URL: http://www.elsevier. nl/locate/entcs/volume85.html []:5] pages

A Tool For Specification And Verification Of
Epistemic Properties In Interpreted Systems

Franco Raimondi and Alessio Lomuscio

Department of Computer Science
King's College London
London WC2R 2LS, UK
Enail: {franco, al essi o}@ics. kcl . ac. uk

Abstract

We present a compiler that translates a multi-agent syssgeaification given in the for-
malism of Interpreted Systems into an SMV program. We show ha SMV model
checker can be coupled with a Kripke model editor (Akka) tovalfor the mechanical
verification of epistemic properties of multi-agent sysseie apply this methodology to
the verification of a communication protocol — the diningpiggraphers.

1 Introduction

Formal logic is traditionally seen as a powerful tool in theabysis, representa-
tion, and interpretation of communication. With the adveindistributed systems,
logic, and formal methods, have provided two concrete téolsesearchers in-
volved with issues relating to communication: a specifaratanguage, and a ver-
ification mechanism.

Logic is used as apecification languagéor communication when analysing
protocols and meaning of utterances of artificial languagash as in the recent
application of speech-act theory to communication in radent systems. Formal
methods based on formal logic are used ag@fication mechanisnm the anal-
ysis of properties of communication protocol for distriedtsystems. This paper
concerns the use of machinery based on logic for the latter.

Verification of communication protocols is generally peni@d either by theo-
rem provers or by model checkers. While theorem provers stabéshed technol-
ogy, model checking8] is a relatively recent technique for the verification a$-d
tributed systems, allowing for the mechanical verificatidrproperties expressed
by means of temporal formulae. Temporal logic is a powerduahfalism, but it is
not expressive enough to represent the typical propertesrertypically concerned
about in a multi-agent system: notably the knowledge, ahdrattitudes such as
desires and intentions, of the agents. J. Halpern and M.i gaighested the use

(©2003 Published by Elsevier Science B. V.

4viAadivivJsivnusL AN Ls

of model checking techniques in the verification of multeagsystems in 1991
([111]) by means of richer languages including not only terapoperators but also
epistemic, but it is only recently that results along thesed have been achieved
([ABIY. 21 12)9,14.12.18)).

But irrespective of recent research, verifying a concret@munication proto-
col remains a non-trivial task. First one needs to give a mrccomputational
model of the system — either by means of Petri nets, timednaat®, etc. Once
this is given, one needs a tool that automatically buildstraantics model for the
system. This semantical model, typically a temporal mogheist then be used to
interpret the language that is used to specify and verifperies about the sys-
tem. While some tools are available, to our knowledge theoeiirently no unified
platform available, that can assist the designer in thege®&rom concrete speci-
fication of the different automata for the agents to the \@atfon of properties by
means of a model checker able to check logics richer tham péanporal logic.
The difficulty with providing an all-encompassing platfoimthat several issues
are intertwined:

« What formalism — automata, Petri nets — is to be used to reptase transi-
tions in the components resulting from a communicationquok?

« What temporal model — Interpreted Systems, plain Kripkea®ins — is to be
employed to represent the computation paths defined bywhelel description
of the system?

« What logical language — temporal, epistemic, deontic — ibeéemployed to
represent crucial properties of the protocol under comatiten?

« What particular symbolic representation — OBDD’s, SAT4xhsetc — is to be
used for the model checking task is to be used?

« What specific model checker - NuUSMV, Spin, etc — should be egeal to assist
in the task?

Many competing options are enumerated above, and thererently no “cor-
rect way to proceed”, but rather, it seems to us, a spectruoptdns are available
to investigate further for parties interested in theseassin view of making a con-
tribution on the issues outlined above, in this paper wegnea tool that integrates
traditional model checking techniques with Interpretedt8gns semantics [1L0]. In-
terpreted Systems are a powerful formalism to reason alpistieenic and temporal
properties of a MAS. The tool presented here allows for thdigation of static
epistemic properties of an Interpreted System (i.e. ptoggemvolving epistemic
operators only). We argue that this is sufficient in a numbjerases; to support
this claim, we apply the tool to the verification of a commuation protocol—the
protocol of the dining cryptographels [6].

