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0. Executive Summary

Modern manufaduring is moving away from verticaly integrated companies that control all
aspeds of production and distribution, toward networks of independent suppliers and
distributors. These supply networks (more commonly called “supply chains’) addressa number
of business nedls, including concentration on core competencies and the avility to respond
rapidly to unanticipated change. However, they present significant operational challenges. Many
of these challenges are driven by the dynamical behavior of the supply chain as its members
interad with one another. Data analytic goproacdes are not effedive in understanding these
dynamics, because the ommercial environment changes too rapidly to permit the lledion of
consistent data series long enough to support statistical requirements. DASCh takes the goproach
of constructing and experimenting with an agent-based emulation model of the system that can
maintain a given set of conditions as long as desired.

0.1. Previous Work

Threedifferent approaches have been taken to the problem of modeling and analyzing supply
chains.

Control theorists model the chain with differential or difference ejuations and use transform
analysisto explore their behavior. This approac is dynamicd but relies heavily on lineaity
asumptions that are not satisfied in most supply networks, for reasons discussd in the problem
statement sedion.

Classicd operations research approades include optimization theory, game theory, and
statistical analysis. These tools apply to nonlinea aswell as linea systems, but often make
unrealistic statisticd assumptions. In addition, they are not explicitly time-based, and so cannot
cgpture the dynamical charaderistics of the system.

Smulation approadhes experiment with an exeautable model of the system. In most cases these
models are in support of one or the other of the previous two approaches. Virtualy all simulation
work to date models the supply chain as a set of differential equations and then integrates these
equations over time. DASCh uses agent-based modeling, representing the various components of
the supply chain by software agentsthat emulate their acdual behaviors. The DASCh approad is
more faithful than equation-based modeling, better supportsthe increasingly decentralized nature
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of supply chains and the need to protect proprietary information, and provides a much closer
interadion between model and real system.

0.2. Model Structure

The agents currently implemented in DASCh are of threespecies. Compary agents represent the
different firmsthat trade with one another in a supply network. They consume inputs from their
suppliers and transform them into outputsthat they send to their customers. PPIC agents model
the production planning and inventory control algorithms used by company agents, and currently
support asimple MRP model. SHpping agents model the delay and uncertainty involved in the
movement of both material and information between trading partners. To insure the realism of
this model in spite of its simplicity, we reauited a Fortune-100 manufacturing manager as a
projed advisor. He guided our dedsions during model construction and reviewed the results we
obtained. In spite of the restricted scope of the model, he found its results of sufficient interest
and credibility that he implemented changes in his own operations based on the model, and has
observed subsequent performance improvements that he attributes to these changes.

0.3. Theory

One of the promises of DASCh is in analyzing nonlinear systems, which in general do not yield
to analytical solution. However, where theoretical analysis is possible, it addsinsight and can
help dired experimentation. We have developed theoretical treaments for two aspeds of the
behavior of DASCh. The first predicts the phenomena of amplification and correlation of
variance in the order sream even in DASCh' s its linear domain. The second describes detail s of
the oscillatory behavior of inventory levels under the imposition of a threshold nonlinearity in
site caacity.

0.4. Experimental Results

The experiments described in this report involve alinea supply chain with four company agents
(aboundary supplier, a boundary consumer, and two intermediate firms producing a product
with neither assembly nor disassembly). The two intermediate company agents eat have PAC
agents to convert incoming ordersto orders for their inputs, and shipping agents manage all
movement of both material and information among company agents.

This simple structure was intended as a starting point. It was expeded to yield relatively
uninteresting behavior, on which the impad of successve modificaions could be studied. In
fad, it shows arange of interesting behaviors in terms of the variability in orders and inventories
at the various company agents.

» Asthe demand generated by the top-level consumer propagatesto lower levels, its variance
increases, so that lower-level suppliers experience much more variability than higher-level
ones. This phenomenon iswidely discussed in the literature.

* Not aswell reaognized in the literature is the correlation imposed on an originally
uncorrelated series of random orders by the PR C algorithms in the supply network.

* A single modest change & the top of the supply chain generates disturbances in the order
sequences of lower tier suppliersthat persist long after the original change.
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» Evenwhen top-level demand is constant and bottom-level supply is completely reliable,
inventory levels at intermediate sites can generate complex oscillations in inventory levels,
including period doubling, as aresult of cgpacity limitations.

The detail ed discussion of the experimental results identifies operating parametersthat affed
these behaviors.

0.5. Summary and Recommendations

The insights from DASCh relate to the four charaderistics of dynamical systems described in the
original proposal (acessibility, controllability, inertia, and performance), and lead to several
recmmendations for adual trading pradices. The DASCh reseach may profitably be extended
in four diredions. quantitative analysis of real manufacuring data guided by the behaviors we
observe in the model, further experimentation with the arrent model, structural extensionsto the
model to support arbitrary network structures, and adaptive site-level behaviorsto compensate
for undesirable system-level dynamics.
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1. Previous Work

This part reviews previous quantitative reseach on the behavior of supply chains. It groupsthe
relevant literature acording to technical approach, summarizes the behaviors that have been
identified, and compares our work with this badkground.

1.1. General Approaches
Threedifferent approaches have been taken to the study of supply networks.

1. Control theorists model the chain with differential or difference ejuations and use transform
analysisto explore their behavior. This approac is dynamicd but relies heavily on lineaity
asuumptions that are not satisfied in most supply networks, for reasons discussed in the
problem statement sedion.

2. Classicd operations research approacdes include optimization theory, game theory, and
statistical analysis. These tools apply to nonlinea aswell as linea systems, but often make
statistical assumptions and are not explicitly time-based.

3. Smulation appoaches experiment with an exeautable model of the system. In most cases
these models are in support of one or the other of the previous two approadies. These in turn
are of two broad classes: equation-based modeling (the dominant approach until now) and
agent-based modeling (our approad).

1.1.1. Control Theory

This approad originated with [22], and is part of the work for which Simon was awarded the
1978Nobel Prizein economics. It usestools developed for the study of differential or difference
equations through time, particularly Laplaceand Z transforms. Thusiit is explicitly a dynamical
approad, sensitive to the time-based behavior of a system. However, reliance on transforms
makes it most naturally applicable to linea systems. A closely related line of work, discussd
under “Simulation” below, also models systems with difference or differential equations, but
solves the equations numerically rather than through transforms, and thus is not restricted by
lineaity assumptions.

[4] develops a Z-transform of atime-averaged ordering rule and shows by composition up the
chain that amplification is partly due to adding safety stock on top of safety stock. He
recommends dividing the order from the immediate aistomer into two parts, one refleding acual
changed demand from the end customer, the other reflecting adjustments made by the immediate
customer for his own purposes. A given node in the chain should adjust its production only to
changes in the end customer’s demand. The recommended mechanism for distinguishing the two
components of the order is detailed knowledge of the immediate austomer’s ordering policy,
from which a producer can derive its own policy. However, disclosure of these policies between
companies is problematic. Even if firms are willing to dsclose such information, they may well
distort their disclosures to manipulate their trading pertners.

[27] models demand within asingle echelon (level of the supply chain) as average mnsumption
plus fraction of inventory deficit. An elaborate Laplacetransform analysis showsthat three
parameters $ould be dout the same if the system is to settle quickly but without oscillation:
time to adjust inventory, demand averaging time, and roduction delay time. [29] extends this
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approach to decompose the Forrester model into cascading echelons and use transfer functions to
analyze their behavior, focusing on amplification of order variance. The work of Towill and his
team includes simulation as well as transform analysis. The simulation components are
summarized below.

1.1.2. OR Analysis

These studies draw on classicd OR techniques such as optimizaion, game theory, and statistical
analysis. They do not assume lineaity, but do make other strong assumptions about the
underlying statistical distributions, and focus on time averages and stealy states rather than
dynamical behavior.

1.1.2.1. Optimization

[16] studies four possible caises of the amplification of demand variance Two of these draw on
optimization theory.

» Demand signal processing: Formulates the ast minimization problem for aretailer and
shows that processing historical demand to forecast future demand in order to minimize st
results in variance in outgoing ordersthat is grictly larger than sales variance The variance
increases with lead time.

* Pricevariations. Formulates aretailer’s buying policy in the faceof fluctuating prices.
Unreported optimization computations show that the optimal policy isto let inventory drop
during times of high price, and stock up during periods of low price, thus providing an
additional sourceof variation beyond that in the austomer’s demand.

[30] uses Lagrangian optimization to compare csts under threedifferent mechanisms of
operation for threelevel chain: optimization of the top level only; optimization aadossall levels;
local optimization at ead level. He shows that the third approacd gives better results than the
firgt, a afradion of the computational effort of the second.

1.1.2.2. Game Theory

One of four causes of variation amplification studied in [16] isthe “rationing game,” in which
purchasers competing for a scarce input overstate their needs in order to be sure of getting
enough. Analysis of the Nash equilibrium for these competing purchasers shows that the result of
such behavior isto increase variation in the orders they place with resped to that in their
incoming cemand.

1.1.2.3. Statistical Analysis

These studies typically compute various moments of critical quantities, such as demand or
inventory levels. They are not bound by lineaity assumptions, but they bring in a host of other
asumptions, such asthe forms of distributions that generate various quantities or the statistical
independence of samples from one another. In addition, they deal with averages over time, and
so are not truly dynamical.

One of four causes of variation amplification studied in [16] is order batching (combinations of
incoming orders from a number of retailers). The analysis datistically derives the variance of the
overall order stream from the variances of the individual streams under assumptions of random,
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positive wrrelation, and balanced ordering. If 6 is the variance of each of the N retail ers, this
analysis shows that Var(Correlated) > Var(Random) = Var (Balanced) = N* 2.

[29] offers a static analysis of the material costs experience by a manufadurer depending on
whether or not supdiersreveal their cgpadty constraints, and shows that disclosure of cgpacity
constraints benefits the manufacturer and the lower-priced supplier but not necessarily the
higher-priced one.

[14] develops models of inventory levels and supplier response time on the input side of the
network, based on atolerance stacking model. These methods yield the standard deviation of
adual demand, from which areorder point can be defined.

[15] derives the relation between base stock level and atarget service level, using standard
analysis of statisticd moments.

[5] looks a demand variance, inventory holding costs, and badkorder costs on the distribution
side of a supply network, using algebraic analysis and an unspecified simulation model. He
explores threevariables: whether retailers' orders are aligned or not (cf. [16]); the interval
between orders from a given retail er; and the minimum order quantity permitted. Threekinds of
adion are found to be dfedive in lowering the variance in the net demand stream issuing from
the set of retail ers, with different impad on overall supply chain costs:

1. Balancing orders by forcing afixed interval between successive orders and staggering who
can order when lowers costs.

2. Raisingthe interval between orderstends to raise @sts.

3. Raisinginterval but dropping order quantity so asto keep retail er order frequency constant
reduces costs as well as variance

1.1.3. Simulation and Emulation

These gproadies adually exeaute amodel of the system and observe its behavior
experimentally. The general name for such an approach is “simulation.” Within simulation, we
distinguish two varieties. equation-based modeling and agent-based modeling. In addition of
DASCh, we know of only two other examples of agent-based modeling, [26] and [17, 24]. [26]
outlines the structure of a supply chain modeling system, with structural and control elements,
but reports no results. [17, 24] describe aframework and some simple average results on
inventory levels and cycle times, but no dynamical analysis. In addition to the studies colleded
here, [5] claims numerical confirmation of his theoretical results, but offers no details on
structure of the model, platform, or methodology.

Virtually all simulation studies of supply chain dynamics rely on the integration of differential or
difference equations, providing an experimental counterpart to the control theory approadh. The
work of Forrester and his gudents with these tedhniques has led to the field of “systems
dynamics.” It enjoys an adive professonal society [6], extensive literature including
methodological texts[9, 21], supporting software (including DYNAMO, iThink, Vensim, and
PowerSim), and consulting firms that specializein this approad (e.g., Forrester Consulting,
Pugh-Roberts Associates, Decision Dynamics). This modeling approad, which has been
applied to awide range of “soft” policy studies, focuses on “what-if” games with various control
variables rather than diredly emulating the intrinsic behavior of the elements of the dain.
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[9] formulates supply chains as difference ejuations and then uses Dynamo to sum them
numerically. His models lump variables aaossthe entire dhain into one system, without
maintaining any disciplined division among individual entities.

[23] follows Forrester’s lead, but pays more attention to the divisions between entities. He
develops adifference equation model of each echelon in the dhain, uses it to set upper bounds on
optimal behavior, and fits it to the observed behavior of humans in the Beer Game. Focuses on
distribution side, but with a nod to raw materials. He observes not only amplification of variance
(which many other researchers note), but also (briefly) oscillation and phase lag.

[1] develops a detail ed model of the interadion of product makers and the manufadurers of the
machine tools that they use, including effeds of a step function increase in demand, available
workforce, production lead-time for machine tools, and smoother ordering and operating
policies, and compares it to empirica observations. The model lumps together the parameters for
each sedor, representing all product makers by a single instance of the equations for “product
maker,” and all machine makers by a single instance of the equations for “machine maker.”

Towill and his associates support their control theoretic analysis with simulation studies. [28,
33]. A numerical evaluation, based on Towill's model of the edelon, shows the dfed of two
components of an order: the passthrough of the original demand from one's customer, and the
added amount one imposes to manage internal demand variation. The results uggest that these
should be passed along the supply chain separately, a wnclusion similar to that readed
analytically by [4].

