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Abstract
Atomos is the first programming language with implicit transac-
tions, strong atomicity, and a scalable multiprocessor implementa-
tion. Atomos is derived from Java, but replaces its synchronization
and conditional waiting constructs with simpler transactional alter-
natives.

The Atomos watch statement allows programmers to specify
fine-grained watch sets used with the Atomos retry conditional
waiting statement for efficient transactional conflict-driven wakeup
even in transactional memory systems with a limited number of
transactional contexts. Atomos supports open-nested transactions,
which are necessary for building both scalable application pro-
grams and virtual machine implementations.

The implementation of the Atomos scheduler demonstrates the
use of open nesting within the virtual machine and introduces the
concept of transactional memory violation handlers that allow pro-
grams to recover from data dependency violations without rolling
back.

Atomos programming examples are given to demonstrate the
usefulness of transactional programming primitives. Atomos and
Java are compared through the use of several benchmarks. The re-
sults demonstrate both the improvements in parallel programming
ease and parallel program performance provided by Atomos.

Categories and Subject Descriptors C.5.0 [Computer Systems
Implementation]: General; D.1.3 [Programming Techniques]: Con-
current Programming – parallel programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features – concurrent
programming structures

General Terms Performance, Design, Languages

Keywords Transactional Memory, Conditional Synchronization,
Java, Multiprocessor Architecture

1. Introduction
Processor vendors have exhausted their ability to improve single-
thread performance using techniques such as simply increasing
clock frequency [45, 2]. Hence they are turning en masse to single-
chip multiprocessors (CMPs) as a realistic path toward scalable
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performance for server, embedded, desktop, and even laptop plat-
forms [31, 28, 29, 8]. While parallelizing server applications is
straightforward with CMPs, parallelizing most other applications
is much harder.

Traditional multithreaded programming focuses on using locks
for mutual exclusion. By convention, access to shared data is co-
ordinated through ownership of one or more locks. Typically, a
programmer will use one lock per data structure to keep the lock-
ing protocol simple. Unfortunately, such coarse-grained locking of-
ten leads to serialization on high-contention data structures. On the
other hand, finer-grained locking can improve concurrency, but by
increasing code complexity and hurting performance in the absence
of contention. With such code, it is often easy to end up with code
that is prone to deadlocks or priority inversion.

Transactional memory has been proposed as an abstraction to
simplify parallel programming [24, 42, 23, 20]. Transactions elim-
inate locking completely by grouping sequences of object refer-
ences into atomic and isolated execution units. They provide an
easy-to-use technique for non-blocking synchronization over mul-
tiple objects, because the programmer can focus on determining
where atomicity is necessary, and not its implementation details.

All transactional memory proposals need to detect violations of
data dependencies between transactions. Violations occur when a
transaction’s read set, the set of all locations read during the trans-
action, intersects with another transaction’s write set, the set of all
locations written during the transaction. While this basic idea of
violation detection is common to all proposals, there is much diver-
gence in the details. We believe a transactional memory proposal
should have certain key features: specifically, it should provide a
programming language model with implicit transactions, strong
atomicity, and demonstrate a scalable multiprocessor implementa-
tion. To understand why we consider these choices to be important,
let us consider the alternatives to these features:

1. explicit versus implicit: Some proposals require an explicit step
to make locations or objects part of a transaction, while other
proposals make the memory operations’ behavior implicit on
the transactional state. Implicit transactions require either com-
piler or hardware support [1]. Older proposals often required
explicit instructions or calls to treat specific locations or ob-
jects as transactional; however, most proposals now allow ex-
isting code to run both transactionally and non-transactionally
based on the context. Requiring explicit transactional opera-
tions prevents a programmer from composing existing non-
transactional code to create transactions. Programmers need to
create and maintain transaction-aware versions of existing non-
transactional code in order to reuse it.



2. weak atomicity versus strong atomicity: The atomicity criteria
defines how transactional code interacts with non-transactional
code. In proposals with weak atomicity, transactional isolation
is only guaranteed between code running in transactions, which
can lead to surprising and non-deterministic results if non-
transactional code reads or writes data that is part of a trans-
action’s read or write set. For example, non-transactional code
may read uncommitted data from the transaction’s write set
and non-transactional writes to the transaction’s read set may
not cause violations. In proposals with strong atomicity, non-
transactional code does not see the uncommitted state of trans-
actions and updates to shared locations by non-transactional
code violate transactions, if needed, to prevent data races.

From a programming model point of view, strong atomicity
makes it easier to reason about the correctness of programs
because transactions truly appear atomic with respect to the
rest of the program. However, most software implementations
of transactional memory have only guaranteed weak atomicity
as a concession to performance. Recently, some hardware and
hybrid proposals that support unlimited transaction sizes have
also only offered weak atomicity. The problem is that programs
written for one atomicity model are not guaranteed to work
on the other; for a transactional program to be truly portable,
it has to be written with a specific atomicity model in mind,
potentially hindering its reuse on other systems [6].

3. library versus programming language: Some proposals treat
transactions simply as a library, while others integrate trans-
actions into the syntax of the programming language. There are
many issues with not properly integrating concurrency prim-
itives with programming language semantics as shown in re-
cent work on the Java Memory Model and threads in C and
C++ [38, 7]. Clear semantics are necessary to allow modern
optimizing compilers to generate safe yet efficient code for
multi-processor systems as well as perform transactional mem-
ory specific optimizations [22, 1].

4. uniprocessor versus multiprocessor: Some proposals require a
uniprocessor implementation for correctness, while others take
advantage of multiprocessor scaling. Since trends indicate a
move to multiprocessors, new programming languages should
make it easy to exploit these resources. To properly evaluate
transactional memory as an abstraction to simplify parallel pro-
gramming, it is important for proposals to provide a multipro-
cessor implementation.

In this paper we introduce the Atomos transactional program-
ming language, which is the first to include implicit transactions,
strong atomicity, and a scalable multiprocessor implementation.
Atomos is derived from Java, but replaces its synchronization and
conditional waiting constructs with transactional alternatives.

The Atomos conditional waiting proposal is tailored to allow ef-
ficient implementation with the limited transactional contexts pro-
vided by hardware transactional memory. There have been several
proposals from the software transactional memory community for
conditional waiting primitives that take advantage of transactional
conflict detection for efficient wakeup [20, 21]. By allowing pro-
grammers more control to specify their conditional dependencies,
Atomos allows the general ideas of these earlier proposals to be
applied in both hardware and software transactional memory envi-
ronments.

Atomos supports open-nested transactions, which we found
necessary for building both scalable application programs and vir-
tual machine implementations. Open nesting allows a nested trans-
action to commit before its parent transaction [35, 37]. This al-
lows for parent transactions to be isolated from possible contention

points in a more general way than other proposals like early re-
lease, which only allows a program to remove a location from its
read set to avoid violations [12].

In this paper we make the following specific contributions:

• We introduce Atomos, the first programming language with
strongly atomic transactional memory and a scalable multipro-
cessor implementation.

• We introduce the watch and retry statements to allow fine-
grained conditional waiting, which is more scalable than other
coarse-grained proposals in hardware environments with lim-
ited transactional contexts.

• We introduce the open statement to create nested transactions
that commit independently from their parent.

