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0. Executive Summary
Modern manufacturing is moving away from vertically integrated companies that control all
aspects of production and distribution, toward networks of independent suppliers and
distributors. These supply networks (more commonly called “supply chains”) address a number
of business needs, including concentration on core competencies and the ability to respond
rapidly to unanticipated change. However, they present significant operational challenges. Many
of these challenges are driven by the dynamical behavior of the supply chain as its members
interact with one another. Data analytic approaches are not effective in understanding these
dynamics, because the commercial environment changes too rapidly to permit the collection of
consistent data series long enough to support statistical requirements. DASCh takes the approach
of constructing and experimenting with an agent-based emulation model of the system that can
maintain a given set of conditions as long as desired.

0.1. Previous Work
Three different approaches have been taken to the problem of modeling and analyzing supply
chains.

Control theorists model the chain with differential or difference equations and use transform
analysis to explore their behavior. This approach is dynamical but relies heavily on linearity
assumptions that are not satisfied in most supply networks, for reasons discussed in the problem
statement section.

Classical operations research approaches include optimization theory, game theory, and
statistical analysis. These tools apply to nonlinear as well as linear systems, but often make
unrealistic statistical assumptions. In addition, they are not explicitly time-based, and so cannot
capture the dynamical characteristics of the system.

Simulation approaches experiment with an executable model of the system. In most cases these
models are in support of one or the other of the previous two approaches. Virtually all simulation
work to date models the supply chain as a set of differential equations and then integrates these
equations over time. DASCh uses agent-based modeling, representing the various components of
the supply chain by software agents that emulate their actual behaviors. The DASCh approach is
more faithful than equation-based modeling, better supports the increasingly decentralized nature
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of supply chains and the need to protect proprietary information, and provides a much closer
interaction between model and real system.

0.2. Model Structure
The agents currently implemented in DASCh are of three species. Company agents represent the
different firms that trade with one another in a supply network. They consume inputs from their
suppliers and transform them into outputs that they send to their customers. PPIC agents model
the production planning and inventory control algorithms used by company agents, and currently
support a simple MRP model. Shipping agents model the delay and uncertainty involved in the
movement of both material and information between trading partners. To insure the realism of
this model in spite of its simplicity, we recruited a Fortune-100 manufacturing manager as a
project advisor. He guided our decisions during model construction and reviewed the results we
obtained. In spite of the restricted scope of the model, he found its results of sufficient interest
and credibil ity that he implemented changes in his own operations based on the model, and has
observed subsequent performance improvements that he attributes to these changes.

0.3. Theory
One of the promises of DASCh is in analyzing nonlinear systems, which in general do not yield
to analytical solution. However, where theoretical analysis is possible, it adds insight and can
help direct experimentation. We have developed theoretical treatments for two aspects of the
behavior of DASCh. The first predicts the phenomena of amplification and correlation of
variance in the order stream even in DASCh’s its linear domain. The second describes details of
the oscillatory behavior of inventory levels under the imposition of a threshold nonlinearity in
site capacity.

0.4. Experimental Results
The experiments described in this report involve a linear supply chain with four company agents
(a boundary supplier, a boundary consumer, and two intermediate firms producing a product
with neither assembly nor disassembly). The two intermediate company agents each have PPIC
agents to convert incoming orders to orders for their inputs, and shipping agents manage all
movement of both material and information among company agents.

This simple structure was intended as a starting point. It was expected to yield relatively
uninteresting behavior, on which the impact of successive modifications could be studied. In
fact, it shows a range of interesting behaviors in terms of the variabil ity in orders and inventories
at the various company agents.

• As the demand generated by the top-level consumer propagates to lower levels, its variance
increases, so that lower-level suppliers experience much more variabil ity than higher-level
ones. This phenomenon is widely discussed in the literature.

• Not as well recognized in the literature is the correlation imposed on an originally
uncorrelated series of random orders by the PPIC algorithms in the supply network.

• A single modest change at the top of the supply chain generates disturbances in the order
sequences of lower tier suppliers that persist long after the original change.
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• Even when top-level demand is constant and bottom-level supply is completely reliable,
inventory levels at intermediate sites can generate complex oscillations in inventory levels,
including period doubling, as a result of capacity limitations.

The detailed discussion of the experimental results identifies operating parameters that affect
these behaviors.

0.5. Summary and Recommendations
The insights from DASCh relate to the four characteristics of dynamical systems described in the
original proposal (accessibil ity, controllabil ity, inertia, and performance), and lead to several
recommendations for actual trading practices. The DASCh research may profitably be extended
in four directions: quantitative analysis of real manufacturing data guided by the behaviors we
observe in the model, further experimentation with the current model, structural extensions to the
model to support arbitrary network structures, and adaptive site-level behaviors to compensate
for undesirable system-level dynamics.
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1. Previous Work
This part reviews previous quantitative research on the behavior of supply chains. It groups the
relevant literature according to technical approach, summarizes the behaviors that have been
identified, and compares our work with this background.

1.1. General Approaches
Three different approaches have been taken to the study of supply networks.

1. Control theorists model the chain with differential or difference equations and use transform
analysis to explore their behavior. This approach is dynamical but relies heavily on linearity
assumptions that are not satisfied in most supply networks, for reasons discussed in the
problem statement section.

2. Classical operations research approaches include optimization theory, game theory, and
statistical analysis. These tools apply to nonlinear as well as linear systems, but often make
statistical assumptions and are not explicitly time-based.

3. Simulation approaches experiment with an executable model of the system. In most cases
these models are in support of one or the other of the previous two approaches. These in turn
are of two broad classes: equation-based modeling (the dominant approach until now) and
agent-based modeling (our approach).

1.1.1. Control Theory
This approach originated with [22], and is part of the work for which Simon was awarded the
1978 Nobel Prize in economics. It uses tools developed for the study of differential or difference
equations through time, particularly Laplace and Z transforms. Thus it is explicitly a dynamical
approach, sensitive to the time-based behavior of a system. However, reliance on transforms
makes it most naturally applicable to linear systems. A closely related line of work, discussed
under “Simulation” below, also models systems with difference or differential equations, but
solves the equations numerically rather than through transforms, and thus is not restricted by
linearity assumptions.

[4] develops a Z-transform of a time-averaged ordering rule and shows by composition up the
chain that ampli fication is partly due to adding safety stock on top of safety stock. He
recommends dividing the order from the immediate customer into two parts, one reflecting actual
changed demand from the end customer, the other reflecting adjustments made by the immediate
customer for his own purposes. A given node in the chain should adjust its production only to
changes in the end customer’s demand. The recommended mechanism for distinguishing the two
components of the order is detailed knowledge of the immediate customer’s ordering policy,
from which a producer can derive its own policy. However, disclosure of these policies between
companies is problematic. Even if firms are willing to disclose such information, they may well
distort their disclosures to manipulate their trading partners.

[27] models demand within a single echelon (level of the supply chain) as average consumption
plus fraction of inventory deficit. An elaborate Laplace transform analysis shows that three
parameters should be about the same if the system is to settle quickly but without oscillation:
time to adjust inventory, demand averaging time, and production delay time. [29] extends this
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approach to decompose the Forrester model into cascading echelons and use transfer functions to
analyze their behavior, focusing on ampli fication of order variance. The work of Towill and his
team includes simulation as well as transform analysis. The simulation components are
summarized below.

1.1.2. OR Analysis
These studies draw on classical OR techniques such as optimization, game theory, and statistical
analysis. They do not assume linearity, but do make other strong assumptions about the
underlying statistical distributions, and focus on time averages and steady states rather than
dynamical behavior.

1.1.2.1. Optimization
[16] studies four possible causes of the amplification of demand variance. Two of these draw on
optimization theory.

• Demand signal processing: Formulates the cost minimization problem for a retailer and
shows that processing historical demand to forecast future demand in order to minimize cost
results in variance in outgoing orders that is strictly larger than sales variance. The variance
increases with lead time.

• Price variations: Formulates a retailer’s buying policy in the face of fluctuating prices.
Unreported optimization computations show that the optimal policy is to let inventory drop
during times of high price, and stock up during periods of low price, thus providing an
additional source of variation beyond that in the customer’s demand.

[30] uses Lagrangian optimization to compare costs under three different mechanisms of
operation for three-level chain: optimization of the top level only; optimization across all levels;
local optimization at each level. He shows that the third approach gives better results than the
first, at a fraction of the computational effort of the second.

1.1.2.2. Game Theory
One of four causes of variation ampli fication studied in [16] is the “rationing game,” in which
purchasers competing for a scarce input overstate their needs in order to be sure of getting
enough. Analysis of the Nash equilibrium for these competing purchasers shows that the result of
such behavior is to increase variation in the orders they place with respect to that in their
incoming demand.

1.1.2.3. Statistical Analysis
These studies typically compute various moments of critical quantities, such as demand or
inventory levels. They are not bound by linearity assumptions, but they bring in a host of other
assumptions, such as the forms of distributions that generate various quantities or the statistical
independence of samples from one another. In addition, they deal with averages over time, and
so are not truly dynamical.

One of four causes of variation ampli fication studied in [16] is order batching (combinations of
incoming orders from a number of retailers). The analysis statistically derives the variance of the
overall order stream from the variances of the individual streams under assumptions of random,
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positive correlation, and balanced ordering. If σ2 is the variance of each of the N retailers, this
analysis shows that Var(Correlated) ≥ Var(Random) ≥ Var (Balanced) ≥ N*σ2.

[25] offers a static analysis of the material costs experience by a manufacturer depending on
whether or not suppliers reveal their capacity constraints, and shows that disclosure of capacity
constraints benefits the manufacturer and the lower-priced supplier but not necessarily the
higher-priced one.

[14] develops models of inventory levels and supplier response time on the input side of the
network, based on a tolerance stacking model. These methods yield the standard deviation of
actual demand, from which a reorder point can be defined.

[15] derives the relation between base stock level and a target service level, using standard
analysis of statistical moments.

[5] looks at demand variance, inventory holding costs, and backorder costs on the distribution
side of a supply network, using algebraic analysis and an unspecified simulation model. He
explores three variables: whether retailers' orders are aligned or not (cf. [16]); the interval
between orders from a given retailer; and the minimum order quantity permitted. Three kinds of
action are found to be effective in lowering the variance in the net demand stream issuing from
the set of retailers, with different impact on overall supply chain costs:

1. Balancing orders by forcing a fixed interval between successive orders and staggering who
can order when lowers costs.

2. Raising the interval between orders tends to raise costs.

3. Raising interval but dropping order quantity so as to keep retailer order frequency constant
reduces costs as well as variance.

1.1.3. Simulation and Emulation
These approaches actually execute a model of the system and observe its behavior
experimentally. The general name for such an approach is “simulation.” Within simulation, we
distinguish two varieties: equation-based modeling and agent-based modeling. In addition of
DASCh, we know of only two other examples of agent-based modeling, [26] and [17, 24]. [26]
outlines the structure of a supply chain modeling system, with structural and control elements,
but reports no results. [17, 24] describe a framework and some simple average results on
inventory levels and cycle times, but no dynamical analysis. In addition to the studies collected
here, [5] claims numerical confirmation of his theoretical results, but offers no details on
structure of the model, platform, or methodology.

Virtually all simulation studies of supply chain dynamics rely on the integration of differential or
difference equations, providing an experimental counterpart to the control theory approach. The
work of Forrester and his students with these techniques has led to the field of “systems
dynamics.” It enjoys an active professional society [6], extensive literature including
methodological texts [9, 21], supporting software (including DYNAMO, iThink, Vensim, and
PowerSim), and consulting firms that specialize in this approach (e.g., Forrester Consulting,
Pugh-Roberts Associates, Decision Dynamics).  This modeling approach, which has been
applied to a wide range of “soft” policy studies, focuses on “what-if” games with various control
variables rather than directly emulating the intrinsic behavior of the elements of the chain.



DASCh Final Report, Part 1: Previous Work

02/01/99 1:05 PM Copyright © 1999, CEC/ERIM, All Rights Reserved Page 1-4

[9] formulates supply chains as difference equations and then uses Dynamo to sum them
numerically. His models lump variables across the entire chain into one system, without
maintaining any disciplined division among individual entities.

