).

– A number I(v) = d(w) where w is the node in T , such that h(w) is maximum

over all nodes in the subtree of v (including v). This number encodes a

mapping from nodes in T to a complete binary tree C of depth log N . More

specifically, the node v of T is mapped to the node of C, whose symmetric

order number equals I(v) (the intuition behind this mapping is explained in

[15] and [14]).

– A binary number Av. This number has size O(log N) bits. The bit Av(i) is

set to 1, if and only if there is an ancestor of node v that maps to height i

of C, (that is v has an ancestor u so that h(I(u)) = i).

– Moreover, a linear sized table L() is computed. Each entry of the table L()

points to a node of T .

In order to compute the lowest common ancestor of two nodes v,w the algo-

rithm follows the following steps:

1. It computes the lowest common ancestor b in C of nodes I(v) and I(w), (3

bit level operations).

2. It computes the smallest bit position greater than equal to h(b) such that

both Av, Aw have 1-bits in this position (2 bit level operations). Let this

position be k.

3. It computes nodes v′, w′ ∈ T , as follows (we present only the computation

for locating node v′, since the computation for node w′ is analogous):

4. Locate the position l of the rightmost 1-bit in Av (this information could be

stored in v, computed during the initial preprocessing phase).

5. If l = k then v′ = v.

6. Otherwise (l < k) locate the position t of the left-most 1-bit in Av that is to

the right of position k (1 bit level operation). Form the number consisting of

the bits of I(v) to the left of the position t, followed by a 1-bit in position t,

followed by all zeros (1 bit-level operation). Let i′ be that number. Set node

v′ to be the parent of node L(i′) (1 table lookup).

7. If v′ < w′ then v′ is the lowest common ancestor of v, w else the nearest

common ancestor of v, w is w′.

It is possible to replace the computation performed in steps 1,2 by two bit-

level operations (see [14]). As a result, the lowest common ancestor computation

needs 6 bit level operations and 2 table lookups. Consequently, the worst case



number of table lookups is 8, and the complexity of the algorithm 2 + 16k table

lookups.

2nd Solution (Our Approach)

Our three layered data structure used table precomputation and table lookups

only for the third layer. Consider queries of the form [a, b] × (−∞, c]. Let k be

the size of the output.

Initially, the query algorithm locates the two leaves in the structure that

correspond to the two leaves a and b (2 table lookups). Then, the following two

cases are considered:

1. The two leaves belong to the same microtree (let it be the i-th microtree)

and let these be the k-th and the l-th leaves. Then with another two table

lookups we get the word s = Answer [k, l, W [i]]). Then, we have to perform

for every point that belongs to the answer (plus an extra point that does

not belong to the answer): 2 bit level operations (to extract an entry in the

word s) and one table lookup (to extract the actually stored point). So the

total time complexity is equal to 4 + 3(k + 1) table lookups.

2. The two leaves belong to two different microtrees. Let k1, k2 be the number

of points of the output that belong in these two microtrees and k3 be the

number of the remaining output points. Then the time bound is bounded

from above by 4(k1 + 1) + 4(k2 + 1) + 2k3 table lookups, plus a constant

number of table lookups and lowest common ancestor (lca) computations.

As a result, our approach is more complex, in its construction, but faster

than the Cartesian Tree Approach. Also, as shown in the sequel, the storage

requirements will be increased by a small constant factor.

Space Comparison

The first solution needs:

– M records for the table A

– N records for the table L()

– each node v of cartesian tree requires 4 records for each of the numbers

d(v),h(v),I(v) and Av respectively plus the record that stores the point p(v).

– Thus, the total space requirements of the first solution are 5N + M records.



Our solution needs:

– M records for each of the three tables A on each of the three layers.

– The first layer stores the points p(v) on N/ log N records. In addition, each

node shares 2 path lists, that means we need 2(N/ log N) records additionally

for each of the persistent lists P ,L and R respectively.

– The second layer stores the points p(v) on (log N/ log log N)(N/ log N) =

N/ log log N records. We need 2(log N/ log log N)(N/ log N) = 2N/ log log N

records additionally for each of the persistent lists P ,L and R respectively.

