
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 85 No. 2 (2003)URL: http://www.elsevier.nl/lo
ate/ent
s/volume85.html 15 pages
A Tool For Specification And Verification Of
Epistemic Properties In Interpreted Systems

Franco Raimondi and Alessio Lomuscio

Department of Computer Science
King’s College London
London WC2R 2LS, UK

Email: ffranco,alessiog@dcs.kcl.ac.uk
Abstract

We present a compiler that translates a multi-agent systemsspecification given in the for-
malism of Interpreted Systems into an SMV program. We show how an SMV model
checker can be coupled with a Kripke model editor (Akka) to allow for the mechanical
verification of epistemic properties of multi-agent systems. We apply this methodology to
the verification of a communication protocol — the dining cryptographers.

1 Introduction

Formal logic is traditionally seen as a powerful tool in the analysis, representa-
tion, and interpretation of communication. With the adventof distributed systems,
logic, and formal methods, have provided two concrete toolsto researchers in-
volved with issues relating to communication: a specification language, and a ver-
ification mechanism.

Logic is used as aspecification languagefor communication when analysing
protocols and meaning of utterances of artificial languages, such as in the recent
application of speech-act theory to communication in multi-agent systems. Formal
methods based on formal logic are used as averification mechanismin the anal-
ysis of properties of communication protocol for distributed systems. This paper
concerns the use of machinery based on logic for the latter.

Verification of communication protocols is generally performed either by theo-
rem provers or by model checkers. While theorem provers are established technol-
ogy, model checking[8] is a relatively recent technique for the verification of dis-
tributed systems, allowing for the mechanical verificationof properties expressed
by means of temporal formulae. Temporal logic is a powerful formalism, but it is
not expressive enough to represent the typical properties we are typically concerned
about in a multi-agent system: notably the knowledge, and other attitudes such as
desires and intentions, of the agents. J. Halpern and M. Vardi suggested the use

c
2003 Published by Elsevier S
ien
e B. V.



Raimondi and Lomus
io
of model checking techniques in the verification of multi-agent systems in 1991
([11]) by means of richer languages including not only temporal operators but also
epistemic, but it is only recently that results along these lines have been achieved
([1,15,19,22,2,9,14,12,18]).

But irrespective of recent research, verifying a concrete communication proto-
col remains a non-trivial task. First one needs to give a concrete computational
model of the system — either by means of Petri nets, timed automata, etc. Once
this is given, one needs a tool that automatically builds thesemantics model for the
system. This semantical model, typically a temporal model,must then be used to
interpret the language that is used to specify and verify properties about the sys-
tem. While some tools are available, to our knowledge there is currently no unified
platform available, that can assist the designer in the process from concrete speci-
fication of the different automata for the agents to the verification of properties by
means of a model checker able to check logics richer than plain temporal logic.
The difficulty with providing an all-encompassing platformis that several issues
are intertwined:� What formalism — automata, Petri nets — is to be used to represent the transi-

tions in the components resulting from a communication protocol?� What temporal model — Interpreted Systems, plain Kripke semantics — is to be
employed to represent the computation paths defined by the low-level description
of the system?� What logical language — temporal, epistemic, deontic — is tobe employed to
represent crucial properties of the protocol under consideration?� What particular symbolic representation — OBDD’s, SAT-based, etc — is to be
used for the model checking task is to be used?� What specific model checker - NuSMV, Spin, etc — should be employed to assist
in the task?

Many competing options are enumerated above, and there is currently no “cor-
rect way to proceed”, but rather, it seems to us, a spectrum ofoptions are available
to investigate further for parties interested in these issues. In view of making a con-
tribution on the issues outlined above, in this paper we present a tool that integrates
traditional model checking techniques with Interpreted Systems semantics [10]. In-
terpreted Systems are a powerful formalism to reason about epistemic and temporal
properties of a MAS. The tool presented here allows for the verification of static
epistemic properties of an Interpreted System (i.e. properties involving epistemic
operators only). We argue that this is sufficient in a number of cases; to support
this claim, we apply the tool to the verification of a communication protocol—the
protocol of the dining cryptographers [6].

The rest of the paper is organised as follows. In Section 2 we review the main
technical constructions used in the rest of the paper. In Section 3 we present and
discuss a methodology for checking epistemic properties ofa MAS. In Section 4
we present in some detail the tool that allows us to do so. In Section 5 we show how

2



Raimondi and Lomus
io
this can be put to work on a widely discussed example — the dining cryptographers.