• We introduce the concept of violation handlers to transactional
memory to allow virtual machine implementations to handle
expected violations without rolling back.

In our evaluation, implicit transactions and strong atomicity
are supported by the Transactional Coherence and Consistency
(TCC) hardware transactional memory model [36]. The scalable
implementation is built on the design of the underlying Jikes Re-
search Virtual Machine (JikesRVM) and Transactional Coherence
and Consistency protocol [4]. Using this environment, we evaluate
the relative performance of Atomos and Java to demonstrate the
value of programming with transactions. We show not only savings
from the removal of lock overhead, but speedup from optimistic
concurrency.

While JikesRVM and TCC are well suited to supporting Ato-
mos, there is nothing about Atomos that fundamentally ties it to
these systems. Atomos’s toughest requirement on the underlying
transactional memory system is strong atomicity, which lends itself
more naturally toward a hardware transactional memory-based im-
plementation. Although there has been recent research into strongly
atomic software transactional memory systems, native code poses
a further challenge to their use by Atomos. Typically these sys-
tems prohibit the calling of native code within transactions, signif-
icantly restricting the flexibility of the program. Atomos leverages
the JikesRVM scheduler thread architecture in its implementation
of conditional waiting, but the design could be adapted to other
timer-based schedulers.

The rest of the paper is organized as follows. Section 2 dis-
cusses earlier work on integrating transactions and programming
languages. Section 3 describes the Atomos programming language
and provides motivating examples. Section 4 demonstrates how
both fine-grained conditional waiting and loop speculation are im-
plemented using the basic atomicity features of Atomos. In Sec-
tion 5, we evaluate the usability of Atomos as well as the rela-
tive performance of transactional Atomos programs and lock-based
Java programs. Finally, we conclude in Section 6.

2. Related Work
Any transactional programming language proposal builds on work
in hardware and software transactional memory as well as on earlier
work integrating database-style transactions into programming lan-
guages. As we review transactional memory-related work in Sec-
tion 2.1 and Section 2.2, we will use the four properties from Sec-
tion 1 to differentiate the various proposals. A summary of this is
provided in Table 1, showing that Atomos is the first transactional
programming language with implicit transactions, strong atomicity,
and a multiprocessor implementation.

2.1 Hardware Transactional Memory
Hardware transactional memory variants have now been around
for almost twenty years and have focused on multiprocessor im-



Name Implicit Strong Program- Multi-
Trans- Atom- ming Proc-
actions icity Language essor

Knight [30] Yes Yes No Yes
Herlihy & Moss [24] No No No Yes
TCC [18, 17] Yes Yes No Yes
UTM [5] Yes No No Yes
LTM [5] Yes Yes No Yes
VTM [39] Yes Yes No Yes

Shavit & Touitou [42] No No No Yes
Herlihy et al. [23] No No No Yes
Harris & Fraser [20] Yes No Yes Yes
Welc et al. [46] Yes No Yes Yes
Harris et al. [21] Yes Yes Yes No
AtomCaml [40] Yes Yes Yes No
X10 [11] Yes No Yes Yes
Fortress [3] Yes No Yes Yes
Chapel [12] Yes No Yes Yes
McRT-STM [41, 1] Yes No Yes Yes

Atomos Yes Yes Yes Yes

Table 1. Summary of transactional memory systems. The first
section lists hardware transactional memory systems. The second
section lists software transactional memory systems.

plementations. Knight first proposed using hardware to detect data
races in parallel execution of implicit transactions found in mostly
functional programming languages such as Lisp [30]. This proposal
had two of the important features of transactional memory: implicit
transactions and strong atomicity. However, the transaction granu-
larity was not made visible to the programmer, with each store act-
ing as a commit point and executing in sequential program order.
Herlihy and Moss proposed transactional memory as a generalized
version of load-linked and store-conditional, meant for replacing
short critical sections [24].

Recent proposals such as TCC, UTM/LTM, and VTM have
relieved earlier data size restrictions on transactions, allowing the
development of continuous transactional models [18, 5, 39]. TCC
provides implicit transactions, strong atomicity, and some features
for speculation and transactional ordering [17]. UTM and LTM are
related proposals that both provide implicit transactions. However,
these proposals differ in atomicity, with UTM providing weak
atomicity and LTM providing strong atomicity [6]. Finally, VTM
provides implicit transactions and strong atomicity.

2.2 Software Transactional Memory
Shavit and Touitou first proposed a software-only approach to
transactional memory, but it was limited to explicit static transac-
tions with weak atomicity where the data set is known in advance,
such as k-word compare-and-swap [42]. Herlihy et al. overcame
this static limitation with their dynamic software transactional
memory work, which offered explicit transactions, strong atomic-
ity, and a Java library interface [23]. Harris and Fraser provide the
first implicit software transactional memory with programming lan-
guage support, allowing existing Java code to run as part of a trans-
action and providing an efficient implementation of Hoare’s condi-
tional critical regions (CCRs) [20]. Welc et al. provide transactional
monitors in Java through JikesRVM compiler extensions, treating
Object.wait() as a thread yield without committing [46]. Like
Harris, this proposal has implicit transactions with weak atomicity.
Unfortunately, the transactional interpretation of Object.wait()
by Welc et al. can cause existing code such as barriers to fail [10].

Harris et al. later explored integrating software transactional
memory with Concurrent Haskell, providing implicit transactions,
strong atomicity, and the orElse construct for composing condi-

tional waiting in a uniprocessor environment [21]. AtomCaml ex-
plicitly takes advantage of a uniprocessor-only implementation to
achieve its implicit transactions with strong atomicity [40]. Atom-
Caml builds transactional conditional waiting entirely from lan-
guage primitives without any additional implementation support.
Recently X10, Fortress, and Chapel have been proposed, which
all provide implicit transactions, weak atomicity, and program-
ming language support for transactions in multiprocessor environ-
ments [11, 3, 12]. McRT-STM provides a multi-core runtime that
supports software transactional memory for C++ via a library inter-
face and for Java and C# through language extensions backed by a
just-in-time (JIT) compiler with transactional memory-specific op-
timizations [41, 1].

2.3 Programming Languages with Durable Transactions
While most of the related work comes from the area of transac-
tional memory, there has been a body of work integrating trans-
actional persistence and programming languages. ARGUS was
a programming language and system that used the concepts of
guardians and actions to build distributed applications [33]. The
Encina Transactional-C language provided syntax for building dis-
tributed systems including nested transactions, commit and abort
handlers, as well as a “prepare” callback for participating in two-
phase commit protocols [43]. Encina credits many of its ideas to
work on Camelot and its Avalon programming language [14]. The
SQL standards define how SQL can be embedded into a variety
of programming languages [25]. There are also systems such as
PJama that provide orthogonal persistence allowing objects to be
saved transparently without explicit database code [27].

3. The Atomos Programming Language
The Atomos programming language is derived from Java by replac-
ing locking and conditional waiting with transactional alternatives.
The basic transactional semantics are then extended through open
nesting to allow programs to communicate between uncommitted
transactions. Finally, commit and abort callbacks are provided so
programs can either defer non-transactional operations until com-
mit or provide compensating operations on abort.

