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Abstract. Existing work in the field of Multiple Instance Learning
(MIL) have only looked at the standard two-class problem assuming
both positive and negative bags are available. In this work, we propose
the first analysis of the one-class version of MIL problem where one is
only provided input data in the form of positive bags. We also propose an
SVM-based formulation to solve this problem setting. To make the ap-
proach computationally tractable we further develop a iterative heuristic
algorithm using instance priors. We demonstrate the validity of our ap-
proach with synthetic data and compare it with the two-class approach.
While previous work in target tracking using MIL have made certain
run-time assumptions (such as motion) to address the problem, we gen-
eralize the approach and demonstrate the applicability of our work to
this problem domain. We develop a scene prior modeling technique to
obtain foreground-background priors to aid our one-class MIL algorithm
and demonstrate its performance on standard tracking sequences.

1 Introduction

Multiple Instance Learning (MIL) is machine learning paradigm where the data
is presented as collections of instances called “bags” associated with labels. (pos-
itive - contains at least one positive instance, negative - every instance in it is
negative). While this is a standard two-class MIL problem setting, its one-class
variant where the data is available only in the form of positive bags (and no
negative bags) has been motivated in previous work [1], but to the best of our
knowledge, have not been studied yet. One-class MIL formulations seem to be
the appropriate setting for many real world tasks where only the data from the
positive class are naturally available - for example, social network data (facebook
“likes”), object retrieval, document extraction, biological applications such gene
expressions, protein-protein interaction (PPI) networks, etc. Even though the
data here exist in a multiple-instance setting, previous work have imposed a
supervised one-class approach to them.

Specifically in the domain of target tracking, two-class MIL approaches have
been employed in previous work [2,3]. A potential limitation with the existing
formulations of the localization and tracking problem as a standard two-class
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MIL approach (with positive and negative bags) is that they use certain as-
sumptions about the video to separate out targets from the background, such as
motion by assuming that the targets of interest are moving in the scene. To make
these applications more general, we explore how far we can go without imposing
a restriction (such as motion) on our positive class. So, for example, this would
allow cases where the target of interest stops and waits for a few seconds before
moving on. In such a case, we would consider potentially all instances from each
image as being part of a positive bag, without having any explicit knowledge of
the negative bags. The goal of the localization and tracking problem is now to
find the most persistent object across these positive bags, which would be our
target of interest. This more general formulation is clearly a harder problem, and
can be viewed as a Multiple Instance analog of the one-class supervised learning
problem [4] where one is only given labeled data from the positive class.

2 Related Work

Since the original work of [5] introducing the MIL paradigm, there have been
various algorithms proposed such as Diverse Density (DD) [6] and SVM tech-
niques [7]. One-class MIL has not yet been studied; even the most recent work
of [8] in MIL, the focus is on efficient instance selection from positive bags by ex-
ploiting the negative instances distribution. While MIL has also been employed
for object localization and tracking in [2,9, 3], they however make simplifying
assumptions to separate the data into positive and negative bags, thus limiting
their applicability. The work of [2] uses an online boosting framework [10] to
build an additive strong classifier by choosing a succession of weak classifiers us-
ing Haar-like features. This approach requires manual initialization to determine
what qualifies as the set of instances that form the positive bags and what forms
the negative bags. Similarly, while the work of [3] gets around manual labeling,
it imposes a motion model by assuming that the targets are always moving,
and exploit this assumption to form bags. In our work, we seek to explore the
problem without making any such run-time assumptions.

In general, one-class models separate the desired class of examples (referred
to as the core or the concept) from the other examples (noise) where the noise
model is either unknown or too complex to be explicitly modeled. After the ini-
tial density-based clustering work of [11] in this, two complementary approaches
emerged which treat these problems as either outside-in (treat it as an outlier de-
tection problem) [12, 4] or inside-out (identify a small, coherent subset of the data
that captures the concept) [13,14]. Further, there has been work using hyper-
spherical boundaries [12-14] and, more recently, using an information-theoretic
approach [15].

