
Experiments on Formal Verification of Mobile
Agent Data Integrity Properties

Paolo Maggi and Riccardo Sisto
Dip. di Automatica e Informatica - Politecnico di Torino

Corso Duca degli Abruzzi 24, I-10129 Torino, ITALY
email:maggi@athena.polito.it, sisto@polito.it

Abstract—This paper explores the possibility of applying exist-
ing verification techniques and tools to the cryptographic mech-
anisms specifically designed for the protection of mobile agents
from their environment, with a particular emphasis on agent data
integrity. In a previous paper we explored the use of the CSP-
based tools FDR and Casper. Here, instead, we present our ex-
perience with a prototype of a new verification tool based on spi-
calculus. The symbolic techniques employed in this new tool make
it efficient enough to analyze protocol configurations larger than
the ones that could be analyzed with the CSP-based tools. This
made it possible to formally find attacks that did not show up in
the simplified configurations previously analyzed.

I. INTRODUCTION

TH e development of several kinds of distributed software
applications can benefit from the use of mobile agents.

For instance, a promising application domain is electronic com-
merce on the Internet. Researchers envision, for example, mo-
bile agents dispatched to visit the sites of different companies
in order to find out the price at which they sell a given product
so as to select the cheapest one.

However, to make the use of the mobile agent (MA)
paradigm really acceptable, it is necessary to face all the nu-
merous security threats that arise from it [1], [2]. Such threats
generally fall into two main categories. On one hand, it is nec-
essary to protect hosts from malicious agents coming from the
network, and on the other hand it is necessary to protect agents
from malicious hosts and network intruders.

While satisfactory solutions are already available to protect
hosts from malicious agents, some open issues remain in the
protection of agents from malicious hosts.

Researchers have envisaged several different protection
mechanisms for mobile agents, mainly aiming at confidential-
ity and integrity of the data carried by the agent. The various
proposals share many common ideas and characteristics. While
confidentiality can be obtained by encrypting the data with the
public key of the intended recipient, integrity is more diffcult to
achieve, because an hostile execution environment has full con-
trol over the agent operations. Among the various techniques
proposed, a lot of attention has been paid to the ones that, in-
stead of preventing malicious hosts from tampering with the
collected data, provide a way for detecting tampering attempts
(e.g. [3], [4], [5], [6], [7]).

In general, all the proposed solutions are based on some kind
of cryptographic protocol which, in turn, uses basic crypto-
graphic operations such as encryption and digital signatures.

Despite their apparent simplicity, cryptographic protocols have
revealed themselves to be very error prone, especially because
of the difficulty generally found in foreseeing all the possible
attacks and all the possible behaviors of various parallel proto-
col sessions. For this reason, a lot of attention is being paid to
formal methods which can help in developing error-free proto-
cols or in analyzing the vulnerability of existing protocols. Up
to now, such methods have been successfully employed to for-
mally verify security properties of classical message-based pro-
tocols, such as authentication protocols (eg. [8], [9]), whereas
only a few attempts to use them to analyze the security of agent-
based systems have been documented [10], [11]. It is worth
noting that, as explained in [10], the specification and verifica-
tion of security issues related to mobile agent systems involves
new aspects not encountered in classical cryptographic proto-
cols, such as for example the need to model the fact that the
behavior of an agent potentially becomes unpredictable each
time it visits an untrusted host.

This paper explores the possibility of applying existing verifi-
cation techniques to the verification of the cryptographic mech-
anisms specifically designed for the protection of agents from
their environment, with a particular emphasis on agent data in-
tegrity.

While in [10] we showed how to verify mobile agent data
integrity properties using the CSP-based tools Casper [12] and
FDR [13], in this paper we extend the work presented in [10]
and [11] describing a new and really promising approach based
on the use of a spi-calculus model checker recently developed
at Politecnico di Torino and based on symbolic data representa-
tions [14].

The rest of the paper is organized as follows. In section II
we present the modeling approach in general terms. Section III
reports a brief introduction on spi-calculus. In section IV, we
present a sample mobile agent cryptographic protocol that will
be used to illustrate our modeling approach and its potential. In
section V, we show how to write a formal model of an instance
of the sample protocol using spi-calculus and how to define data
integrity properties. In section VI we present some verification
results, obtained using the spi-calculus model checker devel-
oped at Politecnico di Torino. Section VII concludes.