[23] follows Forrester’s lead, but pays more attention to the divisions between entities. He
develops a difference equation model of each echelon in the chain, uses it to set upper bounds on
optimal behavior, and fits it to the observed behavior of humans in the Beer Game. Focuses on
distribution side, but with a nod to raw materials. He observes not only amplification of variance
(which many other researchers note), but also (briefly) oscillation and phase lag.

[1] develops a detailed model of the interaction of product makers and the manufacturers of the
machine tools that they use, including effects of a step function increase in demand, available
workforce, production lead-time for machine tools, and smoother ordering and operating
policies, and compares it to empirical observations. The model lumps together the parameters for
each sector, representing all product makers by a single instance of the equations for “product
maker,” and all machine makers by a single instance of the equations for “machine maker.”

Towill and his associates support their control theoretic analysis with simulation studies. [28,
33]. A numerical evaluation, based on Towill's model of the echelon, shows the effect of two
components of an order: the pass-through of the original demand from one's customer, and the
added amount one imposes to manage internal demand variation.  The results suggest that these
should be passed along the supply chain separately, a conclusion similar to that reached
analytically by [4].

1.1.4. Observed Behavior
A brief comment in [23] recognizes three main behaviors in supply chains: amplification of
demand variation, oscillation, and phase lags. He relates oscillation to capacity limits in the
factory and phase lags to the time needed for information and material movement and
processing. His and other studies provide detailed discussion only of the amplification of demand
variation from one echelon to the next.

This ampli fication was observed by [9] and has been highlighted by [3] as the “law of industrial
dynamics.” The studies surveyed above offer a number of recommendations to fix this problem:

• Balance retailer requests on the supplier [16], [5].

• Track what is in the pipeline [23].

• Eliminate excessive layers (e.g., the distributor) [28].

• Integrate information flow throughout the chain [28]. [4] shows that ampli fication results
when one echelon applies its safety corrections to a lump result from a previous echelon that
includes not only original demand but also the previous echelon’s safety corrections. Better
information flow could avoid this double-counting. Two approaches have been proposed:
passing along two lines of orders [33], and having each echelon deduce its ordering policy
from algebraic manipulation of the policy of the previous level [4]. Both approaches are
subject to gaming behavior when there is competition for scarce resources [16].

• Reduce time delays [28].

• Improve pipeline policy [28].
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• Tune parameters of order algorithms [16, 28].

• Increase time between orders, while decreasing minimum order quantity [5].

• Keep time to adjust inventory, production delay, and demand averaging time all about the
same [27].

Many of these recommendations founder on the problem of the commons. [16] in particular
shows that behaviors that are locally rational for an individual firm may exacerbate bad effects at
the system level.

1.2. Where does DASCh fit?
DASCh falls within the “simulation and emulation” approach to supply chain analysis, since we
wish to address nonlinearities that are not accessible to analytic control theoretic formulations
and dynamical effects that are not visible in traditional OR approaches. Our approach is agent-
based modeling (ABM) rather than equation-based modeling (EBM). Based on our preliminary
results with such a model [18, 19], we have observed a broader range of supply chain behaviors
than has been documented by other researchers, leading to correspondingly richer practical
recommendations.

1.2.1. Agent-Based Behavioral Emulation
To our knowledge, the only work on an ABM of a supply network (as opposed to an EBM) is
that of [26] and [17, 24], and the focus of those teams has been on the structure of the model and
on the kind of average-based analysis typical of other approaches, not dynamical results.

A practitioner is concerned with the underlying structure of a model, the naturalness of its
representation of a system, and the verisimilit ude of a straightforward representation. This
section discusses these considerations with special reference to modeling supply networks. Some
of these issues have been discussed by others in the domains of social science [2, 7] and ecology
[13, 31] (where ABM’s are usually called “Individual-Based Models”).

1.2.1.1. Model Structure
The difference in representational focus between ABM and EBM has consequences for how
models are modularized. EBM’s represent the system as a set of equations that relate observables
to one another. The basic unit of the model, the equation, typically relates observables whose
values are affected by the actions of multiple individuals, so the natural modularization often
crosses boundaries among individuals. ABM’s represent the internal behavior of each individual.
One agent’s behavior may depend on observables generated by other individuals, but does not
directly access the representation of those individuals’ behaviors, so the natural modularization
follows boundaries among individuals.

This fundamental difference in model structure gives ABM a significant advantage in
commercial applications such as supply network modeling, in two ways.

1. In an ABM, each firm has its own agent or agents. An agent’s internal behaviors are not
required to be visible to the rest of the system, so firms can maintain proprietary information
about their internal operations. Groups of firms can conduct joint modeling exercises while
keeping their individual agents on their own computers, maintaining whatever controls are



DASCh Final Report, Part 1: Previous Work

02/01/99 1:05 PM Copyright © 1999, CEC/ERIM, All Rights Reserved Page 1-6

needed. Construction of an EBM requires disclosure of the relationships that each firm
maintains on observables so that the equations can be formulated and evaluated. Distributed
execution of EBM’s is not impossible, but does not naturally respect commercially important
boundaries among the individuals.

2. In many cases, simulation of a system is part of a larger project whose desired outcome is a
control scheme that more or less automatically regulates the behavior of the entire system. The
agents in an ABM correspond one-to-one with the individuals (e.g., firms or divisions of
firms) in the system being modeled, and their behaviors are analogs of the real behaviors.
These two characteristics make agents a natural locus for the application of adaptive
techniques that can modify their behaviors as the agents execute, so as to control the emergent
behavior of the overall system. The migration from simulation model to adaptive control
model is much more straightforward in ABM than in EBM. One can easily imagine a member
of a supply network using its simulation agent as the basis for an automated control agent that
handles routine interactions with trading partners. It is much less likely that such a firm would
submit aspects of its operation to an external “equation manager” that maintains specified
relationships among observables from several firms.

More generally, ABM’s are better suited to domains where the natural unit of decomposition is
the individual rather than the observable or the equation, and where physical distribution of the
computation across multiple processors is desirable. EBM’s may be better suited to domains
where the natural unit of decomposition is the observable or equation rather than the individual.

1.2.1.2. System Representation
The variety of EBM with which we have experimented (ODE’s) most naturally represents the
process being analyzed as a set of flow rates and levels. ABM most naturally represents the
process as a set of behaviors, which may include features difficult to represent as rates and
levels, such as step-by-step processes and conditional decisions. ODE’s are well-suited to
represent purely physical processes. However, business processes are dominated by discrete
decision-making. This is only one example of representational advantages of ABM’s over
EBM’s. More generally:

• ABM’s are easier to construct. Certain behaviors are difficult to translate into a consistent
rate-and-level formalism. PPIC algorithms are an important example. In our attempts to
duplicate DASCh results using VenSim®, we were unable to construct a credible PPIC
algorithm using the rate-and-level formalism. [32] comments on the complexity of such
models, and we have been unable to find an actual example of such a model in the system
dynamics literature. Recent enhancements to ithink® reflect such difficulties. The most
recent release of this popular system dynamics package includes “black boxes” for specific
entities such as conveyors or ovens whose behavior is diff icult to represent in a pure rate-
and-level system [10]. One suspects that the only realistic way to incorporate complex
decision algorithms such as PPIC in system dynamics models will be by implementing such
black boxes, thus incorporating elements of ABM in the spirit of [8].

• ABM’s make it easier to distinguish physical space from interaction space. In many
applications, physical space helps define which individuals can interact with one another.
Customer-supplier relationships a century ago were dominated by physical space, leading to
the development of regional industries, such as the automotive industry in southeast
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Michigan. Advances in telecommunications and transportation enable companies that are
physically separate from one another to interact relatively easily, so that automotive suppliers
in Michigan now find themselves in competition with suppliers based in Mexico or the
Pacific rim. Such examples show that physical space is an increasingly poor surrogate for
interaction space in applications such as commerce. ODE methods such as system dynamics
have no intrinsic model of space at all . PDE’s provide a parsimonious model of physical
space, but not of interaction space. ABM’s permit the definition of arbitrary topologies for
the interaction of agents.

• ABM’s offer an additional level of validation. Both ABM’s and EBM’s can be validated at
the system level, by comparing model output with real system behavior. In addition, ABM’s
can be validated at the individual level, since the behaviors encoded for each agent can be
compared with local observations on the actual behavior of the domain individuals. (A
balancing consideration is that the code needed to represent an agent’s behavior in ABM is
often longer and more complex than a typical equation in an EBM, and thus potentially more
susceptible to representational error.)

• ABM’s support more direct experimentation. Managers playing “what-if” games with the
model can think directly in terms of famil iar business processes, rather than having to
translate them into equations relating observables.

• ABM’s are easier to translate back into practice. One purpose of “what-if” experiments with a
model is to identify improved business practices that can then be implemented in the
company. If the model is expressed and modified directly in terms of behaviors,
implementation of its recommendations is simply a matter of transcribing the modified
behaviors of the agents into task descriptions for the underlying physical entities in the real
world.

1.2.1.3. Verisimilitude
In many domains, ABM’s give more realistic results than EBM’s, for manageable levels of
representational detail. The quali fication about level of detail is important. Since PDE’s are
computationally complete, one can in principle construct a set of PDE’s that completely mimics
the behavior of any ABM, and thus produce the same results. However, the PDE model may be
much too complex for reasonable manipulation and comprehension. EBM’s (like system
dynamics) based on simpler formalisms than PDE’s may yield less realistic results regardless of
the level of detail in the representation.

One example in the case of extremely simple agents is the Ising model of ferromagnetic phase
transitions in statistical physics. The agent in this model is a single atom in an N-dimensional
square lattice of similar agents. Its behavior is to change the orientation of its spin to minimize
the energy in its environment. One common and generally useful approach to such systems
employs mean field theory, analyzing the behavior of a representative atom under statistical
averages over the states of neighboring atoms [20, pp. 430-434]. In some dimensions, this mean
field EBM approach may miss the order of the phase transition, predict a phase transition where
there is none, or yield an inaccurate temperature for the transition. (In one and two dimensions,
the equations defining the Ising model can be solved exactly and analytically without the
homogeneity assumptions that lead to the errors of the mean field approach, but such solutions
are intractable in higher dimensions.) ABM models that emulate the behavior of individual atoms
can be developed for arbitrary dimensions, and are more accurate both qualitatively and
quantitatively than the mean field approximation.
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In a more complex domain, researchers in the dynamics of traff ic networks have achieved more
realistic results from traff ic models that emulate the behaviors of individual drivers and vehicles,
compared with the previous generation of models that simulate traff ic as the flow of a fluid
through a network [12]. The latter example bears strong similarities to the flow-and-stock
approach to supply chain simulation, and encourages us to develop an agent-based approach for
this application as well.

Wilson [34] offers a detailed study that compares ABM and EBM using the same system (a
predator-prey model). He develops a series of EBM’s, each enhancing the previous one to rectify
inconsistencies between the ABM and the EBM. The study assumes that the ABM is the more
realistic model, and that the EBM is the appropriate locus for making adjustments to bring the
two models into agreement. The initial ODE EBM describes reactions between the two species,
but representing dispersal through space requires extending it to a set of spatio-temporal integro-
differential equations. These equations, modeling both individual characteristics and dispersal
using population averages, lead to qualitatively different behaviors than do ABM’s. For example,
ignoring local variation in dispersal leads to limit cycles rather than the extinction scenarios that
dominate ABM’s. To correct for these lumped parameter effects, the EBM is interrupted at each
iteration of the integration to add a random perturbation to the population parameter at each
location and to zero local population levels that fall below specified threshholds.

The disadvantages of EBM in these examples result largely from the use of averages of critical
system variables over time and space. They assume homogeneity among individuals, but
individuals in real systems are often highly heterogeneous. When the dynamics are nonlinear,
local variations from the averages can lead to significant deviations in overall system behavior.
In business applications, driven by “ if-then” decisions, nonlinearity is the rule. Because ABM’s
are inherently local, it is natural to let each agent monitor the value of system variables locally,
without averaging over time and space and thus without losing the local idiosyncrasies that can
determine overall system behavior. The EBM used in our experiments does not use averages
over individuals, and so does not suffer from this disadvantage. However, real-world supply
networks are much larger. The total number of shipping points in the U.S. automotive industry is
on the order of 40,000, and it is diff icult to see how a parsimonious EBM of such a system could
avoid the use of lumped parameters.