The extension of any of these approaches to the MIL paradigm is essentially
non-trivial. This is because while the positive bags have a small number of posi-
tive instances put together, they also contain a lot of negative instances. There-
fore the one-class MIL can either be approached as an unsupervised learning
problem with some additional restrictions (MIL constraints) or as a supervised
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learning problem where you don’t directly have the instance labels but have ad-
ditional knowledge of how the labels relate to each other. We propose an SVM
approach based on the latter idea where the main constraint is that, while learn-
ing the core concept (the one-class), we impose the additional restriction that it
must contain at least one instance from each of the positive bags.

3 Support Vector Machine One-Class MIL Framework

Support Vector Machines (SVM) are one of the most popularly used super-
vised learning methods used for classification, regression, ranking, and other
such learning tasks. While there can be many hyperplanes that separate the
space between the examples from the two classes of data, the model that the
SVM training algorithm builds is a representation so that the examples of the
two classes are divided by a hyperplane with as large a margin between them as
possible (called the maximum-margin hyperplane).

In the one-class Multiple Instance setting, the training data is available
only in the form of positive bags. Formally, this can be represented as D,. =
{(X1,11),(X2,Y2),...,(Xn,Ys)} where each bag X; = {x;1,Zi2, ..., Tim,; } IS a
positive bag (containing m; instances) and therefore has a bag label Y; = 1.
This means that for each bag Bj, there exists at least one instance x;; € B; that
is positive so that y;; = 1, and the other instances could be positive or negative
yi; € {—1,1}. Note that the instance labels y;; are not actually given but it
is only the bag labels Y; that are available. The relation between the instance
labels and their bag labels is captured using the max operator Y; = max;ecm, ¥ij,
and can be formulated in terms of a linear constraint as given in Eqn. 1.

ij +1
Z%zl Vist V=1 (1)
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Since what we wish to learn is an instance-level classifier (so that at test time
we can classify each instance as positive or negative), in terms of the instance la-
bels y;;, the generalized soft-margin SVM formulation employing this constraint
can be written as given in Eqn. 2
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In this formulation, the function ¢(z) maps the instance z to a higher-
dimensional kernel space, C' > 0 is the regularization parameter, and the vari-
ables &;; are the slack variables to allow for classification errors in the training
data.

For our target localization and tracking application, we treat each image in
the video sequence as a positive bag. Each image is segmented at different levels
using the segmentation algorithm of [16] and these segments are then employed
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as instances. An example of such a multi-level segmentation of a single image
from a sequence is shown in Fig. 1. Each segment instance x;; is modeled using
a vector of covariance features derived from its covariance matrix representation
Cr which is calculated as

Cr= = S (= )i — )" Q

kER

where fi, = [z yr g b I, I,] is a 7 dimensional feature vector using a combination
of position, color, and gradient values at each pixel location in the segment R of
size n pixels, and pp is the mean feature vector within the segment.

Fig. 1. Hierarchy of segmentations on the same image (# of segments n from 30 to
100 in steps of 20).

We express the optimization problem in dual form so that the maximum-
margin hyperplane, and consequently, the decision function is only a function of
the support vectors (the training data that lie on the margin). Also, in the dual-
form, we get around actually having to specify the transformation function ¢(x)
and rather only need to define the kernel function K(-,-) that seeks to compute
the inner-product in that higher-dimensional space. This formulation is given in
Eqn. 4

: 1
min 107Qa—e’a (4)
. 41
subject to  yTa=0,0<a; <C, ZjEmi Y- >1
where e = [1,..,1] is a vector of all ones, Q is a positive semi-definite matrix

such that Quun = YmYn K (Tm, ), and K (T, 1) = ¢(xm) T é(x,) is the kernel
function that computes the inner product in kernel space. By solving this dual
formulation and using the primal-dual relationship, the final w of the hyperplane
can be written in terms of the support vectors as given in Eqn. 5

W= giaid(z) ()
iesv

where all x; corresponding to «; > 0 are the support vectors. The decision
function to perform the classification will now be given as

sgn (wh¢(x) +b) = sgn (Z v K (zi,m) + b> (6)

1€ESV
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Once this classification model is learned, the decision hyperplane parameters
w,b can be used to classify each segment instance. Therefore, when presented
with a new image, the probability that an image segment within it (with feature
vector x;;) contains the learned target can be calculated from Eqn.6 using w, b.