– The third layer stores the points p(v) on (log log N)(N/ log log N) = N

records.Also,the table lookup of each microtree needs 4 records,3 records

for the 3 arguments and 1 record for the lookup result.

– Thus, the total space requirements of our solution are: 3M + 7(N/ logN) +

7(N/ log log N) + N + 4N = 3M + 5N + 7N [(1/ logN) + (1/ log log N)] ≈
3M + 5N records.

3.2.5 Experimental Comparison

We implemented both solutions in Visual C++ 6.0 (see [17]) and we executed

the two programs in Pentium based PC with the following hardware and software

characteristics.

– Running at 700MHZ

– 128 MB of RAM

– 4 Gbyte partition hard disk space (total partition’s space: 17 Gbytes)

– 2000 Server Operating System

Included in the < time.h > header, we used the clock() function that counts

the number of executed cycles by the time passed after a user has given the

query. We finally divided that number of cycles by Clocks Per Sec of system

in order to evaluate the cpu time in seconds (or msec). In order to evaluate a

non zero number of cycles, we included this procedure within a while - loop of

10·Clocks Per Sec. The final results are computed by dividing the cycle number

by the number of loops.

First we ran our code for small input sizes f.e. |S| = 16, 32, 256 elements, in

order to prove that even if the number of recursive lca routines in Cartesian tree

is small, our solution is still better.

We choose for testing, particular input sets, where the minimum y-coordinate

is always in the middle position of the whole set and the same goes on for the



Type of query Cartesian Tree Our Solution

[1, 10]× (−00, 8] 0.000008 sec 0.000006 sec

[1, 12]× (−00, 11] 0.000010 sec 0.000007 sec

[1, 14]× (−00, 5] 0.000011 sec 0.000005 sec

[1, 8] × (−00, 10] 0.000007 sec 0.000007 sec

[1, 15]× (−00, 15] 0.000011 sec 0.000009 sec

Table 1: cpu times of each query
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Figure 4: The respective graph of Table 1.

left and right subsets recursively. The reason is to construct always a balanced

Cartesian tree, where the lca routine can be implemented simply. Concerning

Cartesian Tree, this case of input sets is the ”good” case. In contrast, if the

input set is arbitrary then there is a high probability to construct an arbitrary

non-balanced Cartesian Tree or a simple linear linked-list in worst-case. In these

”bad” cases we must execute additional operations in order to transform the

arbitrary Tree T to a balanced compressed tree C, and generally the whole lca

computation is more complicated. Our solution is independent on input sets

because is always balanced and the lca implementation is always simple.

It is obvious that if in these ‘good’ cases (for the Cartesian Tree) our solution

has still better time performance the same will be occurred for any other case.

Table 1 and the respective graph of Figure 4, show the previous results of the

execution of five three-sided queries in a small set of 256 elements.

We continued by running several number of three-sided queries and depend

on the size k of each answer we concluded in the following experimental graph

in a set of 1000000 elements (see Figure 5).
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Figure 5: Cpu times depends on size k

As it can be seen from the experimental results our solution is better. We

expected such a result because the query time of the first solution is approx-

imately k times the cpu time for the execution of a lowest common ancestor

query. Our solution executes a constant number of lca queries and in addition it

uses sequential linear traversals of persistent lists and auxiliary arrays in order

to retrieve the output points. The experimental results prove that in practice

access of the positions of the lists and of the auxiliary arrays is executed rapidly

and much faster than a set of lca queries. This can be explained from the fact

that our solution clusters the reported points in consecutive memory locations

and as a result the algorithm benefits from the use of fast multilevel caches in

modern computers. With these multilevel caches one access of a record to disk

or main memory results to the prefetching of sequential blocks of records in the

memory hierarchy. Since access to cache is faster than access to main memory

or disk, future access to the prefetched data is accelerated. Due to the same

asymptotic behavior of the solutions above, we also expect that for a very large

size of k (and consequently very large input size) the two approaches will have

the same experimental behavior.

