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ABSTRACT
The sound received at the ears is processed by humans using signal-
processing that separates the signal along intensity, pitch and tim-
bre dimensions. Conventional Fourier-based signal processing,
while endowed with fast algorithms, is unable to easily represent
signal along these attributes. In this paper we use a recently pro-
posed cortical representation to represent and manipulate sound.
We briefly overview algorithms for obtaining, manipulating and
inverting cortical representation of a sound and describe algorithms
for manipulating signal pitch and timbre separately. The algo-
rithms are first used to create sound of an instrument between a
"guitar" and a "trumpet". Applications to creating maximally sep-
arable sounds in auditory user interfaces are discussed.
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1. INTRODUCTION
When a natural source such as a human voice or a musical instru-
ment produces a sound, the resulting acoustic wave is generated by
a time-varying excitation pattern of a possibly time-varying chan-
nel, and the sound characteristics depend both on the excitation
signal and on the production system. The production system (e.g.,
human vocal tract, the guitar box, or the flute tube) has its own
characteristic response; variation of the excitation parameters pro-
duces a sound signal that has different frequency components, but
still retains perceptual characteristics of the uniqueness of the pro-
duction instrument (identity of the person, type of instrument –
piano, violin, etc.) When one is asked to characterize this sound
source using descriptions based on Fourier analysis one discovers
that concepts such as frequency and amplitude are insufficient to
explain the characteristics of the sound source. Human linguistic
descriptions characterize the sound in terms of pitch and timbre.

The perceived sound pitch is closely coupled with its harmonic
structure. On the other hand, the timbre of the sound is defined
broadly as everything other than the pitch, loudness, and the spa-
tial location of the sound. For example, two musical instruments
might have the same pitch if they play the same note, but it is
their different timbre that allows us to distinguish between them.
Specifically, the spectral envelope in frequency and the spectral
envelope variations in time are related to the timbre percept. Most
conventional techniques of sound manipulation result in simulta-
neous changes in both the pitch and timbre and cannot be used
to assess the effects of the pitch and timbre dimensions indepen-
dently. A goal of this paper is the development of controls for
independent manipulation of pitch and timbre of a sound source
using a cortical sound representation that was introduced in [1]
and used for assessment of speech intelligibility and for predic-
tion of the cortical response to an arbitrary stimulus. We simulate
the multiscale audio representation and processing believed to oc-
cur in the primate brain (supported by recent psychophysiological

Fig. 1. Example auditory spectrogram for the sentence shown.

papers [2]), and while our sound decomposition is partially sim-
ilar to existing pitch and timbre separation and sound morphing
algorithms (in particular, MFCC decomposition algorithm in [3],
sinusoid plus noise model and effects generated with it in [4], and
parametric source models using LPC and physics-based synthesis
in [5]), the neuromorphic framework allows to view the processing
from a different perspective, supply supporting evidence to justify
the procedure performed and tailor it to the way the human ner-
vous system processes auditory information, and extend approach
to include decomposition in time domain in addition to frequency.

We anticipate our algorithms to be applicable in several areas,
including musical synthesis, audio user interfaces and sonification.
In musical instrument synthesis, synthesizers often use sampled
sound that have to be pitch-shifted to produce different notes [5]
or generate a new instrument with the perceptual timbre lying in-
between two known instruments. Development of advanced au-
ditory user interfaces requires mapping of arbitrary data streams
into auditory percepts, and is commonly called “sonification” [6].
Having the ability to create sound objects with controllable pitch
and timbre (as well as location and ambience as described earlier
in [7]) is necessary for maximal information throughput.

2. THE CORTICAL MODEL
In a complex acoustic environment, sources may simultaneously
change their loudness, location, timbre, and pitch. Yet, humans
are able to integrate the multitude of cues arriving at their ears,
and derive coherent percepts and judgments about each source [8].



Fig. 2. Tuning curves for the basis (seed) filter for the rate-scale
decompostion (scale of 1 cycle per octave, rate of 1 Hz).

The cortical model is a computational model for how the brain is
able to obtain these features. Physiological experiments have re-
vealed the elegant multiscale strategy developed in the mammalian
auditory system for coding of spatiotemporal characteristics of the
sound [2], [9]. The primary auditory cortex (AI), which receives
its input from the thalamus, employs a multiscale representation
in which the dynamic spectrum is repeatedly represented in AI at
various degrees of spectral and temporal resolution. This is ac-
complished by cells whose responses are selective to a range of
spectro-temporal parameters such as the local bandwidth and sym-
metry of spectral peaks, and their onset and offset transition rates.
A mathematical model of the early and central stages of auditory
processing in mammals was recently developed and described in
[1]. It is a basis for our work and is briefly summarized here.

The first stage of the model is an early auditory stage, which
models the transformation of the acoustic signal into an internal
neural representation. called the “auditory spectrogram”. The sec-
ond is a central stage, which analyzes the spectrogram to estimate
its spectro-temporal features, specifically its spectral and temporal
modulations, using a bank of modulation selective filters mimick-
ing those described in the mammalian primary auditory cortex.