1.1.4. Observed Behavior

A brief comment in [23] recognizes threemain behaviors in supply chains: amplification of
demand variation, oscillation, and phese lags. He relates oscillation to cgpacity limitsin the
fadory and phase lags to the time needed for information and material movement and
processing. His and ather studies provide detail ed discussion only of the amplification of demand
variation from one echelon to the next.

This amplification was observed by [9] and has been highlighted by [3] as the “law of industrial
dynamics.” The studies surveyed above offer a number of recommendations to fix this problem:

» Balanceretailer requests onthe supplier [16], [5].
* Tradk what isin the pipeline [23].
* Eliminate excessive layers (e.g., the distributor) [2§].

* Integrate information flow throughout the dhain [28]. [4] showsthat amplification results
when one echelon applies its sfety corrections to alump result from a previous echelon that
includes not only original demand but also the previous echelon’s safety corrections. Better
information flow could avoid this double-counting. Two approadies have been proposed:
passing along two lines of orders [33], and having each echelon deduce its ordering policy
from algebraic manipulation of the policy of the previous level [4]. Both approades are
subject to gaming behavior when there is competition for scarce resources [16].

* Reducetime delays[28].
* Improve pipeline policy [28§].
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» Tune parameters of order algorithms[16, 28].
* Increase time between orders, while deaeasing minimum order quantity [5].

* Keeptimeto adjust inventory, production delay, and demand averaging time all about the
same [27].

Many of these recommendations founder on the problem of the cmmmons. [16] in particular
shows that behaviors that are locally rational for an individual firm may exacebate bad effeds at
the system level.

1.2. Where does DASCh fit?

DASCh falls within the “simulation and emulation” approacd to supply chain analysis, sincewe
wish to addressnonlineaities that are not accessible to analytic control theoretic formulations
and dynamical effedsthat are not visible in traditional OR approades. Our approadc is agent-
based modeling (ABM) rather than equation-based modeling (EBM). Based on our preliminary
results with such a model [18, 19|, we have observed a broader range of supply chain behaviors
than has been documented by other researchers, lealing to correspondingly richer pradica
recmmendations.

1.2.1. Agent-Based Behavioral Emulation

To our knowledge, the only work on an ABM of a supply network (as opposed to an EBM) is
that of [26] and [17, 24], and the focus of those teams has been on the structure of the model and
on the kind of average-based analysis typica of other approades, not dynamical results.

A praditioner is concerned with the underlying structure of a model, the naturalness of its
representation of a system, and the verisimilit ude of a straightforward representation. This
sedion discusses these mnsiderations with special referenceto modeling supply networks. Some
of these isaues have been discussed by others in the domains of social science [2, 7] and exlogy
[13, 31] (where ABM’s are usually called “Individual-Based Models’).

1.2.1.1. Model Structure

The difference in representational focus between ABM and EBM has consequences for how
models are modularized. EBM’ s represent the system as a set of equations that relate observables
to one another. The basic unit of the model, the eguation, typically relates observables whose
values are affected by the adions of multiple individuals, so the natural modularization often
crosses boundaries among individuals. ABM’ s represent the internal behavior of each individual.
One gyent’s behavior may depend on observables generated by other individuals, but does not
diredly access the representation of those individuals' behaviors, so the natural modularizaion
follows boundaries among individuals.

This fundamental differencein model structure gives ABM a significant advantage in
commercial applications sich as upply network modeling, in two ways.

1. Inan ABM, ead firm has its own agent or agents. An agent’s internal behaviors are not
reguired to be visible to the rest of the system, so firms can maintain proprietary information
about their internal operations. Groups of firms can conduct joint modeling exercises while
kegoing their individual agents on their own computers, maintaining whatever controls are
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nealed. Construction of an EBM requires disclosure of the relationships that ead firm
maintains on observables  that the equations can be formulated and evaluated. Distributed
execution of EBM’s is not impossible, but does not naturally respect commercially important
boundaries among the individuals.

2. In many cases, simulation of a systemis part of a larger projed whose desired outcome is a
control scheme that more or lessautomatically regulates the behavior of the aitire system. The
agents in an ABM correspond one-to-one with the individuals (e.g., firms or divisions of
firms) in the system being modeled, and their behaviors are analogs of the real behaviors.
These two charaderistics make agents a natural locus for the goplication of adaptive
techniques that can modify their behaviors as the agents exeaute, so asto control the emergent
behavior of the overall system. The migration from simulation model to adaptive control
model is much more straightforward in ABM than in EBM. One an easily imagine amember
of asupply network using its simulation agent as the basis for an automated control agent that
handles routine interadions with trading partners. It is much less likely that such a firm would
submit aspects of its operation to an external “equation manager” that maintains gecified
relationships among observables from several firms.

More generally, ABM’s are better suited to domains where the natural unit of decomposition is
the individual rather than the observable or the equation, and where physical distribution of the
computation acossmultiple processors is desirable. EBM’s may be better suited to domains

where the natural unit of decomposition is the observable or equation rather than the individual.

1.2.1.2. System Representation

The variety of EBM with which we have experimented (ODE’s) most naturally representsthe
processbeing analyzed as a set of flow rates and levels. ABM most naturally represents the
processas a set of behaviors, which may include features difficult to represent as rates and
levels, such as gep-by-step processes and conditional decisions. ODE’s are well -suited to
represent purely physica processes. However, businessprocesses are dominated by discrete
decision-making. Thisis only one example of representational advantages of ABM’s over
EBM’s. More generally:

» ABM’sare eaier to construct. Certain behaviors are difficult to translate into a consistent
rate-and-level formalism. PR C algorithms are an important example. In our attempts to
duplicae DASCh results using VenSim®, we were unable to construct acredible PAC
algorithm using the rate-and-level formalism. [32] comments on the complexity of such
models, and we have been unable to find an adual example of such a model in the system
dynamics literature. Recent enhancementsto ithink® reflect such difficulties. The most
recent release of this popular system dynamics padage includes “bladk boxes’ for specific
entities such as conveyors or ovens whose behavior is difficult to represent in apure rate-
and-level system [10]. One suspeds that the only redi stic way to incorporate complex
decision algorithms sich as PAC in system dynamics models will be by implementing such
blad boxes, thus incorporating elements of ABM in the spirit of [8].

* ABM’smake it easier to distinguish physicd spacefrom interadion space In many
applications, physical space helps define which individuals can interad with one another.
Customer-supplier relationships a entury ago were dominated by physica space lealing to
the development of regional industries, such as the aitomotive industry in southeast
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Michigan. Advances in telecmmunications and transportation enable mmpanies that are
physicdly separate from one another to interad relatively easily, so that automotive suppliers
in Michigan now find themselves in competition with suppliers based in Mexico or the
Pacific rim. Such examples show that physicd spaceis an increasingly poor surrogate for
interadion spacein applications sich as commerce ODE methods sich as system dynamics
have no intrinsic model of space aall. PDE’s provide aparsimonious model of physical
space but not of interadion space ABM’s permit the definition of arbitrary topologies for
the interadion of agents.

» ABM’soffer an additional level of validation. Both ABM’sand EBM’s can be validated at
the system level, by comparing model output with real system behavior. In addition, ABM’s
can be validated at the individual level, since the behaviors encoded for eat agent can be
compared with local observations on the adual behavior of the domain individuals. (A
balancing consideration is that the code needed to represent an agent’s behavior in ABM is
often longer and more complex than atypical equation in an EBM, and thus potentially more
susceptible to representational error.)

* ABM’s support more dired experimentation. Managers playing “what-if” games with the
model can think directly in terms of familiar businessprocesss, rather than havingto
translate them into equations relating observables.

 ABM'’sare eaier to translate badk into practice. One purpose of “what-if” experiments with a
model is to identify improved businesspradices that can then be implemented in the
company. If the model is expressed and modified dredly in terms of behaviors,
implementation of its recommendations is simply a matter of transcribing the modified
behaviors of the agents into task descriptions for the underlying physical entitiesin the real
world.

1.2.1.3. Verisimilitude

In many domains, ABM’s give more redistic results than EBM’s, for manageéable levels of
representational detail. The qualification about level of detail isimportant. Since PDE’ s are
computationally complete, one can in principle mnstruct a set of PDE’s that completely mimics
the behavior of any ABM, and thus producethe same results. However, the PDE model may be
much too complex for reasonable manipulation and comprehension. EBM’s (like system
dynamics) based on simpler formalisms than PDE’s may yield lessrealistic results regardliessof
the level of detail in the representation.

One example in the cae of extremely simple agents is the Ising model of ferromagnetic phase
transitions in statistical physics. The ayent in this model isasingle gom in an N-dimensional
sguare lattice of similar agents. Its behavior isto change the orientation of its $in to minimize
the energy inits environment. One common and generally useful approach to such systems
employs mean field theory, analyzing the behavior of arepresentative &om under statistica
averages over the states of neighboring atoms [20, pp. 430-434). In some dimensions, this mean
field EBM approach may miss the order of the phase transition, predict a phase transition where
there is none, or yield an inacarate temperature for the transition. (In one and two dimensions,
the eguations defining the Ising model can be solved exadly and analyticall y without the
homogeneity assumptions that lead to the arors of the mean field approacd, but such solutions
areintradable in higher dimensions.) ABM models that emulate the behavior of individual atoms
can be developed for arbitrary dimensions, and are more acairrate both qualitatively and
guantitatively than the mean field approximation.
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In a more complex domain, reseachers in the dynamics of traffic networks have achieved more
realistic results from traffic models that emulate the behaviors of individual drivers and vehicles,
compared with the previous generation of models that simulate traffic asthe flow of afluid
through a network [12]. The latter example beas grong similarities to the flow-and-stock
approach to suppy chain simulation, and encourages us to develop an agent-based approac for
this application as well.

Wilson [34] offers a detail ed study that compares ABM and EBM using the same system (a
predator-prey model). He develops a series of EBM’ s, ead enhancing the previous one to rectify
inconsistencies between the ABM and the EBM. The study assumes that the ABM is the more
realistic model, and that the EBM isthe gpropriate locus for making adjustments to bring the
two models into agreement. The initial ODE EBM describes readions between the two species,
but representing dispersal through spacerequires extending it to a set of spatio-temporal integro-
differential equations. These equations, modeling both individual charaderistics and dispersal
using population averages, lead to qualitatively different behaviors than do ABM’s. For example,
ignoring local variation in dispersal leads to limit cycles rather than the extinction scenarios that
dominate ABM’s. To correct for these lumped parameter effeds, the EBM is interrupted at eat
iteration of the integration to add a random perturbation to the population parameter a eat
location and to zero local population levelsthat fall below specified threshholds.

The disadvantages of EBM in these examples result largely from the use of averages of critical
system variables over time and space. They assume homogeneity among individuals, but
individuals in real systems are often highly heterogeneous. When the dynamics are nonlinea,
local variations from the averages can lea to significant deviations in overall system behavior.
In business applications, driven by “if-then” decisions, nonlinearity isthe rule. Becaise ABM’s
areinherently local, it is natural to let ead agent monitor the value of system variables locally,
without averaging over time and spaceand thus without losing the local idiosyncrasies that can
determine overall system behavior. The EBM used in our experiments does not use averages
over individuals, and so does not suffer from this disadvantage. However, red-world supply
networks are much larger. The total number of shipping points in the U.S. automotive industry is
on the order of 40,000 and it is difficult to ssehow a parsimonious EBM of such a system could
avoid the use of lumped parameters.

1.2.2. DASCh Preliminary Results

The results described later in this report include the behavior of variation amplificaion discussed
by other reseachers, but with new quantitative detail s. In addition, we offer the first systematic
discussion of the generation and persistence of variation. These ae specific examples of our
distinctive emphasis on understanding the range of overall dynamics of the system rather
jumping immediately to detailed analysis of causes for a single system behavior.
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2. Model Structure

This part describes the structure of the DASCh model and the behaviors and parameters
asociated with its various components. The structure of the model and behavior of itsindividual
agents were developed in close cnsultation with the Manager of Eledronic Planning at
manufaduring facilities of a Fortune-100 electronics manufadurer to ensure that, though
simplified to facilitate initial exploration, they are still realistic and the underlying assumptions
are representative of industrial pradice

2.1. The Model
The model represents a supply chain consisting

of an OEM, consumer demand for its product, (Consumen

and a supplier of itsraw materials. Only one , g,
product is modeled, and it is manufacured —— “4,
from only one raw material. The OEM acdually ””

has sveral manufaduring sites, although the
single product is manufadured & only one of

them, so only that one manufacturing site is
modeled. The OEM has a separate cantralized iy e
shipping site, making the flow of goods from P

. . h N ite
supplier to OEM manufacturing site to OEM k’% ’{ (sappiier)

shipping site to consumer. The ajents
representing these four entities are clled
Supplier-4, Site-3, Site-2, and Consumer-1, Figure 2.1: The DASCh Supply Chain
respedively. Figure 2.1 shows the interconnedion of these agents. The DASCh software permits
construction of supply chains of any length, but the experiments reported in this document use
this simple four-level chain.