4 D-dimensional Range Searching

Let S be a set of N d-dimensional points, d ≥ 3. The goal is to structure

them in a data structure so that the points that lie in a query range of the form

[a1, b1]×[a2, b2]×. . .×[ad, bd] can be reported efficiently. We will show how to use



our modified priority search tree, in order to solve the problem in O(logd−1 N)

query time and O(N logd−2 N) space.

First we show how to solve the 3-dimensional problem for queries of the form

[a1, b1] × [a2, b2] × (−∞, b3]. We will normalize the coordinates of the points.

To do so we will use two balanced binary trees each storing respectively the

1-, 2-coordinates of the points. In these trees we store for each coordinate its

rank in the tree, which is an integer between 1 and N . Then we replace the

coordinates of the points with their respective ranks. We call the new set of

points the normalized set, and denote it by S′.

Given a query [a1, b1]× [a2, b2]×(−∞, b3] we will normalize it in the following

way. We search for a1 and b1 in the tree storing the first coordinates of the points.

Let p1 be the largest coordinate, which is less than a1 and let q1 be the smallest

coordinate greater than b1. We denote by a′

1, b′1 the ranks of p1, q1. Similarly we

find the values a′

2, b′2. This step takes O(log N) time. The points of S′ that lie

in [a′

1, b
′

1]× [a′

2, b
′

2]× (−∞, b3] are the normalized versions of points of S that lie

in [a1, b1]× [a2, b2]× (−∞, b3]. So we need only solve the normalized problem on

the grid [1, M ]× [1, M ]× R.

We construct a two-level structure. The first level is a balanced binary tree T

that stores in its leaves the points of S, sorted according to their first coordinate.

With each internal node u, we associate a secondary structure D(u), for the

points stored in the subtree of u. Each D(u) is implemented as the structure of

Theorem 7, for the last two coordinates of the points. For each such structure

we will not use the array A. This is because each array needs Θ(M) space and

all of them require Θ(M2) space. Instead we will use the fractional cascading

technique of Chazelle and Guibas [7]. With fractional cascading we can search

for a specific value in a set of m secondary lists, containing a total of N points,

in O(log N + m) time.

Now consider a query with the normalized range [a′

1, b
′

1]× [a′

2, b
′

2]× (−∞, b3].

We find O(log N) nodes in T such that they store the points with first coordinate

in (a′

1, b
′

1]. For each node u we query the structure D(u) with the range [a′

2, b
′

2]×
(−∞, b3]. Through fractional cascading, the leaves on the search paths for the

values a′

2, b′2 can be found in O(log N + log N) = O(log N) time. So the query

time is O(log N + t). The space is O(N log N) since each point is stored in

O(log N) secondary structure and each secondary structure needs linear space.

Therefore we have proved the following:

Lemma8. The three dimensional static range searching problem with half infi-

nite ranges of the form [a1, b1]× [a2, b2]× (−∞, b3] can be solved in O(N log N)

space and O(log N + t) query time.

Now we consider the general case of arbitrary ranges [a1, b1]×[a2, b2]×[a3, b3].

As in [12] we use a technique of Edelsbrunner [9]. Let T be a balanced binary
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Figure 6: The D1 structures answer queries with ranges of the form [a1, b1] ×
[a2, b2]× [a3, +∞), while the D2 structures answer queries of the form [a1, b1]×
[a2, b2] × (−∞, b3].

tree which stores in its leaves the points according to their third coordinate. To

each internal node u we associate two sets of points S1, S2. The set S1 contains

the points in the left subtree of u while the set S2 contains the points in the

right subtree of u. Each set S1 is stored in a secondary structure D1, while each

set S2 is stored in a secondary structure D2, both implemented as the structure

of Lemma 8 (see Figure 6). The D1 structures answer queries with ranges of the

form [a1, b1]× [a2, b2]× [a3, +∞), while the D2 structures answer queries of the

form [a1, b1]×[a2, b2]×(−∞, b3]. Since each point is stored in O(log N) secondary

structures, the space is O(N log2 N).