The second stage is the auditory spectrogram stage that con-
sists of a sequence of three operations. A frequency analysis is
performed first by the mechanical vibrational pattern of a basi-
lar membrane in mammalian cochlea, with different frequencies
resonating at different points along the membrane; this stage is
simulated by a constant-Q filter-bank wavelet transform operation.
Then, the mechanical vibrations are transduced by inner hair cells
into electrical pulses in the auditory nerve fibers, which are sim-
ulated by half-wave rectification and lowpass filtering of the filter
outputs. Finally, lateral inhibition and envelope detection occurs
in the anteroventral cochlear nucleus, which is modeled by a spa-
tial derivative across the channel array to sharpen selectivity of
filters. Half-wave rectification followed by short-term integration
is applied to model the slow adaptation of the central auditory neu-
rons. The resulting time-frequency representation (auditory spec-
trogram, Figure 1) is invertible through an iterative process. A
time-slice of the spectrogram is called the auditory spectrum.

The second analysis stage mimics the action of higher central
auditory stages (especially the primary auditory cortex). The find-
ings of a wide variety of neuron spatio-temporal response fields
(SRTF) covering a range of frequency and temporal characteristics

Fig. 3. Sample scale decomposition of the auditory spectrum (bot-
tom plot) using scales from 0.125 to 8.0 CPO (top 7 plots).

[9] suggests that they may as a population perform a multiscale
analysis of their input spectral profile. Specifically, the cortical
stage estimates the spectral and temporal modulation content of
the auditory spectrogram by a bank of modulation selective filters.
Each filter is tuned to a combination of spectral and temporal mod-
ulation of the incoming signal over a range of temporal modula-
tions, or “rates”, varying from 2 to 32 Hz, and spectral resolutions,
or “scales”, varying from 0.25 to 8 cycles per octave (CPO); filters
are centered at different frequencies along the tonotopic axis. Fig-
ure 2 shows the spectral and the temporal response of the seed filter
tuned for scale 1 CPO and rate 1 Hz; differently tuned filters are
obtained by dilation or compression along the spectral and tempo-
ral axes. A mathematical formulation of the filter is available in
[1]. The filter output is computed by a convolution of its spectro-
temporal impulse response (STIR) with the input auditory spec-
trogram, producing a modified spectrogram. Since the spectral
and temporal cross-sections of an STIR are typical of a bandpass
impulse response in having alternating excitatory and inhibitory
fields, the output is large only if the spectrogram modulations are
tuned to the rate, scale, and direction of the STIR. A map of the
responses across the filterbank provides a unique characterization
of the spectrogram that is sensitive to the spectral shape and dy-
namics over the entire stimulus (see Figure 3).

Alternatively, the rate-scale analysis can be viewed as the de-
composition of a two-dimensional spectrogram using a set of basis



Fig. 4. Sound ripple at scale of 1 CPO and rate of 1 Hz.

functions which are called sound ripples and are characterized by
their scale and rate. Thus, a ripple with scale 1 CPO and rate 1
Hz has alternating peaks and valleys in the spectrum with 1 CPO
periodicity, and the spectrum shifts in time, repeating itself with 1
Hz periodicity (Figure 4); it is a basic seed function for decompo-
sition. All other basic functions are obtained by dilation (compres-
sion) of this function in both time and frequency axes. The result
of the decomposition of the auditory spectrogram using a basis
of sound ripples is a four-dimensional (time, frequency, scale and
rate) hypercube of (complex) filter coefficients that can be modi-
fied and inverted back to the acoustic signal.

Just as with the forward path, the inversion (or sound recon-
struction) consists of an early and central part. The early auditory
stage is inverted by an iterative convex projection algorithm that
takes the spectrogram as input and reconstructs the acoustic signal
that produces the closest spectrogram to a target. The second part
of the algorithm is the inversion of the cortical multiscale repre-
sentation back to a spectrogram. This is critical, since the timbre,
pitch, and elevation manipulations are easier to do in the cortical
domain. This is a one step inverse filtering operation, followed by
a rectification to ensure that the resulting spectrogram is positive.

3. TIMBRE-PRESERVING PITCH MANIPULATIONS

For speech and musical instruments, timbre is conveyed by the en-
velope of the spectrum, whereas the pitch is mostly conveyed by
the harmonic structure, or harmonic peaks. This biologically based
analysis is in the spirit of the cepstral analysis used in speech [10],
except that the Fourier-like transformation in the auditory system
is carried out in a local fashion using kernels of different scales.
The cortical decomposition is expressed in the complex domain,
with magnitude a measure of the local bandwidth of the spectrum,
and phase the local symmetry at each bandwidth. Finally, just
as with cepstral coefficients, the spectral envelope varies slowly.
In contrast, the harmonic peaks are only visible at high resolu-
tion. Consequently, timbre and pitch occupy different regions in
the multiscale representation. If X is the auditory spectrum of a
given data frame, with length N equal to the number of filters in
the cochlear filter-bank, and the decomposition is performed over
M scales, then the matrix S of scale decomposition has M rows,
one per scale value, and N columns. If further the 1st row of S
contains the decomposition over the finest scale and the Mth row
is the coarsest one, then the components of the S in the upper right

Fig. 5. Spectrum of a speech signal before and after pitch shift.
Note that the spectral envelope is filled with new set of harmonics.

triangle (above the diagonal) can be associated with pitch, while
the rest of components are the timbre information.

