
Term-Structure Models: a Review

Riccardo Rebonato
QUARC (QUAntitativeResearch Centre) - Royal Bank of Scotland

Oxford University - OCIAM

February 25, 2003

1 Introduction

1.1 Justification for Another Review of Interest-Rate Mod-
els

The topic of term-structure modelling for derivatives pricing has been covered in
recent years, at least in book form (see, eg, [Rebonato (1998)], [James and Webber (2000)],
[Hughston (2000)], [Brigo and Mercurio (2001)]). One obvious justification for
updating these works is that the modelling of interest rates is still rapidly evolv-
ing. There are, however, deeper reasons why a fresh examination of the current
state of research in this area deserves attention.

The first is that recently a qualitatively new dimension has been added to the
modelling complexity, because of the appearance of pronounced and complex
smiles in the implied volatility surfaces of caplets and swaptions. Sure enough,
smiles of sorts were produced by some of the early modelling approaches (eg, by
the [Hull and White (1993)] model), but these were at the time obtained as an
’afterthought’, and by and large regarded as an unpleasant feature to be ignored
or excused away. Currently, the modelling of smiles is possibly the most active
area of research in interest-rate derivatives pricing, and a sufficiently substantial
body of work has accumulated to warrant a review of its achievements and of
the problems still to be tackled.

The second reason why a review of term structure modelling is timely is
connected with two related market developments, namely the compression in
profit margins for the well-established complex products and the simultaneous
increase in complexity of many of the new-generation interest-rate derivatives.
These joint market developments are putting under severe strain some of the
basic underpinning theoretical concepts of the classic pricing approach, which
ultimately derives from the [Black and Scholes (1973)] (BS in the following)
paradigm (although, often, via the [Harrison and Pliska (1981)] route). In par-
ticular, given the robustness of the BS model, market completeness and exact
payoff replicability (both reasonable but inaccurate descriptions of financial re-
ality) can constitute a valid framework when one is pricing, say, a simple cap

1



(and the profit margin is generous).However, the wisdom of adopting the same
pricing approach (which implies irrelevance of attitudes towards risk) should
at least be questioned if the trader is pricing a product with payoff depending
on, say, the joint realizations of two currencies and of a non-particularly liquid
currency pair over a 30-year period1.

More generally, for most problems in asset pricing a mixture of the relative
and absolute approaches (see, eg, [Cochrane (2000)]) tends to be more prof-
itable. Traditionally, derivatives pricing has been the area of asset pricing where
the relative approach has been most successful, and its conceptual corollaries
(such as irrelevance of attitudes towards risk) have therefore been extended to
more and more complex products. This trend, however, should not be regarded
as inevitable or invariably desirable, and I intend to provide in this review an
opportunity for a debate.

There is, I believe, a third reason why a review of interest-rate models is
timely. There is an implicit but heavy reliance of current pricing practice on
market efficiency. This reliance becomes apparent in the estimation of the quan-
tities to which a model has to be calibrated (eg, instantaneous volatilities or
correlations). The prevailing current philosophy appears to be that it is better
to ’imply’ the inputs to a model from the prices of plain-vanilla traded instru-
ments (eg, the correlation among forward rates from the prices of European
swaptions), than using statistical estimation. In this approach, the simultane-
ous recovery of as many market prices (of bonds, caplets, European swaptions,
etc) as possible is therefore intrinsically desirable. The validity of relying purely
on market-implied quantities, however, hinges either on exact payoff replicabil-
ity, and, therefore, on market completeness, or on the informational efficiency
of derivatives markets. The validity of this approach, however, should not be
accepted as self-evident. I therefore provide in the last section a re-assessment
along these lines of the current prevailing market practice.

To avoid repetition, I shall treat relatively quickly material already well
covered elsewhere, and place more emphasis on the new angles mentioned above.
This, however, should not provide a skewed view of interest-rate derivatives
pricing: the efficient market hypothesis, market completeness, payoff replication
and deterministic volatilities are still an excellent and reliable starting point for
derivatives pricing. However, they are not its beginning and end.

1.2 Plan of the Survey

Review papers typically either take a historical approach, or prefer to ana-
lyze the status of the research in a given topic in a more abstract and ’de-
contextualized’ manner. I have chosen to present a strongly historically-based

1The product referred to is a power reverse dual swap, which can be seen as the com-
pound option to exchange a series of FX calls for a stream of floating payments (sse,eg,
[Del Bano (2002)] for a description). It is interesting to note that the market in the un-
derlying (very-long-dated FX options, in US$/Yen for the first trades, and then AUD/Yen)
was virtually created by power reverse duals. The liquidity implication of this should not
underestimated (see, again, [Del Bano (2002)]), yet the standard pricing approach assumes
availability and perfect liquidity for the FX options.
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account of term structure modelling because I believe that the current state of
research has been largely motivated by its history, and by almost ’accidental’
industry and technological developments.

Furthermore, some of the practices of the users of models (the traders) might
well be theoretically questionable or unsound (eg, the day-by-day recalibration
of a model before re-hedging). Nonetheless, prices, that models strive not only to
produce but also to recover, are created by traders who (correctly or incorrectly)
use models. As a consequence, understanding this complex dynamic process is
essential in order to appreciate the evolution of modelling, and to understand
why certain models have been more successful than other.

Given the chosen approach, the second section of this survey puts in per-
spective those aspects of trading practice and of the industry developments that
are of relevance to current interest-rate derivatives modelling.

Despite this historically-based approach, I have not presented the derivations
following their original formulations (much as today one would probably not
present classical mechanics using Newton’s Principia). In order to deal with the
various models within a conceptually coherent analytical framework, I present
instead in Section 3 a unified treatment of the ’classic’ pricing approach by payoff
replication in complete markets. In so doing I have drawn extensively from
[Hughston (2000)] and [Hughuston and Brody (2000)]. Many of the ideas can
also be found in the earlier work by [Gustafsson (1992)]. As the various models
then appear on the scene, I shall then refer to Section 3 for their theoretical
underpinning, and comment on their specific features (reasons for introduction,
calibration issues, etc) as I introduce them.

This historical account is subdivided into seven phases (Sections 4 to 10), the
latest of which deals with the models specifically designed to deal with volatility
smiles.

Section 11 of my survey deals with the issue of how, and to what extent,
models should be calibrated to market prices of plain-vanilla derivatives. This
debate is still very open, and, to argue my point, which is somewhat at odds with
the prevalent market and academic practice, I discuss market completeness and
the difficulties that pseudo-arbitrageurs might encounter in bringing different
sets of prices in line with fundamentals, and coherent with each other.

Finally, the last section provides a summary, perspectives on the likely evo-
lution of modelling and suggests a comparison with areas of asset pricing where
different approaches are currently being used.

As for the mathematical treatment, I have kept the mention of the technical
and regularity conditions to a minimum, because excellent references already ex-
ist that fulfill this task: see, eg, [Jamshidian (1997)] and [Musiela and Rutkowski (1997)]
for the LIBORmarket model, [Hunt and Kennedy (2000)] for Markov-functional
interest-rate models, [Rogers (1997)] for the potential approach and [Kennedy (1997)]
for Gaussian models.
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2 Market Practice

2.1 Different Users of Term-Structure Models

To understand pricing models it is essential to grasp how they are put to use. In
general, term-structure models can be of interest to relative-value bond traders,
to plain-vanilla-option traders and to complex-derivatives traders. Relative-
value (eg, coupon-to-coupon) bond traders are interested in models because, if
a given description of the yield curve dynamics were correct, failure of the model
to fit the market bond prices exactly could indicate trading opportunities. Sim-
ilarly, plain-vanilla option traders are interested in understanding how a given
model ’sees’ the implied volatility of different swaptions and/or caplets, and
compare these predictions with the market data. For these users, the inability
to recover the observed market price of a caplet or swaption is not necessarily a
failure of the model, but could indicate a trading opportunity. For both these
classes of user, models should therefore have not just a descriptive, but also a
prescriptive dimension.

The situation is different for complex-derivative traders, who do not have
access to readily visible market prices for the structured products they trade in,
and therefore require the models to ’create’ a price for the exotic product, given
the observable market inputs for the bond prices and the plain-vanilla implied
volatilities. Since complex traders will, in general, vega hedge their positions (see
Section 2.4), exact recovery of the plain-vanilla hedging instruments (caplets and
European swaptions2) - the descriptive aspect of a model - becomes paramount.

Term-structure models have therefore been used in different ways by differ-
ent classes of market participant, and complex traders have become the largest
group. As a consequence, these days few traders rely on equilibrium or arbitrage-
free models to assess the relative value of traded bonds, and the emphasis has
strongly shifted towards the pricing of complex products, which requires an ac-
curate description of (rather than prescription for) the underlying inputs (bond
prices and yield volatilities).

This state of affairs is closely linked to the type of econometric information
that is deemed to be of relevance to construct and validate the models. This is
touched upon in the next section.

2.2 Statistical Information, Hedging Practice and Model
Evolution

Recent econometric research in the derivatives area has been more focussed
on the statistical behaviour of volatilities (see. eg, [Derman and Kamal (1997)],
[Derman (1999)], [Alexander (2000)], [Alexander (2001)], [Rebonato and Joshi (2002)],
[Rebonato (2003)]) than on the arguably more fundamental topic of the dynam-
ics of the underlying rates. This can be understood as follows.

2For brevity, unless otherwise stated, the term ’swaptions’ will always refer to Eurpean
swaptions.
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In the derivatives area at least two possible strands of empirical analy-
sis, which I will call ’fundamental’ and ’derived’ or ’relative’, coexist. In the
fundamental approach, it is recognized that the value of derivative contracts
is ultimately derived from the dynamics of the underlying assets, and there-
fore the focus is on the statistical properties of the latter. The approach
should be of great interest to the plain-vanilla trader, for whom the under-
lying asset is the main hedging instrument. See, eg, [Bouchaud et al. (1998)]
or [Cont (2001)] in the equity area, or the references in Section 5.1 for interest
rates. Models such as the Variance Gamma, which boasts a better description
of the dynamics of the underlying than traditional diffusive approaches (see, eg,
[Madan, Carr and Chang (1998)]), or the Levy extension of the LIBOR market
model ([Eberlein and Raible (1999)]) fall in this category.

The derived approach is of greater interest to the complex-derivative trader,
for whom not only the underlying asset, but also other plain-vanilla options
constitute the set of hedging instruments. The dynamics of option prices (or,
more commonly, of the implied volatilities) therefore become as, if not more,
important, and mis-specification of the dynamics of the underlying asset is often
considered to be a ’second-order effect’. This is because, typically, the complex
trader will engage in substantial vega and/or gamma hedging of the complex
product using plain-vanilla options. Once a suitable hedge has been put in
place, it is often found that the delta exposure of the complex instrument and
of the plain-vanilla hedging options to a large extent cancel out. When this
is the case, the net dependence of the whole portfolio on the underlying (the
delta) can be relatively modest, and consistent errors in the estimation of the
delta exposure of the complex product and of the plain-vanilla hedging options
can compensate each other. To some extent, the complex traders who has vega-
hedged her positions shifts (part of) the risk of a poorly specified dynamics for
the underlying to the book of the plain-vanilla trader3.

The evolution in the use of models from relative-value/plain-vanilla traders
to complex-derivatives traders alluded to in the previous section has therefore
had several effect of relevance for the topic of this survey: first, it has influenced
the type of statistical analysis deemed to be of relevance by most industry
practitioners. This is great relevance for the calibration practice, discussed in
Section 11. Second, it has shifted the emphasis from models that can better
account for the statistical properties of the underlyings to models that better
capture important features (such as time homogeneity, smile dynamics, etc)
of the smile surface. Finally, it has created a situation whereby it is difficult
for a model that ’simply’ better accounts for the statistical properties of the
underlyings to supplant a model that better recovers (or can be more easily
fitted to) the prices of plain-vanilla instruments.

The fundamental reason for this is that, unlike natural phenomena, the plain-

3This statement is clearly very imprecise and difficult to quantity, since a mis-specification
of the dynamics for the underlying will also give rise to an incorrect estimate of the vega.
These inconsistencies are however integral part of the use of models: the trader who uses a
deterministic-volatility model, for instance, would have no theoretical justification for vega-
hedging her positions.
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vanilla prices that constitute the ’observable inputs’ for the complex models are
in turn obtained using models that the more complex approaches are made to
recover as limiting cases. It is therefore not surprising that a certain degree of
’self-fulfilling prophecising’ should be observed in the pricing of derivatives prod-
ucts. This is not to say that, once a modelling practice becomes established, a
vicious circle of self-corroboration establishes itself, and that it becomes impos-
sible to dislodge the perhaps erroneous model choice. However a certain degree
of positive feedback and circularity certainly exists among plain-vanilla prices,
models, calibration procedures and complex prices, which makes the embracing
of radically new, and possibly better, modelling approaches rather difficult.

While today’s models are indubitably more effective (at least in certain re-
spects) than the early ones, and, therefore, one can certainly speak of an ’evo-
lution’ of interest-rate models, this notion of progress does not necessary imply
that certain choices, abandoned in the past, might not have ultimately led a
more fruitful description of interest-rate derivatives products if they had been
pursued more actively. In other words, I do not believe that the ’linear evolu-
tion’ paradigm, possibly applicable to some areas of physics4, and according to
which later models are ’better’ in the sense of being closer to the ’phenomenon’,
is necessarily suited to describing the evolution of yield-curve models.

2.3 Reasons for Inertia to Model Changes

A stilyzed account of the interaction between plain-vanilla prices, traders of
structured products and pricing models might help to make the statements
above more concrete. Typically, a complex trader will enter a transaction with
a non-professional counterparty, and will attempt to hedge her exposure by
transacting hedging trades with the plain-vanilla derivatives desk. These hedg-
ing transactions will attempt to neutralize both the exposure to interest rates,
and to their volatility (vega exposure). In order to arrive at the price of the
complex product the exotic trader will typically make use of a suitably cali-
brated model. ’Suitably calibrated’ in this context means that the prices of
plain-vanilla options (caplets and swaptions) used for hedging should be cor-
rectly recovered. Caplets and swaptions therefore enjoy a special (benchmark)
status among the interest-rate products.

What gives rise to the ’model inertia’ referred to above? What discourages
an exotic trader who believed her model to describe financial reality better than
the current market practice from choosing to ’swim against the tide’, ie, from
accepting an initially unfavourable marking of her positions in the plain-vanilla
hedging instruments, in the hope that the theoretical profits will ultimately (by
option expiry) accrue to her?

There are several reasons for this. To begin with, if, according to the ’better’

4I realize that, with this statement, I am walking into a philosophical thicket, and that
some philosophers of science would deny even models in fundamental physics any claim of
being ’true’ in an absolute sense. I stay clear of this controversy, and the more mundane
points I make about the evolution of yield-curve models remain valid irrespective if whether
an absolute or a ’social’ view of scientific progress is more valid.
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model, the trader is delta and vega neutral, she will, in general, not be so ac-
cording to the market standard practice (and, therefore, to the risk management
assessment of her trading house). Therefore she will utilize a higher proportion
of the internal and regulatory (VaR) limits. [Mode risk refs here] If the trader
works for a regulated institution, the regulatory capital charge will be higher. So
will the economic capital utilization, and, if the traders’ compensation is based
on return on regulatory or economic capital, her performance will be assessed in
a less favourable light. Furthermore, a dynamic model reserve might be applied
to the marking of her positions, which, for a book of approximately constant
size, effectively translates into a ’tax’ on her trading activity.

This state of affairs generates a disincentive for the exotic trader to ques-
tion the prices of plain-vanilla instruments and contributes to the ’self-fulfilling
prophecies’ I referred to above. I shall make the point in my review that, as a
consequence of this, the natural desire for the exotic trader to reproduce almost
’at all costs’ the prices of caplets and swaptions has guided a large part of the
theoretical and practical development of interest-rate models.

2.4 In-Model and Out-of-Model Hedging

No aspect of derivatives trading has stronger implications on what is required
of a desirable model than the joint practices of out-of-model hedging and model
recalibration. In-model hedging refers to the practice to hedge a complex option
by taking positions in ’delta’ amounts of traded instruments to neutralize the
uncertainty from the stochastic drivers. Out-of-model hedging is the taking of
positions to neutralize the sensitivity of a complex product to variations in input
quantities that the model assumes deterministic (eg, volatility). Vega hedging
is an example of out-of-model hedging.

