
ForML - a Pretty-Printing Facility for SMLEkkehard Rohwedder25 January 1993AbstractThis is the documentation accompanying Release 0.6 of ForML, a prettyprinting module written inSML that supports the formatting of concrete syntax in languages or language-development tools.1 IntroductionA number of languages and language-development tools (e.g. CAML, Ppml) o�er prettyprinting facilitiesto support the unparsing and formatting of abstract syntax. ForML, a formatter written in SML of NewJersey, adresses some of these issues for the SML language.After examining basic goals involved in the design of a pretty printer, we will introduce the ForMLformatting primitives and give examples of their use. Next we describe the entire ForML interface, and�nally we give a more involved example of ForML's use.The ForML ideas are taken from the CAML pretty-printing primitives [1], which in turn are based onthe Ppml pretty-printing facility of the Centaur system [2]. In contrast to the pretty printing algorithm byOppen [3], the ForML formatting is not based on a stream interface: an intermediate formatting structureis generated in memory before the �nal output is printed.Unparsing and FormattingLexer and parser transform input text into trees containing the abstract syntax of the input language. Inlanguage-development environments, however, one often wants to take the reverse route producing nicelyformatted output from some abstract syntax trees. It is advantageous to structure this process into twosteps that are interfaced by a formatting language:� Unparsing | precedences and associativity in the abstract syntax tree are disabiguated (e.g. by insert-ing \(" and \)" or other bracketing constructs), and the appropriate output functions for the subtreesare selected (allowing, for example, the elision of deeply nested structures).� A device-independent formatting language interfaces the unparser and the formatter.� Formatting | the breakpoints in the output are determined, and the mapping to the output device(s)is performed.ForML does not take you all of the way: the unparsing of abstract syntax trees will have to be imple-mented by hand. However, ForML o�ers a formatter-language interface and output routines for a monospaceddevice.1Processing with ForML is e�cient, allowing its use in an interactive environment, and its formattinglanguage can express common formating demands directly and easily, while relying on perspicuous andusable concepts. It has been successfully employed as the formatting tool for the Elf-language [4].In the next section we describe the primitives provided by ForML to build formats and how they a�ectthe �nal output. SML program text will be set in teletype font, and we also assume that the Formatterstructure has been opened, making its primitives directly available.1Future versions will support other output devices, like LaTeX or PostScript. Please contact the author at er@cs.cmu.eduif you need to produce output for other than a monospaced device.1

2 ForML Formats2.1 BoxesA format is either a string (String "a string"), a space Space, a breakpoint Break, or a box containinga list of formats. Breakpoints indicate mandatory or potential locations where a new line (and possiblyincreased indentation) is to be inserted into the output.Boxes come in various formats, and |depending upon the
avor of the box in which they are situatedand upon the available printwidth| the Breaks inside of them are interpreted di�erently. To illustrate wewill �ll various boxes with the following list of formats[String "XXXX", Break, String "XXXX", Break, String "XXX", Break, String "XXXXX"]and observe the respective outputs2.� Horizontal boxes Hbox never break at their breakpoints. Breaks are simply converted to whitespace.XXXX XXXX XXX XXXXX� Vertical boxes Vbox always break at all their breakpoints. The Breaks are transformed into newlines,and a certain amount of indentation from the left border of the box is inserted.XXXXXXXXXXXXXXXX� Horizontal-or-vertical boxes HOVbox can behave as a horizontal box if the available pagewith accomo-dates the width of the box, otherwise they behave exactly like vertical boxes.XXXX XXXX XXX XXXXX or XXXXXXXXXXXXXXXX� Horizontal-vertical boxes HVbox allow each breakpoint individually to behave as if it was in a horizontalbox or in a vertical box, depending upon whether the material after the break (and up to the nextbreak) would still �t into the available pagewidth. Thus |depending on the page width| the aboveexample could be displayed quite di�erently:XXXX XXXX XXX XXXXX or XXXX XXXX XXXXXXXXor XXXX XXXXXXX XXXXX or XXXXXXXXXXXXXXXX2.2 Example: Pretty-Printer for �-CalculusLet us delve into a concrete example and put these primitives to work by writing a formatter for a �-calculuslanguage presented with the following concrete grammar:exp ::= �x:exp j let x = exp in exp j expAexpA ::= expA expB j expBexpB ::= var j \("exp\)"2The suggestive frame drawn around the boxes is not part of the actual output.2