The rest of the paper is organised as follows. In Sedfion 2eview the main
technical constructions used in the rest of the paper. Iti@€d we present and
discuss a methodology for checking epistemic properties BHAS. In Sectiol 4
we present in some detail the tool that allows us to do so. ¢ti&d3 we show how

2

4AviAadivilJivuwL ANy o4

this can be put to work on a widely discussed example — thediciyptographers.

2 Review of concepts and notation

2.1 Model Checking techniques

Given a programP, and a property that can be represented as a logical formula
in some logic, model checking techniques allow for the awttenverification of
whether or not a model/p, representing the program, satisfies the formula.

In the last two decades there have been great advances irfélcdveness
of this approach thanks to sophisticate data manipulagohrtiques. Techniques
based on Binary Decision Diagrams (BDOs, [3]) have been tsddvelop model
checkers that are able to check large number of stdtes f#tPrnative approaches
using automata have also been developed [20].

Software tools originated from these lines of researchNIBeée [13]) exploits
automata theory and related algorithms, while SMV [16] BBPs to represent
states and transitions. In this paper we will use NuSMV, aehmaplementation of
SMV ([I[Z]).

The input language of NuSMV allows for the specification ofratéi system
with different levels of abstraction. In the simplest cake,input language requires
three main sections:

1. A section for variables declaration,
2. A section for variable initialisation,
3. A section for the description of the transition relation.

The following is an example of a NuUSMV progrﬂm

MODULE mai n
VAR
request : bool ean;
state . {ready, busy};
ASSI GN
init(state)
next (st at e)
case
state = ready & request = 1 : busy;
1 : {ready, busy};
esac;

ready;

(the line"1 : {ready, busy};" is equivalentto arel se condition in
traditional programming languages). Given the programvabbluSMV can then
be used to create a model associated with it, and then to nobéek temporal
formulae. For example, if we were to feed a NuSMV checker ¢ithCTL formula
AG (request =0) -> AF(st at e=ready))

! From NuSMV tutorial, available dit t p: / / nusnmv.irst.itc.it
2 In the formula AG is the modal operator for “forever in the g in all branches”, and the
propositions are to be interpreted in the intuitive way.

3

4AviAadivilJivuwL ANy o4

NuSMV would produce a counterexample.

Following this approach a large number of systems rangiognfcommunica-
tion protocols to hardware components have been verified &gns of temporal
languages. These are not agent systems, but standartustriprocesses. If we
are to investigate whether we can apply this methodologgémtverification, we
need to incorporate this technique with an agent based s&mdike Interpreted
Systems.

2.2 Interpreted Systems

Interpreted Systems$ [110] are a computationally groundedasgics in the sense
of [21]], aimed at representing agents in a distributedrsgttiVe present the main
definitions here, but refer to the literature for more detail

Considem agents in a system andnon-empty set¢, ..., L, of local states,
one for every agent of the system, and a set of states for tieoement L.
Elements ofZ; will be denoted by, [}, 15,1}, Elements of_x will be denoted

A system of global states faragentsS is a non-empty subset of a Cartesian
productl; x ... x L, x Ly. Wheng = (Iy,...,1,,lg) is a global state of a system
S, l;(¢) denotes the local state of agerin global state;. /;(g) denotes the local
state of the environment in global state

We assume that, for every agent in the system and for theammignt, there
is a setAct; and Act g of actions that the agents and the environment can perform.
Actions are not executed randomly, but following particidpecifications that we
call protocols. A protocoF,; for agent; is a function from the set; of local states
to a non-empty set of actionsct; (notice that, by consideringets of actionswe
allow non-determinism in the protocol):

P, : L; — 24,

We can then model the evolution of the system by means of sittamfunction
7 from global states and joint actions to global states:

m:S X Act = S

whereS = L, x ... x L, x Ly andAct = Act, x ... x Act,, x Actg IS the set of
joint actions for the system.