3.1 Transactional Memory with Closed Nesting
Transactions are defined by an atomic statement similar to other
proposals [20, 11, 3, 12]. Because Atomos specifies strong atomic-
ity, statements within an atomic statement appear to have a seri-
alization with respect to other transactions as well as to reads and
writes outside of transactions; reads outside of a transaction will
not see any uncommitted data and writes outside a transaction can
cause a transaction to roll back. Here is a simple example of an
atomic update to a global counter:

atomic { counter++; }

Nested atomic statements follow closed-nesting semantics, mean-
ing that the outermost atomic statement defines a transaction that
subsumes the inner atomic statement. When a nested transaction
commits, it merges its read and write sets with its parent transac-
tion. When a transaction is violated, only it and its children need
to be rolled back; the parent transaction can then restart the nested
child.

The use of atomic statements conceptually replaces the use of
synchronized statements. Studies show that this is what program-
mers usually mean by synchronized in Java applications [15].
However, this is not to say that programmers can blindly substitute
one statement for the other, as it can affect the semantics of existing
code [6]. Fortunately, this does not seem to be a common problem
in practice [10].



public int get (){
synchronized (this) {

while (!available)
wait();

available = false;
notifyAll();
return contents;}}

public void put(int value){
synchronized (this) {

while (available)
wait();

contents = value;
available = true;
notifyAll();}}

public int get() {
atomic {

if (!available) {
watch available;
retry;}

available = false;
return contents;}}

public void put (int value) {
atomic {

if (available) {
watch available;
retry;}

contents = value;
available = true;}

Figure 1. Comparison of producer-consumer in Java (left) and Atomos (right). The Java version has an explicit loop to retest the condition
where the Atomos rollback on retry implicitly forces the retesting of the condition. Java requires an explicit notification for wakeup where
Atomos relies on the violation detection of the underlying transactional memory system.

synchronized (lock) {
count++;
if (count != thread_count)

lock.wait();
else

lock.notifyAll();}

atomic {
count++;}

atomic {
if (count != thread_count) {

watch count;
retry;}}

Figure 2. Comparison of a barrier in Java (left) and Atomos (right). count is initialized to zero for new barriers. The Java version implicitly
has two critical regions since the wait call releases the monitor. In Atomos, the two critical regions are explicit.

The concept of the volatile field modifier is replaced with an
atomic field modifier as proposed in Chapel [12]. Fields marked
with the atomic modifier are accessed as small closed nested
transactions that may be top level or nested as specified above. This
serves one purpose of volatile, since it restricts the reordering of
access between top-level transactions. However, another purpose of
transactions is to force visibility of updates between threads. This
usage of volatile is discussed below in Section 3.3 on reducing
isolation between transactions.

The initial proposal for Atomos prohibits starting threads inside
of transactions. This eliminates the semantic questions of nested
parallelism where multiple threads could run within a single trans-
actional context. Other proposals are also exploring such seman-
tics, but there does not seem to be a consensus about the practical
usefulness or the exact semantics of this feature [34, 13].

3.2 Fine-Grained Conditional Waiting
Atomos conditional waiting follows the general approach of an ef-
ficient Conditional Critical Region (CCR) implementation: a pro-
gram tests some condition and, finding it false, waits to restart un-
til it has reason to believe the condition might now be true [20].
One nice semantic property of CCRs is that the waiting thread does
not need to coordinate a priori with other threads that might be
affecting the condition. Unfortunately, this lack of connection be-
tween waiting threads and modifying threads historically led to
problematic performance for CCRs because either the condition
was reevaluated too often, resulting in polling-like behavior, or not
often enough, resulting in delayed wakeup. Transactional memory
has made CCRs efficient by using the read set of the transaction as
a tripwire to detect when to reevaluate the condition: when a vio-
lation of the read set is detected, another transaction has written a
value that was read as part of evaluating the condition, so there is
some reason to believe that the value of the condition might be true.

One problem with this approach is that it requires a transactional
context with a potentially large read set to remain active to listen
for violations even while the thread has logically yielded. While
this can scale well for software transactional memory systems that

maintain such structures in memory, it is problematic for hardware
transactional memory systems with a limited number of hardware
transactional contexts, typically one per processor.

Atomos refines this general approach by allowing a program
to specify a watch set of locations of interest using the watch
statement. After defining the watch set, the program calls retry to
roll back and yield the processor. The implementation of the retry
statement communicates the watch set to the scheduler, which
then listens for violations on behalf of the now yielded thread. By
rolling back, retry allows the waiting thread to truly yield both
its processor resource and transactional context for use by other
threads. Violation of the watch set and restart of waiting threads
are transparent to the writing thread, which does not need to be
concerned about a separate explicit notification step as is necessary
in most lock-based conditional waiting schemes.

Figure 1 shows a simple producer-consumer example derived
from Sun’s Java Tutorial to compare and contrast Java’s conditional
variables with Atomos’s watch and retry [9]. Although these two
versions seem very similar, there are notable differences. First, note
that Java requires an explicit association between a lock, in this case
this, and the data it protects, in this case available and con-
tents. Atomos transactions allow the program to simply declare
what they want to appear atomic. Second, Java’s wait releases the
lock making side effects protected by the lock visible. Instead, Ato-
mos’s retry reverts the transaction back to a clean state. Third,
because Atomos reverts back to the beginning of the transaction,
the common Java mistake of using an if instead of a while in test-
ing the condition is eliminated, since calling retry ensures that the
program will always reevaluate the condition. Finally, Java requires
an explicit notify to wake up waiting threads, where Atomos relies
on implicit violation handling. This reduces the need for coordina-
tion and allows threads to wait for conditions without defining a
priori conventions for notification.

To understand why this third difference is important, consider
Figure 2 which shows an example derived from Java Grande’s Sim-
pleBarrier [26]. As noted above, Java wait will release the lock
and make the updated count visible to other threads. However, re-
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Figure 3. Timeline of three nested transactions: two closed-nested
and one open-nested. Merging of data (� and �) and read-/write-
sets (� and �) is noted at the end of each transaction.

placing Java wait with Atomos retry would cause the code to
roll back, losing the count update. All threads would then think
they were first to the barrier and the program will hang. To create a
transactional version, we need to rewrite the original code into two
transactions, one that updates the count and another that watches
for other threads to reach the barrier. Code with side effects before
conditional waiting is not uncommon in existing parallel code, as a
similar example is given in Sun’s Java Tutorial [9]. SPECjbb2000
also contains such an example with nested synchronized state-
ments [44]. Fortunately, although they share a common pattern,
such examples make up a very small fraction of the overall pro-
gram and are generally easy to rewrite.

3.3 Open Nesting
Basic transactional behavior depends on the detection of conflict-
ing read and write sets. However, in the world of databases, transac-
tions often reduce their isolation from each other to gain better per-
formance. Chapel [12] provides the early release construct, which
is intended to prevent dependencies between transactions. Atomos
takes a different approach by providing open nesting, which allows
communication from within uncommitted transactions while still
providing atomicity guarantees for updates made within the trans-
action.