II. MODELING A MOBILE AGENT SYSTEM

Formal models of cryptographic protocols typically follow
the Dolev-Yao [15] approach. They are composed of a set of



principals which send messages to each other according to the
protocol rules, and an intruder, representing the activity of pos-
sible attackers. The intruder can perform any kind of attack:
it can not only overhear all the transmitted messages, learning
their contents, but it can also intercept messages and send new
messages created using all the items it has already learned, as
well as new nonces. So the intruder can fake messages and ses-
sions.

Since such models are meant to reveal possible security flaws
in the protocols and not flaws in the cryptosystems used by the
protocols, cryptography is modeled in a very abstract way and
it is assumed to be “perfect”. This means that:
� the only way to decrypt an encrypted message is to know

the corresponding key;
� an encrypted message does not reveal the key that was

used to encrypt it;
� there is sufficient redundancy in messages so that the de-

cryption algorithm can detect whether a ciphertext was en-
crypted with the expected key.

� the attacker cannot guess and/or forge any secret protocol
data.

Although such assumptions are obviously not completely true
for real cryptosystems, they represent the properties of an ideal
cryptosystem, so they are useful to isolate the flaws of the pro-
tocol itself. In other words, any flaw found with this model is
a real protocol flaw, but it is possible that the model does not
reveal other weaknesses due to the used cryptosystems.

Mobile agents are programs that can migrate from one net-
work host to another one while executing. They are executed
by agent interpreters that run on each host and communicate
by message passing. An agent migrating from one host to an-
other host consists of a static part, typically including the agent
code and, possibly, some static data, and a dynamic part, includ-
ing all the agent elements that can change over time (program
counter, stack, variables, etc.).

In order to model a mobile agent system, we use a technique
quite similar to the one used for normal cryptographic proto-
cols, based on the same assumptions about perfect cryptogra-
phy and intruders.

Agents are not modeled as autonomous mobile principals,
but the whole agent-based system is represented at a lower level
of abstraction, closer to the real system. Principals represent
hosts which, by their agent execution platform, can execute mo-
bile agent code. The migration of an agent from host to host is
represented by a message, exchanged by the principals that rep-
resent the involved hosts, containing the agent code and data.

Since the integrity of the static agent code and the static agent
data is a problem shared by all mobile agents, it can be solved
by the MA platform, independently on the particular function-
ality of the agent. Since we are not interested in validating this
part of the protocol, we assume that this problem is already
solved in a reliable way and we do not model code transmis-
sion explicitly, but we simply assume that trusted hosts always
execute the right code. So each agent hop is represented by a
message containing only the dynamic part of the agent data.

The main new aspect in mobile agent cryptographic proto-
cols with respect to classical authentication protocols is the pos-
sibility of having attacks due both to network intruders and to

untrusted hosts that may alter the behavior of agents hosted by
their execution platform in an unpredictable way.

Modeling agents by messages exchanged by the hosts helps
us in taking all such issues into account. Let us assume that
we have a single untrusted host

���
. Attacks due to

���
can be

taken into account in the above model giving the intruder the
possibility of totally replacing it. To obtain this, it is enough
to give the intruder all the secrets known by

���
, for example���

’s private key, and remove the process running on
���

from
the model. Knowing all

���
’s secrets, the intruder can totally

replace
���

, i.e. it can intercept any message directed to
���

,
decrypt it exactly as

���
could do and forge any message

���

could produce in response to it. In other words, the intruder
incorporates the behaviors of all possible network intruders as
well as those of all possible untrusted hosts. This models any
kind of malicious behavior of

� �
, including any modification

in the execution of the mobile agent on
� �

, as well as the case
in which the agent is sent by

� �
to a host different from the one

where it should go.
This approach can be easily extended to model environments

with several untrusted hosts: it is enough to insert all their se-
crets in the initial intruder knowledge and remove the processes
running on them from the model. This corresponds to modeling
several untrusted hosts that can cooperate. The intruder process
knows the secrets of all the untrusted hosts and so can replace
each of them and use the total knowledge of all of them.