2.1.1. Consumer-1

Consumer-1 represents demand for the finished product. It sends ordersto Site-2 and receives
finished goods from Site-2. It normally expects ordersto arrive & if shipped immediately from
inventory of Site-2, and keeps gatistics of average time to fill the orders and average order
lateness

2.1.2. Site-2

Site-2 represents the OEM’ s centralized shipping fadlity. It recaves orders from Consumer-1
and fillsthem from its finished goodsinventory asfast asit can. It orders goods from Site-3
using PAC. The amount of time incoming gapds must spend at a production site before they can
be shipped out is a variable set by the user; in our experiments, we use adelay of 1. Site-2 may
be subjed to additional cgpacity constraints.

A separate objed, PPIC-8, represents the forecasting and PR C agorithms of Site-2.
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2.1.3. Site-3

Site-3 represents the OEM’ s manufaduring facility. It receives orders from Site-2 and fills them
from its finished goods inventory as fast as it can. It ordersraw materials from Supplier-4 using
PRC. It takes a minimum of 2 time steps in our experiments to manufacure finished goods
from raw materials. Site-3 may be subject to additional cgpadty constraints.

PR C-9 represents the forecasting and PR C algorithms of Site-3.

2.1.4. Supplier-4

Supplier-4 represents the supplier of raw materials. It receves orders from Site-3 and builds to
order. Inour experiments, we impose adelay of 4 time-steps from receipt of an order to
shipment of finished gaods. Supgier-4 is not subjed to cgpadty constraints.

2.1.5. Order and Shipping Delays

It takes one time step for orders placeal by Consumer-1, Site-2, or Site-3 to read Site-2, Site-3,
or Supdier-4, respedively. Similarly it takesthreetime steps (more generally, a mean and
random variance) for goods to be shipped downstream from one entity to the next.

2.1.6. Order of Execution
Eadh time step the simulation does the following adions in order.

1. Ordersand gaodsthat are due to be delivered, are delivered.
Consumer-1 and the Sites run their PR C algorithms and placetheir orders.

N

3. Sitesadd new finished goodsto their inventories aceording to cgpadty constraints.
4. Sitesand Supplier-4 send out shipmentsto fill ordersthat are due.

2.1.7. Initialization

The simulation is initialized to a steady state of orders and shipments of 100 unts each time step,
at ead level in the supply chain. The Sites PAC algorithms behave as if they have seen a
forecast of consumer demand for 100 unts per time period upto and including time step 15
Thus in most situations one would set Consumer-1 to order exadly 100 unts at least until time
step 16 This cutoff is derived from certain delays in the system, and is gecific to our
experimental set-up, but can be changed as necessary.

2.2. Operation of the Simulation

2.2.1. The Configuration File

A configuration file is ecified on the smulation command line. For example, the mnfiguration
file named “perfed.in” is gedfied via an argument “-IF=perfect.in”. Much of the datain the
configuration file is best left untouched, largely becaise the initialization routines make many
asuumptions about the configuration. Certain things noted below can only be dhanged in the
configuration file.
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2.2.2. Runtime Probes

In interadive mode, probes can be aeaed to observe and modify parameters of the various
entities. Some of the parameters are best left unchanged at runtime, however. For example, there
are caes where arays whose size depends on a parameter value, are allocaed at the beginning
of the simulation run and are not adjusted dynamically.

2.2.3. Consumer

The Consumer is cgpable of generating demand with noise, essentially rolling diceto yield the
exact demand for ead time step. It is also cgpable of sending an exad forecast of future orders
to Site-2, for use when Site-2 is configured to receive aforecast from its customer. (For
example, if the Consumer models an automotive OEM and Site-2 models afirst tier supplier.)
These fads imply that Consumer-1 must internally compute the adual amount it will order
(rolling dice) ahea of time. The simulation generates Gaussian distributions gecified by amean
and variance. If the random number generator returns a negative value, zero is used.

Table 2.1 summarizes the parameters in the Consumer agent.

The initial demand is gecified in the demandSring parameter in the wnfiguration file. Itisa
string whose format is a series of triples sparated by hyphens; each triple denotes a number of
time steps, amean, and a variance separated by colons. For example, “16:1000-1:10010

Table2.1: Consumer Parameters

Name Type Use Meaning

demandString String Setin Specifies demand. Triples separated by hyphens; each
Configuration | triple is number of time steps, mean, and variance.
cycleDemand Unsigned | Setin both Zero means the last mean and variance specified by
(see text) demandString is repeated indefinitely. Nonzero means
the demandString demand is repeated cyclically.
demandMean Unsigned | Setin both The mean used in calculating the demand when it

(see text) doesn’t come from demandString.
demandVar Unsigned | Setin both The variance used in calculating the demand when it
(see text) doesn’t come from demandString.
prevDemand Unsigned | Read-only The actual demand of the previous time step.
Probe
nextDemand Unsigned | Setin Probe | The amount that will be ordered by Consumer-1 next
time step, regardless of what has been in the forecast
sent out previously.
sourceLeadTime | Unsigned | Setin If the Consumer sends an order at time step ¢, it expects

Configuration | to receive the goods at time f + sourceLeadTime. If set
to 0, the sum of the means of the involved delays is
used.

ppicUntil Unsigned | Setin The Consumer sends a forecast of its demand for
Configuration | ppicUntiltime steps into the future, including the current
time step. ppicUntil is enforced to be at least one. A
value greater than one is useful only if the upstream
Site’s PPIC uses Upstream Prediction forecasting. See
the Perfect Prediction scenario, below.
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means 16 steps of demand at 100 followed by one step of demand with a mean of 100and
variance of 10.

When the simulation starts up, the Consumer parses its demandS3ring and storesthe resultsin
some internal arrays. Thus changing its value & runtime has no effed. Initially, the Consumer
has to pre-compute its demand for the first ppicUntil time steps. In order to maintain a forecast
ppicUntil stepslong, ead time step it has to compute the demand for the time ppicUntil stepsin
the future. Changing the values of cydeDemand, demandViean, and demandvar at runtime will
not affed demands already computed, but will begin to affed the demand ppicUntil - 1 stepsin
the future. Notethat if cydeDemandisone or if the means and variances ecified in
demandSring have not yet run out, then changing demandviean and demandvar has no effect.

PrevDemandis available purely for informational purposes, to be viewed in aprobe. It shows
the ac¢ual demand used in the previous time step. Changing its value has no effed.
NexDemanddisplays the a¢ual demand that has been forecast and will be used in the next time
step. Changing it adually changes the demand that is used, thus rendering the prior forecasts
inacarate.

The parameters sourcel_eadTime and ppicUntil are analogousto like-named parametersin the
Sites. SouceleadTime isthe number of time steps the Consumer expedsit to take from when it
sends out an order to when the goods arereceived. It isonly used in computing lateness If set
to zero, the Consumer uses sum of the expected delays in transmitting the order to Site-1 and
shipping the product bad.

PpicUntil isthe number of time steps of forecast demand that are made available to Site-1's
PRC agorithm. This determines the number of future time steps of adual demand that must be
calculated in advance Seethe discussion on the Upstream Prediction forecasting method and
the Perfed Prediction scenario, below.

2.2.4. Site

Sites reaeive orders and shipments of their inputs at the beginning of each time step, run their

PR C agorithms, send out orders for their inputs, processWIP into finished gaods inventory, and
send out shipments of their products. A Site'sgoal is alwaysto fill incoming orders from
inventory, shipping on the same time step the order is received.

The model of processing at a Site isin two stages. First, incoming materials are “aged” or
delayed to simulate the minimum amount of time it takesto do the processing. Seaond, the WIP
is forced through a cgadty constraint “funnel” that can only allow a maximum number of units
to become finished goods eat time step. Either stage may be circumvented: the “aging’ can be
set to zero and the caacity constraint can be set arbitrarily high. Gaussian noise may be alded
to either processing stage.

Table 2.2 shows the parameters for site agents.

Incoming materials are subjed to “aging” in the processngArea. Then they are moved to
inProcesswhere they are subjed to the caacity constraint. When they make it through the
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Table 2.2: Site Parameters

Name Type Use Meaning
delayMean Double Setin Mean number of time steps to “age” incoming materials to
Configuration | represent processing.
delayVar Double Setin Variance in the Gaussian distribution of the number of

Configuration | time steps for “aging”.
capacityMean | Double Set in both Mean number of units that can move from inProcess to
finished goods inventory in one time step.

capacityVar Double Set in both Variance in the Gaussian distribution of the number of
units that can move to inventory in one time step.

capacity- Double Read-only Actual capacity for the current time step (mean plus actual

WithNoise Probe sampled variance)

capacity- Double Set in both The capacity distribution is capped at capacityMean *

MaxMultiplier capacityMaxMultiplier.

inProcess Unsigned | Set in both Total number of units that have been “aged” but not
passed through the capacity “funnel’.

inventory Unsigned | Setin both Finished goods inventory as a total number of units.

totalThroughput | Unsigned | Read-only Total actually processed up to current time step.

Probe

cgpacity “funnel”, they are placed in finished gaods inventory from where they are used to fill
incoming orders from downstream.

A Site or Suppier does not ship materials for an order until it has sufficient finished goods
inventory to fill the whole order. A Site sends orders for its materials to the upstream Site or
Supplier, called its source, and receives a separate shipment for ead order it sends. Each
shipment of materials istreated as asingle lot for the “aging’ process For example, if the Site's
“aging’ is %t to amean of 5 and a variance of 2, the distribution is sampled once for the whole
lot, and the whole lot moves to inProcess for example 6 time steps after it is received.

Oncethe WIP reades inProcess it loses its identity as a lot and becomes merely a number of
units. The caoacity “funnel” allows a cetain number of units, not lots, to move from inProcess
to finished goods inventory ead time step.  Units from inventory are assembled into lots
acording to orders received from the downstream Consumer or Site. If a Site has multiple
ordersdue (e.g. some ae overdue), it will fill the oldest (by when received, not due date) for
which it has sufficient inventory, first. 1t does not consider fill ing ordersthat, if shipped, would
expect to arrive prior to the due date (using the expeded shipping celay).

It is possible for a Site to recave ashipment of materials and, if the “aging” delay iszero and the
cgpacity sufficiently high, in the same time step move it all the way through processing and ship
out the resulting finished goods.

Ead time ashipment of materialsisreaived, the Site samples a Gaussan distribution with
mean delayMean and variance delayVar to determine how many time stepsto “age” the lot
before alding it to inProcess. If the sample is lessthan zero, zero is used.

Eadh time step, the Site samples a Gausgan distribution with mean capacityMean and variance
capecityVar to determine how many units to move from inProcessto inventory. If the sample is
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Table 2.3: PPIC Forecast Parameters

Name Type Use Meaning

forecastMethod | Unsigned | Setin both | 0 = constant

1 = weighted average

2 = upstream prediction

forecastWindow | Unsigned | Setin both | The number of time steps of past actual demand used by
the weighted average method.

forecastVar Double Setinboth | Variance used when adding noise to the constant and
upstream prediction methods.

historicDemand | Unsigned | Setin both | Mean demand of constant method and presumed demand
prior to beginning of simulation run.

predictUntil Unsigned | Read-only | The number of time steps of forecast (including current
Probe time step) that are needed by the PPIC algorithm.

lessthan zero or greder than capacityMean * capacityMaxMulti plier, the distribution is
resampled.

2.2.5. PPIC: Forecasting

Eadh Site delegates two of its functions to its corresponding PR C (Production Planning and
Inventory Control) agent. Oneisthe development of aforecast of future incoming orders for its
product and the other isrunning the PR C algorithm to predict its future inventory and outgoing
orders for materials.

Table 2.3 shows the parameters that the PPIC agents use in forecasting demand.

There ae aurrently three methods for developing the forecast, determined by forecastMethod If
foreastMethod = 0, a constant value with Gaussian moise isused; if it is 1, aweighted average of
past actual ordersisused; and if it is 2, a prediction of future orders from the upstream Site or
Consumer with Gaussan moiseis used. The demand for the aurrent time step is always known
exactly: it isthe sum of the due and overdue incoming orders alrealy in hand. In some
configurations it is possible to receve orders aheal of expedation and therefore have orders
which are not dueto be shipped immediately. For time steps after the aurrent one, the maximum
of the ac¢ual orders and the initial value determined by the forecasting method is used by the
PHC algorithm.

The forecast is made far enough into the future to enable the PR C algorithm to compute the
amount that will be ordered ead time step, for ppicUntil time steps into the future (including the
current time step). The order it sends out on that last time step will arrive after some delay as
inpu materials, and after further delay will become finished gaods ready to ship out. (The sum
of those delays is cdled myLeadTime.) The forecast hasto go out to the expeded time step in
which that last order will be available to ship as product; thus the forecat is for ppicUntil plus
myLeadTime time steps.

2.2.5.1. Constant Method

The onstant method samples a Gaussian distribution with mean historicDemand and variance
forecastVar, oncefor ead future time step, to determine the initial forecast. Although the
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sample wuld be negative, when it is compared with adual orders (which are nonnegative), the
maximum will be nonnegative. The sampling is done ajain every time step; for example, at time
t = 10, it will sample the distribution to predict demand for the futuretimet = 15. Later, a time
t = 11, it will take anew sample of the distribution to predict demand for the futuretimet = 15.