To control pitch and timbre separately, we apply modifica-
tions at the appropriate scales, and invert the cortical representa-
tion back to the spectrogram. Thus, to shift the pitch while holding
the timbre fixed we compute cortical multiscale representation of
the whole sound and shift (along the frequency axis) the triangular
part of every time-slice of the hypercube that holds the pitch in-
formation while keeping timbre information intact and invert the
result. To modify the timbre keeping the pitch intact we do the op-
posite. It is also possible to splice in pitch and timbre information
from two speakers, or from a speaker and a musical instrument.
The result after inversion back to a sound is a “musical” voice that
sings the utterance (or a “talking” musical instrument).

We show one pitch shift example here and refer the interested
reader to the web [11], [12] for actual sounds used in this example,
and for more samples. We use the above described algorithm to
perform timbre-preserving signal pitch shift. The cochlear model
has 128 filters with 24 filters per octave, covering 5 13 octaves along
frequency. The processing is done all the way from the sound wave
through the auditory spectrogram to the multiscale representation,
the pitch is shifted, and the inversion is carried back to sound wave.
In Figure 5, we show the plot of the spectrum of the original and
the shifted by 8 channels (one-third of an octave) signal at a given
time slice. Pitches of the original and of the modified signals are
140 Hz and 111 Hz, respectively. It can be seen that spectral en-
velope is preserved and speech formants are kept at their original
locations, but a new set of harmonics is introduced.

The algorithm is sufficiently fast to be performed in real-time.
To achieve real-time performance, we use simple fast Fourier trans-
form algorithms instead of a cochlear bank filter in both the for-
ward and backward stages of the early auditory processing stage,
which eliminates the need for an iterative inversion process. We
keep the phase information of the original signal and patch it to the
set of amplitudes for final inversion to ensure smooth evolution of
phases between frames to prevent artifacts in the synthesis. Addi-
tionally, we do not compute the full cortical representation of the
sound but perform only scale decomposition of the auditory spec-
trogram because shifts are done in the frequency axis only and can
be performed in each time slice of the hypercube independently.



Fig. 6. Wave and spectrum for guitar, trumpet and new instrument.

4. TIMBRE MANIPULATIONS
Timbre is captured in the multiscale representation both by the
spectral envelope and by the signal dynamics. Spectral envelope
variations or replacements can be done by modifying the lower
right triangle of the multiscale representation of the auditory spec-
trum, while sound dynamics is captured by the rate decomposi-
tion. Selective modifications to enhance or diminish contribution
of components of a certain rate can make the sound abrupt or
slurred, or create an impression of an anechoic or extremely re-
verberant environment (see [11] for samples). In musical synthe-
sis, playback rate and onset and decay ratio can be modified while
preserving the pitch using shifts along the rate axis.

To show ease of timbre manipulation using the cortical repre-
sentation, we performed timbre interpolation between two musical
instruments to obtain a new in-between synthetic instrument which
has the spectral shape and spectral modulation in time (onset and
decay ratio) that is in the middle between two original instruments,
which we selected to be guitar, WgC#3, and trumpet, WtC#3,
playing the same note (C#3). Then, the rate-scale decomposition
of a short (1.5 seconds) instrument sample was performed and the
arithmetic average of the rate-scale representations for two instru-
ments was converted back to the new instrument sound sample
WnC#3. The behavior of the new instrument along the time line
is intermediate between two original ones, and the spectrum shape
is also an average spectrum of two original instruments (Figure 6).

Then, we used timbre-preserving pitch shift described above
to synthesize different notes of the new instrument, using the wave-
form WnC#3 obtained in the previous step (third waveform in
Figure 6) as an input. Figure 7 shows the spectrum of the new in-
strument for three different notes – D#3, C3 and G2. It can be seen
that the spectral envelope is the same in all three plots (and is the
same as the spectral envelope of the WnC#3), but this envelope
is filled with different set of harmonics in these two plots. Addi-
tional frequency lock-in is performed to make sure that the result-
ing sound will contain only the harmonics of the new pitch, making
the sound clean and noise-free, by replacing phases of the coeffi-
cients of the Fourier transform of the sound wave in the restoration
process by phases of the coefficients of the Fourier transform of
the corresponding frequency pulse train. A few samples of music

Fig. 7. Spectrum of the new instrument playing D#3, C3 and G2.

made with the new instrument are available on the web [12].

5. SUMMARY AND CONCLUSIONS
We developed and tested simple and powerful algorithms to per-
form separate modifications of pitch and timbre and to perform
interpolation between sound samples. The algorithms is a new
application of a cortical representation of the sound, which ex-
tracts perceptually important features similarly to the processing
believed to occur in auditory pathways in primates, and thus can
be used for making sound modifications tuned for and targeted to
the ways the human nervous system processes information. We
obtained promising results and are using algorithms in ongoing
development of auditory user interfaces.
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