To answer a query with the range [a1, b1]× [a2, b2]× [a3, b3], we find in T , the

node u where the search paths for a3 and b3 split. Then we query the structure

D1(u) with [a1, b1]×[a2, b2]×[a3, +∞) and D2(u) with [a1, b1]×[a2, b2]×(−∞, b3].

This takes time O(log N + t).

The correctness is proved as follows. Since the search paths for a3 and b3

split in u it follows that the points in S1(u) have third coordinate smaller than

b3 and the points in S2(u) have third coordinate greater than a3. Furthermore,

all points with third coordinate in [a3, b3] are in S1(u)
⋃

S2(u) so the query

algorithm is correct. Therefore:

Theorem 9. The three dimensional static range searching problem with iso-

oriented rectangular ranges can be solved in O(N log2 N) space and O(log N + t)

query time.



To solve the d-dimensional problem for d > 3 we use a structure with d − 2

levels. The first level is a balanced binary tree, which stores in its leaves the

points according to their first coordinate. To each node we associate the set of

points stored in its subtree. This set is stored, in the same way, in a second level

structure according to the second coordinates of the points. The construction

continues in the same way, until the (d − 2)-th level, which we implement with

the structure of Theorem 9 for the last three coordinates of the points. It follows

easily that each level incurs an increase by a log N factor to the query time and

space of the structure, that is:

Theorem 10. The d-dimensional static range searching problem on iso-oriented

rectangular ranges can be solved in O(N logd−1 N) space and O(logd−2 N + t)

query time.

Remark. In [1] a new data structure was presented for range searching in three

dimensions. This structure has query time O(log n + k) and needs O(n log1+ǫ n)

space. It is also shown that the above bounds can be extended for any fixed d

(d ≥ 4), with a penalty factor O(logd−3+ǫ n) in space and O((log n/ log log n)d−3)

in query time. Their solution, uses as a component, the structure of [12] for three-

sided range queries. We can incorporate in their structure, instead of [12], our

solution, thus getting a faster alternative with the same bounds.

The structure of Theorem 10, can be easily used to answer partial range

queries, if we consider partial range queries as a special case of range queries

where we are able to specify infinite ranges for some of the dimensions. In this

case, we follow the same query approach as previously with the difference that

when we face an infinite range in the i-th dimension of the query point, we

proceed immediately to the secondary structure of the root of the respective

i-th nested. Thus we get the following lemma:

Lemma11. The d-dimensional partial range problem, where the query has s

specified and d− s unspecified ranges, can be solved in O(N logd−1 N) space and

O(logs N + (d − s) + t) query time.

Remark. If we know in advance that the unspecified ranges belong to the first

d−3 levels, then the query time of Lemma 11 becomes O(logs−2 N +(d−s)+ t).

5 Exact and Partial Match Geometric Retrieval

The problem of exact and partial match searching is one of the most extensively

studied problems in the field of database systems. Lee and Wong in [16] have

proposed the Quintary tree, a file structure for d-dimensional databases that

achieves efficient times for all types of queries (exact match, partial match, range



Point 1 Point 2 · · · Point N

A1 A11 A12 · · ·
A2 · · ·
...

Aλ Aλ1 Aλ2 · · · AλN

...

Ad · · ·

Table 2: A d-dimensional geometric file of N points.

and partial range) at the expense of extra storage. The version of range tree

described in [12], is a also a d-dimensional data structure that achieves O(d log N)

time for exact match and O(logd−2N) for partial match queries (since it handles

this query as a common range query). The required storage is O(N logd−1 N).

The Fusion tree [11] supports the exact match searching, in one-dimensional

space, in O(log N/ log log N) query time, using linear space. The Exponential

Search tree proposed by Andersson [2], improves even more the exact match

searching by achieving O(
√

log N) time using O(N) storage. Our approach relies

on the ideas and techniques used in the Quintary tree (which in essence is a

preliminary version of a range tree) and the Exponential Search tree.