While in the standard supervised setting, the labels 7;; of each of the ex-
amples are known, in the present case, they are unknown integer variables only
related by the constraint in Eqn. 1. Therefore, this leads to a mixed-integer pro-
gramming problem where we are trying to maximize the soft-margin criterion
over all possible label assignments and all possible hyperplanes. In essence, the
program seeks to find a hyperplane such that there is at least one instance from
each bag on the positive side of the space and at the same time, maximizes the
margin with respect to the labeling that the hyperplane assigns to the instances
in the bags.

This formulation poses a computational challenge since it is a typical mixed
integer programming problem that is well known to be NP-hard and cannot
be solved efficiently using existing solvers. Therefore, we develop an iterative
heuristic approach using prior labeling information that we obtain from the
scene modeling technique described in the next section.

4 Scene Modeling for Instance Priors

In this section, we develop a technique to build statistical scene environment
models using the Expectation-Maximization algorithm that enables us to assign
prior probabilities to parts of the scene as belonging to the background or fore-
ground. Note that this is a one-time modeling technique to assign probabilities
using a priori scene information as opposed to employing run-time assumptions
such as manual initializations or motion models performed by previous work in
tracking.

() ()

Fig. 2. (a)-(b) Segmentation across the scene showing mostly background segments.
(c)-(d) Nearest neighbor classification of segments using the GMM model. Color de-
notes cluster assigned and intensity of color corresponds to probability value of be-
longing to that cluster. (e) Variance map showing the intensity variance value in each
segment of (a). Here we see that “noisy segments” show high variance. This is used in
the weighting scheme for the foreground-background probability assignment.
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We first move the camera to a set of random pan-tilt locations in the scene
(= 25) and run the segmentation algorithm on each of the collected images (see
Fig. 2(a)-(b)). Since it can be seen from these segmentation results that most
of the segments belong to parts of the background, we then run a clustering
algorithm on these segments to obtain clusters that are representative of scene
background entities.

Our next step is to build gaussian probability distributions corresponding to
each of the clusters so that we can then map any individual segment from a given
image to one of these clusters, and then using its probability density function,
assign it a probability of belonging to that cluster. To achieve this, we use the
Expectation-Maximization (EM) algorithm to obtain a GMM distribution with
the scene segmentation data using a color-based feature representation (mean
YCbCr). Instead of selecting an arbitrary value for the number of clusters in the
distribution, we automatically select from different models, the model that max-
imizes the Bayesian Information Criterion (BIC) [17]. By analyzing the segments
in each cluster, we observed that the main four clusters emerging from the scene
were the ones corresponding to environmental features such as streets (shown in
yellow), walkways (shown in blue), buildings (red), and vegetation/grass (green).

After this, each segment in a new image is classified using a nearest neighbor
scheme in YCDbCr space using Mahalanobis distance. Further, the Gaussian prob-
ability distribution function (mean and variance) corresponding to that cluster
assignment is used to obtain the corresponding generative probability as shown
in Eqn. 7.

aussian _(xsegi - ;U/k)Q

where x4, is the feature vector corresponding to the ith segment seg;, uy is the
mean of its closest cluster k, and oy, is its corresponding standard deviation.

Figure. 2(c)-(d) shows results for test images where each segment is assigned
to its closest background cluster and a corresponding probability value is as-
signed.

The nature of any segmentation algorithm is that it essentially forms segment
borders where there are discontinuities in color, and hence any segment that
basically contains a large variance in color values is most likely to be a result
of incorrect segmentation around that area. As we can see in the variance map
in Fig. 2(e), the segments from the original image which have a greater mix
of multiple objects exhibit higher variance in intensity (lighter shades of gray)
whereas background segments which exhibit a more uniform color have lower
variance (darker shades). We exploit this intuition by employing a Laplacian-
based weighting formulation in the scene model such that we assign lower weights
to segments having a higher variance, in its contribution to the probability of
that segment being a background segment (as given in Eqn.8)

. v
WES .
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where (; is the variance-based weight assigned to segment ¢ whose intensity
variance is agegi, and o, is the standard scaling parameter for the Laplacian-
based weighting scheme that is manually picked.