An SML datatype exp which captures the abstract syntax of such �-expressions might look as follows:datatype exp =Var of string| Lam of string * exp| App of exp * exp| Let of string * exp * exp2.2.1 A �rst cutLet us �rst design the \boxes" for the di�erent language elements:� variable names will be output directly� applications e1 e2 may be split if they do not �t into a line:expressionaexpressionb� no breaks are allowed immediately after \(" or immediately before \)\� �-abstractions allow a break after the \.": �x:expr� let-expressions also allow a break: let x = exp1in exp2Additionally we want |if necessary| \x = exp1" to break after \=".Armed with this design speci�cation, we now can write a simple pretty-printer for lambda-expressions alongthe concrete syntax as follows:fun format (Let(ID,exp1,exp2)) =HOVbox[String "let", Space,HOVbox[String ID, String "=", Break, format exp1],Break, String "in", Space, format exp2]| format (Lam(ID,exp)) =HOVbox[String "\\", String ID, String ".", Break, format exp]| format exp = format_A expand format_A (App(expa,expb)) = HOVbox[format_A expa, Break, format_B expb]| format_A exp = format_B expand format_B (Var ID) = String ID| format_B exp = HOVbox[String "(", format exp, String ")"]Here is sample output from this formatter with the Pagewidth 20:\x.\y.\z.let x= yin y (x y)(z y) 3

2.2.2 Some improvementsThere are a number of points about this particular formatter that we are not quite satis�ed with.� We do not like that let x= exp in ... inserts a white space after = in horizontal output mode.However, we are in luck: ForML allows us to �ne-tune breaks by specifying:{ how many spaces to output for the break in horizontal mode (default: 1){ how many spaces to indent from the left border of the box, when the break actually is taken(default: 3)The �ne-tuning break primitive is called Break0 and takes these two parameters as arguments. Thusin the format (Let ...)-clause of the above format-function we need to change the �rst Break toBreak0 0 3 to get the desired e�ect.� Similarly, we might want to indent the in by one rather than by three spaces to align it under the let.We can achieve this by changing the second Break in the Let-clause to read Break0 1 1.� A long series of �-abstractions may lead to breaks in nested boxes, although it may be nicer if thecould be treated as a list, i.e. instead of�x: �y: �z: inner expression we would like to have �x: �y: �z:inner expressionTo achieve this we change the line \| format (Lam ...)" to read \| format (e as Lam(ID,exp))= format lam e nil", and we add two clauses to de�ne the auxiliary function format lam:and format_lam (Lam(ID,exp)) absl =format_lam exp (ll @ [String("\\" ^ ID ^ "."), Break])| format_lam exp ll = HVbox(ll @ [format exp])With these improvements in place, the formatter now produces:\x. \y. \z.let x=yin y (x y) (z y)2.3 The signature FORMATTERWe now explain the interface to the formatter by describing the components of its FORMATTER signature informatter.sig:2.3.1 Defaults and SwitchesSeveral references contain default values which may be changed by the user:val Indent : int refval Blanks : int refval Skip : int refIndent, Blanks, and Skip correspond to the values for added indentation, horizontal spacing, and verticalskip that are used by the default boxes. Their respective values are initially 3, 1, and 1, but they may bechanged at any point.val Pagewidth : int refPagewidth contains the display width for the page. It is initially set to 80.4

val Bailout : bool refval BailoutSpot : int refval BailoutIndent : int refWhen you turn the Bailout
ag on, ForML attempts to fail more gracefully whenever the output overrunsthe display width: such text will be output with an initial indentation of BailoutIndent from the leftmargin. Since ForML views the text boxes it formats as rectangles rather than octagons, it tends to \panic"when you turn the Bailout
ag on, and outputs a number of text lines indented
ushly by BailoutIndent,rather than just continuing normal indentation until the situation on the page really becomes tight again.To ameliorate this situation, set BailoutSpot to a value between BailoutIndent and Pagewidth, and thena Bailout will only be triggered when the leftmost edge of text would be output after the BailoutSpot.Sounds like a bailout, doesn't it? Initially, Bailout is set to true, BailoutSpot is 40, and BailoutIndentis 0.2.3.2 FormatsThe abstract datatype format holds the actual formats. The minimum and maximum display widths of aformat may be inquired with Width.type formatval Width: format -> (int * int)A whole slew of functions are provided to assemble formats, and you have already seen a cross-section ofthese earlier.val Break: formatval Break0: int -> int -> format (* blanks, indent *)val String: string -> formatval String0: int -> string -> format (* output width *)val Space: formatval Spaces: int -> formatval Newline: unit -> formatval Newlines: int -> formatval Newpage: unit -> formatval Vbox: format list -> formatval Vbox0: int -> int -> format list -> format (* indent, skip *)val Hbox: format list -> formatval Hbox0: int -> format list -> format (* blanks *)val HVbox: format list -> formatval HVbox0: int -> int -> int -> format list -> format (* blanks, indent, skip *)val HOVbox: format list -> formatval HOVbox0: int -> int -> int -> format list -> format (* blanks, indent, skip *)The functions ending in 0 take additionally arguments for indentation, horizontal spacing, or vertical skip,whereas their cousins (without the 0) simply use the default values stored in Indent, Blanks, and Skip.The String, Space, Spaces, Newline, Newlines, and Newpage functions do what you would expect them to.String0 requires you to additionally enter the width to be used in pagewidth calculations. Be forewarned,though, that ForML is pretty stupid about Newline(s) issued inside of boxes: it thinks they are just likeany other string, except their length is 0, so you could get some strange formatting results | rather useBreaks in Vboxes if you need to force new lines.2.3.3 Shipping it outThe two functionsval makestring_fmt: format -> stringval print_fmt: format -> unit5