Despite the fact that out-of-model hedging is on conceptually rather shaky
grounds (if the volatility is deterministic and known, as most models assume,
there would be no need to undertake vega hedging), its adoption is universal in
the trading community. Similarly universal and difficult to justify theoretically
is the practice of re-calibrating a model to the current market plain-vanilla prices
throughout the life of the complex trade.

These two practices are closely linked. In a friction-less market, if a model
did not have to be re-calibrated during its life, future vega transactions would
have no economic impact: contingent on a particular realization of the forward
rates, these trades would be transacted at the future conditional prices for the
plain-vanilla hedging instruments implicit in the day-0 calibration. This is no
longer true, however, if, in order to recover the future spot plain-vanilla prices,
the model has to be re-calibrated day after day. In particular, if the future
conditional prices predicted at time 0 for the plain-vanilla options used for vega-
hedging turn out to be different from the future prices actually encountered, an
extra additional cost (not accounted for by the model) may be incurred.

Choosing good inputs to a model therefore means recovering today’s prices
in such a way that tomorrow’s volatilities and correlations, as predicted by the
model, will produce future plain-vanilla option prices as similar as possible to
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what will be encountered in the market. Given the joint practices of vega-
hedging and re-calibration, the ’best’ calibration methodology is therefore the
one that will require as little future re-estimation of the model parameters as
possible.

The question however remains of how the model inputs that will give rise to
the more stable calibration and to the smallest re-hedging ’surprises’ should be
estimated. Answering this fundamental question requires choosing the source
of information (statistical analysis or market ’implication’) that can best serve
the trading practice. This topic is dealt with in Section 11.

3 A Unified Modelling Approach

3.1 The Mathematical Setting

One of the most obvious requirements for the modelling of bond prices or for-
ward rates is that they should be strictly positive in all possible states of the
world. Strictly positive (semi-)martingales therefore provide a natural mathe-
matical description. There are deeper reasons, however, for wanting to model
bond prices and rates as semi-martingales, namely the fact that (strictly posi-
tive) semi-martingales remain invariant under a change between equivalent mea-
sures, and that they can be uniquely decomposed (Doob-Meyer decomposition)
into the sum of a pure martingale component (the ’innovation’) and a previsi-
ble process (the ’predictable’ part): consider on a standard filtered probability
space5 (Ω,Ft, P ) (see, eg, [Dothan (1990)]) the set SM of strictly positive semi-
martingales , smt, such that

smt = sm0 +m+ a (1)

withm ∈M (the set of real-valued martingales, and a ∈ A (the set of previsible,
real-valued, finite-variation processes. (SM+ ⊂ SM will then denote the set
of strictly positive semi-martingales) . One can then decompose a price or rate
change in a previsible component, and an innovation (’surprise’) component
linked to the arrival of unexpected market information.

As for the innovation part, different choices could be made: the process
could be chosen to have continuous or discontinuous paths; it could be given
finite first variation and infinity activity (such as, for instance, the Variance
Gama process, [Madan, Carr and Chang (1998)]). Given the legacy of the early
models, and the desire for analytic tractability, the prevalent practice has been
to choose for the innovation continuous martingales, mX , with finite quadratic
variation. This can be satisfied if the innovations are chosen to be Wiener
processes. Furthermore, since (Levy theorem) any Wiener process relative to a
filtration Ft is a Brownian motion, one can simply write:

dmXi
(t) = σidwi(t) (2)

5Among the many hypotheses required for the set-up to produce the results derived below
one should mention that the filtation F is assumed to be known by all agents and that markets
are perfectly liquid, frictionless, and with free and public information.
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where dmXi
(t) is the innovation associated with the i-th forward rate, dwi(t)

the increment of a standard Brownian motion, and the responsiveness of the i-th
innovation to the Brownian shock (the volatility) is denoted by σi.

3.2 Different Descriptions

Given the above, a natural way to model (in the real world) the price process,
PT
t , for a bond of maturity T is to require that it should be an element of SM+

(a strictly positive semi-martingale). With the assumptions above regarding the
nature of the innovation, one is led to write for its real-world dynamics6

dPT
t

PT
t

= µTt dt+
∑

k=1,n

vk(t, T )dw
T
k = µTt dt+ v(t, T )dwT (3)

v(t, T )2 =
∑

k=1,n

|vk(t, T )|2 (4)

From a standard replication argument, similar in spirit to BS’s, and first
presented in [Vasicek (1977)], it is well know that, in the one-factor case, the
extra return over the riskless rate per unit volatility must be independent of the
security to avoid arbitrage: for any two securities, a and b, either ’primitive’ or
’derivatives’, of respective volatilities va and vb, it must hold that

µa − r
va

=
µb − r
vb

= λ ∀a, b (5)

Therefore Equation 5 unambiguously defines the market price of risk in the
one-factor case:

µTt = r + λtv(t, T ) (6)

and the decomposition 6 is unique. In order to extend the definition to many
factors, let us assume the number of bond maturities to be finite. The market
will be said to be complete if the rank of the matrix vk(t, Ti) is equal to n, ie,
if any Brownian shock is reflected in the change in price of at least one bond.
Therefore, if we allow no degeneracies in the real symmetric matrix ρij

ρij =
∑

k=1,n

vk(t, Ti)vk(t, Tj) (7)

a purely deterministic portfolio can always be created, by taking suitable posi-
tions in the underlying bonds, such that the coefficients of each Brownian mo-
tion should be exactly zero. Since the return from such a deterministic portfolio
must, by no-arbitrage, be equal to the riskless rate, r, a vector λtk, k = 1, 2, ..., n,

6I will always assume that the required integarbility and technical conditions for the volatil-
ity and drift functions are met. See, for instance, [Bjork (1998)] or [Mikosh (1998)]). For
simplicity, I will also assume that a finite number, n, of Brownian processes shock the yield
curve, but this need not be the case
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must exist (see, eg, [James and Webber (2000)]) such that the drift of each asset
must be of the form

µTit = r +
∑

k=1,n

λtkvk(t, Ti) (8)

If the market is complete this vector is unique. Therefore, following [Hughston (2000)],
one can interpret the market price of risk, λk, associated with the k-th Brown-
ian process as the extra return over the risk-less rate per unit of the volatility
loading, vk(t, T ), onto the k-th factor:

λtk =
µTit − r
vk(t, Ti)

∀Ti (9)

(Again, no index Ti has been associated with λtk). Another interpretation
of the quantity λt is as a Sharpe ratio, ie the ratio of the excess bond return
above the risk-less rate to the standard deviation,

Et[
dPT

t

PT
t

− rdt]
v(t, T )

=

(
µTt − r

)
dt

v(t, T )
(10)

(See, eg, [Cochrane (2000)]). For the multi-factor case, λtk can be seen as the
Sharpe ratio (excess return per unit ’risk’) earned by the bond because of its
loading over the k-th factor. Note that in arriving at Equation 9 purely no-
arbitrage arguments were invoked. Much stronger general-equilibrium assump-
tions (eg, the validity of the CAPMmodel) are needed to prescribe specific forms
for the vector λtk, eg its relationship to the market portfolio. This observation
will be re-visited in the context of the CIR/Vasicek models.

Going back to Equation 9, using this no-arbitrage condition for the bond
price process, one can therefore write ([Hughuston and Brody (2000)]) (again,
in the real-world)7

dPT
t

PT
t

= rdt+
∑

k=1,n

vk(t, T )
(
λtkdt+ dwk

)
(11)

Equation 11 can be integrated to give [First Formulation]

PT
t = PT

0 exp

(∫ t

0

rsds

)
exp



∫ t

0

∑

k=1,n

vk(s, T ) [λ
s
kds+ dwk(s)]−

1

2

∫ t

0

v(s, T )2ds




(12)
Recalling that P (T, T ) = 1 and the definition of the continuously-compounded

money-market account, BT
t :

BT
t = exp

(
−
∫ T

t

rsds

)
(13)

7a somewhat similar approach can also be found in [Gustafsson (1992)]
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one can ’invert’ 12 for the money-market account

BT
0 =

1

PT
0

exp



∫ T

0

∑

k=1,n

−vk(s, T ) (λskds+ dws
k) +

1

2

∫ T

0

v(s, T )2ds


 (14)

and, making use of Equation 13, one can obtain the no-arbitrage process for
the short rate implied by the bond price dynamics 11 [Second Formulation]:

rT = −∂ lnB
T
0

∂T
=

−∂ lnP
T
0

∂T
+

∫ T

0

v(s, T )
∂v(s, T )

∂T
ds−

∫ T

0

∑

k=1,n

∂vk(s, T )

∂T
(λskds+ dws

k) (15)

In order to obtain a third equivalent formulation, one can define the forward
bond price process P T1,T2

t (with T2 > T1) as

PT1,T2

t =
PT2

t

PT1

t

(16)

and, from Equation 12 one can write [Third Formulation]

PT1

t = PT1,T2

0

exp
(∫ t

0

∑
k=1,n vk(s, T2) (λ

s
kds+ dws

k)− 1
2

∫ t

0
v(s, T2)

2ds
)

exp
(∫ t

0

∑
k=1,n vk(s, T1) (λ

s
kds+ dws

k)− 1
2

∫ t

0
v(s, T1)2ds

) (17)

Equation 17 expresses the bond price process in terms of two exogenous
vectors, the volatility vector and the risk premium vector, and the short rate
no longer appears explicitly in the formulation (although it is obviously linked
to these vectors via Equation 15).

Finally, if we go back to the first formulation, and define the instantaneous
forward rate, f(t, T ), as

f(t, T ) = −∂ lnP
T
t

∂T
(18)

by differentiation of Equation 17 it follows that

f(t, T ) = f(0, T ) +

∫ t

0

v(s, T )
∂v(s, T )

∂T
ds−

∫ t

0

∑

k=1,n

∂vk(s, T )

∂T
(λskds+ dws

k)

(19)
This equation provides yet another equivalent ’set of coordinates’ for the

yield curve evolution. Equation 19 gives the evolution of a forward rate in terms
of the volatilities of the bond price processes. However, given the definition of
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the forward rate, Ito’s lemma shows that the volatility, σT
t , of the forward rate

f(t, T ) is given by8

σTt = −∂v(t, T )
∂T

(20)

Using Equation 20 one can therefore write the dynamics for the instanta-
neous forward rates in terms of forward rate volatilities as [Fourth Formula-
tion]

df(t, T ) = −σTt

(∫ T

t

σut du

)
dt+

∑

k=1,n

(
σTt
)
k
(λskds+ dws

k) (21)

Also the fourth formulation (Equation 21), often known as the HJM condi-
tion, was arrived at by pure no-arbitrage arguments, and shows that the real-
world no-arbitrage drift of the forward rates is just a function of the chosen
forward rate volatilities (and of the risk vector λsk).

All these formulations are very ’rich’ in that they allow not only the pricing of
derivatives, but also say (prescribe) something very specific about the real-world
dynamics of the term structure. This is the conceptual route taken by the abso-
lute pricing approach, (see, eg, [Vasicek (1977)], [Cox, Ingersoll and Ross (1985)],
[Longstaff and Schwartz (1992)], but see also the discussion in Section 5.1 re-
garding their implementation in practice). If we ’only’ want to price derivatives,
which, in the complete-market setting we used so far, are ’redundant’ securities,
such a fundamental description is not required. See Section 3.4.

3.3 Equivalence of the Different Approaches

The derivation above highlights the conceptual ’symmetry’ among the various
different possible formulations of the no-arbitrage yield curve dynamics: one
could have taken, for instance, expression 15 as a starting point, used Ito’s
lemma to obtain the short-rate volatility, σr, in terms of the bond price volatili-
ties v(s, T ), and obtained a totally equivalent description of the short rate evolu-
tion completely in terms of the short-rate-related quantities9. What would have
changed in moving from one choice to the other would have been the ’natural’
input volatilities: σTt in one case, σr in another and v(t, T ) in the third. If, in
particular, one chose one set of input volatilities to be a deterministic function
of time, neither of the other two sets would turn out to be deterministic.

All the modelling approaches reviewed in this survey fall in one of these
equivalent formulations. Despite this conceptual equivalence, however, any

8The alternative and equivalent formualtion

v(t, T ) =

∫ T

t

σut du

makes clear that
v(T, T ) = 0

ie, that the volatility of a bond price must vanish as its maturity approaches.
9Needless to say, if one had started from ’simple’ bond price volatilities, the dynamics for

the short rate would have been rather complex, and, in general, non-Markovian
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choice for the preferred set of co-ordinates has implications for the ease of
calibration of the model to market-observable prices. The various modelling
approaches can be looked at as the requirement that certain set of volatilities
should have a ’simple’ or ’nice’ form (for instance, that they should be deter-
ministic functions of time), or lend themselves to simple calibration.

Given this way of looking at different models, one would have thought that
a lot of statistical research must have been devoted to the study of which sets
of volatilities have the ’simplest’ (eg, more homoskedastic) behaviour. This
research has to some extent indeed been carried out (for a review of some of the
results see, eg, [Cambell, Lo and MacKinley (1996)], or the references quoted in
Section 4), but it has had relatively little influence on derivatives modelling. I
discuss below that market practice (and, in particular, the market’s sometimes
arbitrary choice of which set of volatilities should be regarded as deterministic
functions of time) has had a much stronger influence on this process.

3.4 The Relative Risk Density Process and Derivatives
Pricing

Following again [Hughuston and Brody (2000)], let us go back to Equation 12
and to the definition 13 of the money-market account. Putting them together
one can write

PT
t

Bt
0

= PT
0 exp



∫ t

0

∑

k=1,n

vk(s, T ) (λ
s
kds+ dws

k)−
1

2

∫ t

0

v(s, T )2ds


 (22)

After defining

λ2t =
∑

k=1,n

|λtk|2 (23)

let us create the following strictly positive martingale process, called the
relative risk density process:

dρt
ρt

= −
∑

k=1,n

λtkdw
t
k (24)

ρt = exp


−

∫ t

0

∑

k=1,n

λskdw
s
k −

1

2

∫ t

0

λ2sds


 (25)

After multiplying 25 by 22 one obtains (by completing the squares) [Fifth
Formulation]

PT
t ρt
Bt
0

= PT
0 exp



∫ t

0


 ∑

k=1,n

vk(s, T )− λsk


 dws

k −
1

2

∫ t

0

[v(s, T )− λs]2 ds




(26)
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showing that, unlike the quantity
PT
t

Bt
0
, the ratio

PT
t ρt
Bt

0
is a (strictly positive)

martingale. Furthermore, Equation 26 also shows that multiplication of P T
t by

the ratio ρt
Bt

0

provides an unbiased forecast for the future (time-t) value of P T
t
10.

Indeed, if, to lighten notation, we denote by ZT
t the bond price discounted by

the money market account, ZT
t ≡ PT

t

Bt
0
, one can readily obtain

E
[
ZT
t ρt|F0

]
= ZT

0 ρ0 = ZT
0 (27)

showing that the martingale process ρt is directly linked (to within the risk-
less discount factor Bt

0) to the stochastic discount factor used in asset pricing.
It is worthwhile pausing to comment about the relative risk density process

(also known as the stochastic discount factor, the pricing kernel or the change
or measure’). In the general asset pricing context, the stochastic discount factor
(see, eg, [Cochrane (2000)]) appears in the consumption-based pricing equation
as the marginal rate of substitution between time periods, and therefore assign-
ing it exogenously requires specifying a particular form for the investor’s utility
function. Historically, the most ’natural’ way to specify investors’ aversion to
risk has been via the market-price-of-risk route. However, this need not be the
case: taking the stochastic discount factor as the primitive building block might
appear to provide little intuitive appeal, but it is a theoretically perfectly fea-
sible (and, in some ways, a more fundamental) way to specify a term structure
model. This is the route taken, for instance, by [Constantinides (1992)].11 The
equivalence of the different formulations can be seen by noticing that all models
implicitly or explicitly assign the relative risk density process. What changes
is whether this specification is effected via an estimation of the investors’ risk
aversion (eg, [Cox, Ingersoll and Ross (1985)],[Longstaff and Schwartz (1992)]),
or by implicitly enforcing the fulfillment of the martingale condition 26 (eg,
[Black, Derman and Toy (1990)], [Black and Karasinski (1991)]), or by the di-
rect modelling of the pricing kernel ([Constantinides (1992)], [Rogers (1997)]).

