
INFORMATION PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

196

Reliability Assessment of Elementary COTS Software
Component

Tirthankar Gayen1, R.B Misra2

1 Reliability Engineering Centre, IIT Kharagpur, India
Email: tgayen77@gmail.com

2 Reliability Engineering Centre, IIT Kharagpur, India
Email: ravi@ee.iitkgp.ernet.in

Abstract— For predicting the reliability of a software
application composed third party software components
like COTS (Commercial-Off-The-shelf) one has to
heavily rely on the reliability values available which
may not be always correct. As, there can be several
factors which can effect the reliability values for
example, the vendors may be biased, it may not be
possible to select test cases to execute all possible
executable paths of the program (as the source code
and other design specifications are not available). As, a
result errors may still remain and can go undetected.
The testing environment may not be the same as the
operational environment, etc. Considering all these
situations an innovative approach has been developed
so that the integrators and the developers can make a
relative comparison among the components to select
suitable components to be integrated into the
application.

Index Terms— Software reliability, COTS, CDG, CFG

I. INTRODUCTION

Today, COTS (Commercial-Off-The-Shelf) play an
increasingly important role in the software development.
Due to financial and time-to-market considerations, the
software development organizations have become
increasingly reliant on software provided by third parties
for functionality that is needed for the creation and
maintenance of their applications. [1, 2] One of the most
difficult problems for successful COTS component based
system development is its reliability evaluation especially
when the documentation and source code is not available.
 According to ANSI, software reliability is defined
as: the probability of failure-free software operation for a
specified period of time in a specified environment. [7, 8]
A software process is a logical process as opposed to
physical process. Electronic and mechanical parts may
wear out with time and usage, but software will not rust
or wear-out during its life cycle. Software will never
change over time unless intentionally changed or
upgraded.

1.1 Software failure mechanisms

Software failures may be due to errors, ambiguities,
oversights or misinterpretation of the specification that

the software is supposed to satisfy, carelessness or
incompetence in writing code, inadequate testing,
incorrect or unexpected usage of the software or other
unforeseen problems. [11] While it is tempting to draw an
analogy between Software Reliability and Hardware
Reliability, software and hardware have basic differences
that make them different in failure mechanisms.
Hardware faults are mostly physical faults, while
software faults are design faults, which are harder to
visualize, classify, detect, and correct. [7] Trying to
achieve higher reliability by simply duplicating the same
software modules will not work, because design faults
can not be masked off by voting. The most important
issue with the integration of the third party components
like COTS components is its reliability prediction.
According to Hoang Pham [12], in software, failures are
caused by incorrect logic, incorrect statements or
incorrect input data. Considering an idle operating
environment for the components (i.e the operating
environment is error free), the errors in software can be
classified into two categories

* Operational errors – caused due to incorrect execution
(For example: Out of range data, divide by zero, square root of a
negative number)

* Logical errors – caused due to incorrect logic

These operational errors are not detected by the compiler
because the compiler will give only the syntax and
semantic error during the compilation of the code in
accordance with the rules/grammar of the programming
language. But, the operational errors like out of range
data, divide by zero, and square root of a negative
number occur only when appropriate error causing input
data is given during the execution of the program. These
errors are input data dependent and occur only during the
execution of the program.

 Errors due to requirements, design are all
detected/captured during logical error detection. As there
is no wear out failures in case of software (excluding the
hardware dependencies). The third party software
components like COTS (where the source code and other
design information are hardly available) used for
integration generally falls under the useful life. Since, no
upgradation, debugging or maintenance is done during
this phase. The software component whose reliability is

© 2009 ACADEMY PUBLISHER

INFORMATION PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

197

to be assessed lies in the useful life with no upgrades.
Failures in software occur randomly. Hence, the only
factor influencing failure is the input data used.

Therefore, the reliability of the component in
this case should be expressed as a function from an input
distribution or operational profile of the application. If a
test set T is constructed by choosing inputs at random
according to the distribution p (such as by using a random
number generator), then T represents the operational
profile, in theory, and may then be treated as a uniformly
distributed set. [3]
 Hence, the intention of this approach is to assess
the reliability of the elementary COTS software
component from the input distribution considering
random inputs.

1.2 Assumptions:-

For a COTS component, it is assumed that the source
code is not available. What is available is either binary
object files (.OBJ) or binary executables (.EXE or .COM
file in windows.) The binary programs are converted to
equivalent assembly language programs using some
disassembler tools like Windows Disassembler, Bubble
Chamber which takes windows .exe or .com files as input
to produce equivalent assembly language code. The
control flow graph, CFG is drawn from the assembly
language program [1, 2].