2.2.5.2. Weighted Average Method

The weighted average method computes a weighted average of the a¢ual demand for the past
forecaastWindow time steps and uses it asthe initial forecast value for all futuretime steps. If tis
the arrent time, demand,; isthe atual demand at time t-i, and w is the weight of the i™ previous
demand, then the formula for the weighted average is

w, = forecastWindow +1-i

forecastWindow

Wi d ema nd t=i 2 forecastWindow
1=1 _
forecastWindow - n ( n+ 1) |§=1 Wi dema nd t—i

2"

Whent - i is before the simulation run began (i.e. i > t), historicDemandis used for the demand.

2.2.5.3. Upstream Prediction Method

When forecastMethod s 2, the forecast is based on a prediction passed upfrom the downstream
Site’'s PAC (or from the Consumer). The prediction gives the number of units that will be
ordered ead time step, starting with the aurrent time and going on for the downstream entity’ s
ppicUntil steps. For ead future time step of the forecast, the downstream prediction is used as
the mean of a Gaussian distribution and forecastVar as the variance; a sample is taken and used
astheinitial forecast. If the prediction does not extend far enough into the future, the last value
isrepeaed. If the prediction is absent (only possible on the very first step of a simulation run),
historicDemandis used.

Above it was mentioned that the forecast is developed for myLeadTime plus ppicUntil time steps.
In order for the prediction passed upfrom the downstream PR C or Consumer to be long enough
to cover the entire forecast, the downstream entity’s ppicUntil must be equal to or greater than
myLeadTime plus ppicUntil. The Perfed Prediction scenario (below) gives an example of this,

In the aurrent implementation, the prediction is attached to the actual order and carried with it. If
the order delivery delay isincreased and given noise, odd effeds could result. The softwareis
caefully written not to crash (famous last words), but the dynamics are likely to be illusory.
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Table 3.4: PPIC Algorithm Parameters

Name Type Use Meaning
safetyStock Unsigned | Set in both PPIC attempts to keep inventory at or above this level.
sourceLeadTime | Unsigned | Setin both If the Site sends an order at time step {, it expects to

receive the materials at time { + sourceLeadTime. If
set to 0, the sum of the means of the involved delays is

used.

sourceBatchSize | Unsigned | Set in both Outgoing orders for materials are integral multiples of
sourceBatchSize.

ppicUntil Unsigned | Setin The PPIC computes and sends a forecast of its

Configuration | demand for ppicUntiltime steps into the future,
including the current time step. It is enforced to be at
least one. A value greater than one is useful only if the
upstream Site’s PPIC uses upstream prediction
forecasting. See the Perfect Prediction scenario,
below.

myLeadTime Unsigned | Do notuse! | If the Site will need to have more finished product at
time step t + myLeadTime, it should order more
materials at time £. If setto 0, the sum of the means of
the involved delays (including sourceLeadTime) is
used.

2.2.6. PPIC Algorithm

The PAC algorithm is gredly simplified becaise there is a single product made from a single
raw material obtained from a single source Table 2.4 shows the parameters used in the PRC
algorithm. Starting at the aurrent time step and going out into the future, it lays out

» the expeded outgoing shipments (the forecast, which isthe ad¢ual due and overdue orders for
the aurrent time step),

» the expeded replenishmentsto inventory (product coming out of the @rresponding Site's
processing, realy to ship),

» the expeded resulting inventory at the end of the time step, and

» the number of units of material that must be ordered ead time step in order to keep the
inventory at or above the safetyStock level.

The PAC does not modify amounts or due dates on orders that have already gone out. It also
does not take into account the caoacity constraint. It doeslook at expeded delays through the
sourceleadTime and myLeadTime parameters. When it orders, it only ordersin integral
multiples of sourceBatchSze.

The parameter myLeadTime should be replaced with aread-only output parameter that the user
can view inaprobe. Currently it should be set to zero in the configuration file, and only
sourceleadTime should be modified. Setting myLeadTime to anonzero value will cause
inconsistent behavior.
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The Supplier buildsto order rather than to inventory. It receves orders, “ages’ them to smulate
processing, and ships materials with no cgpacity constraints and no “finished gaods’ inventory.
The “aging” delay is determined by sampling a Gaussian distribution governed by two
parameters, delayMean and delayVar. |If the sampleis lessthan zero, zero isused. Table 2.5
summarizes the parameters of the Suppier agent.

Table 2.5: Supplier Parameters

Name Type Use Meaning

delayMean Double Setin Mean number of time steps to “age” incoming orders to
Config. represent processing.

delayVar Double Setin Variance in the Gaussian distribution of the number of
Config. time steps for “aging”.

totalOrdersFilled | Unsigned | Read-only | Total number of items actually shipped over time to date
Probe

cntOrdersFilled | Unsigned | Read-only | Total number of orders fulfilled over time to date
Probe

currentShipment | Unsigned | Read-only | Total number of items shipped at the current time step.
Probe
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3. Theory

A general theoretical analysis of a cmplex system such as a supply network is not practicd.
However, it may be possible within certain restricted domains. When it is possible, it can help
guide experimentation and provide insight into experimental results. This sedion provides two
such analyses. The first isrestricted to the behavior of the system within its linear domain, and
provided predictions that we were ale to confirm experimentally using the DASCh model. The
seoond examines an extremely circumscribed classof behavior (inventory oscillations) in a non-
linea domain of the model. In this case we observed the behavior initially in experiments, and
then developed the theory to degpen our understanding of what was happening.

3.1. Linear Domain: Amplification and Correlation of Variance

3.1.1. Analysis

Consider our supdy chain with all batch sizes %t to 1, infinite (more or lesg capacity, and initial
conditions that suppat a steady state of customer orders of say, 100 unts per time step. Now
add Gaussian independent, identicall y-distributed (11 D) noise to the austomer demand. We ae
interested in the response of the system, as evidenced in the ordering petterns down the dhain, to
this 11D noise. There ae no other sources of noise or of uncertainty in the dhain.

Let L bethelead time. Let f be the length of the historical epoch used to make forecasts.
Consider an element, k, of the dhain. (k=1 isthe astomer.) R(t) isthe order placed at timet by
element k to its supplier (element k+ 1), which, assuming no uncertainty or noise in shipping or in
other delay times will be delivered to that element’s inventory at timet+L. Inour smple PAC
the expresgon for R(t) can be written as

R(t) = max E) A-1(t) - i(—F(t'+t) + P(t+1") + Q(t +t'))E D

* F(t) istheforecast of what we exped will be ordered by our customer (element k-1).

* P(t) iswhat we know is in the pipeline which is under the control of element k (e.g., already
being processing in the fadory).

*  Q(t) iswhat we exped will be delivered to inventory at timet, but is not under control of
element k. That is, there could, in principle, be uncertainty about Q(t), but not about P(t). For
the present purposes, the distinction between P and Q isirrelevant.

* I(t) isthe inventory at timet.

A isthe safety stock level.

Now, for simplicity, first consider k=2. The forecast used in our smple PAC is given by

F(t) = max{C(t), 0(t)]
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where O(t) isthe a¢ua amount we know must be shipped from inventory (site k) at timet, and
C(t) isaweighted average forecast based on f previous orders. Inour simple PAC C(t) is just

()—ﬁ)zs(t‘l) (40-j)

St) isthe ad¢ua customer demand on day t, i.e., what is supposed to be shipped from inventory
ondayt). Inour case, St) = M + n(t), where M is the mean customer demand and n(t) is11D
(adual Gausdan in our case).

An important point here isthat F(t) isthe same for al t from now upto L stepsin the future.
Furthermore, if the size of the noise is not too large, then we should never have to invoke the
max condition in the definition of F(t): O(t) isdriven primary by badk-orders, but if we never
run out of inventory, we shouldn’t ever need to have O(t) greaer than C(t). With 30% or less
variance, this doesn’t seem to happen. So, for the purposes of this simple analysis, assume that
F(t) = C(1).

Now, with no uncertainty other than consumer demand, we can write (1) as
L-1
R(t)=A-1(t) - ZAI (t+'t) + F(L) 2
t=

HereR(t) = M + p(t), and F(t) = M + Xt), where M isthe mean customer demand. If we plug
infor Rand F and eliminate the M’s, we have

)= A-1(t) + Z[é(t) ~ p(t+t-L)]+ () )

Note that thisis a linear auto-regressive expression for p(t). Unlike n(t), the driving term Xt) is
not [I1D. Rather it isalinea combination of 11D terms.

[(t), the inventory at timet, is just
t-1

1©)=1(0) + im ©)=10+ 3 -SE)+RE-1) =10+ in(t') - p(t-L)

(Of course, we haveto cut this off at zero, or let the lower limit go to -c.)

Plug thisinto (3) and we have an expresson for the sum over p(t):
t t-1

B(t) = t') =Lo(t) + A-1(0) + t'

(t) tZ’;O() (t) V) tZn()

B(t)-B(t-1) = p(t), so we have:
p(t) =L(6(t)-o(t-D) +n(t-1
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To compute the variance of p(t) and imagine that we ae doing an average over an ensemble,
yielding

(0°®) ~ L'Qln’)

where Q isanumerical fador, discussed further below.

3.1.2. Discussion
Note threeimportant feaures:

1 The variance of p(t) is magnified by the fador of L? over the variance of 7, because the
algorithm uses the same F(t) for all dates between now and L days in the future. The
amplification points up the importance of maintaining appropriate daraderisticsin the
forecasting function.

2. The variance is dationary.

3. The k = 2 order fluctuations about M, p(t), are linearly correlated. Reall that n(t) islID
and so not correlated, but the k = 2 order fluctuations are. 1n general, with a forecast that
depends linealy on f terms in the past, p(t) will be linealy correlated over arange of
order f. Thisisimportant. The order fluctuations down the chain are not independent,
even if the driving customer orders are.

It is draightforward to apply this analysisto ather elements down the dhain. The only thing that
changes, semi-quantitatively, isthat the driving ordersto ak>2 element are not 11 D. Looking
bad at (2) one can deducethe following general charaderistics:

* Let L(i) bethe ordering delay at sitei and f(i) be the historica horizon for forecasting at

sitei. Then, the variance of the fluctuations about the mean of orders placed by sitek, is of
order

(PEM)~ L LI Q(n*)~ L Q(p2®)
Q and Q' are numerical factors, discussd below.

» These fluctuations are linealy correlated over atime horizon of the order of

gfa)

The inventory at timet, 1(t), shares sme charaderistics of the ordering time series. For
example, at sitek = 2, and under our assumptions above, 1(t) is given by

1(t) = 1(0) + im () = ip(t'—L) —nt) =A+L3(E-L-1)
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The fluctuations of 1(t) about A are also linearly correlated over times of order f. The variance of
these fluctuations is gationary, and the magnitude of the variance also grows as we go down the
chain, again like L% For siteswith k>2, the range of linea correlation as well as the times over
which these variances are linealy correlated grows in the same way (semi-qualitatively) asthe
orders placed time series.

Additional Comments;

1.

In addition to the variances growing, the L?, the fluctuations about the mean are linealy
correlated. The existence of these dynamicd correlations is not widely appreciated in
industry, but they are clealy very important in analyses and ordering policy dedsions.

Aswe move down the dhain, the situation becomes more wmplicaed, becaise the
driving forcefor sitesk>2 are drealy linealy correlated. Sinceall the correlations are
linear, and sincethe equations are alditive, it is unlikely that further analysis will derive
any nonlinearities here. But if we want to do a detail ed analysis of the magnificaion
fadors, we do need to consider carefully the correlations in the driving force

The increase in the variance ea&h time we move down the dain increases by a fador of
L2 and another numerical factor that we have alled Q. Q depends in detail on the
forecasting formula, and on whether the ordering data cming into site k are correlated or
not. Inour case, for example, for site 2, this fador is fairly small, and acounts for the
fad that although the varianceis larger for site 2 than for the aistomer orders, it is not
25timeslarger. To compute this fador, just take the formula for &(t), writeit in terms of
n(t), form t) - 4(t-1), square it, and do an ensemble average remembering that n(t) is
[ID. All the aosstermswill vanish, and you will be left with afairly small number.
When we compute the variance of the orders placal by site 3, one differenceis that the
orders coming from site 2 are linealy correlated, and so the dossterms in the analogous
calculation for site 3 do not vanish. Thus, the fador is not as small (although still | ess
than one). Similar comments apply to the cdculation of the variance of the fluctuations
of the inventory. Here, though the fadors are not as small since we need to square J(t),

not J(t) - A(t-1).

Equeations (1) and (2) can be considered particularly simple examples of feedbadk. That
is, what you order on day j affeds what you will order on day j+i, for some set of i. The
feedbadk in thiscaseissimple and linea. But it can easily become more interesting and
nonlinea oncewe take cgadty constraints, batching, and noise in other parts of the
system into account.

The basic message here is that this system should be viewed as a dynamicd system, in
general, anonlinea dynamical system, cgpable of awide variety of behaviors. We have
just seen the asolutely simplest one here, but even in this case, the analysis has
important lessons for any company using a PAC agorithm similar to the simple one we
have used in this model.

From areseach point of view, we have here asystem with a range of parameters that can
be ajusted to explore different regions. The region discussed here isasimple linea one.
Itis, in fad, with some effort, completely analyticd. When we invoke caacity
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congtraints, other kinds of forecasting formulag batching effeds, as well as other kinds of
driving forces, we will get into nonlinea regimes. There we will be able to do ather
kinds of analyses, but they will not be completely analyticd asthe linea one here.
Potentially even more interesting is the fad that using this same basis, we @an model the
effeds of various kinds of adaptive decision making.