Intuitively this defines temporal flows on the set of globales. Specifically,
we consider a set of runs over global stafes= {r : N — S}, where a run-
is defined as a function from time to global states, and tinmgea over natural
numbers. A run is a sequence of global states that are olthyepplying the
functionr to global states and joint actions.

Interpreted Systems can be used to model time and knowle@gelo that,
consider a paifS = (S, h) whereS is a set of global states ard: S — 27 is an
interpretation function for a set of propositional varie®P.

Temporal connectives of the type of CTIL [16] can then be eataldi on Inter-
preted Systems. For the purposes of this paper we are catcenth epistemic

4

4AviAadivilJivuwL ANy o4

operators. These can be interpreted by means of epistendalities K’;, one for
each agent, as follows [10]:

(IS,9) E K; ¢ ifforall ¢' we have that;(g) = ;(¢')
implies(1S,¢') = ¢.

The resulting logic for the modalitiek; is S5,,; this models agents with com-
plete introspection capabilities and veridical knowledge

We shall use Interpreted Systems as a semantic basis tdyspediAS. They
will also be represented in NuSMYV in the verification process

3 A methodology for model checking epistemic properties inn-
terpreted Systems

While MAS theories encompass a variety of attitudes, in gaper we focus on
knowledge. Being able to verify temporal epistemic projsrof a system would
allow us to reason in terms of temporal evolution of knowlkedgnd knowledge
about a changing world. But we argue that, in particular sagerification of static
properties is adequate. This is in all circumstances in Wwipieconditions and
postconditions can be stated in terms of logical propasitioVe give an example
of this in Sectiorb.

In order to specify and verify the epistemic properties of A3/ one can pro-
ceed as follows:

(i) Specify an Interpreted System in terms of local states, praicols, and
transitions. We give a concrete example of this in Secfidn 5, for the mwito
of the dining cryptographers.

(i) Translate the specification of step 1 into an SMV program This can be
done automatically; a Java program (presented below) casdxto perform
this translation.

(i) Use a model checker to compute the set of reachable stat€siven a sym-
bolic representation for states and transitions, as theobtened in the pre-
vious step, the set of reachable states can be computed aslgbint opera-
tor [1€]. NuSMV provides this facility from version 2.1. Noé that temporal
properties of the MAS can be checked at this stage.

(iv) Build an epistemic model from the set of reachable statesThe output of
the model checker is used as a starting point for the defimdfdhe epistemic
model of the original Interpreted System. The epistemiatiehs are built
automatically, parsing the output of NuSMV by means of avgafe we wrote.

(v) Model checking epistemic formulae In the present paper we use Akka
a Kripke model editor that supports model testing by Lex Hisd Akka
accepts the description of a model and an evaluation fumetinal allows for-
mulae to be checked against this input. Akka poses no réstrion the syntax

3 http://turing.w ns.uva.nl/~I hendrik/
5

4AviAadivilJivuwL ANy o4

{ Specify interpreted systen} XML editor

|

{Translate specification into NuSMV progra]ﬂ Java compiler

|

{ Use NuSMV to compute reachable sta]es NuSMV

Build an epistemic modell Parser

[Model check epistemic formulae} Akka

Pr ocedur es Software tool s
Fig. 1. Methodology

of the formulae, so that formulae can involve more than ondahoperator,
and modalities can be nested. The model and the evaluathatida (in the
syntax of Akka) are provided by the parser in the previoup.ste

The methodology is summarised in Figlie 1.

4 Translating Interpreted Systems into SMV code

In this section we present the tool that we use to translaézgdreted Systems into
SMV. We first state a number of assumptions we make on the fgimn, and
then briefly describe the tool.

4.1 Assumptions on the Interpreted System

We restrict our attention to the class of Interpreted Systevith the following
properties:

Finite systems we consider systems with a finite number of local states and
actions. This is a theoretical limitation, but in many exdesghe set of state is
finite.