2 Review of concepts and notation

2.1 Model Checking techniques

Given a programP , and a property that can be represented as a logical formula�
in some logic, model checking techniques allow for the automatic verification of
whether or not a modelMP , representing the programP , satisfies the formula�.

In the last two decades there have been great advances in the effectiveness
of this approach thanks to sophisticate data manipulation techniques. Techniques
based on Binary Decision Diagrams (BDDs, [3]) have been usedto develop model
checkers that are able to check large number of states ([4]).Alternative approaches
using automata have also been developed [20].

Software tools originated from these lines of research. SPIN (see [13]) exploits
automata theory and related algorithms, while SMV [16] usesBDDs to represent
states and transitions. In this paper we will use NuSMV, a novel implementation of
SMV ([7]).

The input language of NuSMV allows for the specification of a finite system
with different levels of abstraction. In the simplest case,the input language requires
three main sections:
1. A section for variables declaration,
2. A section for variable initialisation,
3. A section for the description of the transition relation.

The following is an example of a NuSMV program.1 :

MODULE main
VAR
request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) :=
case
state = ready & request = 1 : busy;
1 : {ready, busy};

esac;

(the line"1 : {ready, busy};" is equivalent to anelse condition in
traditional programming languages). Given the program above, NuSMV can then
be used to create a model associated with it, and then to modelcheck temporal
formulae. For example, if we were to feed a NuSMV checker withthe CTL formula
AG((request=0) -> AF(state=ready)) 21 From NuSMV tutorial, available athttp://nusmv.irst.itc.it2 In the formula AG is the modal operator for “forever in the future in all branches”, and the
propositions are to be interpreted in the intuitive way.

3



Raimondi and Lomus
io
NuSMV would produce a counterexample.

Following this approach a large number of systems ranging from communica-
tion protocols to hardware components have been verified by means of temporal
languages. These are not agent systems, but standard distributed processes. If we
are to investigate whether we can apply this methodology to agent verification, we
need to incorporate this technique with an agent based semantics, like Interpreted
Systems.

2.2 Interpreted Systems

Interpreted Systems [10] are a computationally grounded semantics in the sense
of [21], aimed at representing agents in a distributed setting. We present the main
definitions here, but refer to the literature for more details.

Considern agents in a system andn non-empty setsL1; : : : ; Ln of local states,
one for every agent of the system, and a set of states for the environmentLE.
Elements ofLi will be denoted byl1; l01; l2; l02; : : :. Elements ofLE will be denoted
by lE; l0E; : : :.

A system of global states forn agentsS is a non-empty subset of a Cartesian
productL1� : : :�Ln�LE . Wheng = (l1; : : : ; ln; lE) is a global state of a systemS, li(g) denotes the local state of agenti in global stateg. lE(g) denotes the local
state of the environment in global stateg.

We assume that, for every agent in the system and for the environment, there
is a setA
ti andA
tE of actions that the agents and the environment can perform.
Actions are not executed randomly, but following particular specifications that we
call protocols. A protocolPi for agenti is a function from the setLi of local states
to a non-empty set of actionsA
ti (notice that, by consideringsets of actions, we
allow non-determinism in the protocol):Pi : Li ! 2A
ti:

We can then model the evolution of the system by means of a transition function� from global states and joint actions to global states:� : S � A
t! S
whereS = L1 � : : :� Ln � LE andA
t = A
t1 � : : :�A
tn �A
tE is the set of
joint actions for the system.

Intuitively this defines temporal flows on the set of global states. Specifically,
we consider a set of runs over global statesR = fr : IN ! Sg, where a runr
is defined as a function from time to global states, and time ranges over natural
numbers. A run is a sequence of global states that are obtained by applying the
function� to global states and joint actions.

Interpreted Systems can be used to model time and knowledge.To do that,
consider a pairIS = (S; h) whereS is a set of global states andh : S ! 2P is an
interpretation function for a set of propositional variablesP .

Temporal connectives of the type of CTL [16] can then be evaluated on Inter-
preted Systems. For the purposes of this paper we are concerned with epistemic

4



Raimondi and Lomus
io
operators. These can be interpreted by means of epistemic modalitiesKi, one for
each agent, as follows [10]:(IS ; g) j= Ki � if for all g0 we have thatli(g) = li(g0)

implies(IS ; g0) j= �.