These variance-based weights 3; are used along with gaussian-based probabil-
JAUSSIAN £ obtain a final weighted-probability for each segment, which

ity values p;
indicates the probability that the segment belongs to the scene background.
p?g =B 'pfaussian (9)

Some results of this two step probabilistic scene modeling from a tracking
sequence are shown in Fig. 3. As seen in Fig. 3(b), the gaussian probability
calculation step results in low prior assignments for the foreground target as
compared to most of the background segments (which receive higher values).
But after the variance weighting (Fig. 3(c)), this contrast is further enhanced
with the foreground target receiving very low values whereas most of the back-
ground segments retain their high values from the previous step (see Fig. 3(d)),
barring a few segments which have relatively higher variance due to inaccurate
segmentation.

T 4, ‘ L S ’
7 . & ]
- 7¥ S % = S, = ‘
(a) Segmented (b) Gaussian (c¢) Variance (d) Final
Image probability  weighting  probability

Fig. 3. Two step weighted-probability assignment for foreground-background separa-
tion. The background probability values before (b) and after variance weighting (d)
are shown by heatmaps to illustrate the change in absolute probabilities.

Once these foreground-background prior probabilities are obtained for each
segment, these are then employed in the mixed-integer SVM formulation to
relax the problem using an iterative heuristic approach and make it tractable as
explained in the next section.

5 Omne-Class MIL Algorithm

The iterative approach to solve the One-class MIL problem formulation is based
on the idea that, given the integer label variables, the mixed-integer program-
ming problem reduces to a quadratic programming problem that can be solved
efficiently. Therefore, we use the background prior probabilities for each of the
segment instances, and using a threshold of 0.5, convert them to instance labels
for initialization.! Once these initial values for the integer variables are obtained,

! Likewise, for other applications, one could employ simple techniques (e.g. supervised
approach) or domain information to achieve priors.
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we solve the corresponding QP problem to obtain the hyperplane parameters
w and b.

Now using this hyperplane, we re-classify each of the instances to obtain
new labels for each of them. Following this, we impose the MIL constraint that
there should be atleast one positive instance in each of the bags. To do this,
we go through each bag, and if it is found that a bag has no instance classified
as positive according to the new hyperplane, then we re-label its most positive
instance (the one closest to the hyperplane) as being positive. Once this re-
labeling is performed across all bags, we re-initialize the QP problem and solve
for a more optimal hyperplane, and again check for the MIL constraint. This
iterative procedure is repeated till the algorithm converges on the labeling so
that the instance labels do not change anymore.

Once the algorithm converges, the hyperplane obtained w*, b* represents the
classifier that maximizes the soft-margin criterion as well as satisfies the Multiple
Instance constraint across all positive bags. This procedure is summarized in
Algorithm 1.

Input: Training data: positive bags Doe = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)},
background priors pli’f,i € N, j € m; for each instance

Initialize labels yf; = 1 Vj € {j,p}? > 0.5} and y; = —1Vj € {j,p} < 0.5}

repeat iterate k

Solve quadratic program (QP) in Eqn. 4 using labels yfj to obtain
hyperplane w”, b*

Compute output values fi; = w” ¢(z) + b Vi, j

Assign labels y;; = sgn(fi;)

forall the i € N do iterate i

/*Check if all instances in the bag are negativex/
. Yij+1
if 3 ic,n, 75— == 0 then

/*Re-label the most positive instance to 1%/

j = arg max; fi
Y.n = 1

1

end
end

until yfj == yfj_l Vi, j;

w* :wk,b* — bk

Output: Maximum margin hyperplane w*, b*

Algorithm 1: Iterative SVM algorithm for one-class MIL

The iterative heuristic employed here is a well-known technique to reduce a
Mixed-Integer programming problem to an efficient Quadratic problem and em-
pirical convergence has been shown in many domains/datasets such as Bioinfor-
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matics (MUSK datasets), Text (TREC9, MEDLINE), Images (COREL) etc [7].
We also demonstrate empirical convergence in our datasets in the following ex-
periments. Theoretical proof of convergence is a more general problem out of
the scope of this paper.