1.2.2. DASCh Preliminary Results
The results described later in this report include the behavior of variation amplification discussed
by other researchers, but with new quantitative details. In addition, we offer the first systematic
discussion of the generation and persistence of variation. These are specific examples of our
distinctive emphasis on understanding the range of overall dynamics of the system rather
jumping immediately to detailed analysis of causes for a single system behavior.
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2. Model Structure
This part describes the structure of the DASCh model and the behaviors and parameters
associated with its various components. The structure of the model and behavior of its individual
agents were developed in close consultation with the Manager of Electronic Planning at
manufacturing facil ities of a Fortune-100 electronics manufacturer to ensure that, though
simpli fied to facilitate initial exploration, they are still realistic and the underlying assumptions
are representative of industrial practice.

2.1. The Model
The model represents a supply chain consisting
of an OEM, consumer demand for its product,
and a supplier of its raw materials.  Only one
product is modeled, and it is manufactured
from only one raw material.  The OEM actually
has several manufacturing sites, although the
single product is manufactured at only one of
them, so only that one manufacturing site is
modeled. The OEM has a separate centralized
shipping site, making the flow of goods from
supplier to OEM manufacturing site to OEM
shipping site to consumer.  The agents
representing these four entities are called
Supplier-4, Site-3, Site-2, and Consumer-1,
respectively. Figure 2.1 shows the interconnection of these agents. The DASCh software permits
construction of supply chains of any length, but the experiments reported in this document use
this simple four-level chain.

2.1.1. Consumer-1
Consumer-1 represents demand for the finished product.  It sends orders to Site-2 and receives
finished goods from Site-2.  It normally expects orders to arrive as if shipped immediately from
inventory of Site-2, and keeps statistics of average time to fill the orders and average order
lateness.

2.1.2. Site-2
Site-2 represents the OEM’s centralized shipping facility.  It receives orders from Consumer-1
and fil ls them from its finished goods inventory as fast as it can.  It orders goods from Site-3
using PPIC.  The amount of time incoming goods must spend at a production site before they can
be shipped out is a variable set by the user; in our experiments, we use a delay of 1.  Site-2 may
be subject to additional capacity constraints.

A separate object, PPIC-8, represents the forecasting and PPIC algorithms of Site-2.

Site 4
(Supplier)

Site 1
(Consumer)

Site 2

Site 3

PPIC1

PPIC2

Shipper 1

Shipper 2

Shipper 3

Product Flow

Information Flow

Mailer 1

Mailer 2

Mailer 3

Figure 2.1: The DASCh Supply Chain
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2.1.3. Site-3
Site-3 represents the OEM’s manufacturing facil ity.  It receives orders from Site-2 and fil ls them
from its finished goods inventory as fast as it can.  It orders raw materials from Supplier-4 using
PPIC.  It takes a minimum of 2 time steps in our experiments to manufacture finished goods
from raw materials.  Site-3 may be subject to additional capacity constraints.

PPIC-9 represents the forecasting and PPIC algorithms of Site-3.

2.1.4. Supplier-4
Supplier-4 represents the supplier of raw materials.  It receives orders from Site-3 and builds to
order.  In our experiments, we impose a delay of 4 time-steps from receipt of an order to
shipment of finished goods.  Supplier-4 is not subject to capacity constraints.

2.1.5. Order and Shipping Delays
It takes one time step for orders placed by Consumer-1, Site-2, or Site-3 to reach Site-2, Site-3,
or Supplier-4, respectively.  Similarly it takes three time steps (more generally, a mean and
random variance) for goods to be shipped downstream from one entity to the next.

2.1.6. Order of Execution
Each time step the simulation does the following actions in order.

1. Orders and goods that are due to be delivered, are delivered.

2. Consumer-1 and the Sites run their PPIC algorithms and place their orders.

3. Sites add new finished goods to their inventories according to capacity constraints.

4. Sites and Supplier-4 send out shipments to fill orders that are due.

2.1.7. Initialization
The simulation is initialized to a steady state of orders and shipments of 100 units each time step,
at each level in the supply chain.  The Sites’ PPIC algorithms behave as if they have seen a
forecast of consumer demand for 100 units per time period up to and including time step 15.
Thus in most situations one would set Consumer-1 to order exactly 100 units at least until time
step 16. This cutoff is derived from certain delays in the system, and is specific to our
experimental set-up, but can be changed as necessary.

2.2. Operation of the Simulation

2.2.1. The Configuration File
A configuration file is specified on the simulation command line.  For example, the configuration
file named “perfect.in” is specified via an argument “-IF=perfect.in” .  Much of the data in the
configuration file is best left untouched, largely because the initialization routines make many
assumptions about the configuration.  Certain things noted below can only be changed in the
configuration file.
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2.2.2. Runtime Probes
In interactive mode, probes can be created to observe and modify parameters of the various
entities.  Some of the parameters are best left unchanged at runtime, however. For example, there
are cases where arrays whose size depends on a parameter value, are allocated at the beginning
of the simulation run and are not adjusted dynamically.

2.2.3. Consumer
The Consumer is capable of generating demand with noise, essentially rolli ng dice to yield the
exact demand for each time step.  It is also capable of sending an exact forecast of future orders
to Site-2, for use when Site-2 is configured to receive a forecast from its customer.  (For
example, if the Consumer models an automotive OEM and Site-2 models a first tier supplier.)
These facts imply that Consumer-1 must internally compute the actual amount it will order
(rolling dice) ahead of time. The simulation generates Gaussian distributions specified by a mean
and variance.  If the random number generator returns a negative value, zero is used.

Table 2.1 summarizes the parameters in the Consumer agent.

The initial demand is specified in the demandString parameter in the configuration file.  It is a
string whose format is a series of triples separated by hyphens; each triple denotes a number of
time steps, a mean, and a variance separated by colons.  For example, “16:100:0-1:100:10”
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means 16 steps of demand at 100 followed by one step of demand with a mean of 100 and
variance of 10.

When the simulation starts up, the Consumer parses its demandString and stores the results in
some internal arrays. Thus changing its value at runtime has no effect.  Initially, the Consumer
has to pre-compute its demand for the first ppicUntil  time steps.  In order to maintain a forecast
ppicUntil  steps long, each time step it has to compute the demand for the time ppicUntil  steps in
the future.  Changing the values of cycleDemand, demandMean, and demandVar at runtime will
not affect demands already computed, but will begin to affect the demand ppicUntil  - 1 steps in
the future.  Note that if cycleDemand is one or if the means and variances specified in
demandString have not yet run out, then changing demandMean and demandVar has no effect.

PrevDemand is available purely for informational purposes, to be viewed in a probe.  It shows
the actual demand used in the previous time step.  Changing its value has no effect.
NextDemand displays the actual demand that has been forecast and will be used in the next time
step.  Changing it actually changes the demand that is used, thus rendering the prior forecasts
inaccurate.

The parameters sourceLeadTime and ppicUntil  are analogous to like-named parameters in the
Sites.  SourceLeadTime is the number of time steps the Consumer expects it to take from when it
sends out an order to when the goods are received.  It is only used in computing lateness.  If set
to zero, the Consumer uses sum of the expected delays in transmitting the order to Site-1 and
shipping the product back.

PpicUntil  is the number of time steps of forecast demand that are made available to Site-1’s
PPIC algorithm.  This determines the number of future time steps of actual demand that must be
calculated in advance.  See the discussion on the Upstream Prediction forecasting method and
the Perfect Prediction scenario, below.

2.2.4. Site
Sites receive orders and shipments of their inputs at the beginning of each time step, run their
PPIC algorithms, send out orders for their inputs, process WIP into finished goods inventory, and
send out shipments of their products.  A Site’s goal is always to fill incoming orders from
inventory, shipping on the same time step the order is received.

The model of processing at a Site is in two stages.  First, incoming materials are “aged” or
delayed to simulate the minimum amount of time it takes to do the processing.  Second, the WIP
is forced through a capacity constraint “ funnel” that can only allow a maximum number of units
to become finished goods each time step.  Either stage may be circumvented:  the “aging” can be
set to zero and the capacity constraint can be set arbitrarily high.  Gaussian noise may be added
to either processing stage.

Table 2.2 shows the parameters for site agents.

Incoming materials are subject to “aging” in the processingArea.  Then they are moved to
inProcess where they are subject to the capacity constraint.  When they make it through the
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capacity “ funnel” , they are placed in finished goods inventory from where they are used to fil l
incoming orders from downstream.

A Site or Supplier does not ship materials for an order until it has sufficient finished goods
inventory to fil l the whole order. A Site sends orders for its materials to the upstream Site or
Supplier, called its source, and receives a separate shipment for each order it sends.  Each
shipment of materials is treated as a single lot for the “aging” process.  For example, if the Site’s
“aging” is set to a mean of 5 and a variance of 2, the distribution is sampled once for the whole
lot, and the whole lot moves to inProcess for example 6 time steps after it is received.

Once the WIP reaches inProcess, it loses its identity as a lot and becomes merely a number of
units.  The capacity “ funnel” allows a certain number of units, not lots, to move from inProcess
to finished goods inventory each time step.  Units from inventory are assembled into lots
according to orders received from the downstream Consumer or Site.  If a Site has multiple
orders due (e.g. some are overdue), it will fill the oldest (by when received, not due date) for
which it has sufficient inventory, first.  It does not consider fill ing orders that, if shipped, would
expect to arrive prior to the due date (using the expected shipping delay).

It is possible for a Site to receive a shipment of materials and, if the “aging” delay is zero and the
capacity suff iciently high, in the same time step move it all the way through processing and ship
out the resulting finished goods.

Each time a shipment of materials is received, the Site samples a Gaussian distribution with
mean delayMean and variance delayVar to determine how many time steps to “age” the lot
before adding it to inProcess.  If the sample is less than zero, zero is used.

Each time step, the Site samples a Gaussian distribution with mean capacityMean and variance
capacityVar to determine how many units to move from inProcess to inventory.  If the sample is
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less than zero or greater than capacityMean * capacityMaxMultiplier, the distribution is
resampled.

2.2.5. PPIC: Forecasting
Each Site delegates two of its functions to its corresponding PPIC (Production Planning and
Inventory Control) agent.  One is the development of a forecast of future incoming orders for its
product and the other is running the PPIC algorithm to predict its future inventory and outgoing
orders for materials.

Table 2.3 shows the parameters that the PPIC agents use in forecasting demand.

There are currently three methods for developing the forecast, determined by forecastMethod.  If
forecastMethod = 0, a constant value with Gaussian noise is used; if it is 1, a weighted average of
past actual orders is used; and if it is 2, a prediction of future orders from the upstream Site or
Consumer with Gaussian noise is used.  The demand for the current time step is always known
exactly:  it is the sum of the due and overdue incoming orders already in hand.  In some
configurations it is possible to receive orders ahead of expectation and therefore have orders
which are not due to be shipped immediately.  For time steps after the current one, the maximum
of the actual orders and the initial value determined by the forecasting method is used by the
PPIC algorithm.

The forecast is made far enough into the future to enable the PPIC algorithm to compute the
amount that will be ordered each time step, for ppicUntil  time steps into the future (including the
current time step).  The order it sends out on that last time step will arrive after some delay as
input materials, and after further delay will become finished goods ready to ship out.  (The sum
of those delays is called myLeadTime.)  The forecast has to go out to the expected time step in
which that last order will be available to ship as product; thus the forecast is for ppicUntil  plus
myLeadTime time steps.

2.2.5.1. Constant Method

The constant method samples a Gaussian distribution with mean historicDemand and variance
forecastVar, once for each future time step, to determine the initial forecast.  Although the
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sample could be negative, when it is compared with actual orders (which are nonnegative), the
maximum wil l be nonnegative.  The sampling is done again every time step; for example, at time
t = 10, it will sample the distribution to predict demand for the future time t = 15.  Later, at time
t = 11, it will take a new sample of the distribution to predict demand for the future time t = 15.

2.2.5.2. Weighted Average Method

The weighted average method computes a weighted average of the actual demand for the past
forecastWindow time steps and uses it as the initial forecast value for all future time steps.  If t is
the current time, demandt-i is the actual demand at time t-i, and wi is the weight of the i th previous
demand, then the formula for the weighted average is
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When t - i is before the simulation run began (i.e. i > t), historicDemand is used for the demand.