Initial configuration : we require to specify the number of agents, local states
and actions when setting up the model. Hence, the maximunbeuof local
states cannot change at run-time.

Local states we assume that local states can be represented as a lisiadfles,
each having a finite range of values. More in detail, consadeagent: the local
stateL; is a tupleL; = (v, ..., v,,;) Where eachy, ; ranges over a finite set of
values (see Sectidn 5 for an example).

Evolution function: In the description below we use a slightly modified and
simpler syntax forr (see Sectiol212); the idea is to decompose final global
states of the function. We considern evolution functions, one for each agent,
m S x Act — L; (1 = 1,...,n) from global states and actions to local states
of agenti. In the tool, we shall list only the global states and actithrag cause a

6

4AviAadivilJivuwL ANy o4

change in the local state of ageénand assume that, if a global state is not listed
in the definition of some;, then this global state is not relevant in the evolution

of L;.

4.2 Input and Output of the Java Translator

The specification of an Interpreted System is required asput for the Java trans-
lator. This specification must contain at least the follagvimformations:

1. Number of agents.

2. Number of local states and actions for each agent.

3. Number of variables in each local state, for each agehiggaf each variable
in the local state.

4. Protocol as a function from local states (i.e. set of \@e8g) to actions, one for
each agent.

5. Initial state(s).

6. Transition functions from local states and actions tormlsi local state (see
previous Section).

These parameters are read from an XML file. The following islaesnatic
representation of the specification of an Interpreted Systs it is read by the
translatdg]:
<i s>

<agent nanme="Agt1">

<l ocal states nvar="1">

[...]

</| ocal st at es>

<actions nunber="3">
[...]

</ actions>

<pr ot ocol >
[...]

</ pr ot ocol >

</ agent >

[...]

<evFunct >
<agt EvFunct agt nane="Agt1">
<transition>
[...]
</transition>
</ agt EvFunct >
</ evFunct >
</is>

The protocol and the evolution functions are specified as afgpairs (local state,
actions) and (global state + actions, local state). For thdudon functions, we

4 A DTD for the specification of Interpreted Systems can be tbat
http://ww. dcs. kcl . ac. uk/ pg/ franco/is/is.dtd.

7

4AviAadivilJivuwL ANy o4

assume that if a global state and/or action is not listedy theoes not change the
local state of the agent.
We chose to use XML to specify Interpreted Systems for tHediohg reasons:

« The description of an Interpreted System requires the fpation of simple data
structures such as lists and maps, and XML allows for thergegm of this kind
of semi-structured data.

« Parsers and checkers are freely available for most of thgranoming languages,
thus enabling an easier integration with existing tools.

« The proposed DTD can be extended following new requirements

Editing an XML file can be cumbersome, and we are currentlyetiging a
graphical interface to make the input of the parameterseasi

Given the input above, an SMV program is generated by thesla#or; each
agent has two variables, one for a list of local states, amdfona list of actions.
Local states are computed automatically from the list oala@riables.

Essentially, the protocol in the Interpreted System giliestiles to compute the
evolution of actions in the SMV code. The evolution functitom the specification
of the Interpreted System is used to create the block of SMiyéateeded for the
transition functions between the variables representioglistates.

The Java software performing the translation can be ohtdwmen the authors
of this paper.

5 A communication example: The Dining Cryptographer

It is known that Interpreted Systems provide a good abstrachodel to specify
and verify the behaviour of systems. The tool presented oti®@#4, apart from
being an exercise in compilation of specifications, allows$aigo from an abstract
description of an Interpreted System to the execution sraéé in a format that is
compatible to one of the leading model checkers.

We are interested in specifying systems via Interpretedefys because we re-
gard them as promising in the verification of communicatiost@cols, as demon-
strated in[[10,17]. We test this belief by using the scenafithe Dining Cryptog-
raphers, provided by Chaum [6].