Modeling untrusted hosts that can cooperate is adequate for
most applications. Nonetheless, a solution can be found even
for cases in which it could be useful to model untrusted hosts
that are unable to cooperate. These cases are difficult to model
using the modeling approach explained above, because the
specifier cannot control how the intruder is modeled, the only
thing that can be specified about the intruder being its initial
knowledge. However, the model with cooperating untrusted
hosts includes, as a special case, the one with uncooperating
hosts. Indeed, by analyzing the first model, we can find out
all possible attacks against the protocol, including those that do
not require any untrusted host cooperation. So a way out of this
problem is to analyze all the attacks reported by the analysis
tool and then filter out the ones involving cooperating untrusted
host.

For what concerns the specification of data integrity proper-
ties, they can be expressed in the same way authenticity proper-
ties are specified in classical authentication protocols. Indeed,
requiring that some data that is considered valid at a given site
has actually been delivered by the expected one is really an au-
thenticity property.

III. SPI-CALCULUS

Spi-calculus [16] is an extension of � -calculus [17], which
adds a few cryptographic primitives to � -calculus, namely
hashing and shared, private and public key encryption. Like
� -calculus, it is a first order process algebra, so it does not ad-
dress mobility explicitly. Its syntax and semantics can be found
in [16]. We give here only a brief overview of the constructs
used in this paper.

In � -calculus, a system is described as a set of concurrent
communicating processes. The basic computational step and



synchronization mechanism is interaction, in which a term �
is communicated from an output process to an input process via
a named channel � . A term can be basically a name (represent-
ing a data or a channel), a variable or a pair �������
	 , where �
and � are in turn terms. An output process �����	�� � is ready
to output � on channel � . If an interaction occurs, term � is
communicated on � and then process � runs. An input process
������	���� is ready to input on channel � . If an interaction occurs
in which term � is communicated on � , then process ��� �������
runs, where the post-fix operator � ����� � indicates literal substi-
tution of variable � by term � .

A composition �"! � behaves as processes � and � running in
parallel. Each of them can interact with the other one on chan-
nels known to both, or with the outside world independently of
the other one.

A restriction �$#&%'	(� is a process that makes a new, private
name % and then behaves as � . This operator is used to specify
data that is not known to the intruder.

A pair splitting process )�*,+����-�/. 	102� 34%5� behaves as
��� �"��� �6� �7��.8� if term � is the pair �����9�7	 . Otherwise the pro-
cess is stuck.

A match process � �:3<;=�>�?� behaves as described by � if
terms � and � are the same, and otherwise is stuck.

New kinds of terms have been introduced in spi-calculus to
represent cryptographic operations. Term @8� �A��BDCFE is the en-
cryption of term � with the public key of H, denoted

��G
. A

term of this form can be decrypted by using the private key
of
�

,
�IH

, by the process J�KL;,*(."MDN-@8� � �$B�CPOQ3$%�� , which be-
haves as ��� ����� � if . is @&� �A�$B C E and is stuck otherwise. TermR KL; R ���	 is the hashing of � . The hashing function is as-
sumed to be perfect and non-invertible. The notation

R KL; R�S ����	 ,
which is not part of spi calculus, is used in this paper to denote
that the

R KL; R function is applied % times on � .
The description of spi calculus in [16] introduces testing

equivalence ( T ), which is a kind of observational equivalence
that can be used to express security properties. If a process � is
ready to synchronize immediately on channel U , we say that �
exhibits barb U , and we write �AV=U . If � can exhibit U , imme-
diately or after a few internal reactions, we write �XW�U . A test
is a pair ��YZ�/U-	 , where Y is a testing process and U is a barb.
A test ��YZ�/U[	 is passed by process � if ���"! Y=	ZW5U . Testing
equivalence T is formally defined by:

�TX�]\ �5^_�AK8%a`b�c^d�
where the preorder ^ is defined as

�c^_�e\gfh��YZ�/U[	
���"! Y=	-W�U�ij�$�"! Y=	-W�U
In other words, �k^l� iff all the tests passed by � are passed
also by � . As a consequence, two processes are testing equiv-
alent iff they pass the same tests, i.e. they are indistinguishable
by testing.