3.5 From Absolute to Relative Pricing

The approach just sketched suggests how to price bond options and bonds con-
sistently in an arbitrage-free way, given the real-world dynamics of the driving
factors, and the investors’ attitude towards risk. In the case of stock options,
the most powerful and useful result of the BS treatment, however, is that the
investors’ utility function should not affect the price of a replicable option. The
logical path that leads to the equations just obtained seem to run counter to
this philosophy. Isn’t there a way to price ’just’ bond options, if we are given

the prices of bonds? In other terms, one can one move from absolute to relative
pricing in the interest-rate context?

10The quantity
ρt
Bt

0

goes under the name of the ’Long portfolio’. Its properties are discussed

in detail in [Long (1990)].
11[Harrison and Kreps (1979)] derive the condition for its uniqueness (essentially, market

completenss, but see [Nielsen (1999)] for a more thorough discussion)
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This shift in perspective can be presented most simply if one lightens the
notation by dealing with the case of a single factor. Following [Hughston (2000)],
one can start from the real-world measure Q and define, for any random variable
Xt measurable with respect to a filtration Ft, a new measure Qρ under which
expectations are linked to the real-world expectations by

EQρ

s [Xt] =
Es[ρtXt]

ρs
(28)

Notice that the measure change depends on λ via Equation 25. Recalling

that
PT
t ρt
BT
t

is a martingale (see Equation 26) and making use of Equation 28

with Xt =
PT
t

BT
t

, we obtain the result

Es[ρt
PT
t

BT
t

]

ρs
= EQρ

s [
PT
t

BT
t

] =
PT
s

BT
s

(29)

which shows that, under the measure Qρ, the bond price P discounted by
the money market account is a martingale. When the change of measure ρ is
constructed from risk premia λk as in Equation 11, this measure is called the
risk-neutral measure.

Consider now a derivative, Cτ , whose price is adapted to Ft like the bond
price PT

t , and which is fully characterized by its terminal (time-τ) payoff (τ <
T ). Since the no-arbitrage relationship 5 holds for any security, and therefore
also for Cτ , the underlying bond and the derivative must share the same risk
premium λ, and therefore it must also be true that

Es[ρt
Ct

BT
t

]

ρs
= EQλ

s [
Cτ
t

BT
t

] =
Cτ
s

BT
s

(30)

and

Cτ
0 = E0[ρτ

Cτ
τ

Bτ
0

] = EQλ

0 [
Cτ
τ

Bτ
0

] (31)

ie, the price of the derivative today is obtained by taking the expectation of

its discounted terminal payoff under the risk neutral measure.
Because again of the commonality of the risk premia across all securities,

and reverting to the multi-factor case, the dynamics of the bond price and of
the derivative can be written in the form

dPT
t

PT
t

= rdt+
∑

k=1,n

vk(t, T )
(
λtkdt+ dwt

k

)
(32)

dCτ
t

Cτ
t

= rdt+
∑

k=1,n

σCk (t, τ)
(
λtkdt+ dwt

k

)
(33)

If, starting from each standard Brownian processW t
k, we define a new vector

process

W t
λk

=W t
k +

∫ t

0

λskds (34)
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it can be shown (Girsanov’s theorem) that W t
λk

is a standard Brownian

process with respect to the risk-neutral measure Qλ, and therefore

dPT
t

PT
t

= rdt+
∑

k=1,n

vk(t, T )dw
t
λk

(35)

dCτ
t

Cτ
t

= rdt+
∑

k=1,n

σCk (t, τ)dw
t
λk

(36)

Equations 35 and 36 show that, if the value of the derivative is calculated
by taking the expectation under the risk neutral measure, the risk premia do
not affect the dynamics of the bond or of the derivative, and therefore the price
of the latter.

This still leaves open the question of how to carry out an expectation in
the a priori unknown risk measure. In theory, one could explicitly obtain the
new measure via the Radon-Nikodym derivative, dQ

dQρ . In practice, the route
followed is typically to construct the risk-neutral measure in such a way to
ensure that the exogenously-given bond price processes are correctly recov-
ered. This is done by using the property of the quantity ρt

Bt
0

discussed above

(the ’Long portfolio’[Long (1990)]), which is security-independent, of produc-
ing an unbiased forecast of an asset. A measure is first constructed such
that all the marginal and conditional expectations recover all the spot and
forward bond prices. Given the invariance of the risk premia across securi-
ties, once such a measure (in computational terms, perhaps a lattice) has been
built, the same measure (lattice) is used to value the derivative. This is the
route implicitly taken by those modelling approaches such as, for instance,
[Black, Derman and Toy (1990)] or [Black and Karasinski (1991)] which work
directly in the risk-neutral measure. Arriving at the value of a derivative fol-
lowing this route is therefore a case of pure relative pricing, and nothing can be
said, in this approach, about the real-world behaviour of bond prices, of forward
rates or of the short rate.

It is important to point out that, in the derivation of the results above, mar-
ket completeness was invoked in order to deduce the uniqueness of the market
price of risk vector. This uniqueness is lost if the traded securities do not span
the space of all the Brownian processes (ie, if there exists a dwk that does not
affect the price of at least one of the hedging bonds). When this is the case, a
perfectly replicating portfolio cannot be created with certainty, and one has to
resort, at least for the unhedgeable part, to absolute rather than relative pric-
ing. This route is embarked upon in derivatives pricing with great reluctance,
and many difficult-to-justify ad hoc assumptions are often invoked in order to
recover a framework compatible with the complete-market treatment. I shall
argue in the last part of this survey that the judgement as to whether invoking
market completeness is a profitable working assumption should be made on the
basis of the actual ability to replicate a terminal payoff, not of the simplicity of
the resulting approach, and that it can be dangerous to ignore in the pricing the
practical difficulties in enforcing replication. The choice need not be between full
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relative or absolute pricing, and ’compromise solutions’ (eg, ’no-too-good-deal’
pricing [Cochrane and Saa-Requejo (2000)]) can be invoked.

Returning to the complete-market case, if the short rate and the volatility
were constant (see however the discussion below), the relative pricing results 35
and 36 would clearly apply in the one-factor case. The expectation of the payoff
of a τ -expiry call on a T -maturity bond struck at K would in the risk-neutral
measure would then be given by the familiar BS formula:

Cτ
0 = PT

0 N (h1)−KN (h2)
1

Bτ
0

(37)

with

h1 =
ln

PT
0 Bτ

0

K
+ 1
2
v2τ

v
√
τ

(38)

h2 =
ln

PT
0 Bτ

0

K
− 1
2
v2τ

v
√
τ

(39)

and N () the cumulative normal distribution12. Notice however, how, in
the formulae above the volatility of the bond price has simply been expressed
as v, rather than as v(t, T ). Looking at expressions ?? and ?? it is not clear
which constant volatility could possibly be assigned to a bond price, without
implying something very strange about the volatility of the forward rates. Fur-
thermore, we have seen that the processes for bond prices and for the short rate
are inextricably linked by the condition of no arbitrage. Therefore one cannot
simple assume a process for one set of variables (as one implicitly does by as-
suming the trivial constant process for the short rate) and exogenously assign
the volatilities of the equivalent ’co-ordinates’. This leads us directly to some
of the difficulties encountered in the very first applications of the BS reasoning
to interest-derivatives pricing, discussed in the next section.

4 Phase 1: The Black-and-Scholes/Merton Ap-

proach

The impact of the BS work was strongly felt also in areas, such as interest-rate
derivatives pricing, that were considerably removed from the original scope of
the BS paper. However the adaptation of their results to the new domain was
not always simple, and the (real and fictitious) problems encountered at the
time are reviewed in this section.

12In the classic Black-and-Scholes derivation the pricing formula is obtained as a solution
of a PDE, which is in turn derived by a hedging argument. The hedging argument is still
implicit in the approac sketched above, via the relationship 5.
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4.1 Adapting the BS/M Framework to Interest-Rate Deriva-
tives

The BS model, in its original formulation, assumes constant interest rates. If in-
terest rates are deterministic (let alone constant) the problem of pricing interest-
rate derivatives becomes trivial. Traders who began to use the BS formula to
price bond options13 were obviously aware of this inconsistency, but, implicitly
or explicitly, argued that assuming deterministic interest rates in the discounting
and the forwarding would be a second-order effect, compared to the first-order
change in the bond price.

As for the log-normal assumption for the bond price, this was partially satis-
factory, because did not constrain the price to be smaller than face value, thereby
assigning a non-zero probability to negative interest rates. Since typical market
volatilities tended to assign relatively small (risk-adjusted) probabilities to these
events, traders were happy to gloss over this blemish as well.

What gave greater discomfort, however, was the so-called pull-to-par prob-
lem.

4.2 The Pull-To-Par Problem

The BS paper assumes constant volatility. Since the volatility of a bond must
go to zero with its residual maturity, this creates a problem. The crudest answer
was to argue that, if one were pricing a ’short-dated’ option on a long-maturity
bond, this effect could be neglected (see, eg, Hull (1990)). This solution is,
however, clearly unsatisfactory, both because it allows no assessment of what
’long’ and ’short’ should mean, and, more seriously, because for many LIBOR
options (caplets) the expiry of the option and the maturity of the associated
notional bond are typically as little as six or three months apart. The expiry
of the option and the maturity of the underlying (notional) bond are therefore
very similar.

However, as long as the instantaneous percentage volatility, σt, is a deter-
ministic function of time, it is well known that by inputting in the BS formula
the root-mean-squared volatility, σ̂, defined by

σ̂2 =
1

T

∫ T

0

σ(u)2du (40)

all the replication results still apply. In particular, a perfectly replicating
portfolio can still be established, based on a delta-holding of stock given, at all
points in time, by the BS formula with the residual root-mean-squared volatility.
Therefore, if one had to price, say, a 9.75-year option on a 10-year bond, the
correct volatility, one might argue, would be given by the root-mean squared
volatility of the bond over the life of the option, approximately equal to volatility

13The term ’bond options’ should be understood in a generalized sense, since a caplet and
a floorlet can be seen as a put and a call on a bond. These LIBOR-based applications were
in fact far more common than ’straight’ bond options.
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of a 5-year bond. However plausible, this reasoning gave rise to a paradox,
illustrated in the section below.

4.3 From Black-and-Scholes to Black

Three years after BS’s work, Black published a paper [Black (1976)] with the
deceptively narrow title ’The Pricing of Commodity Contracts’. Its emphasis
was on forward (rather than spot) prices, and obtained a formally very similar
pricing formula for a call option. Despite the superficial similarity, however,
there was one fundamental difference, in that the volatility of relevance was
now the volatility of a forward (as opposed to spot) price.

If rates were deterministic there would be no difference between the two
volatilities, but if rates are stochastic, and correlated with the process for the
underlying the difference can be large, both conceptually and in practice. In
the case of a 9.75-year option on a 10-year bond, the argument presented above
would indicate that the appropriate volatility would (approximately) be that of a
5-year bond. If one focusses on the forward price, on the other hand, the relevant
volatility is that of a (forward) bond with the unchanging residual maturity of
0.25 years. Which volatility is the ’correct’ one? The Black, approach, by
focussing on the forward bond price, ie on the ratio of the spot asset (itself
a bond) to the discounting bond, makes clear that it is the volatility of this
ratio that matters. It is only when the volatility of the discounting bond is
negligible with respect to the volatility of the asset that the volatility of the
spot and of the forward process can be approximately considered to be the
same. However, for the case of a long-dated caplet, the denominator contributes
a volatility approximately as large as the volatility of the spot bond, but the
closer the expiry of the caplet to the maturity of the bond, the greater the
correlation between the two bonds, reducing the volatility of the ratio. Therefore
the assumption of constant rates in the BS formula is poor because, by neglecting
the covariance between the asset and the discounting bond, it systematically
mis-specifies the relevant volatility. As a corollary, when the trader imputes
from a traded price the ’implied volatility’ this is always the volatility of the
forward quantity (and only approximately the spot volatility).

So, despite the fact that the use of the Black formula with the forward price
would have completely eliminated the pull-to-par problem, the legacy of the
BS approach was such that at the time14 these subtle points sometimes failed
to be fully appreciated, the distinction between the volatility of the spot price
(considered the ’fundamental’ process) and the forward price often glossed over,
and the discomfort with the Black(-and-Scholes) approach applied to prices
(spot or forward) remained.

14A mathematical paper showing that the appropriate input to the Black formula is the
volatility of the forward rate appeared as late as 1995.
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4.4 From Price Models to Rate and Yield Models

An alternative solution to the pull-to-par problem was to use as state variable
a (log-normal) yield or rate. As an added bonus, this approach would also get
rid of the problem of (spot or forward) bond prices greater than 1. So, either
the yield to redemption of a bond or the equilibrium rate of a swap or for-
ward rate began to be regularly input in the Black formula to obtain the prices
of swaptions or caplets (Hull’s book as reference here). Since neither yields
nor rates are directly traded assets, this practice was entered upon with some
discomfort, and it was generally regarded as intuitively appealing but not the-
oretically justifiable. In particular, it was not widely appreciated in the trading
community that the superficially similar practices of using the Black formula
with yields or forward rates are fundamentally different, in that the latter can
be theoretically justified, for instance via the introduction of a ’natural pay-
off’ [Doust (1995)], but the former, based on a flawed concept [Schaefer (1977)],
remains theoretically unsound. So, despite the fact that the theoretical justifi-
cation for the use of the Black formula for swaptions had been given as early as
1990 [Neuberger (1990)], papers proving the correctness of the approach were
still appearing as late as 1997 (see, eg,[Gustafsson (1997)]). In the early 1990s
the rate- and yield-based-models were therefore generally regarded, as least by
the less sophisticated traders, as roughly equivalent, and as useful but similarly
theoretically unsound.

By luck or by inspired foresight the trading practice crystallized around the
use of the Black formula for swap and forward rates. This constitutes an im-
portant step in the history of term-structure modelling: the joint facts that
traders carried on using the Black formula for caplets and swaptions despite
its then-perceived lack of sound theoretical standing, and that this approach
would be later theoretically justified contributed to turning the approach into a
market standard, and directly led to the modern LIBOR market models. There-
fore, without the somewhat fortuitous choices made during the establishment
of a market standard, the ‘modern’ pricing approach might currently have a
considerably different structure.

4.5 The Need for a Coherent Model

Going back to the pull-to-par problem, use of forward rather than spot prices
could have solved the problem, but this route was often overlooked, and for
different reasons, both by näıve and by sophisticated market players. The näıve
traders simply did not appreciate the subtle, but fundamental, differences be-
tween the Black and the BS formulae and the volatilities used as input for both,
and believed the pull-to-par phenomenon to be relevant to the Black formula as
well.

The sophisticated traders understood the appropriateness of the Black ap-
proach. However, the Black formula can give a perfectly correct answer for a
series of options considered independently of each other, but there is no way
of telling whether these options inhabit a plausible, or even logically consis-
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tent, universe (ie, every option is priced in its own measure)15. Despite the fact
that different forward bond prices correspond to different assets, their prices are
strongly (albeit imperfectly) correlated. There is however no mechanism within
the Black formula to incorporate views about this joint dynamics. The need was
therefore increasingly felt for a comprehensive and self-consistent model, capa-
ble of providing coherent inputs for the pricing of complex products dependent
on the joint realizations of several forward rates.

Indeed, I have shown elsewhere [Rebonato (1998)] extending work by [Doust (1995)]
that, by working with suitably-high-dimension cumulative normal distributions,
the Black formula can be rigorously extended to a large number of path-dependent
and compound-option cases. In particular, when this route is taken the very
same quadratic covariation terms between forwards

<
dfi
fi
,
dfj
fj

>= σiσjρij (41)

appear as in the modern LIBOR market model. There is however a funda-
mental difference: in the Black-based approach all these covariance elements
have to be assigned exogenously and independently. In a model-based approach
they might, individually, be less accurate or plausible, but they are at least
guaranteed to be all internally consistent. Quoting [Rebonato (1998)]

‘. . . what is needed is some strong structure to be imposed on
the co-movements of the financial quantities of interest; [. . . ] this
structure can be provided by specifying the dynamics of a small
number of variables. [. . . ]. Once the process for all these driving
factors has been chosen, the variances of and correlations among all
the financial observables can be obtained [...] as a by-product of
the model itself. The implied co-dynamics of these quantities might
turn out to be simplified to the point of becoming simplistic, but,
at least, the pricing of different options can be undertaken on a
consistent basis [. . . ].’