6 Experiments

In this section, we demonstrate the validity and the performance of our one-class
MIL algorithm on synthetic data and real tracking sequences.

(a) Original  (b) Step 1 (c) Step 2 (d) Step 3 (f) Final
Fig. 4. Different steps of running Algorithm 1 on synthetic one-class MIL data. Blue

asterisks - positively labeled, Black dots - negatively labeled, Red circles - ground truth
positive class.

6.1 Synthetic Data

We first performed experiments with synthetically constructed positive class and
noise data explaining how the construction of data simulates the typical one-class
MIL problem setting, and then validate the performance of our algorithm on that
data.

For the positive class, we sample from a Gaussian distribution of known
mean and variance (points marked with a red circle in Fig. 4(a)). Since in the
real world, noise is essentially constituted by samples from a number of different
sources, to simulate noise, we sample from a number of different Gaussian dis-
tributions which are present in different parts of the space (represented as black
dots in the figure). To construct the bags (every bag being positive), we pick
one sample from the positive class and remaining samples (around 20) from the
noise class. To simulate the presence of priors, we associate labels for each of the
sample points based on their source class, but with the introduction of randomly
assigned false positives (blue asterisks in the noise region of the space) and false
negatives (black dots marked with red circles in the positive class region of the
space).

The figure in Step 1 is the first step classifier that is learned by solving the
quadratic program (QP) in Eqn. 4 using the initial priors. As we can see, the
positive space (in green) does not fully cover all the initial positive examples
and is inhibited from doing so by the strong presence of noise all around. This
is essentially the typical problem with the Multiple Instance setting, where the
noise instances truly dominate the given data and with very sparse positive
data being actually present in the positive bags. The iterative process of MIL
constraint checking, instance re-labeling, and updating the classifier is run until
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the labels do not change any more (final classification space shown in Fig. 4(f)).
As we can see, the classification boundary at the end of every iteration is pulled
closer to the true boundary with the reinforcement of the MIL constraint from
Eqn. 1. Thus, overall we conclude that, at the end, the one-class MIL algorithm
learns a classification boundary that covers the positive class data very well even
in the presence of a large amount of noise surrounding the data. This experiment
provides a clear understanding of the running of our one-class MIL algorithm,
validating its ability to learn the positive class concept in the presence of high
percentage of noisy data in each of the input bags.

Having learned a non-linear classifier (the maximum-margin hyperplane w*, b*
from Algorithm 1), we next quantify its testing accuracy on different synthetic
datasets by comparing the classifier’s labeling with the ground truth labels of the
examples, and then compare its performance with a standard supervised version
of SVM. The classification accuracy for different datasets is shown in Table. 1.
From this we observed that for each of the datasets, our one-class MIL algorithm
performed better than its supervised counterpart. This was as expected primar-
ily because the supervised learner fails to employ the MIL constraint which is
the defining characteristic of this problem domain, thus demonstrating the need
for a one-class MIL algorithm for such problems.

Table 1. Comparison of classification accuracy of the classifier learned from Algo-
rithm 1 on different datasets (using Polynomial and RBF kernel functions).

Dataset #InstPerBag / #Bags / #Dims P(jlr;e-CIassFlz/IBI; (%) POISUPGYVISEC];é%)
DSsman 20 /10 /2 98.9 99.4 75.2 74.3
DSmedium 250 / 50 / 75 96.5 97.7 68.5 67.2
DSlarge 5,000 / 200 / 1,000 94.3 96.1 59.4 61.2

6.2 Comparison of One-Class and Two-Class MIL

The goal of this experiment was to explore and compare the performance of the
one-class approach with the well-studied two-class approach as we changed the
prior threshold values.?