The resulting logic for the modalitiesKi is S5n; this models agents with com-
plete introspection capabilities and veridical knowledge.

We shall use Interpreted Systems as a semantic basis to specify a MAS. They
will also be represented in NuSMV in the verification process.

3 A methodology for model checking epistemic properties in In-
terpreted Systems

While MAS theories encompass a variety of attitudes, in thispaper we focus on
knowledge. Being able to verify temporal epistemic properties of a system would
allow us to reason in terms of temporal evolution of knowledge, and knowledge
about a changing world. But we argue that, in particular cases, verification of static
properties is adequate. This is in all circumstances in which preconditions and
postconditions can be stated in terms of logical propositions. We give an example
of this in Section 5.

In order to specify and verify the epistemic properties of a MAS, one can pro-
ceed as follows:

(i) Specify an Interpreted System in terms of local states, protocols, and
transitions. We give a concrete example of this in Section 5, for the protocol
of the dining cryptographers.

(ii) Translate the specification of step 1 into an SMV program. This can be
done automatically; a Java program (presented below) can beused to perform
this translation.

(iii) Use a model checker to compute the set of reachable states. Given a sym-
bolic representation for states and transitions, as the oneobtained in the pre-
vious step, the set of reachable states can be computed as a fixed-point opera-
tor [16]. NuSMV provides this facility from version 2.1. Notice that temporal
properties of the MAS can be checked at this stage.

(iv) Build an epistemic model from the set of reachable states. The output of
the model checker is used as a starting point for the definition of the epistemic
model of the original Interpreted System. The epistemic relations are built
automatically, parsing the output of NuSMV by means of a software we wrote.

(v) Model checking epistemic formulae. In the present paper we use Akka3 ,
a Kripke model editor that supports model testing by Lex Hendriks. Akka
accepts the description of a model and an evaluation function and allows for-
mulae to be checked against this input. Akka poses no restriction on the syntax3 http://turing.wins.uva.nl/�lhendrik/

5



Raimondi and Lomus
io
Specify interpreted system

Translate specification into NuSMV program

Model check epistemic formulae

Build an epistemic model

Use NuSMV to compute reachable states

XML editor

Parser

Akka

NuSMV

Software toolsProcedures

Java compiler

Fig. 1. Methodology

of the formulae, so that formulae can involve more than one modal operator,
and modalities can be nested. The model and the evaluation function (in the
syntax of Akka) are provided by the parser in the previous step.

The methodology is summarised in Figure 1.

4 Translating Interpreted Systems into SMV code

In this section we present the tool that we use to translate Interpreted Systems into
SMV. We first state a number of assumptions we make on the specification, and
then briefly describe the tool.

4.1 Assumptions on the Interpreted System

We restrict our attention to the class of Interpreted Systems with the following
properties:� Finite systems: we consider systems with a finite number of local states and

actions. This is a theoretical limitation, but in many examples the set of state is
finite.� Initial configuration : we require to specify the number of agents, local states
and actions when setting up the model. Hence, the maximum number of local
states cannot change at run-time.� Local states: we assume that local states can be represented as a list of variables,
each having a finite range of values. More in detail, consideran agenti: the local
stateLi is a tupleLi = hv1;i; : : : ; vn;ii where eachvn;i ranges over a finite set of
values (see Section 5 for an example).� Evolution function : In the description below we use a slightly modified and
simpler syntax for� (see Section 2.2); the idea is to decompose final global
states of the function�. We considern evolution functions, one for each agent,�i : S � A
t ! Li (i = 1; : : : ; n) from global states and actions to local states
of agenti. In the tool, we shall list only the global states and actionsthat cause a

6



Raimondi and Lomus
io
change in the local state of agenti, and assume that, if a global state is not listed
in the definition of some�i, then this global state is not relevant in the evolution
of Li.

4.2 Input and Output of the Java Translator

The specification of an Interpreted System is required as an input for the Java trans-
lator. This specification must contain at least the following informations:
1. Number of agents.
2. Number of local states and actions for each agent.
3. Number of variables in each local state, for each agent; values of each variable
in the local state.
4. Protocol as a function from local states (i.e. set of variables) to actions, one for
each agent.
5. Initial state(s).
6. Transition functions from local states and actions to a single local state (see
previous Section).