2.2.5.3. Upstream Prediction Method

When forecastMethod is 2, the forecast is based on a prediction passed up from the downstream
Site’s PPIC (or from the Consumer).  The prediction gives the number of units that will be
ordered each time step, starting with the current time and going on for the downstream entity’s
ppicUntil  steps.  For each future time step of the forecast, the downstream prediction is used as
the mean of a Gaussian distribution and forecastVar as the variance; a sample is taken and used
as the initial forecast.  If the prediction does not extend far enough into the future, the last value
is repeated.  If the prediction is absent (only possible on the very first step of a simulation run),
historicDemand is used.

Above it was mentioned that the forecast is developed for myLeadTime plus ppicUntil  time steps.
In order for the prediction passed up from the downstream PPIC or Consumer to be long enough
to cover the entire forecast, the downstream entity’s ppicUntil  must be equal to or greater than
myLeadTime plus ppicUntil .  The Perfect Prediction scenario (below) gives an example of this.

In the current implementation, the prediction is attached to the actual order and carried with it.  If
the order delivery delay is increased and given noise, odd effects could result.  The software is
carefully written not to crash (famous last words), but the dynamics are likely to be illusory.
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2.2.6. PPIC Algorithm
The PPIC algorithm is greatly simplified because there is a single product made from a single
raw material obtained from a single source. Table 2.4 shows the parameters used in the PPIC
algorithm. Starting at the current time step and going out into the future, it lays out

• the expected outgoing shipments (the forecast, which is the actual due and overdue orders for
the current time step),

• the expected replenishments to inventory (product coming out of the corresponding Site’s
processing, ready to ship),

• the expected resulting inventory at the end of the time step, and

• the number of units of material that must be ordered each time step in order to keep the
inventory at or above the safetyStock level.

The PPIC does not modify amounts or due dates on orders that have already gone out.  It also
does not take into account the capacity constraint.  It does look at expected delays through the
sourceLeadTime and myLeadTime parameters.  When it orders, it only orders in integral
multiples of sourceBatchSize.

The parameter myLeadTime should be replaced with a read-only output parameter that the user
can view in a probe.  Currently it should be set to zero in the configuration file, and only
sourceLeadTime should be modified.  Setting myLeadTime to a nonzero value will cause
inconsistent behavior.
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2.2.7. Supplier
The Supplier builds to order rather than to inventory.  It receives orders, “ages” them to simulate
processing, and ships materials with no capacity constraints and no “finished goods” inventory.
The “aging” delay is determined by sampling a Gaussian distribution governed by two
parameters, delayMean and delayVar.  If the sample is less than zero, zero is used. Table 2.5
summarizes the parameters of the Supplier agent.

Table 2.5: Supplier Parameters� � � � � � � � � � � 	 � � 
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3. Theory
A general theoretical analysis of a complex system such as a supply network is not practical.
However, it may be possible within certain restricted domains. When it is possible, it can help
guide experimentation and provide insight into experimental results. This section provides two
such analyses. The first is restricted to the behavior of the system within its linear domain, and
provided predictions that we were able to confirm experimentally using the DASCh model. The
second examines an extremely circumscribed class of behavior (inventory oscillations) in a non-
linear domain of the model. In this case we observed the behavior initially in experiments, and
then developed the theory to deepen our understanding of what was happening.

3.1. Linear Domain: Amplification and Correlation of Variance

3.1.1. Analysis
Consider our supply chain with all batch sizes set to 1, infinite (more or less) capacity, and initial
conditions that support a steady state of customer orders of say, 100 units per time step.  Now
add Gaussian independent, identically-distributed (IID) noise to the customer demand.  We are
interested in the response of the system, as evidenced in the ordering patterns down the chain, to
this IID noise.  There are no other sources of noise or of uncertainty in the chain.

Let L be the lead time.  Let f be the length of the historical epoch used to make forecasts.
Consider an element, k, of the chain.  (k=1 is the customer.) R(t) is the order placed at time t by
element k to its supplier (element k+1), which, assuming no uncertainty or noise in shipping or in
other delay times wil l be delivered to that element’s inventory at time t+L.  In our simple PPIC
the expression for R(t) can be written as





 +++++−−−= ∑

=

L

t

ttQttPttFtIAtR
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))'()'()'(()(,0max)(  (1)

• F(t) is the forecast of what we expect will be ordered by our customer (element k-1).

• P(t) is what we know is in the pipeline which is under the control of element k (e.g., already
being processing in the factory).

• Q(t) is what we expect will be delivered to inventory at time t, but is not under control of
element k. That is, there could, in principle, be uncertainty about Q(t), but not about P(t).  For
the present purposes, the distinction between P and Q is irrelevant.

• I(t) is the inventory at time t.

• A is the safety stock level.

Now, for simplicity, first consider k=2.  The forecast used in our simple PPIC is given by

[ ])(),(max)( tOtCtF =
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where O(t) is the actual amount we know must be shipped from inventory (site k) at time t, and
C(t) is a weighted average forecast based on f previous orders.  In our simple PPIC C(t) is just
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S(t) is the actual customer demand on day t, i.e., what is supposed to be shipped from inventory
on day t).  In our case, S(t) = M + η(t), where M is the mean customer demand and η(t) is IID
(actual Gaussian in our case).

An important point here is that F(t) is the same for all t from now up to L steps in the future.
Furthermore, if the size of the noise is not too large, then we should never have to invoke the
max condition in the definition of F(t):  O(t) is driven primary by back-orders, but if we never
run out of inventory, we shouldn’ t ever need to have O(t) greater than C(t).  With 30% or less
variance, this doesn’t seem to happen. So, for the purposes of this simple analysis, assume that
F(t) = C(t).

Now, with no uncertainty other than consumer demand, we can write (1) as
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Here R(t) = M + ρ (t), and F(t) = M + δ(t), where M is the mean customer demand.  If we plug
in for R and F and eliminate the M’s, we have
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Note that this is a linear auto-regressive expression for ρ(t).  Unlike η(t), the driving term δ(t) is
not IID.  Rather it is a linear combination of IID terms.

I(t), the inventory at time t, is just
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(Of course, we have to cut this off at zero, or let the lower limit go to -∞.)

Plug this into (3) and we have an expression for the sum over ρ(t):
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B(t)-B(t-1) = ρ(t), so we have:
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To compute the variance of ρ(t) and  imagine that we are doing an average over an ensemble,
yielding

222 ~)( ηδ QLt

where Q is a numerical factor, discussed further below.

3.1.2. Discussion
Note three important features:

1. The variance of ρ(t) is magnified by the factor of L2 over the variance of η, because the
algorithm uses the same F(t) for all dates between now and L days in the future.  The
amplification points up the importance of maintaining appropriate characteristics in the
forecasting function.

2. The variance is stationary.

3. The k = 2 order fluctuations about M, ρ(t), are linearly correlated.  Recall that η(t) is IID
and so not correlated, but the k = 2 order fluctuations are.  In general, with a forecast that
depends linearly on f terms in the past, ρ(t) will be linearly correlated over a range of
order f.  This is important.  The order fluctuations down the chain are not independent,
even if the driving customer orders are.

It is straightforward to apply this analysis to other elements down the chain.  The only thing that
changes, semi-quantitatively, is that the driving orders to a k>2 element are not IID.  Looking
back at (2) one can deduce the following general characteristics:

• Let L(i) be the ordering delay at site i and f(i) be the historical horizon for forecasting at
site i.  Then, the variance of the fluctuations about the mean of orders placed by site k, is of
order

)(~'~)( 2
1

2222
2

2
1

2 tQLQLLLt kkkk −⋅⋅ ρηρ

Q  and 'Q  are numerical factors, discussed below.

• These fluctuations are linearly correlated over a time horizon of the order of
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The inventory at time t, I(t), shares some characteristics of the ordering time series.  For
example, at site k = 2, and under our assumptions above, I(t) is given by
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The fluctuations of I(t) about A are also linearly correlated over times of order f.  The variance of
these fluctuations is stationary, and the magnitude of the variance also grows as we go down the
chain, again like L2.  For sites with k>2, the range of linear correlation as well as the times over
which these variances are linearly correlated grows in the same way (semi-qualitatively) as the
orders placed time series.

Additional Comments:

1. In addition to the variances growing, the L2, the fluctuations about the mean are linearly
correlated.  The existence of these dynamical correlations is not widely appreciated in
industry, but they are clearly very important in analyses and ordering policy decisions.

2. As we move down the chain, the situation becomes more complicated, because the
driving force for sites k>2 are already linearly correlated.  Since all the correlations are
linear, and since the equations are additive, it is unlikely that further analysis wil l derive
any nonlinearities here.  But if we want to do a detailed analysis of the magnification
factors, we do need to consider carefully the correlations in the driving force.

3. The increase in the variance each time we move down the chain increases by a factor of
L2 and another numerical factor that we have called Q. Q depends in detail on the
forecasting formula, and on whether the ordering data coming into site k are correlated or
not.  In our case, for example, for site 2, this factor is fairly small, and accounts for the
fact that although the variance is larger for site 2 than for the customer orders, it is not
25 times larger.  To compute this factor, just take the formula for δ(t), write it in terms of
η(t), form δ(t) - δ(t-1), square it, and do an ensemble average remembering that η(t) is
IID.  All the cross terms will vanish, and you will be left with a fairly small number.
When we compute the variance of the orders placed by site 3, one difference is that the
orders coming from site 2 are linearly correlated, and so the cross terms in the analogous
calculation for site 3 do not vanish.  Thus, the factor is not as small (although still l ess
than one).  Similar comments apply to the calculation of the variance of the fluctuations
of the inventory.  Here, though the factors are not as small since we need to square δ(t),
not δ(t) - δ(t-1).

4. Equations (1) and (2) can be considered particularly simple examples of feedback.  That
is, what you order on day j affects what you will order on day j+ i, for some set of i.  The
feedback in this case is simple and linear.  But it can easily become more interesting and
nonlinear once we take capacity constraints, batching, and noise in other parts of the
system into account.

5. The basic message here is that this system should be viewed as a dynamical system, in
general, a nonlinear dynamical system, capable of a wide variety of behaviors.  We have
just seen the absolutely simplest one here, but even in this case, the analysis has
important lessons for any company using a PPIC algorithm similar to the simple one we
have used in this model.

6. From a research point of view, we have here a system with a range of parameters that can
be adjusted to explore different regions.  The region discussed here is a simple linear one.
It is, in fact, with some effort, completely analytical.  When we invoke capacity
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constraints, other kinds of forecasting formulae, batching effects, as well as other kinds of
driving forces, we will get into nonlinear regimes.  There we will be able to do other
kinds of analyses, but they will not be completely analytical as the linear one here.
Potentially even more interesting is the fact that using this same basis, we can model the
effects of various kinds of adaptive decision making.

3.2. Nonlinear Domain: Inventory Oscillations
Consider a supply chain in which consumer demand is constant and supplier capacity infinite,
but in which the intermediate sites have capacity limitations lower than the level of consumer
demand. In such a configuration,

• production sites will operate at capacity;

• finished goods inventory at production sites  will build up until it is high enough to satisfy an
order;

• at that point an order will ship and inventory wil l drop, then build up again until another
shipment is possible.

Thus we expect to see inventory oscill ations at sites with insufficient capacity, and our
experiments bear this out. This section establishes a representation for such oscillations and
definitions, then makes a series of predictions that are satisfied by our experiments. (In fact,
historically, the experiments came first, and observation of the regularities we observed in them
led to this analysis.) Finally, it offers a useful geometric interpretation.

In this mode of operation, a useful abstraction of the model is the modulo function. Since each
time step generates new inventory of capacity and outstanding orders ship everything in excess
of order, the inventory at the nth time step is just mod((n-1)*capacity, order), where mod() is the
modulo function, the essence of a threshold nonlinearity. (Later, we will point out some details
of the behavior of the system in this regime that are more complex than this simple abstraction.)

