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Abstract. A procedure is proposed for finding the globally optimal semiconductor
quantum-well profile in respect to specified nonlinear optical properties, e. g. second
and third order susceptibilities. It relies on the variational calculus, i. e. the optimal
control theory, combined with the method of simulated annealing in the initial phase of
optimization. The largest nonlinear optical effects are obtained under resonance
conditions but they still depend on transitions matrix elements between relevant
quantized states, i. e. via the wave functions, on the potential shape which may be
varied. The proposed method does not depend on the choice of input potential and
includes the variation of a continuous function instead of a set of scalar parameters, so
it should lead to the globally optimal quantum-well profile for  a particular application,
unconstrained to any particular class of functional forms. For purpose of illustration,
the procedure is applied to the optimized design of AlxGa1-xAs based quantum wells,
with ћω = 116 meV (CO2 laser radiation), the objectives being the largest nonlinear
susceptibilities achievable with chosen material.

INTRODUCTION

The advances in sophisticated methods of semiconductor structures growth have
enabled the fabrication of devices carefully tailored to a particular application. By
varying the profile of a semiconductor quantum well (QW), both the bound state energies
and their wave functions change, and so do various physical properties depending on
them. Taking the linear or nonlinear intersubband optical properties of QW's, these
depend on spacings between relevant quantized states and the transition (dipole) matrix
elements between them. The largest effects are obtained under resonant conditions, when
the spacing between some states coincides with the input photon energy. Having obtained
the resonance in a QW structure, however, the effects of interest still depend on the
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matrix elements, i.e., via the wave functions, on the potential shape, which may be varied
to optimize the structure. A few different approaches to such constrained optimization of
QW profile have been described in the literature, covering the cases of asymmetric step
QW's [1]-[3], electric field biased QW's [4,5], asymmetric coupled QW's [6]-[8], or
continuously graded QW's, the family of their forms being derived from some chosen
initial potential by applying to it the methods of supersymmetric quantum mechanics
(SUSYQM) or inverse spectral theory (IST) [9]. In all these approaches the QW profile
optimization was constrained not only by the requirement for resonance conditions, as it
should be, but also by limiting the search to some class of potential shapes. This second
type of constraints, which may be intrinsic to the optimization method itself, or is
introduced for the simplicity of calculation or of the final design, implies that the
obtained optimal QW shape may not be globally optimal.

In this work we propose another procedure for the QW profile optimization, which
may perform a global, that is unconstrained, optimization (by which we mean with no
unnecessary constraints). It relies on the variational calculus (optimal control theory),
combined with the method of simulated annealing. In some more detail, using the
roughly preoptimized, step graded QW profile, prepared by the simulated annealing, the
profile is then variationally "polished" towards the globally optimal, smooth function. No
unnecessary constraints are imposed anywhere in the procedure, i.e. the QW profile is
completely freely varied. The procedure is here applied to find the best QW profile for
the maximal second harmonic generation, and the expressions are largely specific to this
case, but changing the objective of optimization is rather straightforward.

THEORETICAL CONSIDERATIONS

We consider an n-doped QW structure based on direct band gap semiconductors, and
take the band gap throughout it to be large enough that interband transitions, caused by
radiation present in the structure, may be neglected. The polarization response of the
structure to the pump field with photon energy ω!  is then mainly governed by
intersubband transitions between quantized conduction band states Ei. Nonlinear
polarization at twice the frequency of the pump field, acting as the source of second
harmonic field is described by the second order susceptibility )2()2(

zzzχ≡χ  which, in the
double-resonance regime, EEE ∆≡∆=∆=ω 3221!  (i.e. with strictly equispaced states),
takes the maximal value [1]
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where Mij = 〈Ψi|z|Ψj〉  are the transition matrix elements, Lz the length of the structure, ρ11
the electron sheet density in the ground state (assumed to be the only populated state) and
the off-diagonal rates are taken to be equal Γ12 = Γ13 ≡ Γ (though this is not essential). In
order to maximize χ(2) one should clearly maximize the corresponding product of dipole
matrix elements in numerator of Eq. (1), by appropriate tailoring of QW profile (and
hence the wave functions) while preserving the levels spacing. Clearly, the presence of
M31 rules out symmetric QW's because of definite parity of wave functions, so one should
consider asymmetric structures only.
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In previous treatments of the problem of QW profile optimization we have employed
some kind of the profile (potential) variation, via the SUSYQM or IST, in which the
variation was controlled via one or more scalar parameters. In the variational approach,
however, a continuous function U(z) is varied. It is now necessary to define the target
function, to be maximized. Here we take it as
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where the denominator ))(( 3221
nnnnC Γ+ω∆Γ+ω∆=  is introduced in order to favour

structures with resonance conditions fulfilled. Normally one should set n = 2 and Γ equal
to the linewidth, but other even powers of n and values of Γ may be tried to speed up the
convergence (the optimum will not depend on this choice). The potential U(z) may take
arbitrary shape in the segment [−zL,zR] in which it is optimized, and is constant outside it.
Furthermore, we assume the envelope wave functions to satisfy the boundary conditions