3.2. Nonlinear Domain: Inventory Oscillations

Consider a supply chain in which consumer demand is constant and supplier cgpacity infinite,
but in which the intermediate sites have caacity limitations lower than the level of consumer
demand. In such a @mnfiguration,

» production sites will operate a cgpacity;

» finished goodsinventory at production sites will build up wntil it is high enough to satisfy an
order;

» at that point an order will ship and inventory wil | drop, then build upagain until another
shipment is possible.

Thuswe exped to seeinventory oscill ations at sites with insufficient capacity, and our
experiments bea this out. This sdion establishes a representation for such oscillations and
definitions, then makes a series of predictions that are satisfied by our experiments. (In fad,
historicall y, the experiments came first, and observation of the regularities we observed in them
led to thisanalysis.) Finally, it offers a useful geometric interpretation.

In this mode of operation, a useful abstradion of the model is the modulo function. Since e&h
time step generates new inventory of capacity and outstanding orders ship everything in excess
of order, the inventory at the nth time step is just mod((n-1)* capacity, order), where mod() isthe
modulo function, the essence of athreshold nonlineaity. (Later, we will point out some detail s
of the behavior of the system in this regime that are more complex than this simple abstradion.)

3.2.1. Representation and Definitions

A useful abstradion of the behavior of a given system consists of a numericad sequence
describing the number of time steps needed to read successve local maxima until the system
returnsto aprevious level of inventory. That is, for agiven Demandand Production,

1. Pick alocal maximum in the inventory time series.
2. Reaord the number of steps needed to read the next local maximum.
3. Reped until the inventory is the same that it was at the original maximum.

For example, consider a system with Demand = Initial inventory = 170and Production = 100
Experiment shows that successive inventory levelswill be (170, 100, 30, 130, 60, 160, 90, 20,
120, 50, 150, 80, 10, 110, 40, 140, 70, 0, 100). The local maxima ae indicated by bold-faced
numbers, and represent the points at which inventory rises above demand so that a shipment can
take place The sequence of steps-to-next-local-maximum, beginning with the first local
maximum at 200and continuing until inventory returnsto 200, is (2,2,3,2,3,2,3). It is provably
the cae (shown below) that the same sequence will be generated if instead of focusing on local
maxima, one focuses on local minima (the itali cized numbers in the example series).
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For some purposes, it is important to remove wmmon fadors from the ratio
DemandProduction. Also, for the purpose of this analysis, we @nsider only one manufacturing
site.

Definitions:

Demand The (constant) level of orders from the consumer (site 1).

Production: The (constant) capadaty level at the producer (site 2). By hypothesis,
Production < Demand

Inventory(t): The finished goodsinventory at the producer (site 2). Where there is no danger of
confusion, the temporal argument may be omitted.

D: The numerator of DemandProduction with all common factors removed (in the example,
17). Notethat D is alegitimate Demand, but an arbitrary Demand may not be alegitimate D.

P: The denominator of DemandProduction with all common fadors removed (in the example,
10). Notethat P isa legitimate Production, but an arbitrary Production may not be alegitimate
P.

H: The minimum of P and D —P. In the cae that these ae equal, observe that H = D/2 (which
motivates the ébreviation H[alf]). Since by construction there ae no common fadorsin D and
PH=D/2 -.D=2&P=1

[(t): Thefinished goods inventory at the producer, scded by any fadors removed from Demand
and Production: Inventory(t)* D/Demand = Inventory(t)* P/Production. Where there is no danger
of confusion, the temporal argument may be omitted.

The next threedefinitions presume that the system has entered theregion P <1 < (D+P). We
demonstrate in the next sedion that it will enter thisregion, and that oncethere, it will remain
there.

Sequence The shortest sequence of steps-to-next-local-maximum between two equal inventory
levels at the producer; in the example, (2, 2, 3, 2, 3, 2, 3).

Period: The minimum number of time steps such that 1(t) = I(t+Period) (the sum of the elements
of Sequence; inthe example, 17).

Length: The number of elements in Sequence (in the example, 7).
Ceil(n): The least integer greater than or equal to n.
Floor(n): The greatest integer less than or equal to n.

3.2.2. Predicted Behaviors
We predict the following behaviors, all of which are observed experimentally.

3.2.2.1. Attractor

If the system is initiated with Inventory > Demand, it will enter the region
0 <Inventory < Demand Oncethe system enters thisregion, it will remain there.
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Proof: First we show that the system will enter the atrading regionif it is garted outside.
Asaume that the system is initiated with Inventory(0) = Demand Because

Demand> Production, inventory will drop by (Demand— Production) a ead timet for which
Inventory(t) = Demand, until Inventory < Demand

Now we show that the system remains in the dtrador oncethere. Consider two cases.

1. Inventory(t) < Demand - Production. Then no shipment can be made, and
Inventory(t+1) = (Inventory(t) + Production) < Demand.

2. (Demand- Production) < Inventory(t) < Demand Then some of the inventory is used to
make up the defed in production, so Inventory(t+1) = (Inventory(t) — (Demand -
Production)). Since Production < Demand, this level will be strictly less than Demand
Furthermore, even if Inventory(t) = (Demand— Production) (the lowest it can bein this
case), Inventory(t+1) = Demand- Production — Demand + Production = 0, and if
Inventory(t) > Demand then Inventory(t+1) > O.

Thus in both cases the system remains in the region O < Inventory < Demand O

3.2.2.2. Scaling

If we multiply Demandand Production by the same integer fador, or if we divide out common
integer fadors, the series Inventory(t) (and thus the dtracting region O < Inventory < Demand) is
multiplied or divided by the same integer fador, but Sequence and Period are unaffeded.

Proof: The proof rests on a manufaduring interpretation of what means to multiply or divide
Demandand Product by a common fador k. If there exists sich a cmmon fador, division
means that it is possible for the producer to padage the individual productsin bundles of k, and
for these bundles to be delivered intad to the mnsumer, without changing the total amount
produced or shipped in each unit of time. Multiplicaion by an arbitrary common fador k means
that ead product isin fad an assembly of k parts, and we now agreeto count the parts
individually rather than as assemblies. In neither case do we atually change the amount of
product manufadured, or the time it takesto manufacture it. However, we do change the unitsin
which we @unt the production. Thus measures in units of time (including Period and the steps
between local maxima in Sequence) are not affeded, but measures in units of product (Demand,
Production, and Inventory(t)) will be k times smaller (for division) or larger (for multiplication)
than previously. O

Note: This principle motivates the use of D and P, from which all common fadors have been
removed, as a unique representation of a given ratio DemandProduction.

3.2.2.3. Period

For any I(t) intheregion 0 < < D, the system will return to the same inventory level at time
t+D, so that Period = D.

Proaof: This proof rests on the lack of common fadorsin the representation D/P of the
demand/production ratio. We first show that Period < D, then eliminate the inequality.
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1. Asaumel(t) isintheregion. After D steps, the producer will have produced D* P, which is
exactly divisible by D and so will all have been shipped, leaving I(t + D) = I(t). So Period
cannot be greater than D.

2. Asaume Period < D and derive a ontradiction. Sincel(t) = I(t+Period) by the definition of
Period, the amount manufadured duing Period, which is Period* P, must be divisible by D.
However, neither Period nor P isindividually divisible by D (both being by hypothesis less
than D). This means that Period and P have factors a and b, respedively, such that D = a*b.
But then both D and P are divisible by b, contrary to our assumption that all common fadors
have been removed. So the asumption Period < D must be wrong.

Having ruled out both Period > D and Period < D, we @nclude Period= D. O

Note: By Scaling (Sedion 3.2.2.2), Period = D not only for systemsin the (D,P,I) units, but for
arbitrarily scaled (Demand, Production, Inventory) units. For example, Period for the system
presented above with Demand= 170and Produwction= 100 is 17, the same asfor D = 17and
P=10.

3.2.2.4. Coverage
Betweent and t + Period, | assumes every value intherange0 <| < D.

Proof: There ae D valuesintherange O <1 < D, and Period = D time steps must passbefore
any repeds, therefore at ead time step Inventory must assume adifferent value, and all D values
will be required to consume al D time steps. O

Note: Thisresult holds only for the reduced unts (D, P, 1), sSinceit concerns units of parts
produced. For systems in which Demand and Production have a @mmon fador k, there will be
bands of inventory values of width k that the system will never visit onceit is in the atracting
region.

3.2.2.5. Relation of Local Minima and Maxima

The pattern by which I(t) moves between local minima and local maxima in the datrading region
depends on H. There aethree caes.

1. IfH=P=D-P=D/2, I(t) isaways either at alocal minimum or alocal maximum. If I(t) is
alocal minimum, then I(t+1) isalocal maximum. If I(t) isalocal maximum, thenI(t+1) isa
local minimum.

2. IfH=P< D-P, thenif I(t) isalocal maximum, I(t+1) isalocal minimum; if I(t) isalocal
minimum, then I(t+p) is alocal maximum, where p is either Ceil (D/H) - 1 or Ceil (D/H) - 2.
If H= 1, p= D/H —1 uniquely.

3. If H=D-P< P, thenif I(t) isalocal minimum, I(t+1) isalocal maximum:; if I(t) isalocal
maximum, then I (t+p) isalocal minimum, where p is either Ceil (D/H) - 1 or Ceil (D/H) - 2.
If H= 1, p= D/H —1 uniquely.

Proof: Consider thethree caes separately.

1. AsumeH = P = D-P = D/2. Noticein particular that P = D-P. Consider first the cae where
[(t) isalocal minimum. Thusthe net change in the next time step must be positive, which
means there can be no shipment. Therefore I(t+1) = I(t) + P = D-P, which will permit a

02/01/99 105 PM Copyright © 199, CEC/ERIM, All Rights Reserved Page 3-8



DASCh Final Report, Part 3: Theory

shipment, and thus be alocal maximum. Now consider the cae where I(t) isalocal
maximum, thus D-P <1(t) < D, and a shipment will take place. The net change in inventory
will be areduction of (D-P) = D/2. Asaresult, I(t+1) < D/2 = D-P, so no shipment will be
possible, and I (t+1) isalocal minimum. Thus locd minimaand maxima alternate at eah
time step.

2. AsaumeH = P < D-P. Consider first the cae where I(t) isalocal maximum. Therefore D-
P <I(t) < D, and the net change in inventory with the next shipment will be areduction of
D-P, leaving 0 <I(t+1) < D-(D-P) = P < (D-P). No shipment is possible, so the system is at
alocal minimum. Now let I(t) be & such alocal minimum, O <I(t) < P. The next local
maximum will occur when D-P < [(t+p). The net change in inventory needed to satisfy this
condition Al = I(t+p) - I(t) will fall in the range (D-2P) < Al < (D-P). The number of time
steps needed to make this shift, at P units per time step, is thus in the range Floor ((D-
2P)/P) = Floor((D-2H)/H) = Floor(D/H)-2 < p < Ceil (D-P)/P) = Celil ((D-

H)/H) = Ceil (D/H)-1. D/H = D/P can be integral only in the caethat P = 1, in which case
D/H-2 < p <D/H-1, leaving p = D/H-1. Otherwise, Floor(D/H) = Ceil (D/H)-1, s0
Cell(D/H)-3 < p <Cel(D/H)-1. Thusp = Cell(D/H) —1and p = Cell(D/H) - 2 arethe only
two options.

3. AsameH = D-P < P. Consider first the cae where I(t) isalocal minimum. Therefore
0 <I(t) < D-P, and the net change in inventory with the next shipment will be an increase of
P, leaving P <I(t+1) < D. Since P > (D-P), ashipment is possble, and the system isat a
local maximum. Now let I(t) be & such alocal maximum, P = D-H <I(t) < D. The next local
minimum wil | occur when I(t+p) < D-P = H. The net change in inventory needed to satisfy
this condition Al = I(t) - I(t+p) will fall in the range (D-2H) < Al < (D-H). The number of
time steps needed to make this shift, at D-P = H units per time step, is thus in the range
Floor((D-2H)/H) = Floor(P/H)-2 < p < Ceil ((D-H)/H) = Ceil (D/H) - 1. 1f D/H is non-
integer, Floor(D/H)-2 = Cell(D/H)-3< p < Ceil(D/H)-1, leaving p = Ceil (D/H) — 1 and
p = Cell(D/H) - 2 asthe only two options. But the only way D/H = D/(D-P) can beintegral is
if H= 1. To seethis, assume that D/(D-P) = n. If n = 2, we have P = D-P, which we have
already considered in case 1. So n > 2. On our assuumption, D = n(D-P), or nP = (n-1)D,
which can only be trueif either n/(n-1) is integral (which it is not for n > 2), or there exist
fadorizaions P = a(n-1) and D = bnfor integral a,b. Substituting these into nP = (n-1)D, we
have na(n-1) = (n-1)bn, or a= b, which would mean that D and P have a @mmon fador
a = b. If thisfador is gredaer than 1, we have a ontradiction with our assumption that D and
P have no common fadors. Soa=b=1.ThenD =n, P=n-1,and H = D-P = 1. Inthis
case, p = D/H-1 uniquely

These three caes exhaust the possibilities. O
Note 1: In case 1, the removal of common fadors meansthat D = 2andP=H = 1.