These parameters are read from an XML file. The following is a schematic
representation of the specification of an Interpreted System, as it is read by the
translator4 :

<is>
<agent name="Agt1">
<localstates nvar="1">
[...]

</localstates>
<actions number="3">

[...]
</actions>
<protocol>
[...]

</protocol>
</agent>
[...]
<evFunct>
<agtEvFunct agtname="Agt1">
<transition>
[...]

</transition>
</agtEvFunct>

</evFunct>
</is>

The protocol and the evolution functions are specified as sets of pairs (local state,
actions) and (global state + actions, local state). For the evolution functions, we4 A DTD for the specification of Interpreted Systems can be found at:
http://www.dcs.kcl.ac.uk/pg/franco/is/is.dtd.

7



Raimondi and Lomus
io
assume that if a global state and/or action is not listed, then it does not change the
local state of the agent.

We chose to use XML to specify Interpreted Systems for the following reasons:� The description of an Interpreted System requires the specification of simple data
structures such as lists and maps, and XML allows for the description of this kind
of semi-structured data.� Parsers and checkers are freely available for most of the programming languages,
thus enabling an easier integration with existing tools.� The proposed DTD can be extended following new requirements.

Editing an XML file can be cumbersome, and we are currently developing a
graphical interface to make the input of the parameters easier.

Given the input above, an SMV program is generated by the translator; each
agent has two variables, one for a list of local states, and one for a list of actions.
Local states are computed automatically from the list of local variables.

Essentially, the protocol in the Interpreted System gives the rules to compute the
evolution of actions in the SMV code. The evolution functionfrom the specification
of the Interpreted System is used to create the block of SMV code needed for the
transition functions between the variables representing local states.

The Java software performing the translation can be obtained from the authors
of this paper.

5 A communication example: The Dining Cryptographer

It is known that Interpreted Systems provide a good abstraction model to specify
and verify the behaviour of systems. The tool presented in Section 4, apart from
being an exercise in compilation of specifications, allows us to go from an abstract
description of an Interpreted System to the execution traces of it in a format that is
compatible to one of the leading model checkers.

We are interested in specifying systems via Interpreted Systems because we re-
gard them as promising in the verification of communication protocols, as demon-
strated in [10,17]. We test this belief by using the scenarioof the Dining Cryptog-
raphers, provided by Chaum [6].

In his paper, Chaum shows how messages can be broadcasted anonymously. In
particular, he shows that protocols exist that allow for thechange in the knowledge
of the participants about some global property of the system, without them being
able to detect the source of this information.

5.1 Statement of the Problem

The Dining Cryptographers scenario is introduced in [6] as follows:
“Three cryptographers are sitting down to dinner at their favourite three-star

restaurant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One ofthe cryptographers

8



Raimondi and Lomus
io
might be paying for the dinner, or it might have been NSA (U.S.National Security
Agency). The three cryptographers respect each other’s right to make an anony-
mous payment, but they wonder if NSA is paying. They resolve their uncertainty
fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and
the cryptographer on his right, so that only the two of them can see the outcome.
Each cryptographer then states aloud whether the two coins he can see – the one
he flipped and the one his left-hand neighbour flipped – fell onthe same side or
on different sides. If one of the cryptographers is the payer, he states the opposite
of what he sees. An odd number of differences uttered at the table indicates that a
cryptographer is paying; an even number indicates that NSA is paying (assuming
that the dinner was paid for only once). Yet if a cryptographer is paying, neither
of the other two learns anything from the utterances about which cryptographer it
is.”[6]

Notice that the same protocol works for any number of cryptographers either
greater or equal to three (see [6]).

5.2 The Interpreted System of the Dining Cryptographers

We analyse the scenario above by means of Interpreted Systems semantics. We
introduce three agentsCi, i = 1; 2; 3, to model the three cryptographers, and one
agentE for the environment. In our representation the environmentis used to (non-
deterministically) select the initial configuration of thepayer and the results of coin
tosses.

We represent the local stateLCi for each cryptographerCi with a tupleLCi =hv1; v2; v3i where5 :v1 = 8>>><>>>:� the initial stateNotPaid if the agent did not pay for the dinnerPaid if the agent paid for the dinnerv2 = 8>>>>>><>>>>>>:
� initial stateDi�erent if the left coin is different from the

right coin forCiEqual if the left coin is equal to the right coinv3 = 8>>><>>>:� initial stateOdd odd number of differences utteredEven even number of differences uttered5 From now on we will denote an empty or undefined state by�.