5.1 First Solution

Our approach uses a d-dimensional balanced binary tree as a skeleton structure

along with d Exponential Search trees, one for each level, which are used as

index structures in order to speed up the queries. The two parts of the structure

are described in the following sections. We will describe these two parts for the

general example of the table 2 below, in which there is at least one Aλ row

(1 ≤ Aλ ≤ d), that has N distinct values (f.e. in the table 2 below each element

Aλj 1 ≤ j ≤ N of λ-th dimension is the superkey of the point (record), in which

it belongs to)

We use as skeleton structure, the structure of Lemma 4. The index structures

are d Exponential Search trees, one for each level of the skeleton structure (see

Figure 7).

The i-th (1 ≤ i ≤ d) index structure stores in its N leaves the nodes of

the skeleton trees, of level i (i-th level balanced binary trees), each of which

appears logi−1 N times, in the skeleton structure of level i − 1. Thus from each

of the N leaves of the i-th Exponential Search tree, begin logi−1 N pointers to

the corresponding nodes of the i-th level balanced binary trees. The logi−1 N
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Figure 7: The i-th level of the skeleton structure along with its corresponding

index.

pointers are organized in additional Exponential Search trees, N for each of the

i index structures. For the above table we name the λ-th index structure as the

primary tree. In each leaf node aλj (1 ≤ j ≤ N) of the primary tree we add a

list which stores the tuple (record) that contains the Aλj superkey.

5.1.1 Worst Case Space and Time Complexity

The construction of our structure is achieved by executing a 2-step building

process. The first step is the construction of the skeleton structure and the

second the construction of the indexes for each level of the skeleton structure.

The algorithm presented in Figure 8 gets as input a file F of records and

the dimension d of the associated file space. It returns a pointer to the root of

the tree for the file F if d ≥ 1. Otherwise it returns a pointer to a list of page

numbers where the records of F reside.

Procedure BUILD EXP POINTERS(i) creates an exponential search tree

for the pointers which begin from leaf i of Exp [k] (we represent this additional

tree as Exp [k, i]), that organizes efficiently the pointers from this leaf to its

copies, on the nested balanced binary tree. In the worst case the leaf i appears

in logd−1N subtrees, in the d-th level of the nested balanced binary tree. If j is

the symmetric order of the copy subtree in which the leaf appears, the j-th leaf

of the additional Exp [k, i] tree is an index(pointer) to the node i of j-th copy

subtree.

The total space required for the structure is the space of the skeleton tree



Procedure Build(d,f)

1. Create the structure of Lemma 4

2. for k = 1 to d do

3. BUILD EXP(k)

4. for i = 1 to N do

5. BUILD EXP POINTERS(i)

Figure 8: Procedure BUILD EXP creates the exponential search tree for dimen-

sion k.

plus the space of the indexes along with the additional Exponential trees used

to organize the pointers to the skeleton structure.

Theorem 12. The space required for the whole structure is O(N logd−1 N).

Proof. The skeleton structure requires O(N logd−1 N) space (see lemma 4). Since

the additional indexes occupy space proportional to the number of nodes in the

skeleton structure, the theorem follows immediately.

The query Q is assumed to be a vector of d-tuples (x1, x2, . . . , xd). In the case

of a partial match query xi may be an ∗, if the i-th query key is unspecified.

Procedure Exact Match(Record [x1, x2, . . . , xd])

1. Find Index(xλ)

2. Retrieve the record stored in the node reported from step 1.

Figure 9: The procedure Find Index finds x at the index of level i (or primary

tree Exp [i]).

Theorem 13. The exact match query requires O(
√

log N + t) time in the worst

case.

Proof. Step 1 needs O(
√

log N) time in order to search for xi in the primary

tree.

Step 2 requires O(t) time for retrieving the record [x1, . . . , xd].

Thus the total time is: O(
√

log N + t) (in this case t = d)

Theorem 14. The partial match query requires O(t + (d + s
√

log N)) time in

the worst case, where t is the number of records retrieved and s is the number of

keys specified.