0)()( =Ψ=−Ψ RiLi zz  and 0)(')(' =Ψ=−Ψ RiLi zz , i = 1,2,3. The maximization of the
functional J is clearly a constrained type optimization, because the functions ψi satisfy
the effective-mass Schrödinger equation
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where m* = m(z)m0 is the position-dependent electron effective mass, and 0m  the free
electron mass. The constrained optimization is performed in the usual way, by
introducing Lagrange multipliers, λi, [10]. The new functional, for unconstrained
optimization, then reads:
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where bi(z) = (2m0 / ћ2)[Ei − U(z)] = q[Ei − U(z)], and the constant q amounts to 0.2625
(in eV −1 Å−2 units). The conditions for the extremum of Eq. (4) are obtained by equating
its variation δJ* to zero, i.e.,

0),,,,(])[( 321

3

1
313232121

* =ΨΨΨΦδ=−++δ=δ ∫∑
−=

R

L

z

zi
i dzzUJMKMKMKJ  (5)

where

                                                 

CMMK

CMMK

CMMK

/

/

/

o
23

o
123

o
31

o
122

o
31

o
231

=

=

=

 (6)

The quantities o
12M , o

23M , o
31M  are taken as constants in finding the variation (5),

because these are evaluated with fixed functions )(o ziΨ  and )(o zU , which give the
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optimized value to the functional J*. The unknown functions yi (in this case Ψi(z) and
U(z)) maximizing Eq.(4) are to be obtained by solving the system of Euler-Lagrange
equations:
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the function Φ may, using Eqs.(5) and (6), be written as:
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The variation of J* over the functions λi always equals zero, by the very way of
writing Eq. (4). In the problem considered, Eq.(7) becomes
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In writing the system (9), and in particular when varying the potential, we take
account of the fact that in ternary alloys of the general type AxB1−xC the potential and the
effective mass are related via: U(z) = [∆Ec / ∆m]m(z) ≡ θm(z), where ∆Ec is the
conduction band offset between materials AC  and BC, and ∆m = mAC − mBC is the
difference of the corresponding electron effective masses. The solutions for the Lagrange
multipliers may be written as:
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where y1i and y2i are the solutions of the homogeneous system of differential equations for
λi (9), i.e. the solutions for the case Fi ≡ 0 and W(z) is the Wronskian. Since these
homogeneous equations have the form of the Schrödinger equation, the two linearly
independent solutions may be written as y1i(z) = Ψi(z) and y2i(z) = Ψi(z) +C~[

]'))'(/)'(( 2
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dzzzm i
z
z Ψ∫ , where C~  is a constant, and the Wronskian then amounts to

W(z) = m(z). The constants C1i and C2i are determined so that the boundary conditions for
the potential correction are satisfied, i.e. G(−zL) = G(zR) = 0 and G' (−zL) = G' (zR) = 0.
The last equation of the system (9) is the variation of the functional J* in respect to the
potential U(z). Finding the optimal QW profile thus amounts to finding such U(z) which
will make this variation equal to zero, subject to the condition that all the equations of the
systems (9) and (3) have to be satisfied. This set of coupled equations cannot be solved
analytically. Instead, we employ an iterative algorithm that will be described below.
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(1) Choose a starting potential U (i = 0)(z) in the segment −zL ≤ z ≤ zR (out of which the
potential is taken constant).

(2) Solve Schrödinger equation (3) and find the wave functions Ψj
(i) for the relevant

states, satisfying the boundary conditions Ψ(−zL) = Ψ(zR) = 0, and Ψj' (−zL) = Ψj' (zR)
= 0 (the superscript (i) is the iteration counter, and subscript denotes the state index).

(3) Substitute the calculated Ψj's into the system (9), and, taking into account the
boundary conditions for Lagrange multipliers λ i (that is, G(−zL) = G(zR) = 0 and
G'(−zL) = G'(zR) = 0),  find the variation with respect to the potential )(iG .