IV. A SAMPLE PROTOCOL FOR MOBILE AGENTS DATA

INTEGRITY

In this section, we present a simple protocol which mains
at the integrity of a data gathering mobile agent that runs on
several possibly untrusted hosts..

This agent visits several hosts and simply picks up pieces of
data on its way. For example, the agent could be a shopping
agent dispatched to visit different companies and find out the
prices at which they sell a given product, so as to select the
company that offers the cheapest one. Data integrity of such
an agent means that a host cannot tamper with the data already
collected without being detected. This is a classical problem
for which different protocols have been proposed [3], [4], [5],
[6], [7]. The specific protocol we consider here was proposed
in [6] by Corradi et al.. The idea is that agents carry along
a cryptographic proof of the data they have already gathered.
This proof prevents hosts from tampering with the data already
collected without being detected.

For the description of the protocol we use the following no-
tation.

R KL; R �$	 is a cryptographic hash function, i.e. a function
which, theoretically, cannot be inverted ( � cannot be deduced
from

R KL; R ���m	 ). Following the spi calculus notation, the private
and public part of the key of host

�
are denoted

�nH
and

�QG
respectively. Encryption of data � by private (public) key of
host

�
is denoted @8� � �$B C O ( @&� ����B C E ).

We also take some notation from [6], where MIC stands for
“Message Integrity Code” and is the cryptographic proof we
have just mentioned, C is a “cryptographic counter”, which is
incremented by successive applications of

R KL; R by the agent
and oPp is the list of already collected data. The hosts where
data have to be collected are decided by the agent dynamically,
in such a way that each host is visited at most once. The hosts
are denoted, in order of visit by the agent,

��q
, which is the

initiator, and
�sr �<tvul3wul%'	 , which are the hosts where data

must be collected. The initiator initially creates the agent, sends
it out and, at the end of the computation, receives it with the
collected data. Each host

� r �<txu53(u%'	 has a piece of data
p r that will be collected by the agent.
oyp r and �lz8{ r are respectively the collected data and the

MIC value after the agent has left
��r

. Similarly, successive
values taken by the cryptographic counter are denoted { r . CID
is the (static) code of the agent. It is signed by a trusted party
for authentication and it is carried along from host to host with
the agent. The agent moving from host

� r Ha| to host
� r

can
be represented by a message containing CID, oPp r Ha| , �lz&{ r H}|
and { r .

A. Informal protocol description
� Initialization:

� q
generates a secret number { q . It creates

the agent and passes { | 0 R KL; R �${ q 	 to it.
� First Hop: The agent encrypts { | with

� G| to let it be ac-
cessible only on

� | , and then moves to
� | , carrying with

itself only the encrypted { | (i.e. @&� { | ��B C E~ ). The collected
data list oPp q and the initial MIC �lz&{ q are empty.

� On host
� | : After the agent has reached

� | , it asks� | to decrypt @&� { | �$B C E~ , thus obtaining { | and col-

lects p | , so having oPp | 0�@�p | B . Then it computes
�lz&{ | 0 R KL; R ��p | ��{ | 	 , and it increments the crypto-
graphic counter by computing {��P0 R KL; R ��{ | 	 .

� Hop i ( �Qu53(u% ): The agent encrypts { r with
� Gr and

then moves to host
��r

carrying with itself the already col-
lected data oyp r H}| , the cryptographic proof �lz8{ r H}| , and



H0

H3H1

Agent

Trusted
Hosts

Initiator
Host

Untrusted
Host

H2

Fig. 1. Modeled instance of the Corradi et al.’s protocol.

the value of the cryptographic counter encrypted with
�vr

’s
public key: @8� { r ��B C E� .

� On host
� r

( � u 3 u % ): After having decrypted
@8� { r ��B C E� , the agent collects p r

and appends it to the col-

lected data list, so computing oPp r 0 oPp r Ha|�� @,p r B . It
then computes a new proof by:

�lz8{ r 0 R KL; R ��p r ��{ r ���lz&{ r Ha| 	
and increments the cryptographic counter.