9



Raimondi and Lomus
io
Local states for the environment are tuplesLE of the formLE = hChA;ChB;ChC; payeri

whereChA;ChB;ChC are the “channels” between the Cryptographers, with value
randomly selected at the beginning of the run being Head or Tail (the outcome of
the coin toss), and payer = 8>>>>>><>>>>>>:

1 if C1 paid for the dinner2 if C2 paid for the dinner3 if C3 paid for the dinner4 if the NSA paid for the dinner

The actions for the cryptographers are:A
tC1 = A
tC2 = A
tC3 = f�; say(equal); say(not equal)g
where� denotes a null action.

We assume that the environment is not performing any action:A
tE = �.
Hence, there is no protocol for the environment6 .

The protocolPCi for the cryptographers is:

PCi(LCi) =
8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

say(equal) ifLCi is of the formh NotPaid,Equal,*i orh Paid,NotEqual,*i
say(not equal) ifLCi is of the formh NotPaid,NotEqual,*i orh Paid,Equal,*i� all the remaining cases

We now define the initial state for the system. We take the following initial state
for the agents representing the cryptographers:

init(LC1) = init(LC2) = init(LC3) = h�; �; �i
The initial state for the environment is randomly selected from the set of pos-

sible combinations of values for Channels (Head or Tail) andpayer (one of the
cryptographers or the NSA).

The evolution of the system is modelled by the transition function � : G �A
t ! G, whereG = LC1 � LC2 � LC3 � LE is the set of global states, andA
t = A
tC1�A
tC2�A
tC3�A
tE. Notice that we can skip the evolution ofLE
and the dependences fromA
tE in the definition of�, thanks to our assumptions
on the environment (no actions, and local state fixed at the beginning of the run).

Even so, the definition of� is too long to report; we will give here only two6 Equivalently one can think of a protocol mapping every localstate for the environment to the null
action�.

10



Raimondi and Lomus
io
examples: �(h�; �; �i; h�; �; �i; h�; �; �i; hhead,tail,head; 1i; �; �; �; �)=(hPaid,Different; �i; hNotPaid,Different; �i;hNotPaid,Different; �i;hHead,Tail,Head; 1i)
The above represents the fact that in the initial state in which the results of coin
tosses are Head, Tail, Head forChA, ChB, andChC respectively, and in which
the first cryptographer paid for the dinner, there exists a transition to a state whereC1 has valuePaid for the local variablev1, while the others cryptographers haveNotPaid.

At the next time step the cryptographers utter the appropriate sentence (equalor
not equal), following their protocol. This enables the transitions for the evaluation
of the last variable,v3:�(hPaid, NotEqual; �i; h;NotPaid, NotEqual; �i;hNotPaid, NotEqual; �i;hHead,Tail,Head; 1i;

say(equal); say(not equal); say(not equal); �)=(hPaid,NotEqual,Oddi;hNotPaid,NotEqual,Oddi;hNotPaid,NotEqual,Oddi;hHead,Tail,Head; 1i)
This is the final state of the system. A similar analysis can becarried out for all

the other remaining cases.

5.3 The Methodology in Practice

Following the considerations above, we encoded the Interpreted System for the din-
ing Cryptographers as an XML file. Specifically, this contains four agents, three
variables for the local states of the Cryptographers, four variables for the environ-
ment, two actions for the Cryptographers.

The definition of the evolution function is the most cumbersome step. However,
thanks to our assumptions of Section 4.1, we can specify onlythe global states and
actions that actually cause a change on local states.

For example, under this assumption, the first cryptographercan be modelled
with transitions of the form:

11



Raimondi and Lomus
iohPaid, Equal; �i if (h�; �; �i; �; h1;Head, Head; �i; ); (�)
or(h�; �; �i; �; h1;Tail, Tail; �i; ); (�)

This represents the fact that the first Cryptographer would change his local state tohPaid, Equal; �i only if he was in the local stateh�; �; �i and the environment wash1;Head, Head; �i or h1;Tail, Tail; �i.
Similarly, it is possible to define all the remaining conditions causing a tran-

sition for the first cryptographer; these, together with thetransitions for the other
cryptographers and the environment, are encoded in XML for the Java translator.