These reasons for the early dissatisfaction with the Black approach are im-
portant because they directly led to the first-generation yield-curve models.

15As it is well known there is also an inconsistency of distributional nature, since forward
rates of different tenor, or forward rates and swap rates cannot all be simultaneously log-
normal. More fundamentally, if the volatility of one set of variables (say, forward rates)
is assumed to be deterministic, the volatilities of the other sets of variables is stochastic
[Jaeckel and Rebonato (2000)]. However, the pricing impact of these inconsistencies is in
general very small, (see, eg, [Rebonato (1999)]). The lack of internal coherence across measures
referred to here is of more fundamental nature.
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5 Phase 2: First-Generation Yield-Curve Mod-
els

5.1 Vasicek and CIR

Historically, the first internally consistent term structure models were [Vasicek (1977)]
and [Cox, Ingersoll and Ross (1985)]. Using as a blueprint the treatment pre-
sented in Section 2, their logical structure can be described as follows. The
starting points are the joint assumptions that the short rate, rt, is a diffusion
process, with real-world drift µr, and volatility σr

drt = µr(rt, t)dt+ σr(rt, t)dwt (42)

and that the prices of all bonds purely only depend on the short rate itself:

PT
t = PT

t (rt) (43)

Applying Ito’s lemma,

dPT
t =

(
∂PT

t

∂t
+ µr

∂PT
t

∂rt
+

1

2
σ2r
∂2PT

t

∂r2t

)
dt+

(
σr
∂PT

t

∂rt

)
dwt (44)

and using the definition of the market price of risk (Equation ??), one obtains

dPT
t

PT
t

= (rt + λtv(t, T )) dt+ v(t, T )dwt (45)

with

v(t, T ) =
σr(rt, t)

PT
t (rt)

∂PT
t (rt)

∂rt
(46)

Equating the drift in Equation 45 with the drift in Equation 44 one obtains
the PDE:

∂PT
t

∂t
+ (µr − λtσr)

∂PT
t

∂rt
+

1

2
σ2r
∂2PT

t

∂r2t
= rtP

T
t (47)

to be solved with the initial condition P T
T = 1. Therefore, in theory, in order

to specify the real-world dynamics of bond prices in this approach, one would
undertake an econometric analysis of the statistical properties of the short rate
(to determine µr and σr), and separately estimate a utility function for the
bond investors in order to derive the market price of risk (λt). This would tell
the trader everything that there is to know about the real-world dynamics of
the bond processes, and, in particular, all their prices today, P T

0 .
In practice, however, estimating the real world drift of the short rate and the

market price of risk are notoriously difficult tasks16. And as for the estimation

16To give an idea of the variety of conclusions reached in recent statistical studies of the
yield curve, Ait-Sahalia [Ait-Sahalia (1996)] finds that the short rate is close to a random
walk in the middle of its historical range (approximately between 4% and 17%), but mean
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from econometric data of the market price of risk (let alone its derivation from
first principles) the difficulties are understandably even greater:

In the light of these difficulties, a formally similar, but conceptually very
different, approach to using the Vasicek and CIR models was followed in practice
by making the following joint assumptions:

1. that the real-world drift of the short rate should be of the form

µr = k (θ − r) [Vasicek and CIR] (49)

2. that the volatility of the short rate should be of the form

σr = σ [Vasicek] (50)

σr = σ
√
r [CIR] (51)

3. that the market price of risk should be of the form

λt = λ [Vasicek] (52)

λt = λ
√
r [CIR] (53)

(In these equations, the quantities λ, σ, k and θ are all assumed to be con-
stant). These assumptions partly reflected common views about the dynamics
of rates (eg, the assumption of mean reversion), but were largely made in order
to allow analytical solution of the PDE 47.

If the model had been correctly specified, instead of estimating the real-
world quantities directly from the dynamics of the short rate and the investor’s
attitude towards risk, one could turn the approach upside down, and impute
these quantities from the observed prices of bonds17. This was the approach
universally adopted by practitioners.

Was there evidence that the model was correctly specified? The empirical
record was, not surprisingly, rather poor. If either model had been correctly
specified, cross-sectional estimates of the (combinations of) parameters charac-
terizing the models should be constant over time. Unfortunately, [Brown and Dybvig (1986)]

reverts strongly when outside this range. [Hamilton (1989)], [Garcia and Perron (1996)],
[Gray (1996)], [And and Bekaert (1998)], [Naik and Lee (1997)], [Bansal and Zhou (2002)]
among others instead argue that a switch behaviour, each with its reversion level and reversion
speed, is more appropriate. Then again, a number of authors (see, eg, [Ait-Sahalia (1996)],
[Chan et al. (1992)]) find evidence that the exponent β in the diffusion equation

dr = µrdt+ rβσdw (48)

should be greater than 1. As for the estimation of the market price of
risk, [Dai and Singleton (2000)], [Jagannathan et al (2000)], [Ahn et al. (2002)],
[Bansal and Zhou (2002)] and [Duffee (2002)] suggest that a complex specification may
be required to account for the observed yield curve dynamics.

17In reality, since the term in
∂PT

t
∂rt

in Equation 47 contains the expression [(kθ − λσ)− kr]

(Vasicek) or [kθ − (λσ + k)r] (CIR), the market price of risk and the reversion parameters k
and θ cannot be independently estimated using the implied approach. This has no impact,
however, on derivatives pricing, but switches the approach from absolute to relative pricing.
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and [Brown and Schafer (1994)] found the estimates to be not only non-stationary
over long periods of time (which could be compatible with a regime-switch view),
but also wildly fluctuating on a day-by-day basis18. Extensions of the CIR ap-
proach to several factors did not achieve better statistical corroboration: see,
eg, [Chen and Scott (1993)].

Apart from these difficulties (and from the well-known fact that the Vasicek
model allowed for negative interest rates), a more fundamental problem affected
these models. Because of their stationary nature (λ, σ, k and θ are all constants),
neither the Vasicek nor the CIR approach could recover for an arbitrary observed
yield curve, P T

0 . This was both the strength and the limitation of the approach:
it provided the prescriptive element alluded to in Section 1 (’if this is indeed
the dynamics of the short rate, this is what the prices of the bonds and their
volatilities should be’), thereby making relative-value bond trading applications
possible. When used to price derivatives, however, the inability to recover the
prices of the underlying bonds was clearly unsatisfactory. The shift in interest
in the trading community towards the pricing of interest-rate derivatives was
rapidly making the shortcomings to be more acutely felt than the advantages.

5.2 Reasons for the Good Performance of Short-Rate Mod-
els

The models presented so far belong, at least in spirit, to the ’absolute pricing
school’. Therefore they should have genuine explanatory power for the dynam-
ics of bond prices. Yet, the assumption that all that there is to know about a
future yield curve could be ’summarized’ in the short rate should have given rise
to some puzzlement. With HJM-aided insight, it is easy to see that the ’intrigu-
ing’ ability of the short rate to account in a satisfactory fashion for the yield
curve dynamics can be explained in rather prosaic econometric terms: numerous
studies (see, eg, [Martellini and Priaulet (2001)] for a recent review) have shown
that the first principal component obtained by orthogonalizing the correlation
matrix formed from changes in rates explains a high proportion (around 90%)
of the observed yield curve variability; and that the first eigenvector assigns ap-
proximately constant loadings to the various rates (ie, the first mode of variation
is the change in average level of the yield curve). This being the case, virtually
any rate could have been chosen as a reasonable proxy for the curve level, and
therefore the after-all-satisfactory performance of short-rate-based models had
little to do with any specific property of the short rate itself. The main ’virtue’
of short-rate-based approaches was simply that, given the implicit choice of the
money market account as numeraire enforced by computational trees, the short
rate provided the most expedient quantity to effect the discounting between
time horizons.

18It should be noted in passing that more stable results were obtained
[Brown and Schaefer (1991)] for the dynamics of the term structure of real rates, as
can be estimated from UK index-linked government bonds, suggesting that a one-factor
description of the CIR type could be adequate for real rates.
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The legacy of this class of models was therefore very strong, and it is there-
fore not surprising that the HJM framework, in which the short rate plays no
privileged role, was at the beginning nonetheless looked at from the rather in-
appropriate vantage point of ’what does all this entail for the dynamics of the
short rate?’. More about this later.

6 Phase 3: Second-Generation Yield Curve Mod-

els

6.1 Fitting the Yield Curve

A solution to the problem of how to recover an arbitrary exogenous set of
bond prices was offered by the Hull-and-White (HW in the following) approach
[Hull and White (1990)], [Hull and White (1993)], [Hull and White (1994a)], [Hull and White (1994a)].
The modification of the Vasicek equation is apparently minor (a similar treat-
ment can be applied to the CIR approach), and consists in making the reversion
level in the real-world dynamics, θ, of the short rate become time-dependent:

µr = k [θt − r] (54)

It is easy to show [Hull and White (1993)] that the introduction of these
extra degrees of freedom is exactly was is required in order to fit an arbitrary
exogenous yield curve. Interest-rate options could now be priced with the con-
fidence that the underlying bonds would certainly be priced correctly. Further-
more, the still-relatively-simple form for the drift ensured that, conditional on
a future realization of the short rate, rτ ,the corresponding future bond prices,
PT
τ , could be obtained analytically. This made the computational burden com-

mensurate with the computing power available on the trading desks in the mid
1990s. For this reason (ie, the need to compute a price in a trading time rang-
ing from a few seconds to a couple of minutes) the extended Vasicek approach
was generally preferred to be theoretically more appealing extended CIR model
(which ensures non-negative rates). Only a few years later this advantage would
no longer have been significant, but, by the time the CPU evolution caught up
with the pricing and hedging requirements of the extended CIR model, the
trading practice had moved in different directions.

6.2 Fitting the Caplet Volatilities

If an arbitrary yield curve could now be recovered by construction, the same
was not true for the the implied caplet volatilities: with a constant short-rate
volatility σr the model would prescribe what the term structure of volatilities
should look like (and it would therefore constitute a useful, if risky, tool for the
plain-vanilla option trader), but could not account for (describe) an exogenous
set of market volatilities. The main users of term-structure models, however,
were becoming traders in complex products, who would transact their vega
hedges buying and selling caplets and swaptions from the plain-vanilla desk.
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See the discussion in Sections 2.2 and 2.4. Therefore the inability to price
correctly the second-order hedging instruments was becoming the new source of
modelling dissatisfaction.

Sure enough, the same ’trick’ used to recover the market bond prices could
be played again, and Hull and White [Ref here] showed that, by also making
the volatility time-dependent, and exogenous term structure of volatilities could
now be recovered. The price to be paid, however, was to make the model even
more strongly non-stationary, thereby implying that future term structure of
volatilities would look very different from today’s. Despite the fact that Hull
andWhite themselves cautioned against taking this route [Ref here], their advice
often went unheeded by practitioners and the all-fitting approach was used in
market practice.

Did this lack of time-homogeneity matter, since after all the prices of the
hedging instruments today were correctly recovered? As discussed in Section
2 (see also Section EMH) the answer depends on one’s views regarding market
completeness, replicability, and the ability to ’lock-in’ parameters. In mak-
ing these choices the intellectual influence of the BS framework, and of the
no-arbitrage approach to pricing in general, where the realization of (some!)
real-world quantities becomes irrelevant, played an important part in making
traders focus on the recovery of today’s prices, and believe (or hope) that the
’model would take care of the rest’. In other words, traders had made an impres-
sive intellectual leap, and considerable effort, in grasping the counterintuitive
concept that one does not have to believe the market value of, say, a forward
rate to be econometrically plausible for ’locking it in’ by trading in discount
bonds (the only instruments needed to complete the market in FRAs). Such
had been the power and legacy of this result that the same conclusions were
extended to many much more complex situations, were the market complete-
ness should have been questioned much more carefully. Indeed, the over-strong
application of this ’irrelevance theorem’ still characterizes vast areas of deriva-
tives pricing19. Its critical reappraisal has been mainly undertaken in the wake
of the introduction of the LIBOR market models, that showed that a perfect fit
to bond and caplet prices can be obtained in an infinity of ways, and thereby
forced traders to choose among these alternative on the basis of criteria other
than recovery of market prices. This aspect is discussed further in Section 7.2.

6.3 Tree-Based Models

The extended models by Hull and White were chronologically not the first of
the yield-curve-fitting type to be used. Around the same time other models,
(Ho and Lee, [Black, Derman and Toy (1990)], [Black and Karasinski (1991)])
were introduced, which were also capable of reproducing by construction an
arbitrary exogenous set of current bond prices. These models were presented

19The difficulty of fitting equity smiles with time-stationary parameters, for instance, has
not stopped traders from using models (such as Dupire’s [Ref here] or Derman and Kani’s [Ref
here]) that imply very ’implausible’ future smile surfaces, but exactly recover (by constuction)
any exogneous set of plain-vanilla option prices
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in computational form, ie as an algorithmic construction to discount cashflows
in such a way that the discounted expectations of the terminal payoffs of pure
discount bonds would recover correctly their market prices. A common feature
of these computational approaches was that the description of the yield-curve
dynamics was now directly carried out in the risk-neutral measure, and no
attempt was made to address the issue of the real-world evolution of bond
prices.

Despite the fact that the work by [Harrison and Kreps (1979)] pre-dated
these developments, the martingale approach had not yet become common par-
lance in the derivatives-pricing area. Therefore the theoretical justification for
the algorithmic prescription was adequate (fundamentally, it hinged on the re-
covery of the observed market prices, assumed to be always arbitrage free), but
not particularly profound. Also the link with continuous-time models, for which
most of the theoretical results apply, was only made once the similarities be-
tween the computational trees and the finite-differences approaches were appre-
ciated: the tri-nomial trees immediately suggested an explicit-finite-differences
interpretation of the construction (see,eg, [Hull and White (1990)], building on
the work in [Brennan and Schawrtz (1978)] and [Schaefer (1977)]) and it took
little time to associate a limiting PDE, and to this an SDE. The fact that this
translation to the continuous-time vocabulary was very much an afterthought
explains why some important features of these models was initially overlooked.
The continuous-time equivalent of the BDT model, for instance, was shown by
Hull and White to be

d ln rt = [θt − f ′t (ψt − ln rt)] dt+ σr(t)dzt (55)

with

f ′t =
∂ lnσr(t)

∂t
(56)

This expression clearly shows that mean-reversion in the BDT model is
rather sui generis, since it can only be obtained if the volatility of the short
rate decays with time. More importantly, [Rebonato (1999b)] shows that this
feature is a direct consequence of the requirement that the computational tree
should be recombining. This ’technical’ constraint, indispensable in order to
avoid computationally intractable ’bushy’ trees, has no theoretical justification,
and actually brings about one of the most unpleasant features of the BDT model:
once the market prices of caplets are correctly recovered, the resulting short rate
volatility is in general indeed found to be time-decaying. This, however, implies
that future yield curves will be less and less volatile, with clear and unpleasant
consequences for the implied future hedge ratios.

Given these shortcomings, why was the BDT model so popular, and why
did it remain so for so long? Quite simply because it allows speedy and simple
calibration to caplet prices (or swaption prices). In a way, the very same reasons
that make the calibration so simple (see the discussion in [Rebonato and Kazziha (1997)]
or [Rebonato (1999b)]) should have made traders reluctant to use the BDT
model for pricing (and even more so for hedging). Nonetheless, the excessive
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reliance on the recovery of today’s prices discussed above often made the BDT
the model of choice.