� Last hop: The agent encrypts { S with
� Gq

and then
moves from

� S back to
�Zq

carrying with itself the
whole data oPp S , the computed checksum �lz&{ S , and
@8� R KL; R �${ S 	4�$B C E� .

� Termination:
�sq

receives from the agent oPp S , �lz&{ S ,
and @8� R KL; R �${ S 	4�$B C E� . From the values of { q and oPp S ,� q

can compute �lz&{ S , and check that it is the same that
has just been received from the agent. If any difference
is found, the agent data is considered to be invalid. This
guarantees the integrity of validly collected data.

A host cannot modify the already collected data, basically
because it cannot retrieve { from

R KL; R �${=	 . Since
�"r

does not
know {�� ���	� 3<	 , it cannot modify p
�b���	� 3<	 and so it cannot
reconstruct a valid MIC.

As also noted in [6], this solution does not work if the agent
visits a host to collect data twice, or if malicious hosts cooper-
ate.

V. THE SAMPLE PROTOCOL MODEL

In this section we show how to model an instance of the Cor-
radi et al. protocol reported in section IV using the spi-calculus.

For simplicity, we deal with a fairly small instance of the
protocol. In this instance (Fig. 1), an agent is sent out from
the initiator

� q
, visits three hosts, identified as

� | , � � and
��

,
and comes back to

� q
. p | , ps� and p �

are the data gathered
by the agent on

� | , � � and
��

respectively. Hosts
� q � | and��

are trusted, whereas
� � is not. In this way we can express

the integrity property asserting that the data collected at
� | and� �

should not be modified. Of course, it is possible to extend
the model to incorporate an arbitrary number of visited hosts.

Moreover, we can have multiple sessions of the protocols, each
one corresponding to a different agent.

As explained in section II, the model is composed by a set
of processes, one for each trusted host and one representing the
whole protocol instance.

Processes running on trusted hosts
�sq

,
� | and

� �
are called

respectively
� MD; + q , � MD; + | and

� MD; + � . Both
� MD; + | and

� MD; + �
take five parameters: ` and � are respectively the data gathered
by the agent on the host where the process is running and the
host key (public and private); � S������ is the public key of the
next host to be visited; { R K8% r S is the channel from which the
agent has been received and { R K8%�� � � is the channel used by
the process to send the agent to the next host.

Process
� MD; + | is defined as given below:

� MD; + | ��`�������� S������ ��{ R K8% r S � { R K8%�� � � 	 0
{ R K % r S ��. 	��
J�KL;,*�. MDN-@&� { | ��B��,Ov34%
{ R K %�� � � ��` � R K&; R ��` ��{ | 	���@&� R KL; R �${ | 	4�$B ����� �"! 	��#

The process behavior is quite simple: first the message . is
read from { R K % r S and decrypted using key � H to obtain { | ;
then message ��` � R K&; R ��` ��{ | 	���@&� R KL; R ��{ | 	4�$B � ���$�"! 	 is sent out
on channel { R K8% � � � .

The description host
� MD; + � is:

� MD; + � ��` ���}��� S������ � { R K8% r S ��{ R K8% � � � 	 0
{ R K8% r S ���m	��
)�*,+���� | �/�m� � �lz8{7�D�9. 	 0_��34%
J K&;,*P. MDN-@8� { � �$B � Ox3$%
{ R K8% � � � ��� | �9� � �9` � R KL; R ��` ��{ � ���lz&{7� 	��
@&� R KL; R �${ � 	4�$B ����� �"! 	��#

Process
� MD; + q takes four parameters: � is

�Zq
’s key (public

and private); � S%���&� is the public key of the next host to be vis-
ited; { R K % r S is the channel from which the agent is received
back at the end of its itinerary and { R K %�� � � is the channel used
by
� MD; + q to send the agent to the first host of the agent itinerary.
The description of

� MD; + q (the originator host) is the follow-
ing one:

� MD; + q � �}��� S������ � { R K8% r S ��{ R K8%�� � � 	 0 (1)