In his paper, Chaum shows how messages can be broadcastgarensly. In
particular, he shows that protocols exist that allow for¢change in the knowledge
of the participants about some global property of the systeithout them being
able to detect the source of this information.

5.1 Statement of the Problem

The Dining Cryptographers scenario is introduced In [6]aivs:

“Three cryptographers are sitting down to dinner at theirdasite three-star
restaurant. Their waiter informs them that arrangementsehaeen made with
the maitre d’hotel for the bill to be paid anonymously. Onéehef cryptographers

8

4AviAadivilJivuwL ANy o4

might be paying for the dinner, or it might have been NSA (Na&ional Security
Agency). The three cryptographers respect each otherls tig make an anony-
mous payment, but they wonder if NSA is paying. They redodreuncertainty
fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his mentydzn him and
the cryptographer on his right, so that only the two of them sae the outcome.
Each cryptographer then states aloud whether the two cognsam see — the one
he flipped and the one his left-hand neighbour flipped — felthrensame side or
on different sides. If one of the cryptographers is the payeistates the opposite
of what he sees. An odd number of differences uttered at bie itadicates that a
cryptographer is paying; an even number indicates that NSSpaying (assuming
that the dinner was paid for only once). Yet if a cryptograpkepaying, neither
of the other two learns anything from the utterances abouthvbryptographer it
is.”[B6]

Notice that the same protocol works for any number of crympbers either
greater or equal to three (seeé [6]).

5.2 The Interpreted System of the Dining Cryptographers

We analyse the scenario above by means of Interpreted Systemantics. We
introduce three agents;, © = 1,2, 3, to model the three cryptographers, and one
agentF for the environment. In our representation the environngensed to (non-
deterministically) select the initial configuration of thayer and the results of coin
tosses.

We represent the local staf&”; for each cryptographet; with a tupleLC; =
(v1, Vg, v3) wheré&l:

A the initial state
v1 = { NotPaid if the agent did not pay for the dinner
Paid if the agent paid for the dinner

¢

A initial state

) Different if the left coin is different from the
Vg =
right coin forC;

\ Equal if the left coin is equal to the right coin

A initial state
v = ¢ Odd odd number of differences uttered

Even even number of differences uttered

5 From now on we will denote an empty or undefined state\ by
9

4AviAadivilJivuwL ANy o4

Local states for the environment are tuplgs of the formLE = (ChA, ChB, ChC, payer)
whereChA, ChB, ChC are the “channels” between the Cryptographers, with value
randomly selected at the beginning of the run being Head ib(the outcome of
the coin toss), and

(1 if ¢, paid for the dinner

2 if C, paid for the dinner
payer =
3 if C5 paid for the dinner

| 4 if the NSA paid for the dinner

The actions for the cryptographers are:
ActCy = ActCy = ActCy = {), say(equal)say(not equal)

where\ denotes a null action.

We assume that the environment is not performing any actietl! = \.
Hence, there is no protocol for the environni@ént

The protocolPC; for the cryptographers is:

(say(equal) ifLC; is of the form

(NotPaid,Equal,® or

(Paid,NotEqual,®
PC;(LC;) = < say(not equal) ifLC; is of the form
(NotPaid,NotEqual,’ or
(Paid,Equal,®

A all the remaining cases

\

We now define the initial state for the system. We take the¥akg initial state
for the agents representing the cryptographers:

init(LC,) = init(LCy) = init(LCy) = (A, A, \)

The initial state for the environment is randomly selectexh the set of pos-
sible combinations of values for Channels (Head or Tail) pager (one of the
cryptographers or the NSA).

The evolution of the system is modelled by the transitioncfiom 7 : G x
Act — G, whereG = LC, x LCy x LC53 x LE is the set of global states, and
Act = ActC1 x ActCyx ActCsy x Act E. Notice that we can skip the evolution b
and the dependences frafat F in the definition ofr, thanks to our assumptions
on the environment (no actions, and local state fixed at tgenhang of the run).