Note 2: In the last two cases, p is the number of steps from alocal extremum of one kind to a
neighboring extremum of the opposite kind. Ead entry in Sequence is from local maximum to
local maximum, and thus equal to p+1, restricting it to be ather Ceil (D/H) — 1 or Ceil (D/H). If
H = 1, then all entriesin SequenceareD.

Note 3: In ead case, local minima ae aljacent to local maxima, and always (for agiven case) in
the same diredion. Thus one culd measure time steps between local minima instead of between
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local maxima, without changing the results, and such a procedure would yield the same
Sequence

3.2.2.6. Length

Length, the number of items in the sequence, corresponding to the number of intermediate
maxima between maxima of the same size (counting one of the ends), isH.

Proof: Thetotal production during a sequence is Period* P = D*P. To return to the same
inventory level, the sum of shipped orders must be the same. Consider the same three caes
analyzed in Relation.

1. AsuimeH = P = D-P = D/2. There is one shipment of sizeD every maximum, so total
shipments are D* Length, which must equal production, D* P, yielding Length = P. But in
thiscase P = H, so Length = H.

2. AsumeH = P < D-P. Again, there is one shipment for every maximum, so
D*Length = D*P and Length = P, and again P = H, so Length = H.

3. AsameH = D-P < P. Now thereisonly one step duing eady maximum when there is not a
shipment, so the total number of shipments is (D-Length) and the total amount shipped is
(D-Length)* D, which must equal production, D*P. Thus (D-Length) = P, Length = (D-P),
but in this case (D-P) = H, so Length = H.

These three caes exhaust the possibilities. O

3.2.2.7. Proportion of Long and Short Periods

When H # 1, the periods of the H extrema of the same kind (the H maxima or the H minima) in a
sequence ae not all equal. H* Cell (D/H) — D have period Ceil (D/H) — 1 and D — H*Floor(D/H)
have period Cell (D/H).

Proof: Period = D isequal to the sum of the elements of Sequence, which (by Note 2 to Section
3.2.2.5) can only be of two periods, Ceil (D/H) — 1 or Ceil (D/H). Note first that both kinds of
periods must appea, for when H # 1, Cell (D/H) > D/H so that H* Cell (D/H) > D = Period,
while Ceil (D/H)-1 < D/H so that H* (Ceil (D/H)-1) < D = Period.

To find the proportion of periods of each length, let A be the proportion of maxima of length

Ceil (D/H) — 1. Then H-A are of length Ceil (D/H), and

Period= D = (H-A)*Ceil(D/H) + A*(Ceil (D/H) — 1) = H*Ceil (D/H) — A, or A = H*Cell (D/H) —
D and (H-A) = D —H*(Ceil (D/H) — 1) = D — H*Floor(D/H) (where the amnversion from Cell to
Floor usesthe assumptionthat H #1). O

3.2.2.8. Monotonic Subsequences

Inthe caethat H # 1, the number of monotonic subsequences in the overall Sequenceis equal to
the lesser of H* Ceil (D/H) — D and D —H*Floor(D/H) (that is, the number of extremawith the
lesscommon period).

Prodf: It suffices to show that no two extrema with the lesscommon period are aljacent. Given
this result, the lesscommon extrema must be distributed among the more common ones,
generating that many monotonic subsequences in Sequence. Reall from Relation that the cycles
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have two shapes. If H = P < D-P, the movement from maximum to maximum consists first of a
drop of D-P followed by p climbs of P (the “ascending” configuration), where p is either

pShat = Ceil (D/H)-2 or pLong= Ceil (D/H)-1, for anet gain over a g/cle of (p+1)*P —D. If

H = D-P < P, the movement from maximum to maximum consists first of p drops of (D-P),
where p is either pShat or pLong, followed by a climb of P (the “descending’ configuration), for
anet gain over acycle of (p+1)*P — pD. These same differences also obtain if we @unt between
successve minima. Our basic proof schema isto begin at a maximum (D-P)<I(t)<D or a
minimum 0=l (t)< (D-P). We have to show that no two minority periods can fall together, so we
asume that they do, and derive a ontradiction to known properties of the system (such as
showing that the inventory would leave the Attractor region P<i<(D+P), or that an extremum
would occur outside of the gopropriate region). Consider four cases, generated by pairing the
option expressing which period of maximum is lesscommon

short: H*Cell (D/H) —D < D —H*Floor(D/H)

long H*Ceil (D/H) —D > D —H*Floor(D/H)

with the option describing the pattern:

ascending: H =P

descending: H = D-P.

1. Shat, ascending (example: D/H = 17/6.) (The proof formalizes the observation that in the
short ascending case, eat ascending cycle leads to a maximum that is lower than the
previous maximum.) Observe that Two successive short ascending cycles from a maximum
would generate a dangein |, Al = 2[(pShot+1)*P —

D] = 2[Cell (D/H)-2+1)*P-D] = 2[ P*Ceil (D/H)-P-D]. Since any maximum is grictly less
than D, after this change, | satisfies:

| < D+2[P*Ceil (D/H)-P-D]

= H*Ceil (D/H) + (H*Ceil(D/H) — D) — 2P (using ascending)
< H*Ceil(D/H) + D —H*Floor(D/H) —P - H (using short and ascending)
= D-P (since, for D/H not integer,

Cell (D/H)-Floor(D/H) = 1)
This last result aserts that after two short ascending cycles from a maximum, 1<D-P. But

then no shipment can take place so we ae not a a maximum, and the second period is not
yet complete, contradicting our assumption.

2. Shat, descending (example: D/H = 17/11.) (The proof formalizes the observation that in the
short descending case, ead descending cycle leads to a maximum that is higher than the
previous maximum.) Two successive short descending cycles from a minimum give achange
inl Al = 2[P*(Cell(D/H)-1) — D*(Ceil (D/H)-2)] . Since ay minimum is greder than or equal
to 0, the inventory | at the second minimum satisfies:

| >2(-H*Ceil (D/H) + H — D) (using descending in the form P = D-H)
= 2(-H*Floor(D/H) — D) (using Ceil (D/H)-1 = Floor(D/H) for non-
integer D/H),
> 2(H*Cell (D/H) — 2D) (using short)
>22(3D-2D)=2D (recognizing that for H < D/2,

Ceil (D/H) = 3)
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But this last result asserts that after two short descending cycles from a minimum,
| > 2D > D+P, contrary to Attractor, furnishing the desired contradiction.

3. Long ascending (example: D/H = 17/5.) (Inthe long ascending case, ead ascending cycle
leads to a maximum that is higher than the previous maximum.) Two successive long
ascending cycles from a maximum generate a tiange in |, Al = 2[(pLong+ 1)*P —

D] = 2[Cell(D/H)-1+1)*P-D] = 2[P*Ceil (D/H)-D]. Since any maximum is greder than or
equal to D-P, after this change, | satisfies:

| > D-P+2[H*Cell (D/H)-D] (using ascending),
> H*Cell(D/H) + D —H*Floor(D/H) - P (using long),
=D (since Ceil (D/H)-Floor (D/H) = 1 for D/H

not an integer, and again using ascending).
But this last result assertsthat after two long descending cycles from a maximum, | > D,
contrary to Attractor, furnishing the desired contradiction.

4. Long, descending (example: D/H = 17/10.) (In the long descending case, each descending
cycle leads to amaximum that is lower than the previous maximum.) Two successive long
descending cycles from a minimum give achangein | Al = 2[ P*(Ceil (D/H)) —

D*(Ceil (D/H)-1)]. Since any minimum is grictly lessthan D-P, the inventory at the second
minimum satisfies:

| < D-P + 2(-H*Ceil (D/H) + D) (using descending)
= 3D — H*Ceil (D/H) —H*Ceil (D/H) - P
= 3D — H*Ceil (D/H) —H*Floor(D/H) —H - P (using

Floor(D/H) = Ceil (D/H)+1 for
D/H not an integer)
< 3D —H*Ceil(D/H) + H*Ceil(D/H) —2D —H - P (using long
=D-H-P=0 (using descending).
But this last result assertsthat after two long descending cycles from a minimum, | < O, contrary
to Attractor, furnishing the desired contradiction.

These four cases exhaust the possibilities, establishing the desired result. O

3.2.3. A Geometrical Interpretation

The behavior outlined in the previous dion is consistent with a ancise geometrical model of
the dynamics.

The behaviors demonstrated above show that the cmplete dynamics can be represented in a

square of D units on aside. The left edge of the square @rrespondsto timet, the right edge to
time t+D, the bottom to inventory P, and the top to inventory D+P. Let t be the time & which
inventory first falls within the Attractor. At eat time step draw aline segment of slope P and

length /P +1 beginning at 1(t) to define I(t+1).
Aslong as| < D, the end of this line segment will fall within the square, and will correspond to
the trgjectory of the inventory. If 1(t) =D, adistance d; = D+P-I(t) < P from the top edge of the

square, the end of such a line segment would fall at or beyond that edge, outside the range of the
Attractor. With the real system, in this case the new inventory is I(t)-D+P, which isd, = I(t)-D

02/01/99 1:05 PM Copyright © 199, CEC/ERIM, All Rights Reserved Page 3-12



DASCh Final Report, Part 3: Theory

units above the bottom edge of the square. Note that d;+d, = P, which meansthat if we cnnect
the top and bottom edges of the square to form a gy/linder, then beginning at any valid I(t), the
next 1(t) can be found by appending such a line segment (in effed, wrapping a string around the
cylinder at a constant angle.

From the Period behavior (Sedion 3.2.2.3), we know that I(t) = I(t+ D), and the determinism of
the system means that the trajedory then repeds. Interms of our geometric model, this behavior
corresponds to conneding the ends of the cylinder to ead other to form atorus.

In our manufaduring domain, D and P are integer parameters, so D/P isrational by construction.
However, the torus model supportsirrational D/P as well. In this case, we would have
guasiperiodicity, and the orbit on the torus would never retraceitself.
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4. Experimental Results

Experiments with the system described in the previous Part 2 show four effeds involving
variation within the supply chain, threeof which have not been discussed in any detail in the
previous literature. The first threeof these effeds are observed within the linea domain of the
model, and so are in principle susceptible to analytic treament. The fourth results from imposing
nonlinea constraints on the system. As these results emerged, we reviewed them regularly with
our informant from the Fortune-100 eledronic manufadurer. He recognized them as
charaderistic of real manufacturing systems, but credited the model with making hm aware that
they could be generated by such simple mechanisms.

4.1. Amplification of Variation

Variation amplificaion has been widely discussed in the literature, as discussed in “Previous
Work: Observed Behavior” above. It iswell reagnized, emerges from our theoretical analysis
(Sedion 3.1), and was an expeded result. Our observation of it helps to validate our approac. In
addition, we observe different dynamics in the upper (distribution) and lower (input) halves of
the supply chain hourglass.

The symptom is that subtier suppliers see more variability in the ordersthey get than the OEM
generatesin its ordersto the first site in the supply chain. To experiment with this dynamic we
set up a onfiguration where all the batch sizes are one, so the e@nomic order quantity does not
introduce a nonlineaity. The orders are generated by the top-level customer at arate of 100 per
week with allD (Independent, Identicdly Distributed) varianceof 10 per week. The cgacity is
set at 10,000 per week, virtually infinite in comparison with the order levels, again avoiding a
threshhold nonlinearity.

4.1.1. Distribution Networks (Upper Half of Hourglass)

Using the weighted forecasting

method appropriate for the Consumer

upper half of the supply chain

hourglass, Figure 4.1 shows the 1207 \\,

mean and variance of the 100 1

weekly ordersin an c 807 _

experimental run of 500weeks | § 60 Site2 Site3

from each of the top threesites 40 -

inthe model. The mean is 20 4

constant at 100, but the 0 : : . . . ; .
variance grows dramaticaly 0 5 10 15 20 25 30 35
from 10in the ordersisaiing Variance

from the wnsumer to 145in

those that Site 2 sends, and then Figure 4.1: Variance Amplification

to 300 in those from Site 3.

Our theoretical analysis (Part 3) predicts that variance in the orders coming from intermediate
sites should be proportional to the variance in their incoming order sreams, times the square of
the lead times that they see To test this analysis, we generated a series of emulation runs with
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Consumer Variance Varianceon Lead Time

consumer variances of 5, 10, 30, and 60and lead
times of 3, 10, 20, and 30time steps. We also explored varying the forecast window in the set of
1, 4, 12, and 39time steps.

Figures 4.2 and 4.3 show the general conformity of the DASCh emulation with the theoretical
analysis.

Figure 4.4 shows a further regularity that was

50 4

discovered experimentally, but not in the , Joo
theoretical analysis. The variance of orders g 350 4
issued from Site 2 is inversely proportional tothe | s 3% | —
square of the forecast window used to projed 820 10
future demand from past demand. S 200 e 30
2 150
Thus the experimental results confirmand extend | < 00
o
Q
n

the theoreticd analysis of amplificaion of

variance. The variance of the order stream 0 ‘ ‘ ‘
produced by asite (the “focal site”) hasthe 0 002 004 006  0.08
general dependency 1/ForecastWindowA2

<p(t)>> [JL%< n(t)>/f?
A n Figure 4.4: Dependence of Site 2 Order
where Variance on Forecast Window

« <p(t)>> isthe time-averaged variance of the order stream produced by the focal site;

» L isthelea timerequired by the focal site to ship orders, and includes both its own cycle
time and the expeded time needed to deliver the order to its supplier and ship the supplier’s
goods bad;

« <n(t)®> isthetime-averaged variance of the order stream coming into the focal site;

» fistheforecat window over which the focal site averages incoming ordersin order to
generate the ordersit sends to its suppliers.