The open statement allows a program to start an open-nested
transaction. Where a closed-nested transaction merges its read and
write set into its parent at commit time, an open-nested transaction
commit always makes its changes globally visible immediately.
For example, in Figure 3 when TE commits, its updates are made
visible to both other transactions in the system as well as its parent,
TD. In contrast, when closed-nested transactions such as TB and
TC commit, their changes are only made available to their parent,
TA. Only when the parent TA commits are changes from TB

and TC made visible to the rest of the system. Like closed-nested
transactions, the violation of an open-nested child does not roll

back the parent, allowing the child to be resumed from its starting
point, minimizing lost work.

Open nesting semantics can seem surprising at first, since
changes from the parent transaction can be committed if they are
also written by the open-nested child transaction, seemingly break-
ing the atomicity guarantees of the parent transaction. However, in
the common usage of open-nested transactions, the write sets are
typically disjoint. This can be enforced through standard object-
oriented encapsulation techniques.

To see how open-nested transactions are useful to application
programs, consider an example of generating unique identifiers for
objects using a simple counter derived from SPECjbb2000 [44]. A
program may want to create objects, obtain an unique identifier, and
register the object atomically as sketched in the following code:

public static int generateID {
atomic {

return id++;}}
public static void createOrder (...) {

atomic {
Order order = new Order();
order.setID(generateID());
// finish initialization of order.
// this could include creating more
// objects which could mean more
// calls to generateID.
...;
orders.put(new Integer(order.getID()),

order);}}

However, doing so will mean that many, otherwise unrelated trans-
actions will have conflicting accesses to the id variable, even
though the rest of their operations may be non-conflicting. By
changing generateID to use open nesting, the counter can be
read, updated, and committed quickly, with any violation rollback
limited to the open-nested transaction, and not the parent applica-
tion transactions:

public static open int generateID {
open {

return id++;}}

Open-nested transactions can also be used for more general inter-
transaction communication like that found with transaction syn-
chronizers [34].

Open-nested transactions allow threads to communicate be-
tween transactions while minimizing the risk of violations. Their
use has some similarity to volatile variables in that commit
forces writes to be immediately visible even before the parent
transaction commits. For this reason, we also allow an open field
modifier for cases where a volatile field was used within a syn-
chronized statement.

Once an open-nested transaction has committed, a rollback of
one of its parent transactions is independent from the completed
open-nested transaction. If the parent is restarted, the same open-
nested transaction may be rerun. In the unique identifier example,
this is harmless as it just means there might be some gaps in the
identifier sequence. In other cases, another operation might be nec-
essary to compensate for the effects of the open-nested transaction,
as we will discuss in the next section.

Open-nested transactions are also very useful in virtual ma-
chine implementation where runtime code runs implicitly within
the context of a program transaction. For example, the JikesRVM
JIT compiler adds its own runtime code to methods as it compiles
them for several purposes: a.) code that checks for requests from
the scheduler to yield the processor for other threads to run, b.)
code that checks for requests from the garbage collector to yield



the processor for the garbage collector to run, and c.) code that
increments statistic counters, such as method invocation counters,
that are used to guide adaptive recompilation. By using open-nested
transactions, the runtime can check for these requests or increment
these counters without causing the parent application transactions
to roll back. We will discuss the use of open-nested transactions for
virtual machine implementation further in Section 4.1, where we
discuss how watch sets are communicated to the scheduler.

3.4 Transaction Handlers
In database programming, it is common to run code based on the
outcome of a transaction. Transactional-C provided onCommit and
onAbort handlers as part of the language syntax. Harris extended
this notion to transactional memory with the ContextListener
interface [19]. Harris introduces the notion of an ExternalAc-
tion, which can write state out of a transactional context using
Java Serialization so that abort handlers can access state from
the aborted transaction.

For Atomos, we feel that open-nested transactions fill the role of
ExternalAction by providing a way to communicate state out of
a transaction that might later be needed after rollback. We provide
separate CommitHandler and AbortHandler interfaces so that
one or the other may be registered independently:

public interface CommitHandler {
public void onCommit();}

public interface AbortHandler {
public void onAbort();}

Each nesting level can have its own handlers. When registered,
a handler can be associated with any currently nested transaction
and is run at the conclusion of that nested transaction in a new
transactional context.

In database programming, transaction handlers are often used
to integrate non-transactional operations. For example, if a file is
uploaded to a temporary location, on commit it would be moved
to a permanent location and on abort it would be deleted. In trans-
actional memory programming, transactional handlers serve simi-
lar purposes. Transaction handlers can be used to buffer output or
rewind input performed within transactions. Transaction handlers
can be used to provide compensation for open-nested transactions.
In our JIT example, 100% accurate counters were not required. If
a method is marked as invoked and then rolls back, it is not nec-
essary to decrement the counter. However, programs such as the
SPECjbb2000 benchmark that keep global counters of allocated
and deallocated objects want accurate results. An abort handler can
be used to compensate the open transaction, should a parent trans-
action abort. Further details on handlers, including an I/O example,
can be found in [35].

4. Implementing Transactional Features
In this section, we will detail two transactional programming con-
structs implemented in Atomos. The first is a discussion of our im-
plementation of Atomos watch and retry, which demonstrates a
use of open-nested transactions and violation handlers. The sec-
ond is a demonstration of how loop speculation can be built with
closed-nested transactions.

4.1 Implementing retry

Implementing violation-driven conditional waiting with hardware
transactional memory is challenging because of the limited num-
ber of hardware transactional contexts for violation detection, as
mentioned previously in Section 3.2. The problem is making sure
someone is listening for the violation even after the waiting thread
has yielded. The Atomos solution uses the existing scheduler thread

of the underlying JikesRVM implementation to listen for violations
on behalf of waiting threads.

We use a violation handler to communicate the watch set be-
tween the thread and the scheduler. A violation handler is a callback
that allows a program to recover from violations instead of nec-
essarily rolling back. Violation handlers are a more general form
of abort handlers that allow complete control over what happens
at a violation including whether or not to roll back, where to re-
sume after the handler, and what program state will be available
after the handler. Violation handlers run with violations blocked
by default, allowing a handler to focus on handling one violation
without having to worry about handler re-entrance. If a violation
handler chooses to roll back the violated transactions, any pending
violations are discarded. Otherwise the violation handler will be
invoked with the pending violation after it completes.

Violation handlers are not a part of the Atomos programming
language. They are the mechanism used to implement the higher-
level Atomos AbortHandler, which is not allowed to prevent
roll back. At the operating system level, violation handlers are
implemented as synchronous signal handlers that run in the context
of the violated transaction. The handler can choose where to resume
the transaction or to roll back the transaction. Here we show a
higher level ViolationHandler interface that is more restrictive
than the general purpose signal handler:

public interface ViolationHandler {
public boolean onViolation(

Address violatedAddress);}

This restricted form of handler can either return true if it handled
the violation and wants to simply resume the interrupted transaction
or return false if it wants the transaction to roll back. The underly-
ing lower-level violation signal handler takes care of calculating the
address of where to resume.

Figure 4 sketches out the basic implementation of Atomos con-
ditional waiting. The watch statement simply adds an address to
a thread-local watch set. The retry implementation uses open to
send this watch set to the scheduler thread, which is effectively lis-
tening for requests from the other threads using a violation handler.
Once the thread is sure that the scheduler is listening on its watch
set, it can roll back and yield the processor. The scheduler’s vio-
lation handler serves three purposes. First, it watches for requests
to read watch set addresses. Second, it handles requests to cancel
watch requests when the thread is violated in the process of wait-
ing. Finally, it handles violations to watch set addresses by ensuring
that watching threads are rescheduled.