Even so, the definition of is too long to report; we will give here only two

6 Equivalently one can think of a protocol mapping every lstate for the environmentto the null
action\.

10

4AviAadivilJivuwL ANy o4

examples:

(A A), (LA, A), (A, A, \), (head. tail,head), A, A, A, \)

((Paid,Different \), (NotPaid,Different\),
(NotPaid,Different)\),
(Head,Tail,Headl))

The above represents the fact that in the initial state ircivithe results of coin
tosses are Head, Tail, Head {0h A, ChB, andChC respectively, and in which
the first cryptographer paid for the dinner, there existsaadition to a state where
(' has valuePaid for the local variables, while the others cryptographers have
NotPaxd.

At the next time step the cryptographers utter the apprtgpsentencegqualor
not equa), following their protocol. This enables the transitions the evaluation
of the last variabley;:

7((Paid, NotEqual\), (, NotPaid, NotEqual\),
(NotPaid, NotEqual)),
(Head,Tail,Head!),
say(equal)say(not equalsay(not equal)\)

((Paid,NotEqual,Odd
(NotPaid,NotEqual,Odd
(NotPaid,NotEqual,Odd

(Head,Tail,Headl))

This is the final state of the system. A similar analysis candreéed out for all
the other remaining cases.

5.3 The Methodology in Practice

Following the considerations above, we encoded the IneeedrSystem for the din-
ing Cryptographers as an XML file. Specifically, this congafaur agents, three
variables for the local states of the Cryptographers, fauiables for the environ-
ment, two actions for the Cryptographers.

The definition of the evolution function is the most cumbensstep. However,
thanks to our assumptions of Sectionl 4.1, we can specifytbelglobal states and
actions that actually cause a change on local states.

For example, under this assumption, the first cryptographerbe modelled
with transitions of the form:

11

4AviAadivilJivuwL ANy o4

(Paid, Equal)) if ((\, A, A), *, (1, Head, Heagk),), (+)
or (A, A, A), *, (1, Tail, Tail,),), ()

This represents the fact that the first Cryptographer wohlthge his local state to
(Paid, Equal)) only if he was in the local statg\, A\, \) and the environment was
(1,Head, Headx) or (1, Tail, Tail, *).

Similarly, it is possible to define all the remaining conalits causing a tran-
sition for the first cryptographer; these, together with titasitions for the other
cryptographers and the environment, are encoded in XMLHerJava translator.

One can feed this specification into the translator and prethie SMV code for
the examp@. NuSMV can then be used to generate the set of reachable.State
this example, these are 96 out of 629856 possible combmsatiblocal states and
actions, as they are represented in NuSMV. Both the traaslaf the specification
into SMV code and the computation of the set of reachablestauire less than
one second on a 500 MHz PC with 256 Mbytes of RAM. The reachsthles are
stored in a text file that can be processed by the parser tapeothe epistemic
modellS, in Akka’s format.

5.4 Model Checking the Formulae

We define a set of atomic propositiofipaid,, paid,, paids, even, odd} that
we can interpret in a natural way in the mod#|, obtained by following the pro-
cess described above. Notice tHaven, odd} are true upon termination of the
protocol, thus giving the required postconditions for thvaleation of epistemic
formulael:

(IS4, 9) = paid; if I, (9)
(IS4, 9) = paidy if I, (9)
(IS4, 9) F paids if I¢,(g)
(IS4, 9))
(ISq,9) Eodd if Ic,(g) = (x,*,0dd for everyi

With Akka we can easily check the following propositions:

(Paid *,)
(Paid x,)
(Paid x,)
{

E even if I, (g) = (x,*, Ever) for everyi

IS4 = odd — (—paid; — (K, (paid, V paids)
N
— K¢, (paidz) A = K¢, (paids)))

IS4 = even — K¢, (—paid; A —paids A —paids)

" Thecodeis available atut t p: / / www. dcs. kcl . ac. uk/ pg/ franco/i s/ di ncry2. snv.
8 In the following,g € G will denote a global staté, (¢) will denote the local state for Cryptog-
rapheri in global statey; (Paid, %, *) will be a local state in which the first variable id and all
the other variables are allowed to have any value.