�$#�{ q 	
{ R K8%�� � � �<@8� R KL; R �${ q 	4�$B ����� �"! 	��
{ R K8% r S ���m	��
)�*,+���� | �/�m�D�9� � ���lz&{ � �/. 	 0d�v3$%
J K&;,*P. MDN-@8� {('��$B � O�34%
� {(' 3<; R KL; R ' �${ q 	4�
� �lz&{ � 36; R KL; R ��� � �R KL; R

�
��{ q 	�� R KL; R ��� � � R KL; R � ��{ q 	/	��



R KL; R ��� | � R KL; R �${ q 	/	9	4�
{ R K8%�� � � ��� | �9� � �9� � 	��#

First of all, it creates secret { q , encrypts it with � S������ and
sends it to the first host of the agent itinerary. The it waits for
the agent coming back on channel { R K8% r S . Once received the
agent back, it checks that the value of { ' is equal to

R KL; R ' �${ q 	
and that the received �lz&{ �

corresponds to the one it can com-
pute starting from initial secret { q and data � | , � � and � �

gather
by the agent on the three visited hosts.

If the computed �lz&{ �
matches, � | , �m� and � �

are sent out
on channel { R K % � � � . This last step has been added for testing
the protocol (see testing equivalence, section III).

The whole protocol instance is:

����	 0 (2)

��#�� q 	���#�� | 	��$#sp | 	��$#�� � 	 ��#sp � 	
� �"��� Gq ��� G| ��� G� 	��
� � MD; + q ��� q ��� G| ��J C ~ �9J C � 	 !
� MD; + | ��p | ��� | ��� G� ��J C ~ ��J C�� 	 !� MD; + � ��p � ��� � ��� Gq ��J C�� ��J C � 	/	9	

where � r
is the key of host

�sr
and J C � is the channel con-

necting
�sr H}| to

�sr
( J C � connects

� �
to
� q

). Note that � � is
public, since

� � is an untrusted host. Note also that we need
to send public keys � Gq

, � G| and � G�
on public channel � in

order to let the intruder adds them to its initial knowledge.

A. Security Properties

We are interested in agent integrity, i.e. we want any tamper-
ing of p | and p �

by
� � or by network intruders to be detected.

Let us write the following specification of
� MD; + q :

� MD; + q
	�� �� � �}��� S������ � { R K8% r S ��{ R K8%�� � � �9`&	 0 (3)

��#�{ q 	
{ R K8%�� � � �<@8� R KL; R ��{ q 	6��B �����$� ! 	��
{ R K8% r S ����	��
)�*,+���� | �9� � �/� � ���lz&{ � �/. 	 0���34%
J�KL;,*�. MDN-@&� {('��$B � O�34%
� {(' 3<; R KL; R ' ��{ q 	6�
� �lz&{ � 3<; R K&; R ��� � �R KL; R

�
��{ q 	�� R KL; R ��� � � R K&; R � �${ q 	/	��R KL; R ��� | � R KL; R ��{ q 	/	9	4�

{ R K8%�� � � ��`��9� � �/� � 	��#

and the following whole protocol specification:

� 	�� �� �$	 0 (4)

��#�� q 	��$#�� | 	 ��#sp | 	 ��#�� � 	 ��#sp � 	

� �"��� Gq ��� G| ��� G� 	��
� � MD; + q 	�� �� ��� q ��� G| �9J C ~ ��J C � �9p | 	 !
� MD; + | ��p | ��� | ��� G� �9J C ~ �9J C�� 	 !� MD; + � ��p � ��� � ��� Gq �9J C�� �9J C � 	/	/	

As the reader can note, equation (3) differs from equation (1)
only in the last line. Process

� MD; + q 	�� �� is a ”magical” process
that is ready to output the value of the paramter ` on { R K % � � �
for any incoming agent that passes the validity tests. If we
prove that specification (4) is testing equivalent to model (2),
we have proved that the protocol ensures integrity of the data
gathered by the agent on host

� | . Indeed, in that case, we are
sure that the value of p | that

� q
has received has not been tam-

pered with. Otherwise, the specification and the model would
be willing to output different values through channel J C � , and
they would not be testing equivalent.