3.2.1. Representation and Definitions
A useful abstraction of the behavior of a given system consists of a numerical sequence
describing the number of time steps needed to reach successive local maxima until the system
returns to a previous level of inventory. That is, for a given Demand and Production,

1. Pick a local maximum in the inventory time series.

2. Record the number of steps needed to reach the next local maximum.

3. Repeat until the inventory is the same that it was at the original maximum.

For example, consider a system with Demand = Initial inventory = 170 and Production = 100.
Experiment shows that successive inventory levels will be (170, 100, 30, 130, 60, 160, 90, 20,
120, 50, 150, 80, 10, 110, 40, 140, 70, 0, 100). The local maxima are indicated by bold-faced
numbers, and represent the points at which inventory rises above demand so that a shipment can
take place. The sequence of steps-to-next-local-maximum, beginning with the first local
maximum at 200 and continuing until inventory returns to 200, is (2,2,3,2,3,2,3). It is provably
the case (shown below) that the same sequence will be generated if instead of focusing on local
maxima, one focuses on local minima (the italicized numbers in the example series).
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For some purposes, it is important to remove common factors from the ratio
Demand/Production. Also, for the purpose of this analysis, we consider only one manufacturing
site.

Definitions:

Demand: The (constant) level of orders from the consumer (site 1).

Production: The (constant) capacity level at the producer (site 2). By hypothesis,
Production < Demand.

Inventory(t): The finished goods inventory at the producer (site 2). Where there is no danger of
confusion, the temporal argument may be omitted.

D: The numerator of Demand/Production with all common factors removed (in the example,
17). Note that D is a legitimate Demand, but an arbitrary Demand may not be a legitimate D.

P: The denominator of Demand/Production with all common factors removed (in the example,
10). Note that P is a legitimate Production, but an arbitrary Production may not be a legitimate
P.

H: The minimum of P and D – P. In the case that these are equal, observe that H = D/2 (which
motivates the abbreviation H[alf] ). Since by construction there are no common factors in D and
P, H = D/2 → D = 2 & P = 1.

I(t): The finished goods inventory at the producer, scaled by any factors removed from Demand
and Production: Inventory(t)*D/Demand = Inventory(t)*P/Production. Where there is no danger
of confusion, the temporal argument may be omitted.

The next three definitions presume that the system has entered the region P ≤ I < (D+P). We
demonstrate in the next section that it will enter this region, and that once there, it will remain
there.

Sequence: The shortest sequence of steps-to-next-local-maximum between two equal inventory
levels at the producer; in the example, (2, 2, 3, 2, 3, 2, 3).

Period: The minimum number of time steps such that I(t) = I(t+Period) (the sum of the elements
of Sequence; in the example, 17).

Length: The number of elements in Sequence (in the example, 7).

Ceil (n): The least integer greater than or equal to n.

Floor(n): The greatest integer less than or equal to n.

3.2.2. Predicted Behaviors
We predict the following behaviors, all of which are observed experimentally.

3.2.2.1. Attractor

If the system is initiated with Inventory ≥ Demand, it will enter the region
0 ≤ Inventory < Demand. Once the system enters this region, it will remain there.
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Proof: First we show that the system will enter the attracting region if it is started outside.
Assume that the system is initiated with Inventory(0) ≥ Demand. Because
Demand > Production, inventory will drop by (Demand – Production) at each time t for which
Inventory(t) ≥ Demand, until Inventory < Demand.

Now we show that the system remains in the attractor once there. Consider two cases.

1. Inventory(t) < Demand - Production. Then no shipment can be made, and
Inventory(t+1) = (Inventory(t) + Production) < Demand.

2. (Demand – Production) ≤ Inventory(t) < Demand. Then some of the inventory is used to
make up the defect in production, so Inventory(t+1) = (Inventory(t) – (Demand -
 Production)). Since Production < Demand, this level will be strictly less than Demand.
Furthermore, even if Inventory(t) = (Demand – Production) (the lowest it can be in this
case), Inventory(t+1) = Demand - Production – Demand + Production = 0, and if
Inventory(t) > Demand, then Inventory(t+1) > 0.

Thus in both cases the system remains in the region 0 ≤ Inventory < Demand. k
3.2.2.2. Scaling
If we multiply Demand and Production by the same integer factor, or if we divide out common
integer factors, the series Inventory(t) (and thus the attracting region 0 ≤ Inventory < Demand) is
multiplied or divided by the same integer factor, but Sequence and Period are unaffected.

Proof: The proof rests on a manufacturing interpretation of what means to multiply or divide
Demand and Product by a common factor k. If there exists such a common factor, division
means that it is possible for the producer to package the individual products in bundles of k, and
for these bundles to be delivered intact to the consumer, without changing the total amount
produced or shipped in each unit of time. Multiplication by an arbitrary common factor k means
that each product is in fact an assembly of k parts, and we now agree to count the parts
individually rather than as assemblies. In neither case do we actually change the amount of
product manufactured, or the time it takes to manufacture it. However, we do change the units in
which we count the production. Thus measures in units of time (including Period and the steps
between local maxima in Sequence) are not affected, but measures in units of product (Demand,
Production, and Inventory(t)) will be k times smaller (for division) or larger (for multiplication)
than previously. k
Note: This principle motivates the use of D and P, from which all common factors have been
removed, as a unique representation of a given ratio Demand/Production.

3.2.2.3. Period

For any I(t) in the region 0 ≤ I < D, the system wil l return to the same inventory level at time
t+D, so that Period = D.

Proof: This proof rests on the lack of common factors in the representation D/P of the
demand/production ratio. We first show that Period ≤ D, then eliminate the inequality.
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1. Assume I(t) is in the region. After D steps, the producer will have produced D*P, which is
exactly divisible by D and so will all have been shipped, leaving I(t + D) = I(t). So Period
cannot be greater than D.

2. Assume Period < D and derive a contradiction. Since I(t) = I(t+Period) by the definition of
Period, the amount manufactured during Period, which is Period*P, must be divisible by D.
However, neither Period nor P is individually divisible by D (both being by hypothesis less
than D). This means that Period and P have factors a and b, respectively, such that D = a*b.
But then both D and P are divisible by b, contrary to our assumption that all common factors
have been removed. So the assumption Period < D must be wrong.

Having ruled out both Period > D and Period < D, we conclude Period = D. l
Note: By Scaling (Section 3.2.2.2), Period = D not only for systems in the (D,P,I) units, but for
arbitrarily scaled (Demand, Production, Inventory) units. For example, Period for the system
presented above with Demand = 170 and Production = 100 is 17, the same as for D = 17 and
P = 10.

3.2.2.4. Coverage

Between t and t + Period, I assumes every value in the range 0 ≤ I < D.

Proof: There are D values in the range 0 ≤ I < D, and Period = D time steps must pass before
any repeats, therefore at each time step Inventory must assume a different value, and all D values
will be required to consume all D time steps. l
Note: This result holds only for the reduced units (D, P, I), since it concerns units of parts
produced. For systems in which Demand and Production have a common factor k, there will be
bands of inventory values of width k that the system wil l never visit once it is in the attracting
region.

3.2.2.5. Relation of Local Minima and Maxima
The pattern by which I(t) moves between local minima and local maxima in the attracting region
depends on H. There are three cases.

1. If H = P = D-P = D/2, I(t) is always either at a local minimum or a local maximum. If I(t) is
a local minimum, then I(t+1) is a local maximum. If I(t) is a local maximum, then I(t+1) is a
local minimum.

2. If H = P < D-P, then if I(t) is a local maximum, I(t+1) is a local minimum; if I(t) is a local
minimum, then I(t+p) is a local maximum, where p is either Ceil (D/H) - 1 or Ceil (D/H) - 2.
If H = 1, p = D/H – 1 uniquely.

3. If H = D-P < P, then if I(t) is a local minimum, I(t+1) is a local maximum; if I(t) is a local
maximum, then I(t+p) is a local minimum, where p is either Ceil (D/H) - 1 or Ceil (D/H) - 2.
If H = 1, p = D/H – 1 uniquely.

Proof: Consider the three cases separately.

1. Assume H = P = D-P = D/2. Notice in particular that P = D-P. Consider first the case where
I(t) is a local minimum. Thus the net change in the next time step must be positive, which
means there can be no shipment. Therefore I(t+1) = I(t) + P ≥ D-P, which will permit a



DASCh Final Report, Part 3: Theory

02/01/99 1:05 PM Copyright © 1999, CEC/ERIM, All Rights Reserved Page 3-9

shipment, and thus be a local maximum. Now consider the case where I(t) is a local
maximum, thus D-P ≤ I(t) < D, and a shipment will take place. The net change in inventory
will be a reduction of (D-P) = D/2. As a result, I(t+1) < D/2 = D-P, so no shipment will be
possible, and I(t+1) is a local minimum. Thus local minima and maxima alternate at each
time step.

2. Assume H = P < D-P. Consider first the case where I(t) is a local maximum. Therefore D-
P ≤ I(t) < D, and the net change in inventory with the next shipment will be a reduction of
D-P, leaving 0 ≤ I(t+1) < D-(D-P) = P < (D-P). No shipment is possible, so the system is at
a local minimum. Now let I(t) be at such a local minimum, 0 ≤ I(t) < P. The next local
maximum wil l occur when D-P ≤ I(t+p).  The net change in inventory needed to satisfy this
condition ∆I = I(t+p) - I(t) will fall in the range (D-2P) < ∆I ≤ (D-P). The number of time
steps needed to make this shift, at P units per time step, is thus in the range Floor((D-
2P)/P) = Floor((D-2H)/H) = Floor(D/H)-2 < p ≤ Ceil ((D-P)/P) = Ceil ((D-
H)/H) = Ceil (D/H)-1. D/H = D/P can be integral only in the case that P = 1, in which case
D/H-2 < p ≤ D/H-1, leaving p = D/H-1. Otherwise, Floor(D/H) = Ceil (D/H)-1, so
Ceil (D/H)-3 < p ≤ Ceil (D/H)-1. Thus p = Ceil (D/H) – 1 and p = Ceil (D/H) - 2 are the only
two options.

3. Assume H = D-P < P. Consider first the case where I(t) is a local minimum. Therefore
0 ≤ I(t) < D-P, and the net change in inventory with the next shipment will be an increase of
P, leaving P ≤ I(t+1) < D. Since P > (D-P), a shipment is possible, and the system is at a
local maximum. Now let I(t) be at such a local maximum, P = D-H ≤ I(t) < D. The next local
minimum wil l occur when I(t+p) < D-P = H.  The net change in inventory needed to satisfy
this condition ∆I = I(t) - I(t+p) will fall in the range (D-2H) < ∆I ≤ (D-H). The number of
time steps needed to make this shift, at D-P = H units per time step, is thus in the range
Floor((D-2H)/H) = Floor(P/H)-2 < p ≤ Ceil((D-H)/H) = Ceil (D/H) - 1. If D/H is non-
integer, Floor(D/H)-2 = Ceil(D/H)-3< p ≤ Ceil(D/H)-1, leaving p = Ceil (D/H) – 1 and
p = Ceil (D/H) - 2 as the only two options. But the only way D/H = D/(D-P) can be integral is
if H = 1. To see this, assume that D/(D-P) = n. If n = 2, we have P = D-P, which we have
already considered in case 1. So n > 2. On our assumption, D = n(D-P), or nP = (n-1)D,
which can only be true if either n/(n-1) is integral (which it is not for n > 2), or there exist
factorizations P = a(n-1) and D = bn for integral a,b. Substituting these into nP = (n-1)D, we
have na(n-1) = (n-1)bn, or a = b, which would mean that D and P have a common factor
a = b. If this factor is greater than 1, we have a contradiction with our assumption that D and
P have no common factors. So a = b = 1. Then D = n, P = n-1, and H = D-P = 1. In this
case, p = D/H-1 uniquely

These three cases exhaust the possibilities. m
Note 1: In case 1, the removal of common factors means that D = 2 and P = H = 1.

Note 2: In the last two cases, p is the number of steps from a local extremum of one kind to a
neighboring extremum of the opposite kind. Each entry in Sequence is from local maximum to
local maximum, and thus equal to p+1, restricting it to be either Ceil (D/H) – 1 or Ceil (D/H). If
H = 1, then all entries in Sequence are D.

Note 3: In each case, local minima are adjacent to local maxima, and always (for a given case) in
the same direction. Thus one could measure time steps between local minima instead of between
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local maxima, without changing the results, and such a procedure would yield the same
Sequence.