One can feed this specification into the translator and produce the SMV code for
the example7 . NuSMV can then be used to generate the set of reachable states. For
this example, these are 96 out of 629856 possible combinations of local states and
actions, as they are represented in NuSMV. Both the translation of the specification
into SMV code and the computation of the set of reachable states require less than
one second on a 500 MHz PC with 256 Mbytes of RAM. The reachablestates are
stored in a text file that can be processed by the parser to produce the epistemic
modelISd in Akka’s format.

5.4 Model Checking the Formulae

We define a set of atomic propositionsfpaid1, paid2, paid3, even, oddg that
we can interpret in a natural way in the modelISd obtained by following the pro-
cess described above. Notice thatfeven, oddg are true upon termination of the
protocol, thus giving the required postconditions for the evaluation of epistemic
formulae8 : (ISd; g) j= paid1 if lC1(g) = hPaid; �; �i(ISd; g) j= paid2 if lC2(g) = hPaid; �; �i(ISd; g) j= paid3 if lC2(g) = hPaid; �; �i(ISd; g) j= even if lCi(g) = h�; �;Eveni for everyi(ISd; g) j= odd if lCi(g) = h�; �;Oddi for everyi

With Akka we can easily check the following propositions:IS d j= odd ! (:paid1 ! (KC1(paid2 _ paid3)^:KC1(paid2) ^ :KC1(paid3)))IS d j= even ! KC1(:paid1 ^ :paid2 ^ :paid3)7 The code is available at:http://www.dcs.kcl.ac.uk/pg/franco/is/dincry2.smv.8 In the following,g 2 G will denote a global state;lCi(g) will denote the local state for Cryptog-
rapheri in global stateg; hPaid; �; �i will be a local state in which the first variable isPaid and all
the other variables are allowed to have any value.

12



Raimondi and Lomus
io
These two formulae confirm the correctness of the statement of section 5.1:

if the first cryptographer did not pay for the dinner and thereis an odd number
of differences in the utterances, then the first cryptographer knows that either the
second or the third cryptographer paid for the dinner; moreover, in this case, the
first cryptographer does not know which one of the remaining cryptographers is the
payer.

Conversely, if the number of differences in the utterances is even, then the first
cryptographer knows that nobody paid for the dinner.

Interestingly, in our model the following is not valid:ISd 6j= :paid1 ! (KC1(:paid1 ^ :paid2 ^ :paid3)_(KC1(paid2 _ paid3) ^ :KC1(paid2) ^ :KC1(paid2)))
Also, we have:ISd 6j= :paid1 ! (KC1(:paid1 ^ :paid2 ^ :paid3)_KC1(paid2 _ paid3))

Indeed, consider a global state in which the local state forC1 is hNotPaid,Different,�i
(such a global state exists in the set of reachable global states). In this statepaid1
does not hold; also, in this local states there is no information about the parity of the
utterances andC1 considers possible global states in which parity isOdd, and oth-
ers in which parity isEven. In the first case,:paid1^:paid2^:paid3 does not
hold in a global state thatC1 considers possible. In the second casepaid2 _paid3
is false, thus invalidatingKC1(paid2 _ paid3).
6 Conclusions

Logic has always been of use in the analysis of communicationin multi-agent sys-
tems, both for the case of humans and computers. To date, verification of com-
munication protocols has been limited to the use of theorem provers, and model
checkers limited to temporal languages. While this is appropriate for the low-level
communication protocols used in networking, complex multi-agent systems fol-
lowing in spirit the intentional stance need richer languages. The problem with
using richer languages to verify these protocols is that current provers and checkers
are not suited to represent other modalities such as knowledge. In this paper we
have attempted to take a step in this direction, by providinga path from a concrete
specification of a multi-agent system to the construction ofexecution traces, and
checking of properties.

Specifically, we have here presented a tool for model checking epistemic for-
mulae in multi-agent systems. We have used Interpreted Systems as a framework
for the specification of MAS and we have suggested how a model checker for tem-

13



Raimondi and Lomus
io
poral models (NuSMV) may be used in the verification of epistemic properties. A
software tool to provide the necessary translation was discussed.