(4) Update the potential, using the steepest descent method
)()()()1( )()( iiii GzUzU α−=+ (11)

where α(i) is a constant which gives the largest value of  the functional J*, i.e. is
chosen so that )()( ** * GUJUJ U

J α−=α− ∂
∂ takes maximal value.

(5) Return to step (2), using the updated potential U (i + 1)(z), and repeat these iterations
until obtaining sufficiently converged results, i.e. γ<−+ ))(())(( )(*)1(* zUJzUJ ii , where
γ is a small positive number.

By performing a few "numerical experiments", using the iterative procedure described
above, with different starting potentials, one immediately finds that it gets easily trapped
in a "local minimum", nearest to the starting potential, with the optimized target function
strongly depending on it. Therefore, absent the fully analytic solution of the problem, the
variational iterative procedure alone is not enough to perform the global optimization of
the potential. It clearly has to start with some potential, to be provided by other means,
that is already "sufficiently" close to the final optimized potential. The task of preparing
the starting potential is here done by the simulated annealing (SA). This is an iterative
stochastic optimization method, nowdays in widespread use, with readily available
algorithms. While always accepting a step (random change of values of variables) which
improves the target function, it also sometimes accepts steps degrading the target
function, and thus avoids being trapped in local minima. This is essential for the problem
we consider, which appears to be of highly multivalley type. The SA is here applied to
multilayer QW's (i.e. stepwise constant potentials), with some reasonably small number
of layers, of the order of 10. Each layer brings in two independent variables – its width
and potential height, and an additional free variable is the height of "outer" barriers. The
variables may vary within some limits, imposed physically or technologically: minimal
constraints, employed in this work, are that the width of any single layer cannot be less
than one crystalline monolayer, and the mole fraction of any of the alloy constituents may
be between zero and one (this effectively limits the maximal excursion of the potential
within the structure). We have therefore used the SA algorithm [11] which can handle
box-type constraints. The state energies, wave functions, and matrix elements, i.e. the
target function (2) for this type of structures may be conveniently evaluated using the
transfer matrix method, and SA will vary the discrete set of layers parameters until it
finds the globally optimal structure with prescribed total number of layers. In principle
one might apply SA to a QW structure with very large number of layers and obtain an
almost smooth globally optimized potential, thus avoiding the variational part altogether.
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However, this would be quite costly, because the computation time of SA scales at least
quadratically with the number of variables (or worse, depending on the cost of the target
function evaluation). Therefore, we have here adopted a mixed approach, employing SA
to provide a rough approximation to the globally optimal potential, which will then be
further improved by the variational method.

NUMERICAL RESULTS

The proposed optimization procedure was used to find the absolutely best profile of
QW's based on the AlxGa1−xAs alloy, so to provide the maximal value of the nonlinear
susceptibility χ(2). We have first found the optimal step QW by the SA method, with the
target function given by Eq.(2), in order to provide a good starting point for the
variational method. The material parameters used in calculation are [12]:
Eg GaAs = 1.42 eV, Eg AlAs = 2.67 eV, mGaAs = 0.067m0, mAlAs = 0.15m0, and the conduction
band offset ∆Ec = 0.75 eV, and Vegard's law (linear interpolation) was applied for the
alloy. The incident photon energy was ћω = 116 meV, corresponding to the CO2 laser
radiation. We have chosen the QW with 8 "internal" layers (not counting the two outer
barriers), i.e., having 17 parameters, for the SA optimization, as a tradeoff between the
computation speed and achieving a reasonably good approximation to continuously
graded QW.

The SA-optimized QW, given in Fig. 1a, has a depth of UB = 523.6 meV, and has a
total of 4 bound states, though only the lowest three are relevant for our problem. The
important matrix elements are: M12 = −16.9 Å, M23 = −25.9 Å, M31 = −9.4 Å. The product
of matrix elements, relevant for the second harmonic generation is thus found to be
|Π(2)| = | M12M23M31| = 4114 Å3. Due to the properties of the SA algorithm this structure is
(almost certainly) globally optimal in its class, that is among all the QW's with 8 internal
layers. It was then further optimized (i.e. used as the starting potential) by the variational
procedure. Approximately 57 iterations are necessary for satisfactory convergence, and
this calculation is an order of magnitude less time-consuming than the SA one.