3.2.2.6. Length
Length, the number of items in the sequence, corresponding to the number of intermediate
maxima between maxima of the same size (counting one of the ends), is H.

Proof: The total production during a sequence is Period*P = D*P. To return to the same
inventory level, the sum of shipped orders must be the same. Consider the same three cases
analyzed in Relation.

1. Assume H = P = D-P = D/2. There is one shipment of size D every maximum, so total
shipments are D*Length, which must equal production, D*P, yielding Length = P. But in
this case P = H, so Length = H.

2. Assume H = P < D-P. Again, there is one shipment for every maximum, so
D*Length = D*P and Length = P, and again P = H, so Length = H.

3. Assume H = D-P < P. Now there is only one step during each maximum when there is not a
shipment, so the total number of shipments is (D-Length) and the total amount shipped is
(D-Length)*D, which must equal production, D*P. Thus (D-Length) = P, Length = (D-P),
but in this case (D-P) = H, so Length = H.

These three cases exhaust the possibilities. n
3.2.2.7. Proportion of Long and Short Periods

When H ≠ 1, the periods of the H extrema of the same kind (the H maxima or the H minima) in a
sequence are not all equal. H*Ceil (D/H) – D have period Ceil (D/H) – 1 and D – H*Floor(D/H)
have period Ceil (D/H).

Proof: Period = D is equal to the sum of the elements of Sequence, which (by Note 2 to Section
3.2.2.5) can only be of two periods, Ceil (D/H) – 1 or Ceil (D/H). Note first that both kinds of
periods must appear, for when H ≠ 1, Ceil (D/H) > D/H so that H*Ceil (D/H) > D = Period,
while Ceil(D/H)-1 < D/H so that H*(Ceil (D/H)-1) < D = Period.

To find the proportion of periods of each length, let A be the proportion of maxima of length
Ceil (D/H) – 1. Then H-A are of length Ceil (D/H), and
Period = D = (H-A)*Ceil(D/H) + A*(Ceil (D/H) – 1) = H*Ceil (D/H) – A, or A = H*Ceil (D/H) –
 D and (H-A) = D – H*(Ceil (D/H) – 1) = D – H*Floor(D/H) (where the conversion from Ceil  to
Floor uses the assumption that H ≠ 1). n
3.2.2.8. Monotonic Subsequences

In the case that H ≠ 1, the number of monotonic subsequences in the overall Sequence is equal to
the lesser of H*Ceil (D/H) – D and D – H*Floor(D/H) (that is, the number of extrema with the
less common period).

Proof: It suffices to show that no two extrema with the less common period are adjacent. Given
this result, the less common extrema must be distributed among the more common ones,
generating that many monotonic subsequences in Sequence. Recall from Relation that the cycles
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have two shapes. If H = P < D-P, the movement from maximum to maximum consists first of a
drop of D-P followed by p climbs of P (the “ascending” configuration), where p is either
pShort = Ceil (D/H)-2 or pLong = Ceil (D/H)-1, for a net gain over a cycle of (p+1)*P – D. If
H = D-P < P, the movement from maximum to maximum consists first of p drops of (D-P),
where p is either pShort or pLong, followed by a climb of P (the “descending” configuration), for
a net gain over a cycle of (p+1)*P – pD. These same differences also obtain if we count between
successive minima. Our basic proof schema is to begin at a maximum (D-P)≤I(t)<D or a
minimum 0≤I(t)<(D-P). We have to show that no two minority periods can fall together, so we
assume that they do, and derive a contradiction to known properties of the system (such as
showing that the inventory would leave the Attractor region P≤I<(D+P), or that an extremum
would occur outside of the appropriate region). Consider four cases, generated by pairing the
option expressing which period of maximum is less common
short: H*Ceil (D/H) – D < D – H*Floor(D/H)
long: H*Ceil (D/H) – D > D – H*Floor(D/H)
with the option describing the pattern:
ascending: H =P
descending: H = D-P.

1. Short, ascending (example: D/H = 17/6.) (The proof formalizes the observation that in the
short ascending case, each ascending cycle leads to a maximum that is lower than the
previous maximum.) Observe that Two successive short ascending cycles from a maximum
would generate a change in I, ∆I = 2[ (pShort+1)*P –
 D] = 2[Ceil (D/H)-2+1)*P-D] = 2[P*Ceil (D/H)-P-D] . Since any maximum is strictly less
than D, after this change, I satisfies:

I < D+2[P*Ceil (D/H)-P-D]

= H*Ceil (D/H) + (H*Ceil (D/H) – D) – 2P (using ascending)

<  H*Ceil (D/H) + D – H*Floor(D/H) – P - H (using short and ascending)

= D-P (since, for D/H not integer,
Ceil (D/H)-Floor(D/H) = 1)

This last result asserts that after two short ascending cycles from a maximum, I<D-P. But
then no shipment can take place, so we are not at a maximum, and the second period is not
yet complete, contradicting our assumption.

2. Short, descending (example: D/H = 17/11.) (The proof formalizes the observation that in the
short descending case, each descending cycle leads to a maximum that is higher than the
previous maximum.) Two successive short descending cycles from a minimum give a change
in I ∆I = 2[P*(Ceil(D/H)-1) – D*(Ceil (D/H)-2)] . Since any minimum is greater than or equal
to 0, the inventory I at the second minimum satisfies:

I ≥ 2(-H*Ceil (D/H) + H – D) (using descending in the form P = D-H)

= 2(-H*Floor(D/H) – D) (using Ceil (D/H)-1 = Floor(D/H) for non-
integer D/H),

> 2(H*Ceil (D/H) – 2D) (using short)

≥ 2(3D – 2D) = 2D (recognizing that for H < D/2,
Ceil (D/H) ≥ 3)
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But this last result asserts that after two short descending cycles from a minimum,
I > 2D > D+P, contrary to Attractor, furnishing the desired contradiction.

3. Long, ascending (example: D/H = 17/5.) (In the long ascending case, each ascending cycle
leads to a maximum that is higher than the previous maximum.) Two successive long
ascending cycles from a maximum generate a change in I, ∆I = 2[(pLong+1)*P –
 D] = 2[Ceil (D/H)-1+1)*P-D] = 2[P*Ceil (D/H)-D] . Since any maximum is greater than or
equal to D-P, after this change, I satisfies:

I ≥ D-P+2[H*Ceil (D/H)-D] (using ascending),

> H*Ceil (D/H) + D – H*Floor(D/H) - P (using long),

= D (since Ceil(D/H)-Floor(D/H) = 1 for D/H
not an integer, and again using ascending).

But this last result asserts that after two long descending cycles from a maximum, I > D,
contrary to Attractor, furnishing the desired contradiction.

4. Long, descending (example: D/H = 17/10.) (In the long descending case, each descending
cycle leads to a maximum that is lower than the previous maximum.) Two successive long
descending cycles from a minimum give a change in I ∆I = 2[P*(Ceil (D/H)) –
 D*(Ceil (D/H)-1)] . Since any minimum is strictly less than D-P, the inventory at the second
minimum satisfies:

I < D-P + 2(-H*Ceil (D/H) + D) (using descending)

= 3D – H*Ceil (D/H) – H*Ceil (D/H) - P

= 3D – H*Ceil (D/H) – H*Floor(D/H) – H - P (using
Floor(D/H) = Ceil (D/H)+1 for
D/H not an integer)

< 3D – H*Ceil (D/H) + H*Ceil (D/H) – 2D – H - P (using long)

= D-H-P = 0  (using descending).

But this last result asserts that after two long descending cycles from a minimum, I < 0, contrary
to Attractor, furnishing the desired contradiction.

These four cases exhaust the possibil ities, establishing the desired result. o
3.2.3. A Geometrical Interpretation
The behavior outlined in the previous section is consistent with a concise geometrical model of
the dynamics.

The behaviors demonstrated above show that the complete dynamics can be represented in a
square of D units on a side. The left edge of the square corresponds to time t, the right edge to
time t+D, the bottom to inventory P, and the top to inventory D+P. Let t be the time at which
inventory first falls within the Attractor. At each time step draw a line segment of slope P and
length 1+P  beginning at I(t) to define I(t+1).

As long as I < D, the end of this line segment will fall within the square, and will correspond to
the trajectory of the inventory. If I(t) ≥ D, a distance d1 = D+P-I(t) < P from the top edge of the
square, the end of such a line segment would fall at or beyond that edge, outside the range of the
Attractor. With the real system, in this case the new inventory is I(t)-D+P, which is d2 = I(t)-D
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units above the bottom edge of the square. Note that d1+d2 = P, which means that if we connect
the top and bottom edges of the square to form a cylinder, then beginning at any valid I(t), the
next I(t) can be found by appending such a line segment (in effect, wrapping a string around the
cylinder at a constant angle.

From the Period behavior (Section 3.2.2.3), we know that I(t) = I(t+D), and the determinism of
the system means that the trajectory then repeats. In terms of our geometric model, this behavior
corresponds to connecting the ends of the cylinder to each other to form a torus.

In our manufacturing domain, D and P are integer parameters, so D/P is rational by construction.
However, the torus model supports irrational D/P as well. In this case, we would have
quasiperiodicity, and the orbit on the torus would never retrace itself.
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4. Experimental Results
Experiments with the system described in the previous Part 2 show four effects involving
variation within the supply chain, three of which have not been discussed in any detail in the
previous literature. The first three of these effects are observed within the linear domain of the
model, and so are in principle susceptible to analytic treatment. The fourth results from imposing
nonlinear constraints on the system. As these results emerged, we reviewed them regularly with
our informant from the Fortune-100 electronic manufacturer. He recognized them as
characteristic of real manufacturing systems, but credited the model with making him aware that
they could be generated by such simple mechanisms.

4.1. Amplification of Variation
Variation ampli fication has been widely discussed in the literature, as discussed in “Previous
Work: Observed Behavior” above.  It is well recognized, emerges from our theoretical analysis
(Section 3.1), and was an expected result. Our observation of it helps to validate our approach. In
addition, we observe different dynamics in the upper (distribution) and lower (input) halves of
the supply chain hourglass.

The symptom is that subtier suppliers see more variabil ity in the orders they get than the OEM
generates in its orders to the first site in the supply chain.  To experiment with this dynamic we
set up a configuration where all the batch sizes are one, so the economic order quantity does not
introduce a nonlinearity. The orders are generated by the top-level customer at a rate of 100 per
week with a IID (Independent, Identically Distributed) variance of 10 per week.  The capacity is
set at 10,000 per week, virtually infinite in comparison with the order levels, again avoiding a
threshhold nonlinearity.

4.1.1. Distribution Networks (Upper Half of Hourglass)
Using the weighted forecasting
method appropriate for the
upper half of the supply chain
hourglass, Figure 4.1 shows the
mean and variance of the
weekly orders in an
experimental run of 500 weeks
from each of the top three sites
in the model. The mean is
constant at 100, but the
variance grows dramatically
from 10 in the orders issuing
from the consumer to 14.5 in
those that Site 2 sends, and then
to 30.0 in those from Site 3.

Our theoretical analysis (Part 3) predicts that variance in the orders coming from intermediate
sites should be proportional to the variance in their incoming order streams, times the square of
the lead times that they see. To test this analysis, we generated a series of emulation runs with
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consumer variances of 5, 10, 30, and 60 and lead
times of 3, 10, 20, and 30 time steps. We also explored varying the forecast window in the set of
1, 4, 12, and 39 time steps.

Figures 4.2 and 4.3 show the general conformity of the DASCh emulation with the theoretical
analysis.

Figure 4.4 shows a further regularity that was
discovered experimentally, but not in the
theoretical analysis. The variance of orders
issued from Site 2 is inversely proportional to the
square of the forecast window used to project
future demand from past demand.

Thus the experimental results confirm and extend
the theoretical analysis of amplification of
variance. The variance of the order stream
produced by a site (the “focal site”) has the
general dependency

<ρ(t)2> ∝ L2<η(t)2>/f2

where

• <ρ(t)2>  is the time-averaged variance of the order stream produced by the focal site;

• L is the lead time required by the focal site to ship orders, and includes both its own cycle
time and the expected time needed to deliver the order to its supplier and ship the supplier’s
goods back;

• <η(t)2>  is the time-averaged variance of the order stream coming into the focal site;

• f is the forecast window over which the focal site averages incoming orders in order to
generate the orders it sends to its suppliers.