Also, no upgradation, debugging or maintenance
is done and the component selected is of basic/elementary
type performing a single function. The operating
environment is considered to be idle (i.e free of operating
environment errors).

II. THE PROPOSED APPROACH

The reliability of any component can be evaluated using
Weiss and Weyuker et. al [3] ‘s model. It extends Nelson
et. al [4]’s definition of the “probability of successful
execution/reliability” R(P) of program P with respect to
specification S is given as

R(P)= 1-∑ p(n)*a(n)
 n є N

 where p(n) is the probability that input n is submitted
to p

 a(n) = 0 , if P(n) = S(n)
 =1 , otherwise

If T is a test set T= { ti }, t є T, pT(t) is the degree of
representativeness to T; where

 pT(t) = 0 if t є T

If T is constructed by choosing inputs at random
according to the distribution p (such as by using a random
number generator), then T represents the operational
profile, in theory, and may then be treated as a uniformly
distributed set.
Therefore,

 pT(t) = 1/| T |

The generalized reliability

 R = 1- 1/| T | (∑ dα(Sp, P, t)/α(t))
 t є T

dα (Sp, P, t)represents α – discrepancy between Sp and P
at t

α – discrepancy

For, arbitrary programs P and Q having the α –
discrepancy between P and Q at n is
dα (P, Q, n) = min { α(n), d((P(n), Q(n)) },
 if P(n) ∩ Q(n)
 = 0, if P(n) ∩ Q(n)

 = α(n), otherwise

Where,

i) d(x,y) > 0 if x = y ; d(x,x) = 0
ii) d(x,y) = d(y,x) , and

iii) d(x,y) < = d(x,z) + d(z,y) , where X is any set
and x, y, z are elements of X

 P(n) = P halts on input n

 P(n) = P does not halt.

α(n) is the tolerance allowed at n

For any specification S with domain D and “don’t care”
set U and any program P

 Sp(n) = S(n), if n є D
 = P(n), if n є U

For any component the reliability assessment is
done using the algorithm comprel which is as follows:-

Algorithm Comprel {

© 2009 ACADEMY PUBLISHER

INFORMATION PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

198

1) Looking at the functionality of the component
identify the possible operational errors for a
given input domain of all the input parameters,
the component may be subjected to during
execution in a particular operating environment.

 The errors may be out of range data, divide

by zero, square root of a negative number.

2) Find out the probability of non-occurrence of
each error for the given input domain of all the
input parameters for the particular operating
environment.

 3) From the execution range of data design a test

suite by selecting test cases based on the path
coverage based testing of the component such
that all the linearly independent paths of the
CFG of the component (obtained earlier) are
covered.

In the path coverage-based testing strategy the

test cases are selected from each decision point (shown in
Fig. 1) such that all linearly independent paths in the
program are executed at least once. A linearly
independent path is any path through the CFG of the
program that introduces at least one new node that is not
included in any other linearly independent path.

Fig. 1 A CFG with decision points.

McCabe’s cyclomatic complexity which defines

upper bound for the number of linearly independent paths
can be used to determine the maximum number of
linearly independent paths in CFG of the program.

The McCabe’s cyclomatic complexity V(G) can be
computed as:-

 V(G) = E-N +2
 where N is the number of

nodes in the CFG
 E is the number of

edges in the CFG

4) Every test case t in the test suite T is executed
and the output is compared with the specified
output to obtain the α - discrepancy values.

Mathematically,

dα (Sp,P,t) = min { α(t), d((P(t), Sp(t)) } ,
 if P(n) ∩ Q(n)

 = 0, if P(t) ∩ Sp(t)

 = α(t), otherwise

5) The logical reliability is obtained using the formula

 Rlog = 1- 1/| T | (∑ dα (Sp, P, t)/α(t))
 t є T

 The, α(t) value is adjusted depending on the
tolerance allowed at t.

6) The overall reliability of the component is

obtained by multiplying the probability of non-
occurrence of the operational errors for all the
parameters in their given input domain (as
obtained in step 2) with the logical reliability
value (as obtained in step 5).