To consider a simple example, let us walk through the producer-
consumer code from Figure 1. Suppose a consumer thread finds that
there is no data available. It requests to watch available, which
simply adds the address of available to a local list. When the
thread calls retry, the thread uses an open-nested transaction to
send the available address to the scheduler, which then reads
it. The scheduler then uses its own open-nested transaction to
acknowledge that it has read the address, so that the original thread
can now roll back and yield. Later on, a producer makes some
data available. Its write to available causes the scheduler to
be violated. The scheduler finds that it had read the address of
available on behalf of the original consumer thread, which it then
reschedules for execution.

Figure 5 presents a sketch of code for the Atomos scheduler im-
plementation with the code run by the waiting thread on the left and
the code run by the scheduler on the right. The watch implementa-
tion simply adds the address to the thread local watchSet list. Note
that the address never needs to be explicitly removed from the wait
set because this transaction will be rolled back either by a violation
from another thread or when the thread is suspending.
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Figure 4. Conditional synchronization using open nesting and violation handlers. Waiting threads communicate their watch sets to the
scheduler thread via scheduler command queues in shared memory that interrupt the scheduler loop using violations. The Cancel Retry
ViolationHandler allows the waiting thread to perform a compensating transaction to undo the effects of its open-nested transactions in the
event of rollback of the parent transactions.

// watch keyword adds an address to local wait set
void watch(Address a){

VM_Thread.getCurrentThread().watchSet.add(a); }

// retry keyword implementation
void retry(){

VM_Thread thread = VM_Thread.getCurrentThread();
List watchSet = thread.watchSet;
// register "cancel retry violation handler" to
// cleanup scheduler if we violated before yield
VM_Magic.registerViolationHandler(retryVH);
for (int i=0,s=watchSet.size();i<s;i++){

Address a=(Address)watchSet.get(i);
open {

// write address where scheduler is reading
thread.schedulerAddress = a;
// wakeup the scheduler violation handler
thread.schedulerWatch = true; }

// busy wait until we hear back
open { if (thread.scheduleWatch) for(;;) ; }}

// clear our read set to avoid violations
// now that scheduler is listening for us
VM_Magic.discardState();
// safe to unregister now that read set cleared
VM_Magic.unregisterViolationHandler(retryVH);
// store resume context from checkpoint and yield
thread.suspend(); }

// cancel retry violation handler (retryVH)
boolean onViolation(Address a){

VM_Thread thread = VM_Thread.getCurrentThread();
open {

thread.schedulerCancel = true; }
open { if (thread.schedulerCancel) for(;;) ; }

return false; } // rollback transaction

// Scheduler violation handler
boolean onViolation(Address a){

VM_Thread t = schedulerWatches.get(a);
if (t != null) { // case A: watch request

Address address;
// read the next watch address
open { address = t.schedulerAddress; }
address.loadWord(); // load adds to read set
open {

// update address and thread mappings for below
addressToThreads.get(address).add(t);
threadToAddresses.get(t).add(address);
// let the sender continue
thread.schedulerWatch = false;
return true; }} // never rollback transaction

t = schedulerCancels.get(a);
if (t != null) { // case B: retry cancel request

open {
List addresses = threadToAddresses.remove(t);
for (int j=0, sj=addresses.size();j<sj;j++){

Address a = (VM_Thread)addresses.get(j);
Map threads = addressToThreads.get(address);
threads.remove(t);
if (threads.isEmpty()) {

VM_Magic.releaseAddress(a); }}
thread.schedulerCancel = false;
return true; }} // never rollback transaction

open { // notification for some thread?
List threads = addressToThreads.remove(a);
if (threads != null) { // case C: resume threads

for (int i=0, si=threads.size();i<si;i++){
VM_Thread t = (VM_Thread)threads.get(i);
t.resume();
List addresses = threadToAddresses.remove(t);
for (int j=0, sj=addresses.size();j<sj;j++){

Address a = (Address)threads.get(j);
Map moreThreads = addressToThreads.get(a);
moreThreads.remove(t);
if (moreThreads.isEmpty()) {

VM_Magic.releaseAddress(a); }}}}}
return true; } // never rollback transaction

Figure 5. Implementation details of Atomos watch and retry using violation handlers. Following the convention set by Figure 4, the code
on the left runs in the waiting thread and the code on the right runs as part of the scheduler. The Scheduler ViolationHandler cases A, B, and
C from Figure 4 are marked with comments in the Scheduler onViolation code.



The retry implementation needs to communicate the addresses
from the watchSet to the scheduler thread so it can receive vi-
olations on behalf of the waiting thread after it suspends. To do
this, the waiting thread uses open-nested transactions. However,
the transaction could be violated while communicating its watch
set. The scheduler would then be watching addresses for a thread
that has already been rolled back. In order to keep consistent state
between the the two threads, the waiting thread uses a violation
handler to perform a compensating transaction to let the scheduler
know to undo the previous effects of the waiting thread’s open-
nested transactions. In order to achieve this, it is important to regis-
ter the retryVH violation handler before any communication with
the scheduler. This violation handler is only unregistered after the
thread’s watchSet has been communicated and the read set of the
waiting thread has been discarded to prevent violations.

In this example implementation of retry, schedulerAddress
is used to communicate watchSet addresses to the scheduler and
schedulerWatch is set to true to violate the scheduler thread, in-
voking its violation handler. After the first open transaction, a sec-
ond open is used to listen for an acknowledgment from the sched-
uler so that the waiting thread has confirmation of the watchSet
transfer before discarding state, ensuring that at least one of the
two threads will receive the desired violations at any time.

Below the retry code is retryVH, the violation handler for the
waiting thread. It uses the same technique to communicate with the
scheduler. The violation handler returns false to indicate that the
waiting thread should be rolled back, allowing the waiting thread
to reevaluate its wait condition.

The right side of Figure 5, shows the onViolation code for
the scheduler thread. It uses the schedulerWatches map to deter-
mine if this is a watch request from a waiting thread. The sched-
ulerWatches and related schedulerCancels maps are estab-
lished when the VM Thread objects are created during virtual ma-
chine initialization; programming language threads are multiplexed
over the VM Thread instances. If the violation is from a known
schedulerWatch address, the value in schedulerAddress field
is added to the read set of the scheduler simply by loading from the
address. The schedulerAddress value is read in an open-nested
transaction to avoid adding the location of this field to the sched-
uler read set. The thread and address information is then used to
update addressToThreads and threadToAddresses maps. The
addressToThreads is used when a violation is received to deter-
mine the threads that have requested wakeup. The threadToAd-
dresses map is used to track addresses to remove from the sched-
uler read set when there is a cancel request.

If the violation is instead from a schedulerCancel address,
the scheduler needs to remove from its read set any addresses that
it was watching solely for the requesting thread, being careful to
remove the location only if it is not in the watch set of any other
thread.

The final case in the scheduler code is to resume threads on a
watch set violation. After resuming, the threads will then reevalu-
ate their conditional waiting code. In addition, the watch sets of the
resumed threads are removed from the scheduler read set as neces-
sary, similar to the code in the cancel case.