Operationally, these results suggest that the focal site can minimize its contribution to the
amplification of variance through the system by shortening its lead times and increasing its
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forecast window. The latter of these actions is of doubtful benefit, since it causes other problems,
to be discussed shortly.

4.1.2. Input Networks (Lower Half of Hourglass)
Figure 4.5 shows a comparable
analysis for twenty-three weeks
of normalized data from our
automotive OEM partner,
which represents the lower
(input) half of the hourglass. In
contrast to the upper half, where
sites must forecast demand
statistically based on the history
of converging customer orders,
orders in the lower half diverge
from a single manufacturer who
has already constructed a
demand projection, and so
ideally can be driven by
forecasts passed down the chain. The extremely high variances may be partly attributed to the
fact that the upper (distribution) half of the hourglass has already amplified the natural consumer
demand. In view of this high variance, the slight increase in the mean level of orders across the
three levels of the supply chain is probably meaningless. As in the previous example, there is
significant increase in variance from the OEM’s outgoing order stream to that of the first tier
supplier (in this case, more than a 3X increase). In contrast, there is virtually no amplification in
variance between Tier 1 and Tier 2.

We do not have a theoretical analysis of the lower half of the hourglass, but analysis of
experimental data shows a distinct structure to this amplification. Now each site that receives
orders amplifies the variance in the orders it sends out by the product of its lead time and any
noise that it adds to the forecast. “Noise” in this case models any variation from the forecast from
the focal site’s customer to the forecast that the focal site provides to its supplier. Ideally, there
should be no need for such variation. However, industry experience indicates that suppliers do
not trust the forecasts provided by their customers, often with good cause, and as a result usually
modify them before passing them on to their suppliers.

We experimented with these dynamics by varying the consumer’s order variance over the set {5,
10, 20} , the noise added by Sites 2 and 3 over the set {1, 5, 15}, and the lead times of Site 2 over
{6, 16, 31} and of Site 3 over {10, 20, 35}. Each configuration was run for 1000 steps, and
statistics were gathered on the last 750 steps of each run to avoid any start-up transients. Under
this regime, Figure 4.6 shows Site 3’s outgoing orders to the Supplier plotted against the least-
squares fit

183.7 + 3.1*(η(t)2+ N2*L2 + N3*L3)

where

• η(t)2 is the variance of the Consumer’s order stream;
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• N2 is the variance of the noise
added by Site 2,

• N3 is the variance of the noise
added by Site 3,

• L2 is Site 2’s lead time,

• L3 is Site 3’s lead time.

The two N*L terms represent
amplification introduced by the sites
receiving the forecast.

This model may explain the
differences in amplification observed
in the actual data of Figure 4.5. The Tier 1 supplier is significantly modifying the forecast from
the OEM, has a long lead time, or both, and so adds a significant increment to order variance,
while the Tier 2 supplier holds very close to the forecast it receives from Tier 1 or has a much
shorter lead time (or both).

This analysis reemphasizes the importance of short lead times, and encourages suppliers not to
modify forecasts received from their customers. Of course, the experiment assumes that the
customer actually orders what the forecast predicts. If (as often happens in automotive) the
forecast is inaccurate, its usefulness to suppliers decreases dramatically. In these cases, suppliers
are likely to return to a weighted average forecast like that necessary in the distribution half of
the hourglass, with amplification driven according to the analysis in the previous part.

4.2. Correlation of Variation
Our theoretical analysis of weighted average forecasting (Section 3.1) suggests that order
processing may generate correlation in the orders seen by subtier suppliers even when the
customer’s original stream of orders is uncorrelated. The theory predicts that this effect will be
strongest with short lead times, large variances in the incoming order stream, and a small
forecast window. To test this prediction, we set up the model with Consumer orders at a mean of
100 and a variance of 50, forecast windows in Sites 2 and 3 of 5, and lead times of 2 for Site 2
and 3 for Site 3, and ran for 1000 time steps. Then we examined the results for correlation using
time delay plots, in which each element in a time series is plotted on the Y-axis against the
previous element on the X-axis. Figure 4.7 shows the delay plot for the Consumer orders. As
expected for IID data, they form a circular blob, with no apparent structure.

Figures 4.8 and 4.9 show the orders issued by Sites 2 and 3, respectively, in response to the IID
consumer orders. These plots show two interesting features. First, although plotted to the same
scale, the clouds of points are larger, reflecting the amplification of variation already seen in
Figure 4.1. Second, the clouds are no longer circular in shape. Now they are stretched along a
line indicating X = Y. This stretching indicates that these sites are more likely to follow a large
order with another large one, and a small order with another small one. In other words, their
orders have become correlated in time, and increasingly so as we go deeper in the supply chain.
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Although our theoretical analysis of variation correlation is in the context of the distribution half
of the supply network, we explored the automotive data from the input half using the same
mechanism. Figures 4.10, 4.11, and 4.12 show time delay plots for the orders generated by the
OEM, Tier 1, and Tier 2, respectively. The change in size of the cloud from Figure 4.10 to
Figure 4.11 reflects amplification of variance due to Tier 1’s order processing. The change in the
shape of the cloud shows that this processing is also altering the correlation of successive orders
in the stream. Because Tier 2 is passing on Tier 1’s forecast virtually unchanged, Figures 4.11
and 4.12 are of the same general shape and size. The data support the conclusion that PPIC
computations in both halves of the hourglass can impose spurious structure on order streams,
structure that does not reflect true correlations in the demand posed by the end customer.
Effective supply chain management needs mechanisms to correct for this spurious structure.

4.3. Persistence of Variation
A basic exercise in analyzing the dynamical behavior of a system is to present it with a step
function. In DASCh, such a perturbation causes persistent variations in downstream ordering
behavior.

Figure 4.13 shows the effect of two successive step functions in Consumer orders (the solid line)
on the orders issued by Site 3 to the supplier (the dashed line), using weighted average
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forecasting. In both cases, the Consumer increases
its order level by 10 orders per time period.

Though the change in customer orders is a one-time
phenomenon, its effect persists in the orders that
Site 3 issues to the Supplier.  The persistence time
is of the same order as the forecast window.  For
the first step increase in Consumer orders, the
forecast window is 39 weeks and the disturbance in
Site 3 orders persists for 31 weeks (to the last
upward spike over the new demand level) or 47
weeks (to the downward spike). The amplitude of
the variabil ity in Site 3 orders ranges from a high of
125 to a low of 100, or a total range of 25.

Before increasing the Consumer demand again, we
cut the forecast window in both PPIC modules from
39 to 20.  The period of variabil ity lasted fewer time steps (22 to the last order above 120, or 29
to the final downward spike).  But shortening the forecast window, as discussed previously, has
the effect of increasing the amplification.  Thus the second set of peaks is taller than the first
(ranging from 110 to 145, or a total range of 35).

Thus the weighted forecasting algorithm has the effect of imposing a memory on the system. The
longer the forecasting period, the longer the memory, but the lower the amplitude of the
variations generated.

The implication of persistence is that supply chains have memories.  They can retain the state of
the chain.  Forecasting windows are one such memory. Other experiments show that backlog
orders and high work in process (WIP) levels also constitute implicit memories.  Backlogged
orders record the state of demand at the time the orders were placed, not the current demand.

These memories must be shortened to improve agili ty, the ability to respond rapidly to changes
in the marketplace.

4.4. Generation of Variation
Now we look at a third behavior, for the first time in the nonlinear domain of our model.  A
chain with stable boundary conditions can generate variation internally.  Assume that the
customer has a steady demand with no superimposed noise.  The bottom level supplier makes
every shipment exactly when promised, exactly in the amount promised. Batch sizes are still 1,
but now we impose a capacity threshold on sites 2 and 3: in each time step they can only process
100 parts, a threshhold nonlinearity. As long as the customer’s demand is below the capacity of
its suppliers, the system quickly stabil izes to constant ordering levels and inventory throughout
the chain. When the top level of demand from the customer exceeds the capacity of the
intervening sites, those sites see oscillation in their inventory levels. We did not expect this
behavior initially, but after observing it, were able to capture it analytically in the theory set forth
in Section 3.2.
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Figure 4.14 shows the inventory
oscill ation that arises when demand
exceeds capacity by 10%. Site
inventories oscillate out of phase with
one another, in the form of a sawtooth
that rises rapidly and then drops off
gradually.

Detailed analysis of the experimental
logs reveals the underlying mechanism
behind this oscillation. The defect
between an incoming order and a site’s
output erodes away the safety stock at
that site.  If a site makes 100 units per time period and is being asked for 110, it can ship 110 by
taking 10 from its safety stock.  On the next cycle it can still ship 110 but the safety stock drops
by another 10, and so forth until the safety stock runs out.  At that point, the site misses a
shipment. That shipment goes into the backlog, and whatever was produced in that time period
effectively generates a new safety stock. Then the process begins again. The sawtooth emerges
directly from this interplay of demand, safety stock, and capacity limitation. If there is no safety
stock initially, the first missed shipment will behave like a safety stock, leading to the same
dynamics. The rapid rise of the sawtooth corresponds to the deposit of the site’s output into
inventory when it is inadequate to fil l an order, while the slow fall of the sawtooth reflects the
depletion of this safety stock to fill successive orders. The overall height of the sawtooth is
determined by the site’s capacity, and its period is determined by the degree of overload. In this
case, a 100 unit base capacity supports ten time periods of 10 unit excess orders, and the missed
order that replenishes the safety stock occupies another time period, resulting in a sawtooth
period of eleven time units.

As the system operates above capacity, two backlogs build up: a backlog of orders waiting to be
filled, and a backlog of WIP behind the capacity bottlenecks. This WIP continues to drive the
site at its capacity limit even if demand subsequently drops below capacity. In this mode, each
cycle produces more finished goods than are consumed by one of the new below-capacity orders.
The excess goes into finished goods inventory, which builds up until it can satisfy one of the
backlogged over-capacity orders, at which point the older order is fil led and inventory drops in
one step. The result is again a sawtooth oscillation, but of opposite direction, with gradual rise
(generated by the cycle-by-cycle excess
production over the new demand level)
and a rapid drop (generated by fill ing a
backlogged over-capacity order).

Figure 4.15 shows the dynamics resulting
from increasing the Consumer demand
from 110 to 150. After a transition period,
the inventory levels settle down to a
sawtooth with a shorter period. Now one
cycle’s production of 100 can support
only two orders, leading to a period-three
oscill ation. The inventories of sites 2 and
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3, out of synch when Demand/Capacity = 110/100, are now synchronized and in phase. (This
synchronization is not explained by the theory of Section 3.2 or the abstraction of the model as a
modulo function.)

The transition period is actually longer than appears from Figure 4.15. The increase from 110 to
150 takes place at time 133, but the first evidence of it in Site 2’s dynamics appears at time 145.
The delay in the effect is due to the backlog of over-capacity orders at the 110 level, which must
be cleared before the new larger orders can be processed.

Figure 4.16 shows the result of increasing the overload even further. (Because of the increased
detail i n the dynamics, we show only the inventory level for Site 2.) Now the Consumer is
ordering 220 units per time period. Again, backlogged orders at the previous level delay the
appearance of the new dynamics;
demand changes at time 228, but
appears in the dynamics first at time
288, and the dynamics finally stabil ize at
time 300.

This degree of overload generates
qualitatively new dynamical behavior.
Instead of a single sawtooth, the
inventories at sites 2 and 3 exhibit
biperiodic oscill ation, a broad sawtooth
with a period of eleven, modulated with
a period-two oscillation. This behavior
is phenomenologically similar to
bifurcations observed in nonlinear systems such as the logistic map, but does not lead to chaos in
our model with the parameter settings used here. The occurrence of multiple frequencies is
stimulated not by the absolute difference of demand over capacity, but by their
incommensurabil ity, as detailed in Section 3.2.

4.5. Summary
The preliminary DASCh experiments show that even the simple four-stage in-line chain that we
modeled supports a wide range of non-intuitive behaviors with important commercial
implications. In spite of the simple nature of the model, not only our Fortune-100 informant but
other industrial reviewers to whom we have showed these results recognize them as
characteristic of real-world supply-chain dynamics.
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5. Summary and Recommendations
This part summarizes some of the insights gained from DASCh in terms of the characteristics
outlined in the project proposal, makes recommendations for supply chain operation that emerge
from our research, and proposes important directions for future study.