The tool provided has been tested on a well known scenario in communication:
the protocol of the dining cryptographers. In the future we would like to test other
scenarios, particularly from the security literature. In that exercise it would be
instructive to check whether a static analysis is sufficient(as it is claimed by [5] in
their influential paper on BAN logic), or whether a move to a temporal epistemic
is required. While this analysis is in progress we are currently planning to add a
graphical interface to the tool so that a specification of Interpreted Systems can be
given graphically.

The issue of scalability of this approach is also one that we would like to inves-
tigate further. Preliminary results seem to indicate that the phases of compilation
into SMV, the construction of the set of global states, and the testing of epistemic
formulae all scale up fairly well. Still, we would not expectthis approach to be
compared in speed with the fastest methodologies available. What we do find of
interest here is that a bridge was made between specificationof a protocol and
model checking, by means of automatic compilation of one specification into an-
other, thereby allowing for epistemic properties to be verified.

References

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems.
Journal of Logic and Computation, 8(3):401–423, June 1998.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. InProceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’03), July 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, pages 677–691, Aug. 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J. Hwang. Symbolic
model checking:1020 states and beyond.Information and Computation, 98(2):142–
170, June 1992.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, Feb. 1990.

[6] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability.Journal of Cryptology, 1:65–75, 1988.

[7] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model
verifier. Lecture Notes in Computer Science, 1633, 1999.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

14



Raimondi and Lomus
io
[9] R. V. der Meyden and N. Shilov. Model checking knowledge and time in systems

with perfect recall. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science, 19, 1999.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge. MIT
Press, Cambridge, 1995.

[11] J. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A manifesto.
In J. Allen, R. E. Fikes, and E. Sandewall, editors,Proceedings 2nd Int. Conf. on
Principles of Knowledge Representation and Reasoning, KR’91, Morgan Kaufmann
Series in Knowledge Representation and Reasoning, pages 325–334. Morgan
Kaufmann Publishers, San Mateo, CA, 1991.

[12] W. Hoek and M. Wooldridge. Model checking knowledge andtime. In SPIN 2002
— Proceedings of the Ninth International SPIN Workshop on Model Checking of
Software, Grenoble, France, Apr. 2002.

[13] G. J. Holzmann. The model checker spin.IEEE transaction on software engineering,
23(5), May 1997.

[14] A. Lomuscio and W. Penczek. Bounded model checking for interpreted systems.
Technical report, Institute of Computer Science of the Polish Academy of Sciences,
2002.

[15] A. Lomuscio, F. Raimondi, and M. Sergot. Towards model checking interpreted
systems. Submitted, 2002.

[16] K. McMillan. Symbolic model checking: An approach to the state explosionproblem.
Kluwer Academic Publishers, 1993.

[17] F. Stulp and R. Verbrugge. A knowledge-based algorithmfor the internet transmission
control protocol (TCP) (extended version).Bulletin of Economic Research, 54(1):69–
94, January 2002. Blackwell Publishers Ltd, Oxford, UK and Boston, USA.

[18] W. van der Hoek and M. Wooldridge. Tractable multiagentplanning for epistemic
goals. In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Johnson, editors,Proceedings
of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), pages 1167–1174. ACM Press, July 2002.

[19] R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. Submitted, 2002.

[20] M. Y. Vardi. An automata-theoretic approach to protocol verification (abstract).
In International Conference on Concurrency (CONCURRENCY ’88), pages 73–73,
Berlin - Heidelberg - New York, Oct. 1988. Springer.

[21] M. Wooldridge. Computationally grounded theories of agency. In E. Durfee, editor,
Proceedings of ICMAS, International Conference of Multi-Agent Systems. IEEE Press,
2000.

[22] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent
systems with MABLE. In M. Gini, T. Ishida, C. Castelfranchi,and W. L. Johnson,
editors, Proceedings of the First International Joint Conference onAutonomous
Agents and Multiagent Systems (AAMAS’02), pages 952–959. ACM Press, July 2002.

15


	Introduction
	Review of concepts and notation
	Model Checking techniques
	Interpreted Systems

	A methodology for model checking epistemic properties in Interpreted Systems
	Translating Interpreted Systems into SMV code
	Assumptions on the Interpreted System
	Input and Output of the Java Translator

	A communication example: The Dining Cryptographer
	Statement of the Problem
	The Interpreted System of the Dining Cryptographers
	The Methodology in Practice
	Model Checking the Formulae

	Conclusions
	References