The scheduler thread must be very careful in managing its read
set or it will miss violations on behalf of other threads. The vio-
lation handler uses exclusively open-nested transactions to update
addressToThreads and threadToAddresses and scheduler-
Command. The scheduler main loop must also use only open-nested
transactions as committing a close nested transaction will empty
the carefully constructed read set. Fortunately, such complex uses
of open nesting are generally confined to runtime system imple-
mentation and application uses are more straightforward as shown
in the previous counter example.

4.2 Loop Speculation
The t for loop speculation statement allows sequential loop-based
code to be quickly converted to use transactional parallelism [17].
When used in ordered mode, it allows sequential program seman-
tics to be preserved while running loop iterations in parallel. It also
allows multiple loop iterations to be run in larger transactions to
help reduce potential overheads caused by many small transactions,
similar to loop unrolling.

Figure 6 gives a schematic view of running loop iterations in
parallel using t for. In Figure 6a, the sequential order is preserved
by requiring that loop iterations commit in order, even when itera-
tion length varies. Note that although the commit of iterations has
to be delayed to preserve sequential order at the start of the t for
loop, the resulting pattern of staggered transactions typically leads
to a pipelining effect where future iterations do not have to be de-
layed before committing. In Figure 6b, iterations are free to commit
in any order, removing stall times from the ordering case.

In Atomos, statements like t for can be implemented as library
routines. For example, we can recast t for as a Loop.run method
that takes a LoopBody interface similar to the use of Thread and
Runnable:

public class Loop {
public static void run (

boolean ordered,
int chunk,
List list,
LoopBody loopBody);}

public interface LoopBody {
public void run (Object o);}

The ordered argument allows the caller to specify sequential pro-
gram order if needed, otherwise transactions commit in “first come,
first served” order. The chunk specifies how many loop iterations
to run per transaction. The list argument specifies the data to iter-
ate over. The loopBody specifies the method to apply to each loop
element. Before we investigate the details of the implementation of
Loop.run, let us consider an example of using loop speculation.
Consider the following histogram example program:

void histogram(int[] A,int[] bin){
for(int i=0; i<A.length; i++){

bin[A[i]]++;}}

We can use a Loop.run routine to convert histogram into the
following parallel program:

void histogram(int[] A,int[] bin){
Loop.run(false,20,Arrays.asList(A),new LoopBody(){

public void run(Object o){
bin[A[((Integer)o).intValue()]]++;}}}

This version of histogram runs loop chunks of 20 loop iterations
in parallel as unordered transactions.

Figure 7 shows a simple implementation of Loop.run. The un-
ordered case is relatively straightforward with various chunks run-
ning atomically in parallel with each other. The ordered case is
more interesting in its use of a loop within a closed-nested trans-
action to stall the commit until previous iterations have completed
without rolling back the work of the current iterations. This general
pattern can be used to build arbitrary, application-specific ordering
patterns.
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void run (boolean ordered, int chunk, List list, LoopBody loopBody){
Thread[] threads = new Thread[cpus];
boolean[] finished = new boolean[list.size()]; // keep track as iterations finish
for(int t=0; t<cpus; t++){

threads[t] = new Thread(new Runnable(){
public void run(){

for(int i = t*chunk; i < list.size(); i+= cpus*chunk){
atomic { // run each chunk atomically

for(int c=0; c<chunk; c++){
int iteration = i+c;
loopBody.run(list.get(iteration));
finished[iteration]=true; } // mark when iterations complete

if (ordered){
if (i>0)

atomic {
if (!finished[i-1]) // preserve ordering by stalling commit.

for (;;) { // when the previous iteration updates
; }}}}}}}); // finished, we restart the inner atomic

threads[t].start();}
for(int t=0; t<cpus; t++){

threads[t].join();}}

Figure 7. Loop.run implementation. For the unordered case, we simply run and commit iterations as fast as possible. In the ordered case,
we have to stall commit until the previous transaction finishes without losing the work of the loop body. This is performed by stalling in a
nested atomic block at the end of loop iterations.



Code Description Source Input Lines Java Synchronization
JikesRVM Java virtual machine, v2.3.4 Alpern [4] NA 307,212 131S 14V 15W 4N 11NA
GNU Classpath Java class libraries, v0.18 FSF [16] NA 848,165 424S 14V 41W 11N 30NA
SPECjbb2000 Java Business Benchmark SPEC [44] 736 transactions 30,754 244S 0V 5W 3N 1NA
TestHashtable multithreaded Map get/put Harris [20] 4,000 get 4,000 put 398 4S 0V 2W 0N 2NA
TestWait circular token passing Harris [20] 1-16 tokens 367 4S 0V 2W 0N 2NA
TestHistogram histogram of test scores Hammond [17] 80,000 scores 331 5S 0V 2W 0N 2NA

Table 2. Summary of runtime and benchmark application sources. Lines is the total number of lines of Java source in the original program.
Java Synchronization lists the uses of various Java constructs: S=synchronized V=volatile W=wait N=notify NA=notifyAll

5. Evaluation
In this section, we compare the performance of Atomos transac-
tional programming to Java lock-based programming and evaluate
the level of effort required to adapt existing programs to Atomos.

5.1 Benchmarks
To evaluate the Atomos programming language, we converted Java
benchmarks from using locks to transactions, as summarized in Ta-
ble 2. SPECjbb2000 provides a widely used Java server benchmark.
Several micro-benchmarks are included from recent transactional
memory work by Hammond [17] and Harris [20].

The general approach of executing Java parallel programs with
transactional memory is to turn synchronized statements into
atomic transactions. Transactions provide strong atomicity seman-
tics for all referenced objects, providing a natural replacement for
critical sections defined by synchronized. The programmer does
not have to identify shared objects a priori or follow disciplined
locking and nesting conventions for correct synchronization.

Fields with the volatile modifier were changed to use atomic
to force communication. We did not find any places where it was
necessary to use an openmodifier to force a volatile to be treated
as an open transaction within an atomic statement.

Uses of condition variables were then converted from using Java
Object.wait, Object.notify, Object.notifyAll method
calls to Atomos watch and retry statements. This step was the
most manual, but as shown in Table 2, uses of wait, notify, no-
tifyAll are very infrequent. In most places, converting the code
was as straightforward as the producer-consumer example in Fig-
ure 1 and did not require rework like the barrier code from Figure 2.

5.2 Environment
We evaluate both Java programs and Atomos programs using the
same base Jikes Research Virtual Machine, version 2.3.4, with the
following changes. The scheduler was changed to pin threads to
processors to avoiding migrating threads during transactions. Meth-
ods were compiled before the start of the main program execution.
A one gigabyte heap was used which avoided garbage collection.
The results focus on benchmark execution time, skipping virtual
machine startup. The single-processor version with locks is used as
the baseline for calculating speedup.

JikesRVM was run with an execution-driven simulator of a
PowerPC CMP system that implements the TCC continuous trans-
action architecture for evaluating Atomos as well as MESI snoopy
cache coherence for evaluating Java locking [36]. The simulator
was extended with support for atomic, open, and violation han-
dlers. All instructions, except loads and stores, have a CPI of 1.0.
The memory system models the timing of the L1 caches, the shared
L2 cache, and buses. All contention and queuing for accesses to
caches and buses is modeled. In particular, the simulator models
the contention for the single data port in the L1 caches, which is
used both for processor accesses and either commits for transac-
tions or cache-to-cache transfers for MESI. Table 3 presents the
main parameters for the simulated CMP architecture. The victim
cache is used to hold recently evicted data from the L1 cache.