III. AN EXAMPLE APPLICATION

A software component which evaluates b!/5 - a2/ √(a-b)
 in the form of an executable file (i.e ‘exp.exe’) is
executed as shown below:-

Fig. 2

The assembly language code (obtained using
disassembler tools like Windows Disassembler) along
with its CFG and CPU clock cycles are given as follows:

Decision
points

© 2009 ACADEMY PUBLISHER

INFORMATION PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

199

Code CPU clock cycles CFG

 The ranges of integer values are:-

 Short int -32768 to 32767 (16-bit)
 Long int - 2147483648 to 2147483647 (32-bit)

Let us consider the input data to be a random value in the
application domain. For ‘a’ let the specified domain be
from -200 to 50000 and for ‘b’ let the specified domain
be from 0 to 15. Assuming 32-bit integer operation using
32-bit registers, the possible errors are as follows:-

Error – Out of range data
Out of range data set for ‘a’ = {[46341 …, 50000]}
The total number of integer data in this range = 3660
Probability of occurrence in this range =3660/50201=
0.0729
Probability of non-occurrence in this range (executable
range for ‘a’) =1- 0.0729 = 0.927

Out of range data set for ‘b’ = {[13 …, 15]}
The total number of integer data in this range = 3
Probability of occurrence in this range =3/16= 0.1875
Probability of non-occurrence in this range (executable
range for ‘b’) =1-0.1875 = 0.8125

Error - Divide by zero
Divide by zero error occurs when a=b
Region of commonality between a and b is [0, … , 15]
Out of which the executable range is [0,…, 12]
The total number of integer data in this range = 13
The probability of occurrence of a=b is =1/13= 0.07692

The probability of non-occurrence of a=b = 1- 0.07692=
0.923

Error – Square root of a negative number
Square root of a negative number occurs when a<b
The total number of integer data for a<b in the executable
range = 12*11/2 + 13*200 = 2666
The probability of occurrence of a<b = 2666/(13*46541)
= 0.0044
The probability of non-occurrence of a<b = 1- 0.0044 =
0.99559

Error- Logical
Logical error occurs when the output of a program does
not match with the specified output.
Consider an example where the test suite consists of 4
test cases i.e
T = {(23, 12), (104, 4), (200, 10), (824, 7)}

Let a= 23, b=12 be a test case
The specified output should be 479001600/5 - 529/3 =
95800143.667
The obtained output is = 95800144
|Difference| = 95800144 - 95800143.667 = 0.333

Let a=104, b = 4 be another test case
The specified output should be 24/5 - 10816/10 = -1076.8
The obtained output is = -1077
|Difference |= 1077 - 1076.8 = 0.2

Let a = 200, b = 10 be another test case
The specified output should be 3628800/5 - 40000/13
=722683.0769
The obtained output is =725760 – 3076 = 722684
|Difference| = 722684 -722683.0769 = 0.9231

Let a = 824, b = 7 be another test case
The specified output should be 5040/5 - 678976/28 =
23241.1428
The obtained output is =23241
|Difference| =23241.1428 – 23241 = 0. 1428

Considering the tolerance allowed i.e α = 0.9

Rlog = 1- 1/4{(0.333+0.2+0.9+0.1428)/ 0.9} =1- 0.437722
= 0.562277

Overall reliability R= 0.927*0.8125*0.923*0.99559*
0.562277 = 0.38916668

 Thus, the reliability of the component is evaluated to be
= 0.38916668

IV. DISCUSSION AND CONCLUSION

This approach is an improvement over Weiss

and Weyuker et. al [3] ‘s model. The problem of the
Weiss and Weyuker et. al [3] ‘s model was in selecting
the test cases from a particular input domain since there

© 2009 ACADEMY PUBLISHER

INFORMATION PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009

200

was no guidelines regarding test case selection and
occurrence of operational errors like out of range data,
divide by zero, square root of a negative number. This
problem has been solved by partitioning the input domain
into operational error subdomain and logical subdomain,
Test cases are selected according to the path coverage
based tesing methodology and the reliability in the logical
subdomain is predicted. This reliability value is
multiplied with the probability of non-occurrence in the
operational error subdomain to obtain the actual input
domain based reliability value.

 By using this approach the integrators and the
developers can make a relative comparison among the
components to select suitable components to be
integrated into the application. But, to use this
methodology for reliability assessment, one should be
very careful in finding out all possible operational errors.

This approach/methodology could be of
immense help to the integrators or developers to assess
the reliability of the individual components before being
integrated into the software application. Thus, using this
approach they can easily take a rational decision, as
whether to go for the development of application using
the existing components or to discard it.