The competitors of the day, mainly the HW and the BK models, implied a
much more palatable dynamics for the short rate: the BK model, for instance,
incorporated, in common with the BDT approach, a deterministic function of
time in the drift for the short rate, thereby allowing the correct pricing of
discount bonds; however it displayed a ’genuine’ mean-reverting behaviour, ie,
a mean reversion that did not depend on the time behaviour of the short-
rate volatility, and managed to do so on a recombining (although tri -nomial)
tree. As a consequence, an exact fit to caplet prices could be obtained while
implying a much more time-stationary term structure of volatilities. Despite
these important positive features, neither the HW nor the BK models ever
became as widely used as the BDT. As for the extended Vasicek model, the
ability to obtain analytically the future yield curve emanating for any given
node in the tree was a clear computational advantage. However, it was more
difficult to calibrate the model, either exactly (using a time dependent σr) or
approximately (using a constant σr), to caplet prices. Also, the possibility
of negative interest rates was seen as an undesirable feature of the model20.
The BK model did not suffer from negative rates, yet it was probably even
less widely used than the extended-Vasicek approach. The reasons for this
were the greater calibration difficulties, coupled with the over-strong belief that
exact recovery of the current observed market prices was all that mattered for
a model (at least in practice, if perhaps not in theory): it would be the LMM to
show traders that substantially different prices could be obtained for complex
products even when the market prices of bonds and caplets had been correctly
recovered ([Sidenius (2000)]).

6.3.1 Forward Induction

Despite the fact that this review is only marginally focussed on computational
techniques, it is important to mention briefly the introduction of the forward-
induction technique ([Jamshidian (1991)]). The idea allowed to calibrate trees
of the BDT, BK family to bond prices without retraversing portions of the tree
that had already been computed for bonds of shorter maturity. This apparently
minor ’trick’ turned the task of fitting a tree with n steps from a O(n3) to a
O(n2) problem. Related in these terms in a review of the conceptual strides
that were being accomplished in modelling the dynamics of interest rates, this
might seem not to amount to much. However, given the computing power of the
day, it is safe to say that, without forward induction, models such as the BDT
(that was to set a trading standard for a long time, at least for the pricing of

20In the mid 1990s, when these models were used, the levels of most yield curves ranged be-
tween 5% and 10%. The risk-adjusted probability of negative rates, espeically in the presence
of mean-reversion, was therefore extremely small, and the models were probably too harshly
penalized for what was at the time a rather minor blemish. At the time of writing, the short
end of the US$ yield curve is well below 2%, and these concerns would be better founded
today.

28



Bermudan swaptions) could not have been used for pricing and hedging, trading
practice would have been different and models would have developed differently.

6.4 The Dimensionality of the Underlying Drivers

6.4.1 The Industry Needs

Had an interest-rate-option trader been asked in the mid 1990s what the great-
est shortcoming of the then-mainstream models was, she would have probably
referred to their being almost invariably one-factor models. The reason for this
concern was the realization that the value of some of the most popular complex
derivatives products of the day was strongly dependent on the ability of different
forward rates to move out of lock-step21. At the time, little distinction was made
between instantaneous and terminal decorrelation (see. eg. [Rebonato (2002)]
for a detailed discussion), and little attention was paid to the ability of a time-
dependent forward rate volatility to produce decorrelation among rates, even in
the presence of perfect instantaneous correlation. This was probably due to the
fact that, for the pre-LIBOR-market-model pricing approaches, the volatility
was uniquely determined once a best- or exact fit to the caplet prices had been
carried out. As a consequence, after the fitting no ’volatility degrees of freedom’
were left to ensure, for instance, a realistic terminal de-correlation between rates.

Despite the fact that a (time-stationary) forward-rate volatility with a depen-
dence on the residual forward-rate maturity can be very effective in producing
decorrelation among rates (see, eg, [De Jong, Driessen and Pelsser (1999)]), the
natural reaction at the time was therefore to look for models with more than
one Brownian driver.

6.4.2 The Modelling Response

[Brennan and Schwartz (1982)], [Brennan and Schwartz (1983)] had presented
a two-factor model of the yield curve as early as the mid 1980s. However, the
industry needs and the increased computer power did not make their approach
a strongly desirable or viable solution until the early-to-mid 1990s. Their ap-
proach, conceptually similar to the Vasicek/CIR, was to posit that the term
structure is driven by two state variables, the short rate and the consol yield22,
L, of respective stochastic real-world dynamics given by

drt = µr(r, L)dt+ σr(r, L, t)dwr (57)

dLt = µL(r, L)dt+ σL(r, L, t)dwL (58)

21An example of these products were indexed-principal swaps, which were aggrressively and
successfully marketed in the mid 1990s to proxy hedge the exposure arising from the pre-
payment risk of US$ mortgage-backed securities. The notional of this long-dated products
was prescribed to be a function of the path of a very short rate (eg, 6-month LIBOR), thereby
introducing a dependence of the value of the swap on the correlation between short and long
rates.

22the consol yield, L, is the yield paid by a consol (irredimable) bond. If the coupon paid
by the bond bond is c it is easy to show that the consol yield is given by c/L.
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The idea was particularly appealing, because several principal-component-
analysis studies had by then shown that the slope of the yield curve was the
most important mode of deformation after the level, and that together these
two eigenvectors, ξ1 and ξ2, that could be proxied by

ξ1 ' αr + L α > 0 (59)

ξ2 ' βL− r β > 0 (60)

were able to account for more than 90% of the observed yield curve variabil-
ity.

From Equations 57 and 58 the reasoning then followed the usual route: mar-
ket completeness and absence of arbitrage were invoked, leading to the intro-
duction of two market prices of risk (λr(r, L, t) and λL(r, L, t)): see Equations
9 and 8 in Section 3.2. One of these two quantities, λr(r, L, t), was then elimi-
nated by invoking the fact that one of the securities in the economy (the consol
bond) has a price that does not depend on the short rate (it is simply given by
1/L), and therefore its real-world return cannot depend on r: µL(r, L) = µL(L).
Some algebraic manipulations then yielded for the consol market price of risk
(that, to avoid arbitrage, must apply to any security)

λL(r, L, t) =
rL− L2 + µL

σL
− σL

L
(61)

and the resulting associated PDE only contained the market price of risk for
the short rate.

Once again at this point a ’fundamental’ approach could in theory have been
followed, by estimating the real-world dynamics of the driving factors and by
deriving from a utility function the required market prices of short-rate risk. In
practice, the ’implied’ (cross-sectional) approach was employed, by best-fitting
the model ’parameters’ to the prices of the observed bonds. Since no closed-
form solutions were available, the match to bond prices had to be carried out by
solving a relatively time-consuming two-dimensional finite-differences method.
This is the reason why the approach was not seriously considered for almost
a decade after its appearance in the literature. Unfortunately, apart from the
numerical burden, other, there were more fundamental problems.

6.4.3 Stability Problems and Solutions

Following the favourite numerical route of the time, the Brennan and Schwartz
approach had been computationally presented as an application of the tree/explicit-
finite-differences-grid technology, and very few traders or researchers tried to
apply a Monte Carlo (forward induction) methodology to it. Had they done
so, they would have immediately realized that the coupled dynamic system of
Equations 57 and 58 was dynamically unstable. This realization was first made
precise by [Hogan (1993)], who showed that, if the dynamics of the yield curve
is described by Equations of the type 57 and 58, and the short rate drift has
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the Brennan-and-Schwartz functional form, either r or L will reach infinity with
probability one in finite time.

This problem was solved by [Rebonato (1997)], who, by working directly
in the risk-neutral measure, invoked the fact that the reciprocal of the consol
yield, being a traded asset, had to grow at the risk-less rate to eliminate one
market price of risk, and then ensured a perfect pricing of the market bonds by
introducing, in the spirit of Hull and White, a time-dependent function θ in the
drift of the short rate23.

Other two-factor models were appearing which did not suffer from these
drawbacks. In particular, the two-factor model by [?] implied a stable dynamics
with desirable features such as stationarity, while allowing for a good and effi-
cient calibration to many observed term structures of volatilities. More pressing
practical problems were however appearing, that brought about the demise of
this line of research.

6.4.4 Poor Instantaneous Decorrelation

Recall that the motivation behind the growing interest in two-factor models was
the perceived need to account for rate decorrelation by increasing the dimension-
ality of the underlying term structure model. [Rebonato and Cooper (1995)],
however, showed that low-factor models display intrinsic limitations in pro-
ducing rapid de-correlation between contiguous forward rates, and that these
limitations are largely independent of the details of the model. In particular,
it was shown that, under very general conditions, for a two-factor model the
correlation between two instantaneous forward rates would go to zero with the
difference in maturities as a cosine law, thereby effectively negating the very
effect (rapid decorrelation between contiguous forward rates) that the approach
was seeking to address.

Sure enough, by adding a sufficiently large number of factors, a more plausi-
ble behaviour for the decorrelation could be obtained, but the marginal contri-
bution of what are effectively higher and higher Fourier frequencies was shown
to be rather slow, and the numerical approaches of the day were still wedded
to lattice-based implementations (at least for compound options). The curse of
dimensionality was therefore rendering this route de facto impracticable.

23Despite the fact that the resulting dynamical equations were now stable, objections of a
different nature were raised to this type of approach by [Duffie, Ma and Yong (1995)], who
questioned the self-consistency of all approaches based on the joint specification of the dy-
namcis for the short rate and the consol yield. For the approach to be self-consistent, in fact,
the price of a consol bond, C, paying $dt every infinitesimal time interval, must be given by

C0 = E0

[∫
∞

0

exp

(
−

∫ t

0

rsds

)
dt

]

showing that there must be a fundamental link between the price and the dynamics of the
short rate and of the consol yield. It is therefore not a priori clear to what extent the dynamcis
of r and L can be specified without taking this link into account.
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6.4.5 Longstaff and Schwartz

Despite the fact that the model by [Longstaff and Schwartz (1992)] conceptually
fits in the set of the much-earlier equilibrium approaches that start from joint
prescription of the market-price-of-risk vector and of the real-world dynamics
of the state variables, it chronologically belongs to this period. The Authors,
possibly taking up a suggestion by [Dybvig (1998)], chose the short rate and its
instantaneous volatility as the driving state variables to describe the dynamics of
the yield curve, and were able to obtain closed-form solutions for bond prices (in
terms of the non-central chi-squared distribution). This made the calibration
and implementation of the model easier to achieve. When used for trading
purposes, the ’implied’ procedure described for the CIR/Vasicek models was
invariably employed.

Very good fits could be obtained to a variety of market yield curves, some
of very complex shape, and the fitted short rate and volatility were observed
to have the correct order of magnitude and to change rather smoothly with the
fitting date (see the discussion in [Rebonato (1998)], suggesting that the model
might be better-specified than the CIR/Vasicek models of the same family).
There were, however, some problems: to begin with, with the parameters ob-
tained by the best fit to market data the correlation between the short rate
and its volatility almost invariably turned out to be very high (eg 90% to 99%),
implying that the model was effectively very close to being one-factor. See
[Clewlow and Strickland (1994)] and the reply by [Longstaff and Schwarz (1994)].
Furthermore, [Rebonato (1998)] studied the predicted changes in yields of all
maturities once the model was calibrated and the observed market changes in
(proxies of) the short rate and its volatility were fed as input. (Clearly, good pre-
dictive power is necessary for an effective ’in-model’ hedging). The results were
mixed at best. Finally, and almost paradoxically, the fact that the LS model
would produce smiles was at the time regarded as a drawback. After a period
of great interest, the approach was therefore almost completely abandoned by
traders.

6.4.6 Unresolved Modelling Issues

At the close of the second phase in interest-rate derivatives pricing, the aware-
ness was growing that

• terminal de-correlation is important,

• low-dimensionality models are not effective in producing appreciable in-
stantaneous decorrelation,

• once the market caplet prices have been fitted, short-rate-based approaches
leave no degrees of freedom to specify a time dependence for the volatility
that could produce a realistic terminal decorrelation.

This feeling of impasse was to be broken by the growing acceptance among
the trading community of the HJM approach, reviewed below.
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7 Phase 4: Third-Generation Yield Curve Mod-
els

With few exceptions (see, eg, [Duffie and Kan (1996)]), most of the term-structure
models introduced until the work by [Heath et al (1989)], [Heath et al (1992)]
were (Markov) models driven by the short rate (and, possibly, by another state
variable). The Markov property had, up to this point, almost been ’taken for
granted’, the more so because all the recombining-tree-based computational
techniques of the day relied on the full yield curve for maturities T ≥ t be-
ing known (either analytically or numerically) once the short rate process and
its realization up to time t was assigned. Actually, such was the reliance on
backward induction carried out on a tree (ideally suited to compound-option
problems, but ill-designed to deal with path-dependent products), that pa-
pers [Hull and White (1994a)] were written showing how to deal with path-
dependent payoffs while still using recombining trees24.

Models, until HJM, were almost invariably associated with a recombining
computational lattice25, with a Markovian process for the short rate, and with
a finite-differences-implied PDE/SDE. Indeed, such had been the reluctance
to use forward induction and Monte Carlo techniques that it had hidden for
so long the glaringly obvious instabilities of the [Brennan and Schawrtz (1978)]
approach. However, the third-generation yield-curve models, of which the HJM
was the prototype, were in general intrinsically non-Markovian, and therefore
did not lend themselves to mapping onto a low-dimensional recombing tree.
This would have made forward-induction the natural computational choice, but
the evaluation of the prices of derivatives using Monte-Carlo techniques, which
can readily handle high-dimensionality Markov processes, despite having been
introduced as early as 1977 by [Boyle (1977)], was still regarded as a ’tool of last
resort’, to be tried when everything else failed. As for the variance-reduction
techniques of the day, there was on offer little more than the use of antithetical
or control variates [Hull and White (1988)], and some moment matching.

Almost coincidentally, a number of papers began to appear in this period,
which introduced high-dimensional low-discrepancy sequences into the deriva-
tives pricing arena [Ref here]. Despite the fact that these paper were originally
introduced with equity/FX applications in mind, the timing could not have been
better, because it was soon realized that they provided the tool needed to give
a new impetus to interest-rate modelling.

24The need to deal with path-dependent payoffs was strongly felt because of the popularity
at the time of indexed-principal swaps mentioned above. In order to mimic burn-out effects
of mortgage-backed-securities their notional was made to depend on the path of a reference
(index) short rate.

25[Nelson and Ramaswamy (1990)] had in the meantime addressed from a solid mathemat-
ical point of view the relevant convergence questions raised by the use of these intuitiviley
appealing tools.
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7.1 The HJM Results

The HJM no-arbitrage conditions have been presented in Equation 21. The
main results of the approach can be summarized as follows:

1. the instantaneous forward rates can be used as the fundamental building
blocks of the yield curve dynamics. Their exogenous specification ensures
that a market yield curve can always be recovered;

2. all short-rate-based or bond-price-based models, as long as free of arbi-
trage, can be regarded as special cases of the HJM approach (see the
discussion Section 3.2).

3. the no-arbitrage drifts of the forward rates are uniquely specified once their
volatilities and correlations are assigned. Therefore model specification is
exactly equivalent to these quantities. The apparent ability to specify
independently drifts and volatilities enjoyed by, say, short rate models, is
therefore purely a consequence of using a ’set of co-ordinates’ that obscures
the essential simplicity of the no-arbitrage yield curve dynamics

4. even if a single factor shocks the forward rates the resulting dynamics
is no longer Markovian (an up-and-down shock does not give rise to the
same yield curve as a down-and-up shock). As a consequence, recombining
trees no longer offer a suitable computational tool, and, in particular, the
process for the short rate is in general path-dependent26.

At this stage, apart from the conceptual elegance and generality, the ad-
vantage of using the HJM was from obvious. In particular, since instantaneous
forward rates are not directly observable, nor linked to the price of any traded
instrument, the calibration of the HJM model, at least in this first incarnation,
was no simpler than the calibration of a bond-price model, and certainly more
complex than some of the then-popular short-rate models.

Traders were faced with another difficulty: since the market standard for
the pricing of caplets was still linked to the (log-normal-forward-rates) Black
model, it would have been natural to impose a log-normal behaviour to the
instantaneous forward rates of the HJM approach. Unfortunately, log-normal
forward rates were guaranteed to reach infinity with probability one in a finite
time (the ’log-normal explosion’) and one of the most natural modelling choices
therefore appeared to be precluded. Remarkably inelegant and artificial ways
to circumvent this problem were offered (see, eg, ), but this situation of impasse
was to be satisfactorily broken only by the introduction of the LIBOR market
model.

26[Carverhill A (1992)] showed which specifications of the forward rate volatilities are com-
patible with a Markovian short rate.
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7.2 The LIBOR Market Models

One of the main goals of the LIBORmarket model is to recover exactly the prices
of caplets as produced by the Black model. As discussed above, the application
of the Black model to the pricing of caplets (and swaptions) was originally
done on a ’heuristic’ basis, and only subsequently rationalized and justified in
financially and mathematically acceptable terms. Doing so was important in
order to ensure the logical consistence of the approach, but was not a very
demanding task, since each individual caplet (or swaption) was considered in
isolation, and priced in its own (terminal) pricing measure. All caplets and
swaptions were therefore independently and simultaneously assumed to be log-
normally distributed, even when this constituted a logical impossibility27.