Feature Description
CPU 1–16 single-issue PowerPC cores
L1 64-KB, 32-byte cache line

4-way associative, 1 cycle latency
Victim Cache 8 entries fully associative

Bus Width 16 bytes
Bus Arbitration 3 pipelined cycles
Transfer Latency 3 pipelined cycles

L2 Cache 8MB, 8-way, 16 cycles hit time
Main Memory 100 cycles latency

up to 8 outstanding transfers

Table 3. Parameters for the simulated CMP architecture. Bus
width and latency parameters apply to both commit and refill buses.
L2 hit time includes arbitration and bus transfer time.

5.3 Scaling SPECjbb2000
SPECjbb2000 is a server-side Java benchmark, focusing on busi-
ness object manipulation. I/O is limited, with clients replaced by
driver threads and database storage replaced with in-memory bi-
nary trees. The main loop iterates over five application transaction
types: new orders, payments, order status, deliveries, and stock lev-
els. New orders and payments are weighted to occur ten times more
often than other transactions and the actual order of transactions is
randomized.

Few manual changes were necessary to create an Atomos ver-
sion of SPECjbb2000. After automatically changing synchro-
nized statements to atomic statements, the use of condition vari-
ables for two different barriers was similar to Figure 2.

We ran using the default configuration that varies the number of
threads and warehouses from 1 to 32, although we just measured
736 application-level transactions instead of a fixed amount of wall
clock time.

Figure 8 shows the results from SPECjbb2000 [44]. Both the
Atomos and Java versions show linear speedup because there is
only a 1% chance of inter-warehouse orders causing contention be-
tween threads. Since SPECjbb2000 is intended to be an embarrass-
ingly parallel application meant to measure implementation scala-
bility, this is a validation that the Atomos implementation does not
add any performance bottlenecks to the original Java implementa-
tion for well optimized parallel applications..

5.4 Avoiding Serialization in TestHashtable
Transactions allow optimistic speculation where locks would re-
quire pessimistic waiting. Instead of minimizing critical sections,
programmers can use large-granularity transactions, which make
it easier to reason about correctness without jeopardizing perfor-
mance in low contention cases.

TestHashtable is a micro-benchmark that compares different
java.util.Map implementations [20]. Multiple threads contend
for access to a single Map instance. The threads run a mix of 50%
get and 50% put operations. We vary the number of processors
and measure the speedup attained over the single processor case.

When running the Java version, we run the original synchro-
nized Hashtable, a HashMap synchronized using the Collec-
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Figure 8. SPECjbb2000 shows linear scaling up to 32 CPUs,
demonstrating that Atomos retains the basic scalability of the
JikesRVM-based Java implementation from which it was derived.

tions class’s synchronizedMap method, and a Concurrent-
HashMap from util.concurrent Release 1.3.4 [32]. Hashtable
and HashMap use a single mutex, while ConcurrentHashMap uses
fine-grained locking to support concurrent access. When running
the Atomos version, we run each HashMap operation within one
transaction.

Figure 9 shows the results from TestHashtable. The results
using Java for Hashtable and HashMap show the problems of
scaling when using a simple critical section on traditional multi-
processors. The synchronizedMap version of HashMap as well as
Hashtable actually slows down as more threads are added. While
ConcurrentHashMap shows that fine-grained locking implemen-
tation is scalable up to 16 processors, this implementation, which
required significant complexity, suffers a performance degradation
at 32 processors. With Atomos, we can use the simple HashMap,
which had the worst performance in Java, and with a single atomic
statement, achieve better performance compared to the complex
ConcurrentHashMap implementation.

5.5 Conditional Waiting in TestWait
One of the contributions of Atomos is fine-grained conditional
waiting. Our implementation tries to minimize the number of trans-
actional contexts required to support this and still achieve good per-
formance. We present the results of a micro-benchmark that show
that our implementation does not adversely impact the performance
of applications that make use of conditional waiting.

TestWait is a micro-benchmark that focuses on producer-
consumer performance [20]. 32 threads simultaneously operate on
32 shared queues. The queues are logically arranged in a ring. Each
thread references two adjacent queues in this ring, treating one as an
input queue and one as an output queue. Each thread repeatedly at-
tempts to read a token from its input queue and place it in its output
queue. For the queue implementation, we used BoundedBuffer
from util.concurrent for Java and a TransactionalBound-
edBuffer modified to use watch and retry. In our experiment
we vary the number of tokens, not processors, from 1 to 32.

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

CPUs

Sp
ee

du
p

Atomos HashMap
Java ConcurrentHashMap
Java HashMap
Java Hashtable

`

Figure 9. TestHashtable compares the scalability of various Map
implementations. Coarse-grained locks prevent the scaling of
HashMap and HashTable in Java. ConcurrentHashMap does
scale to 16 CPUs with Java. However, Atomos is able to achieve
scaling through 32 CPUs while using the simpler HashMap imple-
mentation.

Figure 10 shows the results from TestWait. As the number of to-
kens increases, both Atomos and Java show similar speedups from
1 to 4 tokens, since both are paying similar costs for suspending and
resuming threads. However, as the number of tokens approaches the
number of processors something interesting happens. Recall that
threads that are in the process of waiting but have not yet discarded
their read set can be violated and rescheduled without paying the
cost of the thread switch. Up until the point that the read set is dis-
carded, a violation handler on the thread that has entered retry
can cancel the process and simply restart the transaction without
involving the scheduler. At 8 tokens, one quarter of the 32 proces-
sors have tokens at a time, so its very likely that even if a processor
does not have a token, it might arrive while it is executing watch
or the the watch request part of retry, allowing it to rollback and
restart very quickly. At 16 tokens, this scenario becomes even more
likely. At 32 tokens, this scenario becomes the norm. In the Java
version, the mutual exclusion of the monitor keeps the condition
from changing while being tested, meaning that if the condition
fails, the thread will now wait, paying the full cost of switching to
the wait queue and back to running even if the thread that could
satisfy the condition is blocked waiting at the monitor at the time
of wait.

5.6 Loop.run with TestHistogram
To evaluate the basic usefulness of Loop.run, we use the sim-
ple histogram example from 4.2, originally presented in Ham-
mond [17]. Random numbers between 0 and 100 are counted in
bins. Our version, TestHistogram, also provides a manually paral-
lelized Java version. When running with Java, each bin has a sep-
arate lock to prevent concurrent updates. When running with Ato-
mos, each update to a bin is one transaction.