Procedure Partial Match(Record [x1, x2, . . . , xd])

1. for i = 1 to d do

2. If xi = ∗ (unspecified) then access the secondary structure stored at the

root of the respective subtree

3. If xi 6= ∗ (specified) then perform an exact match search for xi and

access the node pointed to by the index structure (Exp [i])

4. Retrieve all records which are included in the tree which has as its root

the current node (the node returned by step 1 or 2).

Figure 10: The partial match algorithm.

Proof. The first step is executed d − s times and requires O(1) each time.

The second step is executed s times and requires O(
√

log N +

√

log logd−1 N)

each time.

Step 3 requires O(t) time.

Thus, if t is the number of retrieved records, then the total query time be-

comes O(t + ((d − s) + s(
√

log N +

√

log logd−1 N))) = O(t + (d + s(
√

log N +
√

(d − 1) log log N − 1)) = O(t + (d + s
√

log N)).

6 The Second Solution1

The main idea behind our second approach is to extend the Exponential Search

tree in order to support efficient exact match and partial match queries in d-

dimensional space, where d ≥ 2. Our solution combines a nesting structure of

Exponential search trees along with additional information stored at each root

node in the form of balanced binary trees. The Exponential Search trees are used

for answering exact match queries while the additional information in each root

node is used for answering partial match queries. As in the case of Quintary tree,

our structure stores some tuples more than once resulting in a slight increase

in the amount of required storage space. The new data structure is a set of

nested Exponential Search trees (the skeleton structure), one for each dimension

d. Since Exponential Search trees store information in their leaf nodes, each leaf

node at level i, is the root of a new tree at level i + 1. This nesting structure

stores information needed mostly for exact match queries.

At the root of each tree of level i there is an additional nested exponential

Search tree (∀ subtree) for d − i levels which stores in its leaves all the infor-

mation of level i. These Exponential Search trees are used for answering partial

1 A preliminary version of this solution has been presented in [22].



match queries, which have the key for i-th level unspecified. Although our solu-

tion uses additional space, since we store some keys more than once, we achieve

faster query responses for d-dimensional space when d ≥ 2.

6.1 The Build Process

The construction of our structure is achieved by executing a 3-step building

process. The first step is an top-down building process, which diffuses the in-

formation from the root of the tree to its leaves and constructs the skeleton

structure. The other step is a bottom-up building process, which adds the middle

subtree in the proper nodes and diffuses the information from the last level to

the root. The third step uses superkey information to add pointers that are used

to speed up exact match queries.

We will describe these three steps for the general example of the table 2 we

described earlier in which the Aλ row has N distinct values (that is Aλ contains

the superkey of the geometric file).

Step1: The top-down building process

Firstly, we construct an Exponential Search tree using the elements of the

first row A1. We represent this tree as Exp [1]. According to the definition of the

Exponential Search tree, the elements of the first row A11, . . . , A1N (the distinct

number of which is D1) are stored in the leaves. For the D1 leaves of Exp [1]

we construct pointers to the roots of the D1 Exponential Search trees of level 2

(Exp [2]) respectively. Each of the Exp [2] trees stores in its leaves the elements

of the second row A2. At level 2 there are D1 · D2 leaves.

The remaining d − 2 levels are constructed in the same way: for the con-

struction of j-th level (j ∈ [1, d]), from each of the D1 ·D2 · · ·Dj−1 leaves of the

previous level ((j − 1)-th level) there are D1 · D2 · · ·Dj−1 pointers to the roots

of the Exp [j] trees respectively each of which stores the j row of table.

Step 2: the bottom-up building process

The building process begins at the d − 1 level. In each root node ud−1,i of

the i (1 ≤ i ≤ D1 · D2 · · ·Dd−2) Exponential Search trees (Exp [d − 1]), we add

a middle subtree. This subtree is a new Exponential Search tree, which contains

all information stored in the Exponential Search tree of level d (Exp [d]). We

represent the T (ud−1,i) subtree (that is the subtree which has as its root the

node ud−1,i) as ∀Exp [d − 1] [d]. At each root node of level d − 2 we add as

a middle subtree the ∀Exp [d − 1] [d]. We represent the T (ud−2,i) subtree as

∀Exp [d − 2] [d − 1] [d].