12

4AviAadivilJivuwL ANy o4

These two formulae confirm the correctness of the statemfes¢aiion[G.11:
if the first cryptographer did not pay for the dinner and there@an odd number
of differences in the utterances, then the first cryptogeaimows that either the
second or the third cryptographer paid for the dinner; meegoin this case, the
first cryptographer does not know which one of the remainmygtographers is the
payer.

Conversely, if the number of differences in the utteranses/en, then the first
cryptographer knows that nobody paid for the dinner.

Interestingly, in our model the following is not valid:

IS4 £ —paid; — (K¢, (—paid; A —paids A —paids)
\%
(K¢, (paids V paids) A = K¢, (paida) A = K¢, (paids)))
Also, we have:
IS4 £ —paid; — (K¢, (—paid; A —paids A —paids)
\%
K¢, (paid, V paidj))

Indeed, consider a global state in which the local staté€’fas (NotPaid,Different))
(such a global state exists in the set of reachable glob&@s3tan this stat@aid,
does not hold; also, in this local states there is no infoilwnabout the parity of the
utterances and’, considers possible global states in which parit@is!/, and oth-
ers in which parity isfven. In the first case;paid; A —paid, A —paidz does not
hold in a global state th&t, considers possible. In the second cpsaéd, V paids
is false, thus invalidating¢, (paid. V paids).

6 Conclusions

Logic has always been of use in the analysis of communicationulti-agent sys-
tems, both for the case of humans and computers. To datdéicagdn of com-
munication protocols has been limited to the use of theoresuges, and model
checkers limited to temporal languages. While this is appate for the low-level
communication protocols used in networking, complex rradfent systems fol-
lowing in spirit the intentional stance need richer langegg The problem with
using richer languages to verify these protocols is thaetumprovers and checkers
are not suited to represent other modalities such as kngeleth this paper we
have attempted to take a step in this direction, by providipgth from a concrete
specification of a multi-agent system to the constructioexacution traces, and
checking of properties.

Specifically, we have here presented a tool for model chegckpistemic for-
mulae in multi-agent systems. We have used Interpretece®ygsas a framework
for the specification of MAS and we have suggested how a mdaslker for tem-

13

4AviAadivilJivuwL ANy o4

poral models (NuSMV) may be used in the verification of epigteproperties. A
software tool to provide the necessary translation wasudised.

The tool provided has been tested on a well known scenariormmuunication:
the protocol of the dining cryptographers. In the future weuld like to test other
scenarios, particularly from the security literature. hat exercise it would be
instructive to check whether a static analysis is suffic{astit is claimed by [5] in
their influential paper on BAN logic), or whether a move to mp®ral epistemic
is required. While this analysis is in progress we are culygrlanning to add a
graphical interface to the tool so that a specification ofjpteted Systems can be
given graphically.

The issue of scalability of this approach is also one that wela/like to inves-
tigate further. Preliminary results seem to indicate thatphases of compilation
into SMV, the construction of the set of global states, aredtésting of epistemic
formulae all scale up fairly well. Still, we would not expeébiis approach to be
compared in speed with the fastest methodologies availableat we do find of
interest here is that a bridge was made between specificatianprotocol and
model checking, by means of automatic compilation of oneifipation into an-
other, thereby allowing for epistemic properties to be fiedii

References

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Modelkcking multiagent systems.
Journal of Logic and Computatio$(3):401-423, June 1998.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge Model checking
AgentSpeak. InProceedings of the Second International Joint Conferenge o
Autonomous Agents and Multiagent Systems (AAMASIOB) 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean fumttmanipulation. IEEE
Transaction on Computerpages 677-691, Aug. 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang. Symbolic
model checking10? states and beyondnformation and Computatiqre8(2):142—
170, June 1992.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of autheation. ACM
Transactions on Computer Syster@€l):18—-36, Feb. 1990.