5.1. A Dynamical Characterization of Supply Networks
The initial proposal for this effort identified four important characteristics of a supply network
viewed as a dynamical system, described in terms of its state space. This section defines a model
of state space for a supply network and reviews these four characteristics in terms of our
experience with the model.

5.1.1. The DASCh State Space
For a given set of the parameters defined in Part 2 of this report, the major state variables of
interest in DASCh are the levels of backlogged orders, finished goods inventory, and WIP
inventory at sites 2 and 3. One can easily justify including many other variables in a definition of
the system’s overall state space, but these six variables are sufficient for the purposes of
discussing the four characteristics in this section.

5.1.2. Accessibility
Accessibil ity describes where in its state space the system can go. We observed several
constraints on accessibil ity in our experiments, but one important potential for restricted
accessibil ity has not yet been observed.

The behavior of the individual site agents excludes regions of the state space in which finished
goods inventory exceeds backlogged orders.

In addition, if a site’s delayMean is 0, WIP inventory is locked at 0.

When demand is constant and less than or equal to capacity, the system settles into a point
attractor whose location in state space is defined by configuration parameters, and does not visit
other locations. However, the addition of noise to demand causes the trajectory to explore the
vicinity of this point. Because of ampli fication of variance, the region that is explored is not
spherical, but rather ellipsoidal, elongated along the dimensions corresponding to site 3

When demand is greater than capacity, the sites must backlog some orders. We have studied only
the case when demand is constant. The amount of backlog at site 2 is an integral multiple of the
customer orders. Finished goods inventory at both sites and WIP inventory at site 2 take on only
a finite number of values, which depend in a complicated way on the magnitudes of demand and
capacity. Specifically, finished goods inventory is attracted to the region
Production ≤ Inventory(t) < Demand+Production (Section 3.2.2.1). Inventory can occupy any of
D distinct values, where D is the numerator of Demand/Production reduced to lowest common
terms, and never enters the bands between these values, which have width equal to Demand/D
(Section 3.2.2.4). This behavior is typical of a limit cycle.

In both point attractors and limit cycles, the accessible volume of state space has measure zero.
In our initial experiments, we have explored only a small fraction of the possible parameter
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combinations, and have not yet found a combination of parameters that causes the system to
become formally chaotic. In such a regime the accessible volume of state space would be finite
and nonzero.

5.1.3. Controllability
Controllabil ity describes the extent to which users can steer the system trajectory in state space
deliberately. Discussing this characteristic for DASCh requires us to identify the “user” of the
system. Candidates are the four main sites along the backbone of the basic experimental model:
the consumer, the two manufacturing sites (2 and 3), and the supplier.

The consumer exerts control on the model through the line of orders that it issues. For a given set
of site parameters, the magnitude of these orders determines the point attractor or limit cycle to
which the system is drawn. If the orders include noise, the attractors become less precise, in
ways not directly under the control of the consumer. That is, the amplification, correlation, and
persistence phenomena, driven by the PPIC mechanisms, limit the consumer’s control over
chain-wide state variables.

The sites exert control on the model through the parameter settings that they select for
themselves and their associated PPIC agents (as outlined in Tables 2.2 and 2.3). In Part 5, we
have described some of the trade-offs in these parameters. For example, a long forecast window
reduces ampli fication but increases persistence. Based on our experience thus far, it appears
likely that improved controllability from the standpoint of manufacturing sites depends not on
finding the “right” parameters, but on developing adaptive behaviors for the sites.

5.1.4. Inertia
Inertia measures how fast the system can move from one state to another.

In our experiments, DASCh manifests inertia in two ways. First, the persistence phenomenon is a
form of inertia that is driven by the forecast window: the longer the forecast window, the more
inertia in the system, and the longer it takes to forget past state. Second, when demand exceeds
capacity, unsatisfied orders build up at the sites, along with WIP at site 3, and subsequent
changes to the level of demand are not visible until previous orders have been satisfied. The
greater the excess of demand over capacity, the longer it takes the producers to work through the
backlog and WIP, and the greater the inertia.

5.1.5. Performance
Performance measures how well the system performs at a fixed location in its state space. The
main performance measures we have used in these experiments are the magnitudes of finished-
goods and WIP inventory, which are direct values of state variables. The model supports
measurements of throughput at manufacturing sites and average time to fill and average lateness
at the consumer, but the current set of experiments has focused on understanding the basic
dynamics of the system rather than optimizing these performance metrics.
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5.2. Operational Recommendations
The experimental results in the previous part of this report suggest a number of specific
operational recommendations that concern two aspects of system management: PPIC and overall
system scaling.

5.2.1. PPIC
Most of the anomalous behavior we detected can be traced to the PPIC agent, which in our
model implements a simple version of the widely-used MRP algorithm. This agent embodies the
only adaptive behavior currently assigned to the manufacturing sites, and it is effective in
reducing variabil ity in average time to fil l orders at the consumer. However, companies that use
such an algorithm in managing their order stream should be aware of some of the anomalies to
which it can lead:

• Any forecasting of demand based on past orders will lead to some amplification of variance
[16]. Long lead times and distortions of customer forecasts exacerbate this effect, particularly
when they are combined at the same site. Recommendation: Lead time reduction has long
been recognized as an important discipline in manufacturing improvement; its contribution to
variance amplification is an additional and previously unrecognized motive to pursue such
activities. The contribution of distortions of customer forecasts suggests that members of the
supply network resist the temptation to adjust such forecasts. This recommendation applies
not only to suppliers, but also to OEM’s, who too often distort their internal forecasts as a
deliberate effort to manipulate supplier behavior (for example, to lock in supplier capacity).
Experience with the DASCh model led our Fortune-100 informant to restrict the
manipulations to forecasts traditionally made within his company, and he traces subsequent
performance improvements in inventory levels to this change in behavior.

• While longer forecasting windows reduce ampli fication, they are a major component of
inertia, leading to persistence of the effect of a change in demand. Other forms of memory
(backlogged orders and WIP) can lead to a different variety of inertia: a delay in the time at
which one becomes aware of a change in external conditions. Recommendation: Recognize
the tension between amplification and inertia, and take both explicitly into account in setting
forecasting windows.

• PPIC imposes structure on the demand stream, described in Part 5 as “correlation.” This
structure is spurious in the sense that it does not reflect top-level requirements, but is purely
an artifact of the dynamics of the system. Recommendation: Low-level suppliers should be
extremely suspicious of systematic variability that they see in their incoming order stream,
and should confirm it independently (for example, through information received directly
from the OEM) wherever possible before making business decisions.

• One important input to PPIC is the current inventory level. We have found that this level can
be driven into complex oscillations by excess of demand over capacity. Current PPIC
algorithms do not take these oscill ations into account. While we have not analyzed in detail
the implications of such a driving function on PPIC behavior, they can hardly be negligible.
Recommendation: Variations in inventory should be reviewed for possible origins in
mismatch of demand to capacity before being used directly as input to PPIC computations.
The patterns identified in Section 3.2.2 may be useful in constructing such diagnostics.
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5.2.2. System Scaling
The oscillatory behavior we observed shows how a bottleneck in the supply chain not only limits
capacity, but also introduces variation. This behavior leads to two recommendations:

• Recommendation: Leanness has its limits. Suppliers should be careful to provide adequate
capacity for expected demands, and should plan for the consequences of undertaking
commitments in excess of that capacity.

• Recommendation: OEM’s should recognize the possible performance and long-run cost
consequences of overloading suppliers (for example, by adding safety buffers to early orders
and canceling later ones to compensate for any over-deliveries).

5.3. Future Research
The unexpected results found in this study offer a rich foundation for data-analytic study of real
firms, and only scratch the surface of the exploration that can usefully be done with the present
model. In addition, it is desirable to extend the structure of this model to match a wider range of
realistic supply networks, and to explore more sophisticated mechanisms for overcoming the
undesirable behaviors that we have identified.

5.3.1. Data-Analytic Opportunities
The current project has focused on constructing and exploring a simple model of a
manufacturing supply chain. To date, we have ensured the realism of our model qualitatively, by
close collaboration and regular review with a manufacturing manager at a major electronics firm.
The results in hand (such as the different functional dependencies of amplification in distribution
vs. input networks, or the detailed structure of capacity-induced oscillations) suggest signatures
for which real-life inventory data could be tested. Such comparison will not only provide a
quantitative measure of the fidelity of the model, but also suggest the most appropriate
enhancements to reflect more complex industrial practices than those we have currently
modeled.

5.3.2. Current Structure and Algorithms
The current model will support extended experimentation in three directions.

1. What is the effect of introducing variation (either structured or noise) at different points in the
system? We have systematically explored only a few of the parameters that are equipped with
noise modification, and have varied demand only as an isolated step function. It would be
interesting to explore (for example) the interaction of real periodic variations in demand with the
correlations generated by PPIC, or with inventory oscillations induced through capacity
limitations. If we drive the system in its oscillatory parameter regime with demand that oscillates
at some incommensurate frequency, we should see something like quasi-periodicity.  There are
also parameter regimes in which quasi-periodicity becomes chaotic, so we might well be able to
produce chaotic behavior in this system.  We need to see also whether such parameter regimes
are reasonable for operating supply chains.

2. What dynamics emerge from coupling the two sides of the supply network hourglass together?
Our experiments to date use the same forecasting mechanism at all sites. By constructing a
longer chain, we can reasonably use weighted forecasting in the upper half and prediction in the
lower half.
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3. How does the behavior of the network vary with the scale of production? We expect the
dynamics of large-lot production (cars and toasters), which we have explored most
systematically, to differ significantly from small-lot production (ships and aircraft). The latter
domain will be important for understanding the effects of mass-customization. (It may be that
useful results for small-scale systems will require structural extensions described in the next
section.)

5.3.3. Structural Extensions
The current model supports only linear sequences of sites. The model should be extended to
support arbitrary networks. Such an extension will permit us to model three important real-world
situations:

1. The effects of assembly (a single site with multiple suppliers) and disassembly (a single site
with multiple consumers). This application requires significant modifications to PPIC.

2. Multiple products with common components (for example, several models of computer, all
using the same power supply). This application requires that sites be able to allocate components
across products, presumably on the basis of production quotas.

3. Competitive suppliers and/or consumers. This application also requires sites to make
allocation decisions, presumably in this case on the basis of cost and price information.

5.3.4. Adaptive Mechanisms
The current work has shown the limitations of traditional PPIC as an adaptive mechanism for
individual sites. Several approaches deserve exploration for their potential to control the
undesirable behaviors we have identified.

1. The forecasting techniques we modeled, while representative of those used in industry, are
primitive. We intend to exploit more sophisticated methods that draw on the characteristics
of the data stream.

2. The insights gained in this research offer a rich new perspective from which to evaluate PPIC
algorithms. The behavior of common algorithms in the face of demand-driven oscillations or
persistence from past unrepeated events needs to be understood much better. It is likely that
significant improvements will be necessary to cope with the resulting distortions.

3. Forecasting is one form of learning, focused on one aspect of the environment (the incoming
order stream). Learning might also be usefully applied to the performance of suppliers, in
compensating for deviations between orders and shipments. Especially in a nonlinear
network with competing suppliers, a site might vary its preference for one supplier over
another based on past performance. Similarly, with multiple customers for a scarce product, a
site might shift its preference from one to another on the basis of past accuracy of
predictions.

4. Currently, the only signals providing coordination among sites in our model are orders,
shipments, and (in the lower half of the hourglass) predictions of future orders.
Supplementing such signals with market mechanisms on which the persistence of agents
depends has proven useful in other domains [11] in controlling disorder due to nonlinearity.
Extension of the structure to permit competitive supply and consumption will allow us to
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explore the impact of dynamic bidding mechanisms, in which the flows of orders and
shipments change over time based on bidding across competitors.

5. As forecasting, learning, and coordination mechanisms become more sophisticated, the
parameters that one can adjust in a site proliferate beyond the limit of manual exploration.
We expect the use of genetic mechanisms to explore parameter combinations to be both
necessary for manageable experimentation and promising for the development of greatly
improved performance.
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