Such an approach is adequate to price caplets and swaptions in isolation.
However, a complex product is, be definition, an instrument whose payoff de-
pends on the joint probability of realization of several state variables. The LI-
BOR market model was therefore designed so as to recover exactly the market-
standard (Black) prices of all the compatibly log-normal caplets while specifying
a coherent and desirable dynamics for all the underlying forward rates.

Looked at in this manner, any model that reproduces exactly the prices of all
the relevant plain-vanilla instruments can be regarded as a very high dimensional
copula function than conjoins the various exogenous (ie market given) marginal
distributions associated with the individual forward rates. So, if one works in
terms of logarithm of forward rates, the LIBOR market model is approximately
equivalent to a Gaussian copula.

The reason why it is not exactly equivalent to a Gaussian copula is important.
In order to price a product whose payoff depends on the joint realizations of
several forward rates, one has to work under a common pricing measure. The
price to be paid in order to recover exactly under the same measure all the
Black market prices of caplets is that, if one wants to prevent the possibility of
arbitrage, the joint distribution of the logarithms of the forward rates can no
longer be retained to be (exactly) a multi-variate normal28. As a consequence,
closed-form solutions for the evolution of the forward rate can no longer be
obtained, and the resulting yield-curve dynamics is no longer Markovian.

It must be emphasized that a different strategy could have been employed.
One could have arbitrarily chosen a numeraire and an associated common pric-
ing measure. One could have then imposed that, under this common measure,
all the marginal distributions should be exactly normal and created a model by
imposing absence of arbitrage and requiring that the conjoining copula should
be exactly Gaussian. This could have been a viable modelling route, but the
consequence would have been that the market prices of caplets would no longer
have been exactly recovered. Because of the discussion in section 2, however,

27Nothing prevents a set of same-tenor and non-overlapping forward-rates to be simulta-
neosuly log-normally distributed. However, if a set of caplets is assumed to be log-normally
distributed, the swap rate associated with them cannot be also log-normal, nor can, say,
6-month forward rates be log-normally distributed if 3-month forward rates are.

28The reason for this is that the no-arbirage drifts of the forward rates contain, for a general
choice of numeriare, the state veraibles themselves. See Equations 64 and 65.
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there is an intrinsic advantage for complex traders in their being able to recover
the plain-vanilla prices, to some extent almost irrespective of the quality of the
market-agreed model, and this logically possible route was not followed.

The strategy employed to develop the LMM approach can be reconstructed
as follows. The first step is to recognize that the payoffs of most interest-rate
derivatives products depend on the joint realization of a finite number of rates at
pre-specified times. Therefore the pricing of LIBOR contingent claims depends
on the continuous-time evolution of discrete-tenor froward rates, F (t, T, T + τ),

F (t, T, T + τ) = F T
t =

[
P (t, T )

P (t, T + τ)
− 1

]
1

τ
(62)

We saw in Section 3 that the quantities that it is natural to model as strictly
positive semi-martingales spot or forward bond prices or spot or forward rates.
We also saw, however, that these quantities are inter-related, and, because of
Ito’s lemma, the volatilities of three sets of variables are fully specified once the
volatilities of any other set of variables are given. Furthermore, (again, because
of Ito’s lemma) if the volatilities of the elements of any one set are purely
deterministic functions of time, the volatilities of all the elements of the other
three sets will, in general, contain the state variables themselves, and therefore
be stochastic. So, this modelling framework prepares the setting for a whole
class of no-arbitrage specifications (’models’) of the yield curve dynamics, each
one associated with a choice for the covariance structure relating the rates or
prices in any one set of variables.

This way of looking at the LMM is particularly useful because its different
’incarnations’ can be easily and naturally understood in this light. The FRA-
based LIBORmarket model (see, eg, [Brace, Gatarek and Musiela (1995)], [Brace, Gatarek and Musiela (1996)],
[Musiela and Rutkowski (1997)]) for instance, is obtained by imposing that the
volatilities of forward rates should be deterministic functions of time; the swap-
rate version (see [Jamshidian (1997)])is obtained by identifying the strictly pos-
itive semi-martingales with the forward swap rates and imposing that their

volatility vector should be deterministic; another version of the model (which
now however loses the label ’market’) would be obtained by identifying the semi-
martingalesmX(t) with the forward bond prices (see [Musiela and Rutkowski (1997b)]),
and imposing that these should have a deterministic volatility. With the first
choice, caplet (but not swaption) prices as produced by the model will be equal
to their Black values; with the second choice swaption (but not caplet) prices
will be in accordance with the Black formula; with the third choice neither will
(but bond option prices will be Black-consistent).

As mentioned above, forward and swap rates cannot be simultaneously log-
normal. Once, a forward- or swap-rate-based version of the LMM is chosen, the
Black prices of the complementary associated plain-vanilla options (swaptions
or caplets, respectively) cannot be simultaneously recovered. The ’luck of the
model’ stemmed from the fact that the pricing discrepancies arising from lack of
simultaneous log-normality are in practice very small (see, eg, Rebonato (1998)),
and certainly far too subtle to be arbitraged away. Therefore the logically
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inconsistent Black market practice can be retained, and at the same time it can
be not too severely at odds with the outputs of the logically coherent LIBOR
market model.

7.2.1 Calibration of the LMM

The no-arbitrage dynamics of discrete-tenor forward rates, F , in a multi-factor
LIBOR market model in terms of n orthogonal Brownian motions can be de-
scribed as follows:

dFTi
t

FTi
t

= µidt+ σTit
∑

k=1,n

bikdz
t
k (63)

with the drift of the i-th forward rate depending on the discount bond, P
Tj
t ,

used as common numeraire, and given by

µi = σTit

i∑

k=j+1

σTkt ρtikF
Tk
t τk

1 + FTk
t τk

if i > j (64)

µi = −σTit
j∑

k=i+1

σTkt ρtikF
Tk
t τk

1 + FTk
t τk

if i < j (65)

µi = 0 if i = j

It is easy to see that, if the market caplets are priced on the basis of the Black
formula with implied volatility σTiBlack, their recovery will always be guaranteed
as long as

σTiBlack =

√
1

Ti

∫ Ti

0

(σTku )2du (66)

and ∑

k=1,n

(bik)
2 = 1 (67)

Equations 66 and 67 clearly show that recovery of any exogenous set of caplet
prices is not only always achievable, but that one can do so in an infinity of
ways. These equations also provide a link between the volatility of and the
correlation among the forward rates: since one can easily derive that

ρij =
∑

k=1,n

bikbkj (68)

to each caplet-recovering specification of the instantaneous volatilities (ie, to
each given matrix {bik} such that Equation 67 is satisfied) there corresponds one
and only one correlation matrix. This fact was exploited by [Rebonato (1999a)]
in order to obtain the ’best’ correlation matrix compatible with a chosen number
of factors and with the exact recovery of the caplet prices. More generally, since
Equation 66 underdetermines the instantaneous volatility function, the trader
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now has additional degrees of freedom to recover other desirable features of the
yield curve evolution. For instance, the trader might find desirable that the
evolution of the term structure of volatilities should be as time homogeneous as
possible. This can be achieved by starting from a function σTk

t of the form:

σTkt = g(Tk)h(Tk − t) (69)

If the forward-rate-specific term g(Tk) were constant, the evolution of the term
structure of volatilities would be exactly time homogeneous. In general, exact
pricing of market caplets cannot be achieved by imposing σTk

t = h(Tk − t), but,
given a parametric form h(Tk−t; {α}), the parameters {α} can be chosen in such
as way that the function g(Tk) is as close to unity as possible, thereby ensuring
that the evolution of the term structure of volatilities should be as time homo-
geneous as possible given that all the market caplet prices have been recovered.
See [Rebonato (2002)] for a detailed discussion29. Useful parametric forms for
the function h(Tk − t) are discussed in [Rebonato (1999)], [Rebonato (2002)]
and [Brigo and Mercurio (2001)].

Notice the difference with short-rate based approaches, where the fit to the
market prices of caplets, if at all possible, tends to exhaust all of the available
degrees of freedom, thereby leaving the option trader with no way to express
a trading view on the very quantity (the evolution of the term structure of
volatilities) in which she is expected to make a market. This feature arguably
constitutes one of the strongest points of the LMM. Equally important were the
following:

• despite the fact that the drifts of the forward rates contain the forward
rates themselves (see Equations 64 and 65), and the latter are there-
fore not log-normally distributed, simple approximations were found (see
[Hunter, Jaeckel and Joshi (2001)], based on work by [Kloeden and Platen (1992)],
or [Pietersz et al. (2002)], [Kurbanmuradov et al. (2002)]) for their evolu-
tion over time periods as long as ten-to-thirty years;

• a simple but accurate approximation was provided to link the model-
implied prices of swaptions for a set of forward rate volatilities (??, [Hull and White (2000b)],
[Jaeckel and Rebonato (2000)], Latest Geneva SchCoff)

• a systematic methodology was presented to ensure that the best possible
fit (given the chosen dimensionality of the LMM) could be achieved to
an exogenous correlation matrix, while exactly recovering at the same the
prices of caplets [Rebonato (1999a)];

• it was shown ([Rebonato (2000)], [Rebonato (2002)]) how to recover (al-
most) exactly an exogenous set of prices of co-terminal swaptions, while
obtaining at the same time an almost time-homogeneous evolution of the

29Whenever the quantitiy (σ
Ti
Black

)2Ti is not a strictly increasing function of Ti it is easy
to show ([Rebonato (2002)]) that in a Black world the evolution of the term structure of
volatilities cannot be time homogeneous.
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swaption matrix and the best possible fit (again, given the chosen dimen-
sionality of the model);

• [Brace and Womersley (2000)] showed how to recover simultaneously caplet
and swaption prices.

7.3 The Early-Exercise Problem

The greatest stumbling block in the acceptance of the LMM was at this stage
the evaluation of compound options. This was an industry problem that could
not easily be ignored, since Bermudan swaptions are possibly the most com-
mon exotic products. More generally, the search for greater and greater ’yield
advantage’ to issuers and investors naturally leads to the granting to the in-
vestment bank who receive the optionality in exchange more and more powerful
options. These could be, for instance, the right to call a complex structure not
on a single pre-specified date, but on any of a set of possible dates, thereby
introducing compound optionality. This is indeed the route that has lead from
multi-callable zero-coupon swaptions to power reverse dual swaps.

It was the luck of the LMM that, in the very same years when it was in-
troduced, techniques were being developed from independent research outside
the interest-rate arena to deal with the problem of American options with many
underlyings. These results, often, but not always, based on the estimation
of the early-exercise boundary, were quickly adapted to the LIBOR setting,
. Work in this area include [Broadie and Glasserman (1997)], (which devel-
ops lower and upper bounds via simulation), [Broadie and Glasserman (1997b)],
[Broadie, Glasserman and Jain (1997)], (a simulated-tree approach which works
very well for Bermudan swaptions with a small number of exercise opportuni-
ties) [Jaeckel (2000)], [Andersen and Broadie (2001)], [Broadie and Cao (2003)]
(these papers deal with computing upper bounds for option prices given a sub-
optimal exercise policy), and [Joshi and Theis (2002)].

The importance of these computational techniques cannot be over-emphasized:
as in the earlier case of forward-induction with trees, they made all the differ-
ence between an theoretically-appealing model and a viable market standard.
This state of affairs explains why extensions of the existing models to account
for smiles has taken as a starting point an approach (the LMM) - which, after
all, produces in its original formulation, no smiles at all - rather than any of
the many models that naturally give rise to a smile, sometimes of very desirable
nature30.

8 Variations on the LMM Theme

Following, or contemporary to, the introduction of the LMM, other modelling
approaches were developed. The main ’drawbacks’ of the LMM that they at-

30I argue in section 10 that part of the smile can be accounted for by a market-perceived
deviation from log-normality of the forward rates. Square-root or mean-reverting Gaussian
short rate processes could have provided a good starting point in this direction.
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tempted to improve upon were:

• the imperfect simultaneous recovery of the Black cap and swaption prices

• the lack of recombination onto a low-dimensionality lattice of the high-
dimensional Markov process required to describe the discrete yield curve.

Of these two perceived shortcomings, the former was much the milder, since
it became apparent quite soon (see, eg, [Rebonato (1999)]) that the incompat-
ibility of the simultaneous log-normal assumption for forward and swap rates
had a very mild pricing impact. The first computational drawback, however,
was more acutely felt, since Bermudan swaptions (which require the evaluation
of compound optionality) are one of the most widely traded exotic products.
The solutions to these problems are briefly discussed below. It should be said,
however, that the increase calibration burden required was in general perceived
to be too high a price to pay, especially as the Monte Carlo techniques to esti-
mate the early-exercise boundary (applicable with the easy-to-calibrate LMM)
became more and more common and efficient.

8.1 Low-Dimensionality Versions of the HJM Model

The simplest approach to tackling the high dimensionality of the Markov pro-
cesses that describe the HJM evolution of the yield curve (and the conse-
quent explosion of the associated bushy trees) is perhaps the one proposed
by [Li et al (1995)] and [Ritchen et al. (1995)]. They prove that necessary and
sufficient condition for the price of any interest-rate derivative to be function of
a two-dimensional Markov process, χ = χ(r,Ψ), is that the volatility, σT

t , of the
instantaneous forward rates should have the separable of the form:

σTt = gt exp−
∫ T

t

hudu (70)

with g() an adapted process and ht a deterministic function of time. If this
is the case, the second factor that, together with the short rate fully describes
the dynamics can then be shown to be given by the total variance up to time t
of the forward rate of expiry t:

Ψt =

∫ t

0

(
σtu
)2
du (71)

Closed-form expressions for the bond prices can then be obtained as a func-
tion of r and Ψ. Differentiating Equation 19 with rt = f(t, t) then shows that
the function g that appears in the definition (Equation 70) of the forward-rate
volatility σTt is just the volatility of the short rate:

drt = µr(t)dt+ gtdzt (72)

The approach is interesting, especially if g() is taken to be a function of
the short rate (for some choices of the functional dependence on r, for in-
stance, an important component of the interest-rate smile can be modelled).
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[Rebonato (2002)], however, discusses why the plausible choice 70 may not al-
ways be desirable.

The approach just described ensures that the dynamics of the instantaneous
forward rate should be driven by a low-dimensionality Markov process, thereby
ensuring recombination of the computational tree, and a reasonably easy eval-
uation of compound (eg Bermudan) option. Based as it was on instantaneous
forward rates, however, this approach still left substantial calibration problems.
The challenge was taken up in the discrete-forward rate setting by the more
general models described below.

8.2 Low-Dimensionality Markov Market Models

There is no better example of how model development is driven by the joint
requirements of calibration (recovery of the prices of plain-vanilla options) and
ease of computation than the Markov-Functional (MF) models. The idea [Pelsser (2000)]
is to take a low-dimensionality Markov process, xt, and to define its relation-
ships to the market prices in such a way that they assume the market-implied
distribution. More precisely, let QN+1 be the measure under which the last of a
set of spanning forward rates is a martingale, (the ’terminal’ measure) and let

dwQN +1

be the increment of a standard Brownian motion in this measure. A
simple choice for xt could be

dxt = s(t)dwQN +1

t (73)

(with s(t) a deterministic function of time). Therefore, with this choice xt
is both conditionally and unconditionally Gaussian (see [Nielsen (1999)]), with
probability density φ()31. A Markov model is then built by requiring that the
bond prices, P T

t should be a monotonic function of the Markov process xt:

PT
t = PT

t (xt) (74)

Let us denote by P
TN+1

t the price of the bond maturing at the payoff time of
the last forward rate. Assuming this process to be known, the functional form
of all the other bonds, P Ti

t , i ≤ N + 1 is given by

PTi
t

P
TN+1

t

= EQN +1

[
PTi
Ti

P
TN+1

Ti

|Ft

]
= EQN +1

[
1

P
TN+1

Ti

|Ft

]
=

∫
∞

−∞

1

P
TN+1

Ti
(u)

φ(u|xt)du (75)

Given a process for xt, the model becomes fully specified by choosing a
functional form for the discount bond. This choice can be made so as to en-
sure that the prices of caplets (LIBOR MF model) or swaptions (swap MF

31The ’old’ short rate models were clearly a special case of a MF model, where the one-
dimensional Markov driver is the short rate. In particular, if the process for the short rate
was assumed to be of the Ornstein-Uhlenbeck type, as in the Vasicek model, the density φ()
would be known to be conditionally Gaussian.
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model) are correctly recovered [Pelsser (2000)]. These prices might, but need
not, be compatible with the Black formula32. The recovery of their marginal
distributions could be achieved for a variety of functional choices for xt. The
quality of a model, however, is characterized not just by its ability to recover
prices today (recovery of the marginal distributions), but also by its ability to
specify in a desirable way the future prices (specification of conditional distri-
butions). The functional form of the driving Markov process should therefore
be chosen in such a way as to exploit these degrees of freedom in the most de-
sirable way (eg, to achieve mean reversion, time homogeneity, etc). A variety
of procedures (either parametric, semi- or non-parametric) are possible. See
[Hunt and Kennedy (2000)] or [Pelsser (2000)] for details.