Operationall y, these results siggest that the focal site an minimize its contribution to the
amplification of variancethrough the system by shortening its lead times and increasing its
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forecast window. The latter of these a¢ionsis of doubtful benefit, sinceit causes other problems,
to be discussed shortly.

4.1.2. Input Networks (Lower Half of Hourglass)

Figure 4.5 shows a comparable

analysis for twenty-threeweeks 100 _

of normalized data from our 90 Tier2 T
automotive OEM partner, ?8 8 !

which represents the lower c 60 - S )

(input) half of the hourglass In o> 50 -

contrast to the upper half, where | = 39 7 OEM

sites must forecast demand 20 - Tier1

statistically based on the history 197 | | | |
of converging customer orders, 0 1000 2000 3000 4000
ordersin the lower half diverge

from a single manufadurer who Variance

has already constructed a

demand projection, and so Figure 4.5 Variance Amplification in Automotive Data

ideally can be driven by
forecasts passed down the dain. The extremely high variances may be partly attributed to the
fad that the upper (distribution) half of the hourglass has already amplified the natural consumer
demand. In view of this high variance, the slight increase in the mean level of orders acossthe
threelevels of the supply chain is probably meaningless Asin the previous example, thereis
significant increase in variance from the OEM’ s outgoing order stream to that of the first tier
supplier (inthis case, morethan a 3X increase). In contragt, there is virtually no amplification in
variance between Tier 1 and Tier 2.

We do not have atheoretical analysis of the lower half of the hourglass, but analysis of
experimental data shows adistinct structureto this amplification. Now ead site that receves
orders amplifies the variance in the ordersit sends out by the product of its lead time and any
noise that it adds to the forecast. “Noise” in this case models any variation from the forecast from
the focal site’s customer to the forecast that the focal site providesto its supplier. Ideally, there
should be no nedal for such variation. However, industry experience indicaes that suppiers do
not trust the forecasts provided by their customers, often with good cause, and as aresult usually
modify them before passing them on to their suppliers.

We experimented with these dynamics by varying the consumer’s order variance over the set {5,
10, 20}, the noise alded by Sites 2 and 3 over the set {1, 5, 15}, and the leal times of Site 2 over
{6, 16, 31} and of Site 3 over {10, 20, 35}. Each configuration was run for 1000steps, and
statistics were gathered on the last 750 steps of ead run to avoid any start-up transients. Under
this regime, Figure 4.6 shows Site 3's outgoing ordersto the Supgier plotted against the least-
squares fit

1837 + 3.1*(n(t)?+ No* L + N3*L3)
where

« n(t)?isthe variance of the Consumer’s order stream;
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* N, isthevarianceof the noise

added by Site 2, o 4000
* Ngjisthevarianceof the noise 8

added W Site 3, i 2000 | + Site30rdVar
« L,isSite2'slead time, s — Reference
* LsisSite3'slead time. %

Thetwo N*L terms represent 0

amplification introduced by the sites 0 2000 4000
receiving the forecast. Fit
This model may explain the Figure 4.6: Variance Amplification in Input Networks

differences in amplification observed

inthe adual data of Figure 4.5. The Tier 1 supplier is significantly modifying the forecast from
the OEM, has along lea time, or both, and so adds a significant increment to order variance,
while the Tier 2 supplier holds very close to the forecast it recaves from Tier 1 or has a much
shorter lead time (or both).

This analysis reemphasizes the importance of short lead times, and encourages suppliers not to
modify forecasts received from their customers. Of course, the experiment assumes that the
customer adually orders what the forecast predicts. If (as often happens in automotive) the
forecat isinacairate, its usefulnessto suppiers deaeases dramatically. In these ases, suppliers
are likely to return to aweighted average forecast like that necessary in the distribution half of
the hourglass with amplificaion driven acording to the analysis in the previous part.

4.2. Correlation of Variation

Our theoretical analysis of weighted average forecasting (Sedion 3.1) suggeststhat order
processing may generate arrelation in the orders sen by subtier suppliers even when the
customer’s original stream of ordersis uncorrelated. The theory predicts that this effed will be
strongest with short leal times, large variances in the incoming order stream, and a small
forecast window. To test this prediction, we set up the model with Consumer orders at a mean of
100and avariance of 50, forecast windows in Sites 2 and 3 of 5, and lead times of 2 for Site 2
and 3for Site 3, and ran for 1000time steps. Then we examined the results for correlation using
time delay plots, in which each element in atime series is plotted on the Y -axis against the
previous element on the X-axis. Figure 4.7 shows the delay plot for the Consumer orders. As
expected for 11D data, they form a circular blob, with no apparent structure.

Figures 4.8 and 4.9 show the ordersissued by Sites 2 and 3, respedively, in response to the 11D
consumer orders. These plots diow two interesting feaures. First, although plotted to the same
scale, the clouds of points are larger, refleding the amplification of variation alrealy seen in
Figure 4.1. Seoond, the douds are no longer circular in shape. Now they are stretched along a
lineindicating X =Y. This dretching indicaes that these sites are more likely to follow alarge
order with another large one, and a small order with another small one. In other words, their
orders have become mrrelated in time, and increasingly so as we go deeper in the supply chain.
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Figure 4.7: Consumer Orders Figure 4.8: Ste2 Orders Figure 4.9: Site 3 Orders

Although our theoretica analysis of variation correlation is in the @ntext of the distribution half
of the supply network, we explored the aitomotive data from the input half using the same
mechanism. Figures 4.10, 4.11, and 4.12 show time delay plots for the orders generated by the
OEM, Tier 1, and Tier 2, respedively. The dhange in size of the cloud from Figure 4.10to
Figure 4.11 refleds amplification of variancedue to Tier 1's order processing. The change in the
shape of the cloud shows that this processing is also altering the correlation of successive orders
in the stream. Because Tier 2 ispassingon Tier 1's forecast virtually unchanged, Figures 4.11
and 4.12 are of the same general shape and size The data support the conclusion that PPIC
computationsin both halves of the hourglasscan impose spurious gructure on order streams,
structure that does not refled true correlations in the demand posed by the end customer.
Effedive supply chain management needs mechanisms to correct for this gurious gructure.

4.3. Persistence of Variation

A basic exercise in analyzing the dynamical behavior of a system isto present it with astep
function. In DASCh, such a perturbation causes persistent variations in downstream ordering
behavior.

Figure 4.13 showsthe effed of two successive step functions in Consumer orders (the solid line)
on the ordersisaied by Site 3 to the supplier (the dashed line), using weighted average

140 14Q f 140

12 120 120

10 10 104

80 80 80

60 60 60

40 40 40

2Q 20 20
20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Figure 4.10: Ordersfrom Figure4.11: Ordersfrom Tier Figure 4.12: Ordersfrom Tier

OEM toTier 1 ltoTier 2 2toTier 3
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forecasting. In both cases, the Consumer increases 150 -
its order level by 10 orders per time period.

: Consumer
. . . 140 ; Orders
Though the dange in customer ordersis a one-time S Site 3

phenomenon, its effed persists in the orders that 130 1 i Orders
Site 3 issues to the Supdier. The persistencetime 120 | !
is of the same order asthe forecast window. For
the first step increase in Consumer orders, the
forecast window is 39 weeks and the disturbancein 100 1
Site 3 orders persists for 31 weeks (to the last
upward spike over the new demand level) or 47
weeks (to the downward spike). The amplitude of
the variability in Site 3 orders ranges from a high of
125to alow of 100, or atotal range of 25.

Figure 4.13: Persistence of a One-Time

Before increasing the Consumer demand again, we Distur bance

Orders

110 ~

90

0 100 200

Time

cut the forecast window in both PPIC modules from
39t0 20. The period of variability lasted fewer time steps (22 to the last order above 120, or 29
to the final downward spike). But shortening the forecast window, as discussed previously, has
the dfead of increasing the amplification. Thus the second set of pe&ksistaller than the first
(ranging from 110to 145 or atotal range of 35).

Thus the weighted forecasting algorithm has the effect of imposing a memory on the system. The
longer the forecasting period, the longer the memory, but the lower the amplitude of the
variations generated.

The implication of persistence is that supply chains have memories. They can retain the state of
the dhain. Forecating windows are one such memory. Other experiments show that badlog
orders and high work in process(WIP) levels also constitute implicit memories. Badlogged
orders record the state of demand at the time the orders were placed, not the arrent demand.

These memories must be shortened to improve ajility, the ability to respond rapidly to changes
in the marketplace

4.4. Generation of Variation

Now we look at athird behavior, for the first time in the nonlinear domain of our model. A
chain with stable boundary conditions can generate variation internally. Assume that the
customer has a steady demand with no superimposed noise. The bottom level supplier makes
every shipment exadly when promised, exactly in the amount promised. Batch sizes are till 1,
but now we impose a caacity threshold on sites 2 and 3. in each time step they can only process
100 parts, athreshhold nonlineaity. As long as the austomer’s demand is below the caacity of
its suppliers, the system quickly stabilizes to constant ordering levels and inventory throughout
the dhain. When the top level of demand from the austomer exceals the caacity of the
intervening sites, those sites seoscillation in their inventory levels. We did not exped this
behavior initially, but after observing it, were able to cgpture it analytically in the theory set forth
in Section 3.2.
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Figure 4.14 shows the inventory

oscill ation that arises when demand
excedds cgpacity by 10%. Site
inventories oscillate out of phase with
one another, in the form of a sawtocoth
that rises rapidly and then drops off
gradually.

Detail ed analysis of the experimental
logs reveals the underlying mechanism
behind this oscillation. The defed
between an incoming order and a site’'s
output erodes away the safety stock at
that site. If asite makes 100 unts per time period and is being asked for 110, it can ship 110 ly
taking 10from its safety stock. On the next cycle it can still ship 110but the safety stock drops
by another 10, and so forth until the safety stock runsout. At that point, the site misses a
shipment. That shipment goes into the badlog, and whatever was produced in that time period
effedively generates a new safety stock. Then the processbegins again. The sawtooth emerges
direaly fromthisinterplay of demand, safety stock, and cgpacity limitation. If there is no safety
stock initially, the first missed shipment will behave like asafety stock, leading to the same
dynamics. The rapid rise of the sawtooth correspondsto the deposit of the site’ s output into
inventory when it is inadequate to fill an order, while the slow fall of the sawtooth refleds the
depletion of this safety stock to fill successive orders. The overall height of the sawtoath is
determined by the site’ s cgpacity, and its period is determined by the degreeof overload. In this
case, a 100 unt base cgadty supportsten time periods of 10 unt excess orders, and the missed
order that replenishes the safety stock occupies another time period, resulting in a sawtocoth
period of eleven time units.

Inventory

0 50 100 150

Time

Figure 4.14: Demand/Capacity = 110/100

As the system operates above cgacity, two badklogs build up abadlog of orders waiting to be
filled, and a badklog of WIP behind the cgacity bottlenedks. This WIP continues to drive the
site d its capacity limit even if demand subsequently drops below cgpacity. In this mode, eat
cycle produces more finished goods than are mnsumed by one of the new below-cgpacity orders.
The excess goesinto finished gaods inventory, which builds up until it can satisfy one of the
badklogged over-cgpacity orders, a which point the older order is filled and inventory dropsin
one step. The result is again a sawtooth oscillation, but of opposite diredion, with gradual rise

(generated by the cycle-by-cycle excess

production over the new demand level) 160 -

and arapid drop (generated by filling a 140 +

badklogged over-capacity order). > 158 ]

Figure 4.15 shows the dynamics resulting S 80 -

from increasing the Consumer demand g 607

from 110to 150. After atransition period, ol

the inventory levels sttle downto a 0 : :
sawtooth with a shorter period. Now one 120 170 220
cycle’s production of 100can support Time T S s ey

only two orders, leading to a period-three
oscill ation. The inventories of sites 2 and

Figure 4.15: Demand/Capacity = 150/100
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3, out of synch when Demand/Capadty = 110'100, are now synchronized and in phase. (This
synchronization is not explained by the theory of Sedion 3.2 or the astradion of the model as a
modulo function.)

The transition period is adually longer than appeas from Figure 4.15. The increase from 110to
150takes place atime 133 but the first evidence of it in Site 2's dynamics appeas at time 145
The delay in the effect is due to the badklog of over-cgpacity orders at the 110level, which must
be cleaed before the new larger orders can be processd.

Figure 4.16 shows the result of increasing the overload even further. (Becaise of the increased
detail in the dynamics, we show only the inventory level for Site 2.) Now the Consumer is
ordering 220 uiits per time period. Again, badklogged orders at the previous level delay the
appeaance of the new dynamics;

demand changes at time 228 but

appeas in the dynamics first a time
288 and the dynamics finally stabilize a 200 1
time 300 150 1

This degreeof overload generates 10
gualitatively new dynamica behavior.
Instead of a single sawtoath, the
inventories at sites 2 and 3 exhibit
biperiodic oscill ation, a broad sawtoacth
with a period of eleven, modulated with
a period-two oscillation. This behavior Figure 4.16: Demand/Capacity = 220/100 (Site 2)
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is phenomenologically similar to

bifurcaions observed in nonlinear systems such as the logistic map, but does not lead to chaosin
our model with the parameter settings used here. The occurrence of multiple frequenciesis
stimulated not by the asolute difference of demand over cgpacity, but by their
incommensurability, as detailed in Sedion 3.2.