Figure 11 shows the results from TestHistogram. While the Java
version does exhibit scalability over the single processor baseline,
the minimal amount of computation results in significant overhead
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Figure 10. TestWait compares Java and Atomos conditional wait-
ing implementation, through a token passing experiment run in all
cases on 32 CPUs. As the number of simultaneously passed to-
kens increases, both Java and Atomos take less time to complete
a fixed number of token passes. The Atomos performance starts
to accelerate with 8 tokens being passed on 32 CPUs when Can-
cel Retry ViolationHandler from Figure 4 frequently prevents the
thread waiting code from completing a context switch. When 32
tokens are passed between 32 CPUs, there is almost no chance that
the Atomos version will have to perform a context switch.

for acquiring and releasing locks, which is shown by the difference
in performance between Java and Atomos even in the single pro-
cessor case. The Atomos version eliminates the overhead of locks
and demonstrates scaling to 16 CPUs; transactions allow optimistic
speculation where locks caused pessimistic waiting. However, at
32 CPUs, both versions start to suffer from the contention of 32
threads competing to update only 101 bins; Atomos starts to suf-
fer from violation rollbacks and Java spends a higher percentage of
time waiting to acquire locks.

6. Conclusions
The Atomos programming language simplifies writing parallel
programs utilizing transactional memory. Atomos provides strong
atomicity by default, while providing mechanisms to reduce isola-
tion when necessary for features such as loop speculation. Atomos
allows programs to specify watch sets for scalable conditional wait-
ing. The Atomos virtual machine implementation uses violation
handlers to recover from expected violations without necessarily
rolling back. The superior performance of Atomos compared to
Java and simplicity of coding demonstrates the value of program-
ming with transactions.
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[5] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded Transactional Memory. In Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture (HPCA’05), pages 316–327, San Franscisco, California,
2005.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In Workshop on
Duplicating, Deconstructing, and Debunking (WDDD), June 2005.

[7] H.-J. Boehm. Threads cannot be implemented as a library. In



PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 261–268,
New York, NY, USA, 2005. ACM Press.

[8] The Broadcom BCM1250 Multiprocessor. Technical report, Broad-
com Corporation, April 2002.

[9] M. Campione, K. Walrath, and A. Huml. The Java Tutorial. Addison-
Wesley Professional, third edition, January 2000.

[10] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Cao Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun. Transactional
Execution of Java Programs. In OOPSLA 2005 Workshop on
Synchronization and Concurrency in Object-Oriented Languages
(SCOOL). October 2005.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages
519–538, New York, NY, USA, 2005. ACM Press.

[12] Cray. Chapel Specification. February 2005.
[13] J. Danaher, I.-T. Lee, and C. Leiserson. The JCilk Language

for Multithreaded Computing. In OOPSLA 2005 Workshop on
Synchronization and Concurrency in Object-Oriented Languages
(SCOOL). October 2005.

[14] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot
and Avalon: a distributed transaction facility. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1991.

[15] C. Flanagan. Atomicity in multithreaded software. In Workshop on
Transactional Systems, April 2005.

[16] Free Software Foundation, GNU Classpath 0.18. http://www.gnu.
org/software/classpath/, 2005.

[17] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,
C. Kozyrakis, and K. Olukotun. Programming with transactional
coherence and consistency (TCC). In ASPLOS-XI: Proceedings
of the 11th international conference on Architectural support for
programming languages and operating systems, pages 1–13, New
York, NY, USA, October 2004. ACM Press.

[18] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proceed-
ings of the 31st International Symposium on Computer Architecture,
pages 102–113, June 2004.

[19] T. Harris. Exceptions and side-effects in atomic blocks. In 2004
PODC Workshop on Concurrency and Synchronization in Java
Programs, July 2004.

[20] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications, pages 388–402. ACM Press, 2003.

[21] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 48–60, New York, NY, USA, July 2005. ACM
Press.

[22] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
New York, NY, USA, 2006. ACM Press.

[23] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer.
Software transactional memory for dynamic-sized data structures. In
PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101, New York, NY,
USA, July 2003. ACM Press.

[24] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
International Symposium on Computer Architecture, pages 289–300,
1993.

[25] International Organization for Standardization. ISO/IEC 9075-
5:1999: Information technology —- Database languages — SQL
— Part 5: Host Language Bindings (SQL/Bindings). International
Organization for Standardization, Geneva, Switzerland, 1999.

[26] Java Grande Forum, Java Grande Benchmark Suite. http:
//www.epcc.ed.ac.uk/javagrande/, 2000.

[27] M. Jordan and M. Atkinson. Orthogonal Persistence for the Java
Platform. Technical report, Sun Microsystems, October 1999.

[28] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous multi-threading
implementation in POWER5. In Conference Record of Hot Chips 15
Symposium, Stanford, CA, August 2003.

[29] S. Kapil. UltraSparc Gemini: Dual CPU processor. In Conference
Record of Hot Chips 15 Symposium, Palo Alto, CA, August 2003.

[30] T. Knight. An architecture for mostly functional languages. In LFP
’86: Proceedings of the 1986 ACM conference on LISP and functional
programming, pages 105–112, New York, NY, USA, August 1986.
ACM Press.

[31] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded Sparc processor. IEEE MICRO Magazine, 25(2):21–
29, March–April 2005.

[32] D. Lea. package util.concurrent. http://gee.cs.oswego.edu/dl,
May 2004.

[33] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support
for robust, distributed programs. ACM Trans. Program. Lang. Syst.,
5(3):381–404, 1983.

[34] V. Luchangco and V. Marathe. Transaction Synchronizers. In
OOPSLA 2005 Workshop on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL). October 2005.

[35] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural Semantics for Practical
Transactional Memory. In Proceedings of the 33rd International
Symposium on Computer Architecture, 2006.

[36] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carlstrom,
L. Hammond, C. Kozyrakis, and K. Olukotun. Characterization of
TCC on Chip-Multiprocessors. In PACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, pages 63–74, Washington, DC, USA, September 2005.
IEEE Computer Society.

[37] E. Moss and T. Hosking. Nested Transactional Memory: Model
and Preliminary Architecture Sketches. In OOPSLA 2005 Workshop
on Synchronization and Concurrency in Object-Oriented Languages
(SCOOL). October 2005.

[38] W. Pugh. The Java memory model is fatally flawed. Concurrency -
Practice and Experience, 12(6):445–455, 2000.

[39] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. In ISCA ’05: Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 494–505, Washington,
DC, USA, June 2005. IEEE Computer Society.

[40] M. F. Ringenburg and D. Grossman. Atomcaml: first-class atomicity
via rollback. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 92–104,
New York, NY, USA, 2005. ACM Press.

[41] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and
B. Hertzberg. A high performance software transactional memory
system for a multi-core runtime. In PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, New York, NY, USA, March 2006. ACM
Press.

[42] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, pages 204–213, Ottawa, Canada, August
1995.

[43] M. Sherman. Architecture of the encina distributed transaction
processing family. In SIGMOD ’93: Proceedings of the 1993 ACM
SIGMOD international conference on Management of data, pages
460–463, New York, NY, USA, 1993. ACM Press.

[44] Standard Performance Evaluation Corporation, SPECjbb2000 Bench-
mark. http://www.spec.org/jbb2000/, 2000.

[45] D. W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV:
Proceedings of the fourth international conference on Architectural
support for programming languages and operating systems, pages
176–188. ACM Press, 1991.

[46] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors
for concurrent objects. In M. Odersky, editor, Proceedings of the
European Conference on Object-Oriented Programming, volume
3086 of Lecture Notes in Computer Science, pages 519–542.
Springer-Verlag, 2004.