The process continuous until we reach the top level of the skeleton structure.

Step 3: Superkey pointer addition



As we described, the Aλ row of the table contains the superkeys of the ge-

ometric file. In each leaf node aλj (1 ≤ j ≤ N) of one of the Exp [i] trees, we

add a list which stores the tuple (record) that contains the Aλj superkey. We

name this tree the Record Tree of the structure. Next we make a node with two

pointers, the partial field and the Exact field. We name this node the Troot node.

The first pointer points to the root of the Exp [1] tree and the other to the root

of the Record Tree.

6.2 Time and Space Analysis

In this subsection we present the algorithms for exact and partial match queries

and we analyze the time and space complexity of our structure.

Procedure Exact Match(Record [x1, x2, . . . , xd])

1. Search for xλ in the Record tree

2. Retrieve the record [x1, x2, . . . , xd] that is pointed by the returned leaf.

Figure 11: The exact match algorithm.

Theorem 15. The exact match query requires O(
√

log N + t) time.

Proof. We need O(
√

log N) time to search for xλ in the Record tree and O(t)

time for retrieving the record [x1, . . . , xd] which is pointed by the returned leaf.

So, the total time is O(
√

log N + t) (in this case t = d).

Procedure Partial Match(Record [x1, x2, . . . , xd])

1. for i = 1 to d do

2. if xi is unspecified then

3. In the root of subtree Subtree [Root [Exp [i]]] search in the middle-tree

4. else

5. Search the leaf xi in the skeleton Exp [i] tree.

Figure 12: The partial match algorithm.

Theorem 16. The partial match searching takes O(t + (d + s
√

log N)) time.



Proof. The if statement is executed d−s times and the else statement is executed

s times. The else statement takes O(
√

log N) in each of the s loops. So, if t is

the number of retrieved records then the total time becomes: O(t + ((d − s) +

s
√

log N)) = O(t + (d + s(
√

log N − 1)) = O(t + (d + s
√

log N)).

Remark. The O(
√

log N + t) and O(t+(d+ s
√

log N)) query times of Theorems

9,12 and 10,13 respectively, can be reduced to O((
√

log N

log log N
+ t) and O(t + (d +

s
√

log N

log log N
)) respectively by using instead of the Exponential Search Tree, the

linear space data structures proposed for the predecessor problem in [3, 5].

Theorem 17. The structure requires O(N ·Cd−1) space, where C =
∑

d
i=1,i6=j Dj

d−1 .

Proof. The Exponential search tree requires linear space. Our d-dimensional

structure requires in average case O(N · Cd−1) storage, where C is the average

number of Dj(j ∈ [1, d] andj 6= i) of all rows except the i-th row, which stores

the superkeys of the table and obviously has N distinct values (or keys). So,

C =
∑ d

i=1,i6=j
Dj

d−1 .

Contrary to the Range and Quintary trees, which require O(N logd−1 N) and

O(N logd N
(d−1)! ) space respectively, our solution requires more space if C > log N and

less space if C < log N , which is a usual case.

7 Conclusions

In this paper we present new multidimensional searching algorithms that formu-

late both theoretical and practical superiority using the RAM model with word

size w. The first solution of exact and partial match searching uses as a skeleton

structure our modified (in last three levels) range tree, we described first. So, we

have developed an integrated data structure that supports rapidly all four types

of queries (range, partial range, exact match and partial match queries).

On the other hand, the second solution is more concrete, in the sense that

no additional index structures are used while it can handle efficiently exact and

partial match searching queries. The above algorithms could be used in many

application areas such us computer graphics, computer vision, database man-

agement systems, computer-aided design, solid modeling, robotics, geographic

information systems (GIS), image processing, computational geometry, pattern

recognition, and other areas. On database management systems, it could be

very important the implementation of these structures in secondary memory or

in cache oblivious model. Finally, an open problem is the elimination of persis-

tence amongst the lists in order to simplify the construction and improve the

storage requirements of our structure. Probably, a more clever partitioning of

the modified priority search tree T will be a good start.
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