The main advantage of the model is the fact that it can be mapped onto
a recombining lattice, thereby facilitating the evaluation of compound options
(Bermudan swaptions in primis, especially in the swap-rate implementation).
The price to be paid for this is that calibration to the market prices of caplets
requires the solution of a non-linear integral equation, which must be solved
numerically. Also, the curse of dimensionality constrains the Markov process
to be one- or at most two-dimensional. Whether this limitation is important
for the pricing of Bermudan swaptions is a hotly debated topic, briefly touched
upon in the following sections.

9 Other Approaches

9.1 Positive-Rate Models

In this approach ([Flesaker and Hughston (1996)], [Rutkowski (1997b)]) the pric-
ing kernel (see Section 2.4) becomes the fundamental quantity that drives the
dynamics of bonds and rates. The starting point is the real-world (objective-
measure) Equation 26. After defining Vk(t, T ) ≡ vk(t, T ) − λtk and V (t, T ) ≡
v(t, T )− λt, this can be re-written as:

PT
t ρt
Bt
0

= PT
0 exp



∫ t

0


 ∑

k=1,n

Vk(s, T )


 dws

k −
1

2

∫ t

0

[V (s, T )]
2
ds


 (76)

32In recovering exactly today’s prices of caplets and swaptions, the MF models achieve
something that the LMM cannot. The extra ’degrees of freedom’ stem from the fact that the
LMM requires not only that today’s distribution of forward or swap rates should be log-normal
(as the MF model does), but also that, in the associated terminal or swaption measure, forward
or swap rates should be log-normal martingales. This is not required by the MF approach,
which only recovers a log-normal marginal distribution for the forward (swap) rates, and the
martingale property. As a consequence, however, future conditional distributions will not, in
general, be log-normal, and the future conditional prices of caplets and European swaptions
will not be correclty recovered. See Section for a discussion of the importance of this point.
Luckily, the deviation from log-normality of swap rates given log-normal forward rates (or
vice versa) is sufficiently small that the ’deformation’ of the log-normal dynamics implied by
the MF model is often small.
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Setting T = t allows to solve for
PT
t ρt
Bt

0
(because P t

t = 1):

ρt
Bt
0

= P t
0 exp



∫ t

0


 ∑

k=1,n

Vk(s, t)


 dws

k −
1

2

∫ t

0

[V (s, t)]
2
ds


 (77)

Therefore Equation 76 becomes

PT
t =

PT
0 exp

[∫ t

0

(∑
k=1,n Vk(s, T )

)
dws

k − 1
2

∫ t

0
[V (s, T )]

2
ds
]

P t
0 exp

[∫ t

0

(∑
k=1,n Vk(s, t)

)
dws

k − 1
2

∫ t

0
[V (s, t)]

2
ds
] (78)

The numerator depends on t and T , and can therefore be designated as ∆T
t

and, for a given T , is an exponential martingale, initialized at ∆T
0 = PT

0 . The
denominator only depends on t, and can be written as ∆t

t. Therefore

PT
t =

∆T
t

∆t
t

(79)

If one makes the (reasonable) assumption that

lim
T→∞

PT
t = 0 (80)

it follows that
lim

T→∞
∆T

t = 0 (81)

and therefore

∆T
t = −

∫
∞

T

∂∆s
t

∂s
ds (82)

Given the initialization condition ∆t
0 = P t

0 and the fact that
∂∆s

t

∂s
is a mar-

tingale, one can write

MT
t =

∂∆s
t

∂s
∂∆s

0

∂s

=
∂∆s

t

∂s
∂P s

0

∂s

(83)

with MT
0 = 1. Therefore ∆T

t , the quantity that characterizes the dynamics
of the bond prices (the ’model’) can be written as

∆T
t = −

∫
∞

T

∂P s
0

∂s
Ms

t ds (84)

Positivity of future rates is ensured if the family of martingales MT
t are

positive (and so are the initial rates). This constitutes a ’positive interest’
representation of a class of general interest rate models. Each choice for the
family of martingales MT

t specifies one particular model.
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9.1.1 Rational Models

Rational models [Flesaker and Hughston (1996)] are obtained by prescribing
that MT

t should be of the form:

MT
t = αT + βTMt (85)

with αt and βt positive, deterministic functions satisfying αt+ βt = 1, and
Mt any positive martingale such that M0 = 1. It is then easy to show that

PT
t =

∆T
t

∆t
t

=
FT +GTMt

Ft +GtMt

(86)

for FT and GT positive decreasing functions satisfying FT + GT = PT
0 .

For the current term structure to be recovered it is enough to require that the
functions F and G satisfy

PT
0 =

FT +GT

F0 +G0
(87)

The rational-model route is appealing for its relative simplicity, but suffers
from the drawback that it can be shown ([Babbs (1997)]) that the bond prices
and the short rate are constrained to lie between

FT

Ft

≥ PT
t ≥

GT

Gt

(88)

and

−G
′

t

Gt

≥ rt ≥ −
F ′t
Ft

(89)

This can easily make calibration to market data impossible. This shortcom-
ing is not shared, however, by the potential approach.

9.1.2 Potential Models

The potential model adapts the approach by [Constantinides (1992)], which
takes the pricing kernel (relative risk price density) positive super-martingale ρt
(Equation 25)

ρt = exp


−

∫ t

0

∑

k=1,n

λskdw
s
k −

1

2

∫ t

0

λ2sds




as the fundamental state variable for the bond price dynamics) to the positive-
interest framework. The conceptual link with the positive-interest model is
achieved by noticing [Hughuston and Brody (2000)] that ∆t

t = ρt. If the extra
condition

lim
t→∞

E [ρt] = 0 (90)

is imposed (and technical conditions are satisfied), the quantity ρt is a po-
tential (see [Rogers (1997)]), whence the name or the approach.
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9.1.3 Link Between MF and Positive-Interest Models

The MF approach requires bond prices to be a functional of a low-dimensionality
Markov process. Recalling ([Hunt, Kennedy and Pellser (2000)]) that the state-
density ρt is associated with a numeraire (1/ρt), and that the positive-interest
models make the requirement that the numeraire should depend on a low-
dimensionality Markov process, one can see the conceptual link between the two.
The main difference is the flexibility to choose functional forms for the Markov
functionals to match market option prices. These are (too?) easily recovered
with the MF model, but with much greater difficulty with the positive-interest
approach. Whatever the relative fundamental explanatory appeal, the former
have been used by traders much more than the latter.

10 Phase 5: Accounting for Smiles

In a way, the timing of the appearance and acceptance of the LMM turned
out to be almost ironic. No sooner had the approach described in Section 7
earned the ’market’ label and won near-universal acceptance than progressively
marked smiles began to appear33. Clearly, these smiles were indicating that the
log-normal-diffusion paradigm that had won widespread acceptance in the plain-
vanilla option market was no longer adequate. At the beginning the deviations
were seen as a relatively small ’perturbation’ of a basically correct approach,
but following the market turmoil of 1998, it became increasingly difficult to
ignore smiles, or to treat them in a perfunctory manner. As a result, a series
of approaches were (and are being) introduced in order to account for this
phenomenon.

The challenge was not so much to provide modelling approaches capable
of reproducing smiles, but to do so in a financially realistic manner, and by
retaining as much as possible the computational techniques that had made the
LIBOR market model possible and successful. In particular, ease of calibration
had to be retained if the new approaches were to win any degree of market
acceptance. By 1998 the pricing community had almost completely converted
to the way of thinking associated with the LMM, and it was therefore natural to
look for extensions that could be naturally grafted onto the existing structure.

10.1 First-Generation Smiles

In the first phase (pre-1998), the smiles were typically monotonically decreasing
from the high- to the low-strike. The fact that they first appeared in JPY,

33The name ’smile’ originates from the equity-index option world, where deviations from
the horizontal line were originally observed to appear after the 1987 market crash (Rubinstein
and Jackwerth). The shape of the implied volatility curve as a function of strike was observed
to be an increase in implied volatilities both for out-of-the-money calls and puts (with respect
to the at-the-money volatility). The resulting upward-pointing half moon gave rise to the
name ’smile’. Despite the fact that more complex shapes have appeared, I use the term smile
to denote any non-falt implied volatility curve.
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where rates where heading towards very low levels as early as 1995, suggested
that the implicit assumption of proportionality of the random shock to the
prevailing level of rates was being questioned. However, with rates in USD and
in the major European currencies in the 6-to-9% range, the case of the JPY
was originally regarded as an aberration, and the USD and European-currency
implied volatility surfaces displayed little or no smile.

However, in the second half of the 1990s (especially with the convergence
of many continental currencies to the Euro) rates began to decline significantly
in Europe as well. Traders were still reluctant to abandon the Black pricing
paradigm, but it began to be felt that the out-of-the-money floor (receiver-
swaption) area was a ’special case’, to be handled as a sort of ’exception’ to the
log-normal rule. So little was the initial consensus as to how to handle these
’special situations’ that one of the most notorious cases of option mispricing of
that period was associated with a UK bank failing to take into account smiles
for deeply out-of-the money floors.

By, approximately, the summer of 1998 a monotonically decreasing smile was
clearly observable for, and taken into account into the pricing of, plain-vanilla
caps and swaptions. Virtually no trading houses, however, were incorporating
smiles in the pricing of complex interest-rate derivative products in a systematic
way.

10.2 Second-Generation Smiles

The events that followed the Asian South-East Asia currency crisis of Octo-
ber 1997, the Russia default and the near-collapse of LTCM in 1998 brought
about unprecedented dislocations in several markets. The interest rate volatil-
ity surfaces were not immune from these upheavals, and many exotic traders
found themselves experiencing heavy losses (IFR). One of the reasons for these
losses was that the deterministic-volatility LIBOR market model implied one
and only one set of future caplet and swaption surfaces. In ’normal’ periods,
implied volatilities ’vibrate’ in such a way as to retain, at least approximately,
the shape of the caplet and swaption matrix34. This situation can be adequately
handled by a deterministic-volatility model as long as the model-implied fu-
ture smile surface is not too dissimilar from the average of the realized implied
volatilities. However, as the volatility surface underwent dramatic and sudden
shape changes in 1998, the hedges suggested by the LIBOR market models cal-
ibrated to the normal volatility regimes often proved dramatically wrong. (see
[Rebonato and Joshi (2002)] for an empirical discussion of the modes of defor-
mation of market swaption matrices during this period).

Finally, the situation was made worse by the realization that certain products
could display pronounced negative ’gamma-vega’, which would be systematically

34see, eg, [Rebonato (1999)] or [Rebonato (2002)] for an illustration of the persistence of
the qualitative shape of caplet surfaces during ’normal’ market conditions
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ignored by deterministic-volatility models35.

10.3 The Poverty of Pure Price Fitting

Because of this state of affairs the LMM had to be radically altered if it was to
retain mainstream acceptance. By drawing on the experience accumulated in the
equity and FX area, where smiles had been observed for a much longer period, it
was not difficult to think of ways (eg, stochastic volatility, jump-diffusions, local
volatilities, etc) to produce smiley volatility surfaces. The question immediately
arose, however, as to how one should choose between these different possible
mechanisms.

As in the areas of derivatives pricing that had experienced smiles for a much
longer period of time, at the beginning price fitting across strikes was perceived
to be the most important requirement. It was soon realized, however, that many
very different modelling approaches could provide fits of very similar quality.
Indeed, in a very insightful paper, [Britten-Jones and Neuberger (1998)] show
that, given any stochastic volatility process, it is always possible to add a volatil-
ity component functionally dependent on the underlying, such that an arbitrary
(admissible) exogenous smile surface is exactly recovered36.

If a good fit to market option prices provides a necessary but not suffi-
cient condition for the acceptance of a model, what criteria can be used to
choose a satisfactory modelling approach? The answer to this question must
take into account that, as we allow either for stochastic volatility or for discon-
tinuous processes, markets are now certainly incomplete37. Therefore, ’locking
in’ market-implied quantities via dynamic trading is no longer an option, and it
becomes necessary to have an adequate actuarial description of what cannot be
exactly hedged. In particular, of paramount importance will be the ability of

35The term gamma-vega denotes the change in vega as the level of rates changes:

∂2V

∂σ2

Traders fear products such that require the trder, in order to remain vega neutral, to buy
volatility as it increases and to sell it when it falls. This situation (reminescent of being short
gamma in the underlying, whence the name) would produce systematic reheding costs even
in the absence of bid-offer spreads. Deterministic-volatility models do not allow for stochastic
movements in the volatility, and therefore automatically assign zero cost to this re-hedging
stratgey. A stochastic-volatility model ’knows’ about (some) possible modes of vibration of
the smile surface, and can therefore incorporate information about this price bias. From a
trader’s perspective this is one of the most desirable features of stochatic-volatility models.

36This result is conceptually similar to the approach by Hull and White, who showed how,
given an arbitrary market yield curve, it is always possible to recover it exactly by superim-
posing a deterministic function of time to the drift of the short rate. See Equation 54.

37It is sometimes said (see, eg, [Duffie (1996)]) that, if a finite numner of plain-vanilla
options are added to the set of hedging instruments, the market can e completed even in the
presence of staichastic volatility. Similarly, if only a finite number of discountinuous jumps
can occur, market completion can in theory be achieved by suing in the replicating portfolio
as many plain-vanilla options as possible jump amplitudes. This is correct, however, only
if the full process (and not just the price today, of these hedging plain-vanilla options were
known exactly. To ensure that these price processes allow no arbitrage with the process for
the underlying(s), exogenous risk vectors have to be specified, and assumed to be constant.
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Fig 1: US$ data (April 1998- November 2002). Scatter plot of the 1 x 1 implied volatility (y
axis) versus swap rate (x axis)
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the model to recover, at least in a statistical sense, the relevant features of the
future smile surface encountered during the life of the option (see Section 2.2).
I shall discuss in Section 11 whether these real-world-measure estimates can be
obtained from traded option prices. Irrespective of how these estimates should
be arrived at, a ’good’ model will be one that incorporates in a satisfactory
manner the relevant elements of the smile dynamics38. This brings about a new
emphasis on econometric information, and therefore a brief analysis of stylized
empirical facts about interest rate smiles is presented below.