turn formats into strings and print them out, respectively. If you want to put formatted output into anoutstream, consider at the following:type fmtstreamval open_fmt: outstream -> fmtstreamval close_fmt: fmtstream -> outstreamval output_fmt: (fmtstream * format) -> unitval file_open_fmt: string -> ((unit -> unit) * fmtstream)val with_open_fmt: string -> (fmtstream -> 'a) -> 'aThe function open fmt creates a \format-stream" fmtstream associated with a particular outstream, andclose fmt closes it, but leaves the outstream open. You use output fmt to print a format on the fmtstream.Note that once you have closed an outstream associated with a fmtstream, any further output to thatfmtstream will result in an I/O error.file open format expects a �le name as an argument. It opens the �le and returns a pair consisting ofa function to later close this �le, as well as a fmtstream onto which to output formats.Finally, the function with open format expects the name of a �le, and a function whose argument is afmtstream. It will open the �le, call the function with the resulting fmtstream, and afterwards close the�le and return the result of the function call.3 An extended example: Mini-MLWe now extend the previous example to a subset of an ML-like language with the following abstract syntax:exp ::= x j n j true j false j exp1 exp2 j �x:expj let x = exp1 in exp2 j if exp1 then exp2 else exp3j [exp1; . . . ; expn] j exp1 op exp2where x 2 V ar, n 2 Nat, ftrue; falseg 2 Bool, op = f=; <;+;�; �; =; . . .g, and [. . .] denotes a list.A corresponding SML datatype for abstract syntax trees might be as follows (purely for convenience wealso decorate Op-nodes with the operator precedence):datatype mexp = Var of string | Int of int | Bool of bool| App of mexp * mexp| Lam of string * mexp| Let of string * mexp * mexp| If of mexp * mexp * mexp| List of mexp list| Op of string * int * mexp * mexpThe formatter for mexps now also has to provide unparsing, i.e. it needs to take operator precedences intoaccount. Below is an example of a formatting function for this language. Rather than mimicking somesuitable concrete grammar, it deals with nested Apps similarly as the second version of the format-functiondid with nested Lams. The reader may want to reconstruct the basic box designs.Before we start, however, we need to de�ne an auxiliary function:infixr 5 @@fun (l1 @@ nil) = nil| (l1 @@ l2) = l1 @ l2Now on to the main formatting routine:fun mformat (Var s) = String s| mformat (Int n) = String (makestring n)| mformat (Bool b) = String (if b then "true" else "false")6

| mformat (e as Lam _) = mformat_lam e []| mformat (e as App (e1,e2)) = mformat_app e1 [mformat_op 50 e2]| mformat (Let(s,e1,e2)) =HOVbox[String "let", Space, HOVbox[String s, String "=", Break0 3 1,mformat e1], Break0 1 1,String "in", Space, mformat e2]| mformat (If(e1,e2,e3)) = HOVbox[String "if", Space, mformat e1, Break,String "then", Space, mformat e2, Break,String "else", Space, mformat e3]| mformat (List l) =Hbox[String "[",HVbox (fold (fn (el, fmtl) =>[mformat el] @[String ",", Break0 1 0] @@ fmtl)lnil),String "]"]| mformat (e as Op(_,p,_,_)) = mformat_op p eIn formatting Apps above (and also below), we force surrounding parentheses by calling the formattingroutine for operators with the highest priority for the \outside" operator. Finally, expressions consistingof nested Lams, Apps, and Ops are formatted by the auxiliaray functions mformat lam, mformat app, andmformat op respectively:and mformat_lam (Lam(s,e)) l =mformat_lam e (l @ [String("\\" ^ s ^ "."), Break])| mformat_lam e l = HVbox(l @ [mformat e])and mformat_app (App(e1,e2)) l = mformat_app e1 ((mformat_op 50 e2)::Break::l)| mformat_app e l = HVbox((mformat_op 50 e)::Break::l)and mformat_op p' (Op(s,p,e1,e2)) =HOVbox((if p'>p then [String "("] else [])@ [mformat_op p e1] @ [Break0 0 1, String s]@ [mformat_op p e2] @(if p'>p then [String ")"] else []))| mformat_op p e = mformat eA sample output with a Pagewidth of 20 might look as follows:\x. \y. \z.let silly=\x. \y. \z.if y+z>0then xelse yin silly[1, ~1, 0,true,false,\x. x+1](1+(2+x)*3/(4-5)-6*7+8)15References[1] Pierre Weis et. al. The CAML reference manual. INRIA-ENS, March 1989.7

[2] N.N. The Ppml manual. Sema Group, Fontenay-sous-Bois Cedex, France.[3] Derek C. Oppen. Prettyprinting. ACM Transactions on Programming Languages, 2(4):465{483, October1980.[4] Frank Pfenning. An implementation of the Elf core language in Standard ML. Available via ftp over theInternet, September 1991. Send mail to elf-request@cs.cmu.edu for further information.

8