4.5. Summary

The preliminary DASCh experiments dow that even the simple four-stage in-line chain that we
modeled supports awide range of non-intuitive behaviors with important commercial
implicaions. In spite of the simple nature of the model, not only our Fortune-100informant but
other industrial reviewers to whom we have showed these results recognize them as
charaderistic of real-world supply-chain dynamics.
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5. Summary and Recommendations

This part summarizes sme of the insights gained from DASCh in terms of the dharaderistics
outlined in the projed proposal, makes recommendations for supply chain operation that emerge
from our research, and proposes important diredions for future study.

5.1. A Dynamical Characterization of Supply Networks

The initial proposal for this effort identified four important charaderistics of a supply network
viewed as a dynamical system, described in terms of its date space This sdion defines a model
of state spacefor a supply network and reviews these four charaderistics in terms of our
experience with the model.

5.1.1. The DASCh State Space

For agiven set of the parameters defined in Part 2 of this report, the major state variables of
interest in DASCh are the levels of backlogged orders, finished goods inventory, and WIP
inventory at sites2 and 3. One can easily justify including many other variables in a definition of
the system’ s overall state space but these six variables are sufficient for the purposes of
discussing the four charaderistics in this ction.

5.1.2. Accessibility

Accesshility describes where in its gate spacethe system can go. We observed several
constraints on accessibility in our experiments, but one important potential for restricted
accesgbility has not yet been observed.

The behavior of the individual site ayents excludes regions of the state spacein which finished
goods inventory exceeds badlogged orders.

In addition, if a site’s delayMean is O, WIP inventory is locked at O.

When demand is constant and lessthan or equal to cgpadty, the system settles into a point
attractor whose locaion in state spaceis defined by configuration parameters, and does not visit
other locations. However, the addition of noise to demand causes the trajectory to explore the
vicinity of this point. Because of amplification of variance, the region that is explored is not
sphericd, but rather ellipsoidal, elongated along the dimensions corresponding to site 3

When demand is gredaer than cgpacity, the sites must badlog some orders. We have studied only
the cae when demand is constant. The anount of badklog at site 2 is an integral multiple of the
customer orders. Finished gaods inventory at both sites and WIP inventory at site 2 take on only
afinite number of values, which depend in a complicated way on the magnitudes of demand and
cgpacity. Specificaly, finished goods inventory is attraded to the region

Production < Inventory(t) < Demand+ Production (Sedion 3.2.2.1). Inventory can occupy any of
D distinct values, where D isthe numerator of DemandProduction reduced to lowest common
terms, and never enters the bands between these values, which have width equal to DemandD
(Sedion 3.2.2.4). This behavior istypical of alimit cycle.

In both point attradors and limit cycles, the accesble volume of state spacehas measure zeo.
In our initial experiments, we have explored only a small fradion of the possible parameter
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combinations, and have not yet found a combination of parameters that causes the system to
beaome formally chaotic. In such aregime the accesible volume of state spacewould be finite
and nonzero.

5.1.3. Controllability

Controll ability describes the extent to which users can stee the system trajectory in state space
deliberately. Discussing this charaderistic for DASCh requires us to identify the “user” of the
system. Candidates are the four main sites along the bad<bone of the basic experimental model:
the consumer, the two manufaduring sites (2 and 3), and the supplier.

The consumer exerts control on the model through the line of ordersthat it issues. For a given set
of site parameters, the magnitude of these orders determines the point attrador or limit cycle to
which the system is drawn. If the orders include noise, the attractors beacme lessprecisg, in
ways not diredly under the wntrol of the cnsumer. That is, the amplification, correlation, and
persistence phenomena, driven by the PAC medanisms, limit the consumer’s control over
chain-wide state variables.

The sites exert control on the model through the parameter settings that they select for
themselves and their associated PH C agents (asoutlined in Tables 2.2 and 2.3). In Part 5, we
have described some of the trade-off s in these parameters. For example, along forecast window
reduces amplificaion but increases persistence. Based on our experiencethus far, it appeas
likely that improved controll ability from the standpoint of manufaduring sites depends not on
finding the “right” parameters, but on developing adaptive behaviors for the sites.

5.1.4. Inertia
Inertia measures how fast the system can move from one state to another.

In our experiments, DASCh manifests inertiain two ways. First, the persistence phenomenonisa
form of inertiathat is driven by the forecast window: the longer the forecast window, the more
inertiain the system, and the longer it takesto forget past state. Second, when demand exceeals
cgpacity, unsatisfied orders build upat the sites, along with WIP at site 3, and subsequent
changesto the level of demand are not visible until previous orders have been satisfied. The
greder the excessof demand over capacity, the longer it takes the producersto work through the
badklog and WIP, and the greater the inertia.

5.1.5. Performance

Performance measures how well the system performs at a fixed locaion in its gate space The
main performance measures we have used in these experiments are the magnitudes of finished-
goods and WIP inventory, which are direda values of state variables. The model supports
measurements of throughput at manufaduring sites and average time to fill and average lateness
at the consumer, but the aurrent set of experiments has focused on understanding the basic
dynamics of the system rather than optimizing these performance metrics.
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5.2. Operational Recommendations

The experimental results in the previous part of this report suggest a number of spedfic
operational recommendations that concern two aspeds of system management: PPIC and overall
system scaling.

5.2.1. PPIC

Most of the anomalous behavior we deteded can be tracal to the PAC agent, which in our
model implements a simple version of the widely-used MRP algorithm. This agent embodiesthe
only adaptive behavior currently assgned to the manufaduring sites, and it is effective in
reducing variability in average time to fill orders at the consumer. However, companies that use
such an algorithm in managing their order stream should be avare of some of the anomaliesto
which it can lead:

* Any forecasting of demand based on past orders will lead to some amplification of variance
[16]. Long lead times and distortions of customer forecasts exacebate this effed, particularly
when they are @mmbined at the same site. Recommendation: Leal time reduction has long
been recognized as an important discipline in manufaduring improvement; its contribution to
variance amplification is an additional and previously unrecognized motive to pursue such
adivities. The aontribution of distortions of customer forecasts suggests that members of the
supply network resist the temptation to adjust such forecasts. This recommendation applies
not only to suppiers, but also to OEM’s, who too often distort their internal forecasts as a
deliberate dfort to manipulate supplier behavior (for example, to lock in supplier capacity).
Experiencewith the DASCh model led our Fortune-100informant to restrict the
manipulations to forecasts traditionally made within his company, and he traces subsequent
performance improvements in inventory levels to this change in behavior.

* While longer forecasting windows reduce amplification, they are amajor component of
inertia, leading to persistence of the effed of a dhange in demand. Other forms of memory
(badklogged orders and WIP) can lead to a different variety of inertia: adelay in thetime &
which one beaomes aware of a change in external conditions. Recommnendaion: Recognize
the tension between amplification and inertia, and take both explicitly into acmunt in setting
forecasting windows.

* PRC imposes gructure on the demand stream, described in Part 5 as “correlation.” This
structureis gurious in the sense that it does not refled top-level requirements, but is purely
an artifad of the dynamics of the system. Recomnmendation: Low-level suppliers should be
extremely suspicious of systematic variability that they see in their incoming order stream,
and should confirm it independently (for example, through information received diredly
from the OEM) wherever possible before making businessdecisions.

* Oneimportant input to PAC isthe aurrent inventory level. We have found that this level can
be driven into complex oscillations by excessof demand over cgpacity. Current PRC
algorithms do not take these oscill ations into aacount. While we have not analyzed in detail
the implications of such adriving function on PAC behavior, they can hardly be negligible.
Recommendation: Variations in inventory should be reviewed for possible originsin
mismatch of demand to cgpacity before being used diredly as input to PPIC computations.
The patterns identified in Sedion 3.2.2 may be useful in constructing such diagnostics.
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5.2.2. System Scaling

The oscillatory behavior we observed shows how a bottlenedk in the supply chain not only limits
cgpacity, but also introduces variation. This behavior leads to two recommendations:

* Reoommendaion: Leannesshas its limits. Supgiers should be caeful to provide alequate
cgpacity for expeded demands, and should plan for the consequences of undertaking
commitments in excess of that cgpadty.

* Reocommnendaion: OEM’s should reaognize the possible performance and long-run cost
consequences of overloading suppliers (for example, by adding safety buffersto ealy orders
and canceling later ones to compensate for any over-deliveries).

5.3. Future Research

The unexpeded results found in this gudy offer arich foundation for data-analytic study of real
firms, and only scratch the surface of the exploration that can usefully be done with the present
model. In addition, it is desirable to extend the structure of this model to match awider range of
realistic supply networks, and to explore more sophisticaed mechanisms for overcoming the
undesirable behaviors that we have identified.

5.3.1. Data-Analytic Opportunities

The arrent projed has focused on constructing and exploring a simple model of a
manufaduring supply chain. To dete, we have ensured the redism of our model qualitatively, by
close ollaboration and regular review with a manufaduring manager at a major eledronics firm.
Theresults in hand (such as the different functional dependencies of amplification in distribution
vs. input networks, or the detail ed structure of cgpacity-induced oscillations) suggest signatures
for which real-life inventory data could be tested. Such comparison will not only provide a
guantitative measure of the fidelity of the model, but also suggest the most appropriate
enhancements to reflead more complex industrial pradices than those we have arrently
modeled.

5.3.2. Current Structure and Algorithms
The aurrent model will support extended experimentation in threediredions.

1. What isthe effed of introducing variation (either structured or noise) at different pointsin the
system? We have systematicdly explored only a few of the parameters that are equipped with
noise modification, and have varied demand only as an isolated step function. It would be
interesting to explore (for example) the interadion of real periodic variations in demand with the
correlations generated by PRC, or with inventory oscillations induced through capacity
limitations. If we drive the system in its oscillatory parameter regime with demand that oscillates
at some incommensurate frequency, we should seesomething like quasi-periodicity. There ae
also parameter regimes in which quasi-periodicity becomes chaotic, so we might well be aleto
produce daotic behavior in this system. We neel to seealso whether such parameter regimes
are reasonable for operating supply chains.

2. What dynamics emerge from coupling the two sides of the supply network hourglass together?
Our experiments to dete use the same forecasting mecdhanism at all sites. By constructing a
longer chain, we @an reasonably use weighted forecasting in the upper half and prediction in the
lower half.
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3. How does the behavior of the network vary with the scale of production? We exped the
dynamics of large-lot production (cars and toasters), which we have explored most
systematically, to dffer significantly from small-lot production (ships and aircraft). The latter
domain will be important for understanding the effeds of masscustomization. (It may be that
useful results for small-scale systems will require structural extensions described in the next
sedion.)

5.3.3. Structural Extensions

The aurrent model supports only linea sequences of sites. The model should be extended to
support arbitrary networks. Such an extension will permit us to model threeimportant red-world
situations:

1. The dfedsof aseembly (asingle site with multiple suppliers) and disassembly (a single site
with multiple consumers). This application requires significant modifications to PPIC.

2. Multiple products with common components (for example, several models of computer, al
using the same power supgy). This application requires that sites be &le to allocate components
aaossproducts, presumably on the basis of production quotas.

3. Competitive suppliers and/or consumers. This applicaion also requires sites to make
allocaion decisions, presumably in this case on the basis of cost and price information.

5.3.4. Adaptive Mechanisms

The aurrent work has siown the limitations of traditional PR C as an adaptive mechanism for
individual sites. Several approadhes deserve exploration for their potential to control the
undesirable behaviors we have identified.

1. Theforecating techniques we modeled, while representative of those used in industry, are
primitive. We intend to exploit more sophisticated methods that draw on the dharaderistics
of the data stream.

2. Theinsights gained in thisreseach offer arich new perspedive from which to evaluate PRC
algorithms. The behavior of common algorithms in the face of demand-driven oscillations or
persistence from past unrepeaed events needs to be understood much better. It is likely that
significant improvements will be necessary to cope with the resulting distortions.

3. Forecasting is one form of leaning, focused on one aped of the environment (the incoming
order stream). Leaning might also be usefull y applied to the performance of suppliers, in
compensating for deviations between orders and shipments. Especially in a nonlinear
network with competing suppliers, a site might vary its preference for one supplier over
another based on past performance Similarly, with multiple austomers for a scarce product, a
site might shift its preference from one to another on the basis of past acairacy of
predictions.

4. Currently, the only signals providing coordination among sites in our model are orders,
shipments, and (in the lower half of the hourglass) predictions of future orders.
Supplementing such signals with market mecdhanisms on which the persistence of agents
depends has proven useful in other domains [11] in controlling disorder due to nonlinearity.
Extension of the structure to permit competitive supply and consumption will allow usto
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explore the impad of dynamic bidding mechanisms, in which the flows of orders and
shipments change over time based on bidding aaosscompetitors.

5. Asforecasting, leaning, and coordination mechanisms becme more sophisticated, the
parameters that one can adjust in a site proliferate beyond the limit of manual exploration.
We exped the use of genetic mechanisms to explore parameter combinations to be both
necessary for manageable experimentation and promising for the development of grealy
improved performance.
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