We first created bags containing synthetic data from the positive and nega-
tive class (positive bags) similar to the previous experiment. To simulate scene
priors, we assign prior probabilities by sampling from Gaussians with (u, o) of
(0.75,0.1) - positive class and (0.25,0.1) - negative class. Picking a prior thresh-
old value t from [0, 1] for initialization, we then ran the one-class MIL algorithm.
For the two-class algorithm, we used ¢ to split the data into positive bags (> t)
and negative bags (< t). After both algorithms learned their target spaces (clas-
sification boundaries), we then measured the true positive (TP) and false positive

2 We compared our performance with the state-of-the-art two-class MIL algorithm
of [3], but the discussion holds for any other two-class MIL approach.
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(FP) rates and calculated the FI score for each of them. This experiment was
repeated for ¢t between 0 and 1 in steps of 0.1, and above mentioned scores were
calculated in each case.

Table 2 plots show the false positive and true positive rate results for the T'wo-
Class and the One-Class MIL algorithm for different values of prior thresholds.
From these, the performance of the two algorithms can be analyzed as follows.

For the two-class MIL algorithm, for low values of the ¢, all the positive in-
stances along with most of the negative instances are put in the positive bags
and the remaining few negative instances are put in the negative bags. Conse-
quently the algorithm learns multiple concepts across the entire space since they
satisfy the MIL criterion of persistence across positive bags. This results in a
high FP rate (and also a high TP rate since the true positive is also learned).
However, as t is increased, the negative class concepts are not learned anymore
since one or more of these instances end up in the negative bags. Consequently
the false positive rate drops quickly.

Since the prior probabilities are randomly assigned from gaussians, it could
so happen that in one (or more) bags the true positive instances have a prior
lower than ¢. Therefore, as t is further increased (beyond 0.5), we see that this
results in such an instance ending up in the negative bag. Due to the this,
no target concept is learned by the algorithm since no concept is consistently
found across positive bags. This causes the TP rate to drop to 0 as seen in
the figure. However, since the prior assignment is performed at random for a
threshold value, if it happens to be the case that there are true positives in all
positive bags, then the target concept is learned and a high TP rate is obtained.
However, this behavior is unstable as seen in the figure (see blue line beyond 0.5)
and is completely dependent on the initial prior value assigned. This can also be
observed in Table 2, where we see that for many of the threshold values beyond
0.5, the target concept is not learned and the behavior is unstable. Therefore, this
suggests that the two-class MIL algorithm is sensitive to the threshold picked to
create the pairs of positive and negative bags from the prior probabilities.

Table 2. Plots show performance of the Two- and One-Class MIL algorithm for dif-
ferent values of prior thresholds. Table shows F1 scores, x indicates no model was
learned.

Threshold|2-Class|1-Class
Two~Class MIL performance with different prior thresholds One~Class MIL performance with different prior thresholds O . 1 0 0 . 724 O . 6 67
0.20 0.763 | 0.709
0.30 0.881 | 0.826
0.40 0.947 | 0.888
0.50 0.956 | 0.970

0.60 x | 0.975
B 0.70 | 0.985 | 0.985

0.80 X 0.850

O Wi wr be ge 08 0RO 68 69 1 0 6ro0r 0 0 gslee a7 ae os 0.90 < 10550

1.00 X X
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In the one-class approach, for small values of ¢, all positive and most negative
instances were assigned positive labels and very few negative instances obtained
negative labels. Solving the QP with this labeling would result in a classification
space with high FP rate and full TP rate as seen in Table 2. Now, as t is
increased, we observe a smooth decrease in the FP rate since more instances
would likely be labeled negative (TP rate stays high). However, as t approaches
and crosses 0.75 (mean for the positive gaussian), the likelihood that every bag
contains an instance from the positive class reduces and therefore the most
positive instance is relabeled for each bag. When the algorithm converges, the
classification boundary need not necessarily cover the entire true positive space
and the TP rate drops a bit as seen in the figure. Further, for very high ¢ (beyond
0.95), since it is very unlikely to have reasonable number of positively initialized
instances, the QP from the first step itself fails to learn a classification boundary,
and no target concept is learned (as seen in Table 2).