So, the formal expression of integrity for the above agent is :

� 	�� �� ��	 TX����	 (5)

The same has to be done for data p �
gathered by the agent

on host
� �

.
Equation (5) is only an integrity specification. To specify

additional properties other equations are needed.

VI. CHECKING THE SAMPLE PROTOCOL

The model described in the previous section has been
checked using a prototype of the new model checker for spi-
calculus being developed at Politecnico di Torino. This tool
builds a finite state transition system representing the joint be-
havior of a protocol model with an intruder that can interact
with the protocol according to the Dolev-Yao approach. Since
the intruder can in principle send an infinite number of different
messages at each step, this state transition system is potentially
infinite. However, as explained in [14], symbolic techniques
are used to make it finite. The tool can also compare the proto-
col and specification transition systems, checking their testing
equivalence. In case the equivalence does not hold, the tool
gives a spi-calculus specification of an intruder that can exploit
the difference.

As expected, we have been able to verify that, with respect
to the analyzed instance, the Corradi et al. protocol is able to
ensure the integrity of data p | , but not of data p �

. In fact,
the tool reported that ���$	 and � 	�� �� ��	 are not equivalent: the
spi-calculus model of a process z representing one the possible
attackers (intruders) as reported by the tool is the following one:

zm��	 0
����� | 	�� )�*,+���� | �9� � �/� � 	 0�� | 34%
{ C�� ��� � 	�� )�*,+���� ' �9��� �/��� 	 0�� � 34%
J�KL;,* ����MDN-@8� ��� ��B��wO� 34%
�$#Z. | 	 ��#Z. �,	
{ C � ��� '8�/. | �/. � �R KL; R ��. � � R KL; R ����� 	�� R KL; R ��. | �/��� �9���,	���@&� R KL; R � ������	4�$B � ~ �#



First of all the intruder reads message � | from public channel
� adding � Gq

, � G| and � G�
to its initial knowledge. Then it

gets the agent from channel { C�� and reads the agent’s data as
though it was

� � (this is possible since it knows � H� ). Then it
creates two nonces . | and . � and sends the agent back to

�sq
,

appending both . | and . � to the list of already gathered data
and generating the corresponding MICs.

Note that this kind of attack is possible since the protocol
does not require data authentication, so an untrusted host can
add more than one data item without being detected.

The time needed to check the protocol security properties is
about one minute on an AMD Athlon 850 Mhz CPU with 512
Mb of RAM.

It is worth noting how the results obtained with this new
model checker are far better than the ones we obtained using
the CSP-based tools Casper and FDR [10]. In that case, in fact,
we were only able to analyze models where an agent visits up
to three hosts. Moreover, even in such smaller test cases, on
the same machine, the time needed to check the protocol se-
curity properties was far larger. This can be explained mainly
by the fact that the CSP-based tools do not use symbolic tech-
niques, but they put a limitation on the maximum length of the
messages the intruder can send.

It is worth also noting that in [10], because of the limited
size of the analyzed protocol instance, we failed to discover the
attack we have reported in this paper.

VII. CONCLUSIONS

In this paper we have shown how a new model checker based
on spi-calculus can be used to analyze the data integrity prop-
erties of a mobile agent cryptographic protocol. In a previous
paper, we showed the analysis of the same protocol using the
CSP-based tools Casper and FDR.

When using Casper and FDR, we only succeeded in analyz-
ing models where an agent visits up to three hosts. The new
tool based on spi calculus is more powerful than the previous
one because it uses symbolic data reprersentations. Such a new
tool enabled us to formally analyze reasonably sized models,
and to find attacks on the protocol that did not occur in the sim-
ple models previously analyzed.

From the specification point of view, it can be noted that a
clear formal specification as the one that has been presented
in this paper is very important to unambiguously and precisely
describe a mobile agent security mechanism and its properties.
It expresses not only the contents of the exchanged messages,
but all the aspects that are relevant to guarantee the security
properties of interest, including the checks that must be done
when messages are received. So a formal specification of this
kind is a valid and practical basis for a correct implementation.