[6] D. Chaum. The dining cryptographers problem: Uncowditl sender and recipient
untraceability.Journal of Cryptology1:65-75, 1988.

[7] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NM¥: A new symbolic model
verifier. Lecture Notes in Computer Sciend®33, 1999.

[8] E. M. Clarke, O. Grumberg, and D. A. PeledModel Checking The MIT Press,
Cambridge, Massachusetts, 1999.

14

4AviAadivilJivuwL ANy o4

[9] R. V. der Meyden and N. Shilov. Model checking knowledgel dime in systems
with perfect recall. FSTTCS: Foundations of Software Technology and Theoletica
Computer Sciengel9, 1999.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. VaréReasoning about KnowledgMIT
Press, Cambridge, 1995.

[11] J. Halpern and M. Y. Vardi. Model checking vs. theorenoying: A manifesto.
In J. Allen, R. E. Fikes, and E. Sandewall, editdPspceedings 2nd Int. Conf. on
Principles of Knowledge Representation and Reasoning, KRV&itgan Kaufmann
Series in Knowledge Representation and Reasoning, pagg&s332 Morgan
Kaufmann Publishers, San Mateo, CA, 1991.

[12] W. Hoek and M. Wooldridge. Model checking knowledge dimde. In SPIN 2002
— Proceedings of the Ninth International SPIN Workshop ord&lldChecking of
Software Grenoble, France, Apr. 2002.

[13] G. J. Holzmann. The model checker spiBEE transaction on software engineering
23(5), May 1997.

[14] A. Lomuscio and W. Penczek. Bounded model checking fiterpreted systems.
Technical report, Institute of Computer Science of the $folAcademy of Sciences,
2002.

[15] A. Lomuscio, F. Raimondi, and M. Sergot. Towards modeéceking interpreted
systems. Submitted, 2002.

[16] K. McMillan. Symbolic model checking: An approach to the state explgsioiblem
Kluwer Academic Publishers, 1993.

[17] F. Stulp and R. Verbrugge. A knowledge-based algoritbnthe internet transmission
control protocol (TCP) (extended versioBulletin of Economic Research4(1):69—
94, January 2002. Blackwell Publishers Ltd, Oxford, UK aras®n, USA.

[18] W. van der Hoek and M. Wooldridge. Tractable multiagpl@nning for epistemic
goals. In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Jstin, editorsProceedings
of the First International Joint Conference on Autonomougerts and Multiagent
Systems (AAMAS’02)ages 1167-1174. ACM Press, July 2002.

[19] R. van der Meyden and K. Su. Symbolic model checking timtedge of the dining
cryptographers. Submitted, 2002.

[20] M. Y. Vardi. An automata-theoretic approach to protoeerification (abstract).
In International Conference on Concurrency (CONCURRENCY, 'Ba8yes 73-73,
Berlin - Heidelberg - New York, Oct. 1988. Springer.

[21] M. Wooldridge. Computationally grounded theories geacy. In E. Durfee, editor,
Proceedings of ICMAS, International Conference of MutjeAt System$EEE Press,
2000.

[22] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsonsdel checking multi-agent
systems with MABLE. In M. Gini, T. Ishida, C. Castelfranclaind W. L. Johnson,
editors, Proceedings of the First International Joint Conference Aatonomous
Agents and Multiagent Systems (AAMAS @2)ges 952—959. ACM Press, July 2002.

15

	Introduction
	Review of concepts and notation
	Model Checking techniques
	Interpreted Systems

	A methodology for model checking epistemic properties in Interpreted Systems
	Translating Interpreted Systems into SMV code
	Assumptions on the Interpreted System
	Input and Output of the Java Translator

	A communication example: The Dining Cryptographer
	Statement of the Problem
	The Interpreted System of the Dining Cryptographers
	The Methodology in Practice
	Model Checking the Formulae

	Conclusions
	References