Therefore, overall from the F1 scores and graphs, we conclude that the two-
class MIL approach is sensitive to the method of creation of positive and negative
bags (since that imposes a hard constraint), especially if it is done using a thresh-
old on the priors. The one-class MIL approach, on the other hand, is more robust
to this procedure since the threshold only initializes the instance labels (a soft
constraint) and the iterative MIL approach ensures that the true classification
boundary is subsequently approached and learned even in this case.

6.3 One-Class MIL with Tracking Data

In this section, we demonstrate how important applications such as object track-
ing can significantly benefit from this novel paradigm in machine learning of
One-class MIL. For this, we performed experiments with tracking sequences
from standard surveillance cameras and further evaluated the one-class MIL
approach.?

For each image in the training sequence, we perform a multi-level segmenta-
tion to create positive bags, used the scene modeling scheme described in Sect. 4
to initialize the instance labels and run the first iteration of the QP in Eqn. 4.
Similar to the synthetic data case, the Algorithm 1 was run until the labels did
not change anymore. Fig. 5-left side shows the classifier score from Eqn. 6 (nor-
malized to [0, 1]) for each of the segments overlaid on the test image at different
iterations of Algorithm 1. As we can see, during the initial iterations, the classi-
fier is not very accurate and exhibits a few false positives. At the same time, the
target of interest also only receives a low score (implying the target instance is as
far away from the classification boundary as some of the other instances). But as
the algorithm progresses, the classifier boundary is refined, gradually improving
the score for the target instance and simultaneously reducing the false positive
probabilities, until the algorithm converges.

Figure 5 shows the results for running the one-class MIL algorithm on dif-
ferent video sequences where a heatmap of the final classifier score is overlaid

3 We do not claim that object tracking is purely a One-class MIL problem. In fact, a
complete robust tracking system would certainly need other components as well.
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on the segmented testing images. Note that, the image is tested at multiple seg-
mentation levels and scores are obtained for the segments at each of these levels,
but the heatmap shown here is the one corresponding to the level containing the
highest scoring segment. For each of the sequences, we can see that the algo-
rithm is able to localize and track the target of interest. The approach works in
real-time (at 10fps) since tracking is performed online with active/moving PTZ
cameras.

These results demonstrate the applicability of employing the one-class MIL
approach for localizing the target of interest without having to make any motion
assumptions on the part of the targets. However, a background prior model is
required to obtain prior instance probabilities to bootstrap the one-class learning
algorithm. While this is a tradeoff in assumptions, from a practical standpoint
we believe that building a scene model is more feasible, since it is a one-time
task performed beforehand and affords an added flexibility in applications by
obviating the need to make run-time assumptions such as motion models or
manual initializations.

Trammg sequence

_ Adiiz

Iteration 1 Iteration 2 Iteration 3 Iteration 4

- - ] ‘ ) \ ‘ 2
Final Localization _

(heatmap)

=

Fig. 5. Left - Step-wise illustration of running the one-class MIL Algorithm 1 on a
tracking sequence. Right - Target Localization on different tracking video sequences.
Top row shows test images for each sequence, and bottom row the corresponding lo-
calization results.

7 Summary and Future Work

We presented a novel analysis of the one-class version of Multiple Instance Learn-
ing problem (where one is only provided input data in the form of positive
bags), and developed an SVM-based formulation to solve this problem setting.
We addressed the target tracking problem by building positive bags with video
sequences, segmenting each image in the sequence to obtain instances, so that
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the intended target model is learned by exploiting the idea of “commonality”
across all input frames. We further developed a scene prior modeling technique to
obtain foreground-background instance priors. Exploiting these priors we devel-
oped an iterative heuristic approach to solve the SVM formulation. We showed
the validity of our approach with synthetic data, compared it with the two-
class approach, and then demonstrated its performance on standard tracking
sequences. In future work, we are working on other interesting applications for
our theoretical one-class MIL framework.
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