VIII. ACKNOWLEDGMENTS

This work has been (partially) funded by the Center of Ex-
cellence on Multimedia Radiocommunications (CERCOM) of
Politecnico di Torino.

REFERENCES

[1] C. Tschudin. Mobile agent security. In M. Klusch, editor, Intelligent In-
formation Agents: Cooperative, Rational and Adaptive Information Gath-
ering on the Internet, Lecture Notes in Computer Science, pages 431–
446. Springer-Verlag, Berlin, Germany, 1999.

[2] W.M. Farmer, J.D. Guttman, and V. Swarup. Security for mobile agents:
Issues and requirements. In Proceedings of the 19th National Information
Systems Security Conference, pages 591–597, Baltimore, Md., October
1996.

[3] B. S. Yee. A sanctuary for mobile agents. Technical Report CS97-537,
UC San Diego, Department of Computer Science and Engineering, April
1997.

[4] G. Vigna. Cryptographic Traces for Mobile Agents. In Giovanni Vigna,
editor, Mobile Agent Security, Lecture Notes in Computer Science No.
1419, pages 137–153. Springer-Verlag: Heidelberg, Germany, 1998.

[5] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the Computation Results
of Free-Roaming Agents. In K. Rothermel and F. Hohl, editors, Proceed-
ings of the 2nd International Workshop on Mobile Agents, volume 1477
of Lecture Notes in Computer Science, pages 195–207. Springer-Verlag:
Heidelberg, Germany, 1998.

[6] A. Corradi, R. Montanari, and C. Stefanelli. Mobile agents integrity in
E-commerce applications. In of the 19th IEEE International Conference
on Distributed Computing Systems Workshop (ICDCS’99), pages 59 – 64,
Austin, Texas, May 31 – June 5 1999. IEEE Computer Society Press.

[7] X. F. Wang, X. Yi, K. Y. Lam, and E. Okamoto. Secure information gath-
ering agent for internet trading. In Chengqi Zhang and Dickson Lukose,
editors, Proceedings of the 4th Australian Workshop on Distributed Arti-
ficial Intelligence on Multi-Agent Systems : Theories, Languages, and
Applications (DAI-98), volume 1544 of LNAI, pages 183–193, Berlin,
Germany, July 1998. Springer.

[8] G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 23(10):659–669, October
1997.

[9] S. Schneider. Verifying authentication protocols with CSP. In PCSFW:
Proceedings of The 10th Computer Security Foundations Workshop. IEEE
Computer Society Press, 1997.

[10] Xavier Hannotin, Paolo Maggi, and Riccardo Sisto. Formal specification
and verification of mobile agent data integrity properties: A case study.
Lecture Notes in Computer Science, 2240:42–53, 2001.

[11] Xavier Hannotin, Paolo Maggi, and Riccardo Sisto. Using process alge-
bras to formally specify mobile agent data integrity properties: A case
study. In Andrea Omicini and Mirko Viroli, editors, WOA 2001 – Dagli
oggetti agli agenti: tendenze evolutive dei sistemi software, Modena,
Italy, 4–5 September 2001. Pitagora Editrice Bologna.

[12] G. Lowe. Casper: A compiler for the analysis of security protocols. In
PCSFW: Proceedings of The 10th Computer Security Foundations Work-
shop. IEEE Computer Society Press, 1997.

[13] Formal Systems (Europe) Ltd. Failures-Divergence
Refinement. FDR2 User Manual. Available at
http://www.formal.demon.co.uk/fdr2manual/index.html, 3 May 2000.

[14] L. Durante, R. Sisto, and A. Valenzano. A state exploration tech-
nique for spi-calculus testing equivalence verification. In Proceedings
of FORTE/PSTV 2000, pages 155–170, Pisa, Italy, October 2000. Kluver.

[15] Danny Dolev and Andrew C. Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, IT-29(12):198–208,
March 1983.

[16] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Research Report 149, Digital Equipment Corporation Sys-
tems Research Center, January 1998. A shortened version of this report
appeared in Information and Computation 148(1999):1-70.

[17] R. Milner, J. Parrow, and D. Walker. A calculus for mobile processes.
Part I and II. Information and Computation, 100(1), 1992.