This fully optimized (globally optimal) potential is also given in Fig. 1b. Although the
change of the potential shape may not seem too drastic, the target function is significantly
improved over what was obtained in 8-layer QW, with |Π(2)| = 4685 Å3. Bound states in
the fully optimized QW are positioned at E1 = −449.5 meV, E2 = −333.5 meV,
E3 = −217.5 meV, E4 = −73.1 meV, (with the outer barriers potential taken as reference
zero). The individual matrix elements here amount to: M12 = −16.9 Å, M23 = −26.4 Å  and
M31 = 10.5 Å. Finally, we note that the optimized potential uopt(z) given in Fig. 1b is
accompanied with the variable effective mass given by Uopt(z) = uopt(z) + V0, with
V0 = 1.194 eV and θ = 9.036 eV (because it was derived for the graded ternary
AlxGa1−xAs alloy based QW).By comparing the result obtained here with those reported
previously, e.g. |Π(2)| = 3090 Å3 for asymmetric step QW's [13], or |Π(2)| ≈ 3300 Å3

(calculated using SUSYQM) [9], one can see an improvement by at least 25%.
The smooth potential from Fig. 1b can, in principle, be realized by continuous grading

of alloy composition. Yet, the concept of the composition varying smoothly over a single
crystalline monolayer may seem a bit ambiguous, so we attempted to discretize this
optimal potential into a number of thin segments with fixed alloy composition, each
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being at least one monolayer thick. Choosing wider segments would obviously make the
realization easier, but would make the potential more remote from the fully optimal.
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 Fig. 1. (a) The stepwise-constant SA-preoptimized, and (b) the variationally fully
optimized smooth potential, providing maximal second harmonic generation.
Also displayed are the relevant bound state wave functions squared.
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Fig. 2. The discretized, step-graded version of the optimal potential from Fig. 1b,
with 2 monolayers wide steps.

Choosing e.g. the width of all the segments as 2 × 2.83 Å (i.e., 2 monolayers) we find
that this discretized structure, displayed in Fig. 2, has its parameters somewhat changed
from those of the optimal smooth one: E1 = −451.4 meV, E2 = −335.7 meV,
E3 = −220.2 meV, E4 = −81.5 meV, M12 = −16.7 Å, M23 = −26.2 Å and M31 = −10.3 Å,
and finally |Π(2)| = 4507 Å3. Clearly, the discretized potential could be obtained by SA,
with no variational type optimization, but this would have been very time-consuming
because of the large number of free variables (step widths and heights) involved. It is
only the combined use of SA and the variational method that leads to efficient design of
optimal QW profile.
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CONCLUSION

The procedure was proposed for finding the globally optimal QW profile, in respect
to a specified property, e.g. the second harmonic generation at resonance. To achieve
both the speed and reliability (avoiding local minima) the procedure relies on the
combined use of simulated annealing and the variational method. Unlike the optimization
procedures we have used previously, this one does not depend on the choice of input
("seed") potential, and includes the variation of a continuous function instead of a set of
scalar parameters, so it (almost certainly) leads to the globally optimal QW profile for a
particular application. The results obtained with the resonant second order susceptibility
relevant for second harmonic generation, as the target to be maximized, are considerably
better than those previously stated in the literature. Certainly, the procedure may just as
well be applied for the QW profile optimization in respect to optical rectification, third
harmonic generation, electro-optical coefficients, intersubband laser gain, and similar.
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GLOBALNA OPTIMIZACIJA OPTIČKIH NELINEARNOSTI
U POLUPROVODNIČKIM KVANTNIM JAMAMA

Jelena Radovanović, Vitomir Milanović, Zoran Ikonić, Dragan Inđin

Predložena je procedura za određivanje globalno optimalnih profila kvantnih jama u odnosu
na specificirana nelinearna optička svojstva, npr. susceptibilnosti drugog i trećeg reda. Zasniva se
na varijacionom računu, tj. teoriji optimalne kontrole, kombinovanim sa metodom simuliranog
odgrevanja u inicijalnoj fazi optimizacije. Najveći nelinearni optički efekti se postižu u uslovima
rezonancije ali i tada zavise od matričnih elemenata prelaza između relevantnih kvantnih stanja, tj.
preko talasnih funkcija zavise i od oblika potencijala koji se može varirati. Predložena metoda ne
zavisi od izbora početnog potencijala i uključuje varijaciju kontinualne funkcije umesto skupa
skalarnih parametara, tako da bi trebalo da vodi ka globalno optimalnom profilu kvantne jame za
konkretnu primenu, neograničenom na bilo koju specifičnu klasu funkcionalnih formi. U svrhu
ilustracije, procedura je primenjena na optimizovani dizajn kvantnih jama baziranih na AlxGa1-xAs
leguri, za !ω = 116 meV (zračenje CO2 lasera), sa ciljem određivanja najvećih nelinearnih sus-
ceptibilnosti ostvarljivih sa datim materijalom.