REFERENCES

[1] Tirthankar Gayen, R. B Misra, “Prediction of Upper Bound

on the Reliability of COTS Component Based Software
Application”, Proceedings of the International Conference
on Quality and Reliability, pp. 157-163, Chiang Mai,
Thailand, Nov. 2007.

[2] Tirthankar Gayen, R. B Misra, “Reliability Bounds
Prediction of COTS Component Based Software
Application”, International Journal of Computer Science
and Network Security, Vol.8, No.12, pp. 219-228,
December 2008.

[3] S. N. Weiss, E. J. Weyuker - “An Extended Domain-Based
Model of Software Reliability”, IEEE Transactions on
Software Engineering, Volume 14 , Issue 10, October
1988, Pages: 1512 - 1524

[4] T. A Thayer, M. Lipow, and E.C Nelson, “Software
Reliability” (TRW Ser. Software Technol. 2), New York:
North Holland, 1978.

[5] Shinji Inoue, Shigeru Yamada, “Generalized Discrete
Software Reliability Modeling With Effect of Program
Size”, IEEE Transactions on Systems, Man and
Cybernetics, Part A, March 2007,Volume: 37, Issue: 2,
pages: 170-179.

[6] Peter G Bishop – “Rescaling reliability bounds for a new
operational profile”, Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing
and Analysis, Roma, Italy, 2002, pp. 180 – 190.

[7] Michael R. Lyu , Handbook of Software Reliability
Engineering. McGraw-Hill publishing, 1995, ISBN 0-07-
039400-8

[8] ANSI/IEEE, "Standard Glossary of Software Engineering
Terminology", STD-729-1991, ANSI/IEEE, 1991

[9] Reliability Analysis Center, “Introduction to Software
Reliability”: A state of the Art Review. Reliability
Analysis Center (RAC), 1996

[10] Keene, S. J., "Comparing Hardware and Software
Reliability", Reliability Review, 14(4), December 1994,
pp. 5-7, 21.

[11] Keiller, Peter A. and Miller, Douglas R., "On the Use and
the Performance of Software Reliability Growth Models",
Software Reliability and Safety, Elsevier, 1991, pp. 95-
117.

[12] Hoang Pham – “System Software Reliability”, Springer
series in reliability engineering 2006, ISBN-
10:18523339500.

[13] Jiantao Pan, “Software Reliability”, Carnegie Mellon
University, 18-849b Dependable Embedded Systems
Spring 1999. http://www.ece.cmu.edu/~koopman/des
_s99/sw_reliability

[14] Jean Dolbec and Terry Shepard, “A Component Based
Software Reliability Model”, Proceedings of the 1995
conference of the Centre for Advanced Studies on
Collaborative research, p.19, November 07-09, 1995,
Toronto, Ontario, Canada

[15] Sherif Yacoub, Bojan Cukic, and Hany H. Ammar, “A
Scenario-Based Reliability Analysis Approach for
Component-Based Software”- IEEE Transactions on
Reliability, Vol. 53,No.4, 2004, pp. 465 – 480.

[16] William W. Everett, “Software Component Reliability
Analysis”, SPRE Inc.- IEEE 1999

[17] M.L. Shooman, "Software Engineering: Design, Reliability
and Management", McGraw Hill 1983, ISBN 0-07-
057021-3

[18] R. C. Cheung. “A User-Oriented Software Reliability
Model.” IEEE Transactions On Software Engineering, pp.
565-570, March 1980.

[19] Wen-Li Wang Ye Wu Mei-Hwa Chen- “An Architecture-
Based Software Reliability Model”- In Proceedings of the
1999 Pacific Rim International Symposium on Dependable
Computing, 16-17 December, pp. 143-150,Hong Kong,
China. IEEE, 1999.

BIBLIOGRAPHICAL NOTES:-

Tirthankar Gayen, a B.E, M.Tech, Ph.D Scholar (IIT) working
as a Senior Research Fellow at Reliability Engineering Centre,
IIT Kharagpur. He has published papers in many international
conferences and journals. His area of interest includes software
reliability, neural network, natural language processing, etc.

email: tgayen77@gmail.com

R. B Misra, a B.E, M.Tech, Ph.D, Professor, Reliability
Engineering Centre, IIT Kharagpur, he is a Senior Member of
IEEE, and Fellow at Institution of Engineers (India). He has
published papers in many papers in international conferences
and journals. His area of interest includes power system
reliability, reliability design and testing, software reliability,
system safety, etc.

email: ravi@ee.iitkgp.ernet.in

© 2009 ACADEMY PUBLISHER