10.4 Decomposition of the Volatility Drivers

An important insight into the best way to account for stochastic volatility can
be obtained by looking at the joint behaviour of swap rates and of the associated
implied volatilities. Fig. 1 shows a scatter plot of the changes in implied volatil-
ities of the USD 1 x 1 swaption rate over the period X to Y against changes
in the associated forward swap rate. Fig. 2 then shows a scatter plot of the
changes in the swap rate against the quantity y defined as

y = σimplf
β (91)

38The expression ’relative elements’ refers to the fact that if, say, a stochastic-volatility
approach is chosen, the drift of the volatility will undergo a Girsanov transformation from the
objective to the pricing measure (see, eg, [Lewis (2000)]), and therefore drift-related statistics
in the real and model world cannot be naively compared. [Rebonato and Joshi (2002)] show
how to circumvent this problem.
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Fig 2: US$ data (April 1998- November 2002). Scatter plot of the 1 x 1 transformed implied 
volatility (y axis) versus the swap rate (x axis)
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(where σimpl is the implied volatility, f is the forward swap rate, and β a con-
stant). It is clear that this simple change of variables is sufficient to account
for a large part of the variability in the implied volatility. See also Fig. 3,
where both the percentage and the ’normalized’ volatility (Equation 91) were
arbitrarily rescaled to 1 at the beginning of April 2002: if one looked at the top
line, which describes the percentage volatility usually quoted in the market, one
would conclude that it is necessary to use a model were the volatility is highly
variable. Indeed the levels reached by the percentage volatility in the second half
of 2002 are exceptionally high by historical standards, and one would guess that
it desirable to use a stochastic-volatility model capable of doubling the implied
volatility over a few months’ period. However, the picture changes dramatically
if one looks at the rescaled volatility, y, whose time series is depicted in the
bottom line. The variability of this quantity is much more limited, and, if any-
thing, this rescaled volatility is seen to be decreasing over the same period. The
message is reinforced by Fig. 4, which shows the 1 x 1 forward swap rate and
implied volatility over a two-year period. The very high degree of dependence
between the two stochastic quantities is apparent, and clearly indicates that pre-
scribing a stochastic behaviour for the percentage volatility is a very inefficient
way to account for the observed data. The conclusion from this discussion is
that the choice of log-normal ’co-ordinates’ used in the standard LIBOR market
model becomes inappropriate when dealing with stochastic volatility, and that
it is advisable to carry out a transformation of variables first.
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Fig 3: Rescaled (lower curve) and percentage (upper curve) volatilities (1 x 1 series) rebased
at 1 on 1-Apr-2002
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Fig 4: Swap Rate multiplied by 10 (upper curve) and swaption implied volatilities (lower 
curve) for the 1 x 1 series. US$ data for the period 5-Jun-98 to 22-Nov-2002
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10.5 The Proposed Approaches

The implications of these empirical observations for the lognormal or otherwise
nature of the forward rate process were quickly taken on board by most traders
and researchers. Therefore, early attempts to account for smiles by introducing
a discontinuous (jump) component to the log-normal diffusive process for the for-
ward rates (see, eg, [Glasserman and Kou (2000)], [Glasserman and Merener (2001)],
[Jamshidian (1999)]) met with little acceptance. More popular were early ex-
tension of the LIBOR market model, such as [Andersen and Andreasen (1997)],
[Andersen and Andreasen (2000)], and [Zuehlsdorff (2001)], who advocated a
CEV ([Beckers (1980)] ) process (see [Andersen and Andreasen (2002)] for a
more general class of models in the same spirit). [Marris (1999)] then pointed
out that, over a wide range of interest rate levels, the much more tractable
displaced-diffusion process [Rubinstein (1983)] produces risk-neutral densities
(and hence prices) extremely similar to the CEV approach, and can therefore
be used as an effective and computationally simpler alternative.

CEV (or displaced-diffusion) processes constitute a more appealing set of ’co-
ordinates’, but still imply a perfect functional dependence of the volatility on the
forward rates (and a monotonically decreasing smile). The next modelling step
was therefore to require that one or more independent Brownian shock affect
the volatility process. This is the route followed by [Joshi and Rebonato (2001)],
Andersen (Barcelona). In particular, [Joshi and Rebonato (2001)] show how to
extend most of the implementation techniques developed for the log-normal
market model (eg, ease of calibration to caplets and swaption, optimal recov-
ery of co-terminal option prices, etc). The quality of their fits to market data
with time-homogeneous parameters is good. They also show that the (com-
plex) shape of the model-produced eigenvectors obtained by orthogonalizing
the matrix of the changes in implied volatilities bears a strong resemblance
with the empirical data [Rebonato and Joshi (2002)]. Their use of the simpler
displaced-diffusion approach, which does not guarantee positive interest rates,
can, however, give rise to some concerns in the very-low-interest-rate environ-
ments experienced in most currencies at the time of writing.

11 The Calibration Debate

The treatment so far has shown that, in order to price interest-rate derivatives in
the complete-market framework, one could either prescribe the whole real-world
dynamics for the driving factor(s) (eg, the short rate) and for the associated
risk premia (absolute pricing), or assign the volatility and correlation functions
(the covariance structure, for short) of the stochastic state variables (relative
pricing).

While both routes are in principle possible, for practical trading purposes the
relative-pricing route has been almost universally adopted. Therefore, specifica-
tion of a realtive-pricing, arbitrage-free model in a complete-market setting has
in trading practice become tantamount to assigning the covariance structure.

51



This is particularly transparent in the HJM approach (see Equation 21), but,
given the equivalence among the different formulations, obviously also applies
to all the other models.

After HJM, the statement that volatilities and correlations are ’all that mat-
ters’ in derivatives pricing has become rather common-place. When this claim
is combined with the market practices described in Section 2.4 (out-of-model
hedging and model re-calibration), however, it produces some important corol-
laries, which have a direct bearing on calibration. This is because, ultimately,
any choice of volatilities and correlations will determine the model-implied fu-
ture conditional prices of caplets and swaptions where the future re-hedging
trades will be transacted. But, as pointed out in section 2.4, the universal
practice of re-calibrating the model and of rebalancing the vega hedges during
the life of the complex trade requires that the model should recover to a satis-
factory degree the future prices of the hedging instruments. The fundamental
calibration question therefore becomes: ’What sources of information can most
reliably provide an estimate of the covariance structure capable of producing
these desirable future prices?’ The answer to this question is as, if not more,
important than choosing the ’best’ model.

11.1 Historical versus Implied Calibration

When the problem is looked at in this light, the estimation of the volatilities and
correlations can be arrived at either using historical estimation or via the implied
route. When models have been regarded as pricing tools rather than general
descriptions of the yield curve dynamics, both academics and practitioners have
tended to embrace the implied route with far more enthusiasm than the statisti-
cal approach. Furthermore, the ability of a model to recover simultaneously as
many ’market-implied’ features as possible (eg, implied instantaneous volatilities
and correlations from the prices of caplets and swaptions), has generally been re-
garded as highly desirable. See, for instance, [Schoenmakers and Coffey (2000)],
[Brace and Womersley (2000)], [De Jong, Driessen and Pelsser (1999)], [Lane and Marris (2002)],
Andersen Barcelona39. Much as the implied route might appear ’natural’ to a
trading community trained in footsteps of the BS approach, it should not be
taken as self-evident. Indeed, if in the hedging of a product (say, a Bermudan
swaption) one set of plain-vanilla instruments (say, the associated co-terminal
swaptions) will mainly be used, it should be at least open to debate whether
it is more important for the chosen model to reproduce accurately the current
and future prices of the required hedging swaptions, or to recover the current

prices of as many plain-vanilla options as possible. See again the discussion in
Section 1.6 and in the last sections of [Jamshidian (1997)].40

39Incidentally, this practice might have been partly motivated or encouraged by the fact
that the LIBOR market model has just enough degrees of freedom to fit exactly, if one so
wanted, all the caplet and European swaption prices.

40The question is far from academic, since one of the most heated debates in
interest-rate derivatives pricing has been brought about by the a recent paper sug-
gestively titled ’Throwing Away a Billion Dollars: The Cost of Sub-Optimal Exercise
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11.2 The Logical Underpinning of the Implied Approach

Complex traders will typically want to remain vega neutral during the life of a
trade. I have highlighted in Section 1.6 that this practice should be analyzed
together with the requirement to generate as stable a calibration as possible.
What estimation methodology will give rise to the most stable calibration? If a
trader believes the ’implied’ route to be the best way to estimate the inputs to
a model, this must be justified on the basis of one of these possible alternatives:

1. The input functions (eg, volatilities or correlations of forward rates) are
deterministic and perfectly known by the market. In this case the co-
variance matrix (that fully determines pricing) is perfectly deterministic.
We are in a pure relative-pricing/ perfect-replication setting, accurate si-
multaneous calibration of the model to plain-vanilla prices (caplets and
swaptions) is a must, and the resulting implied deterministic volatilities
and correlations are all that matters for pricing. This is the approach im-
plicitly or explicitly taken by [Schoenmakers and Coffey (2000)], among
others.

2. The input functions are deterministic, but they are not perfectly known
by the market. There exist additional liquid benchmark instrument, how-
ever, in addition to caplets and swaptions, that allow to complete the
market, and to ’lock in’ whatever values for the covariance elements are
implied by the market. These instruments would be serial options (see
[Rebonato (2002)]). Taken together, the prices of caplets, swaptions and
serial options allow a unique determination of the covariance structure that
determines the prices, not only of the plain-vanilla, but also of the exotic
LIBOR products([Rebonato (2002)]). Since we are still in a pure relative-
pricing/ perfect-replication setting, the trader need not worry whether
these implied values are econometrically plausible, (ie, whether the mar-
ket misestimated the covariance structure), because she can ’lock in’ the
implied prices via dynamic trading41.

3. Either [the input functions are deterministic and not perfectly known by
the market, and there exist no additional liquid instrument besides caplets
and swaptions], or [the input functions are stochastic], but, in either case,
there is no systematic imbalance of supply or demand for plain-vanilla
options. The market is now incomplete, but the market-implied values for

Strategies in the Swaptions Markets’. See [Longstaff, Santa Clara and Schwartz (2000a)],
[Longstaff, Santa Clara and Schwartz (2000b)], who aruged that using low-dimensional im-
plementations of the LIBOR market model does not allow to capture adequately the value
embedded in Bermudan swaptions, and the response by [Andersen and Andreasen (2001)]. A
careful analysis of the arguments indeed reveals that either conclusion can be justified, de-
pending on what else the model is required to fit to, in addition to the co-terminal swaption
prices. See also [Joshi and Theis (2002)].

41The situation is similar to the pricing of forward-rate-agreements (FRAs), given the prices
of discount bonds. As long as a trader can freely take long and short positions in the bonds,
the prices of the FRAs are arrived purely by a no-arbitrage arguments, and the ’real-world
plausibility’ of the implied forward rates is totally irrelevant.
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volatilities and correlations are an unbiased estimate of their assessment by
the market without any correction for risk (even if the individual players
are risk-averse). Hedging is now in general imperfect, and a mixture of
relative and absolute pricing is appropriate. For the pricing and hedging
of the undiversifiable risk the real-world realization of the volatilities is
relevant, and, given the assumption of balanced supply and demand, the
market still provides an unbiased estimates. Calibration of the model to
the market-implied volatilities and correlations should be carried out.

4. We are in the same situation as in 3., but there now is a systematic
imbalance of supply or demand for some plain-vanilla options. However
pseudo-arbitrageurs are active with no size constraints. So, for instance, if
the implied correlations were deemed on the basis of statistical analysis to
be, say, too high, the pseudo-arbitrageurs would enter trades whereby they
would be ’long correlation’ (perhaps by trading in swaptions), and hedge
the volatility exposure (perhaps by trading in correlation-independent
caplets). As a result, this would bring the implied correlation in line
with fundamentals. Effectively we are in the same situation as in case 3.,
and calibration of the model to all the plain-vanilla prices should still be
attempted.

5. We are in the same situation as in 4., but pseudo-arbitrageurs are not able
to carry out their trades. If this is the case, as in case 4., we are no longer
in a pure relative-pricing/perfect-replication setting, realizations in the
objective measure do matter, but, unlike case 4, the trader can no longer
rely on the market prices to provide an unbiased estimate of volatilities
and correlations. Implying the values of volatilities and correlations from
the simultaneous calibration to all the plain-vanilla prices should not nec-
essarily be attempted. Whenever plain-vanilla prices are recovered by a
calibration strategy, care should be given to ensuring that some real-world
quantities are also plausibly reproduced42.

Very few traders or researchers would subscribe to 1 (if volatilities were
known and deterministic, for instance, it would be difficult to justify the univer-
sal practice of vega hedging). Therefore advocating an ’implied’ estimation relies
either on perfect replication (possibility 2) or on the informational efficiency of
prices (options 3 and 4).

Given that serial options are both illiquid and only available for a short
range of maturities/expiries, perfect replication of plain-vanilla payoffs is not
an option even if volatilities were truly perfectly deterministic (but imperfectly

42Recall, however, that, even for Girsanov-transformed quantities, the estimate of their
risk-adjusted values from the market prices contains some useful information. For instance, if
a residual imbalance of, say, demand is assumed to be at play, this would at least determine
the sign of the deviation from the expectation in the objective probability measure: if equity
smiles are due to portfolio managers seeking insurance against undiversifiable jumps, the prices
of out-of-the-money puts should be obtained with a risk-adjusted jump frequency higher, and
not just different, from the objective one.
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known). Therefore possibility 2 does not appear convincing. Fitting a model
simultaneously to all the available market information must therefore rely on
the assumed informational efficiency of the plain-vanilla market prices. A failure
of efficiency however requires two simultaneous conditions: i) that a systematic
imbalance in supply and demand for a derivative exist and ii) that limitations
be in place to the actions of pseudo-arbitrageurs. I tackle these points in the
following sections.

11.3 Are Interest-Rate Derivatives Market Information-
ally Efficient?

A large body of literature has appeared in the last ten years or so, which chal-
lenges one of the pillars of the classical financial asset pricing, namely the Effi-
cient Market Hypothesis (EMH). The name generically applied to these rather
disparate studies is that of ’behavioural finance’. In short, two joint claims are
implicitly made (although not always explicitly articulated) by the proponents
of this school, namely that i) at least some investors arrive at decisions that are
not informationally efficient and ii) that mechanisms that would allow better-
informed traders to exploit and eliminate the results of these ’irrationalities’
are not always effective. Since the prime mechanism to enforce efficiency is
the ability to carry out (pseudo-)arbitrage, an important line of critique of the
EMH has been developed (see, eg, [Shleifer and Vishny (1997)]) which shows
that pseudo-arbitrage can in reality be very risky, and that, therefore, the pric-
ing results of irrational decisions made on the basis of psychological features
such as, say, overconfidence might persist over long periods of time.

In order to account for the origin of the pricing inefficiencies, the original
emphasis was put on psychological features, such as, for instance, overconfi-
dence, anchoring, framing effects, etc (see, eg, [Shefrin (2000)], [Shiller (2000)]),
whence the name behavioural finance. The argument based on the difficulty and
riskiness of pseudo-arbitrage can, however, still be applied if the price of an asset
(and, in our case, of a derivative) is disconnected from ’fundamentals’ for any
(ie, not necessarily for psychological) reasons: agency conditions, for instance,
can give rise to failure of the EMH even if all the players are fully rational. This
is important, because in the interest-rate derivatives area, (largely the arena
of professional traders), it is more likely that institutional constraints, rather
than psychological biases, might be at the root of possible price deviations from
fundamentals.

The relevance of these possible informational inefficiencies for derivatives
pricing can be seen as follows. First, according to the EMH, prices are arrived
at by discounting future expected payoffs using an appropriate discount fac-
tor43. The second step in the argument is that new information (a change in

43’Appropriate’ in this context means, on the one hand that it takes the riskiness of the
cashflows into account, but, on the other, that it is only affected by non-diversifiable risk. So,
if a security (an option) can be replicated by another (the hedging portfolio) no idiosinchratic
risk will be left and the appropriate discount factor is derived from risk-less bonds.
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’fundamentals’) can lead the trader to reassess the current price for a deriva-
tive (a new expectation is produced by the augmented filtration), but supply
and demand pressures per se cannot: if the ’fundamentals’ have not changed,
a demand-driven increase in the price of substitutable security will immedi-
ately entice pseudo-arbitrageurs to short the irrationally expensive security, and
bring it back in line with fundamentals. The more two securities (or bundles
of securities) are similar, the less undiversifiable risk will remain, and the more
pseudo-arbitrageurs will be enticed to enter ’correcting’ trades.

So, answering the question, ’To what extent should one make use of market-
implied quantities as input to a model?’ means addressing the joint two ques-
tions: ’Are there reasons to believe that a systematic imbalance of supply or
demand might be present in the interest-rate plain-vanilla market?’ and ’Are
there reasons to believe that the activity of pseudo-arbitrageurs might entail
substantial risks?’

11.3.1 Possible Mechanisms to Create a Supply/Demand Imbalance

The dynamics of supply of and demand for interest-rate derivatives products are
very complex, especially in US$, where the mortgage-backed securities market
creates a large demand for a variety of derivatives products. In broad terms,
however, some relatively simple patterns can be identified: on the one hand there
are investors looking for ’yield enhancement’ and issuers in search of ’advanta-
geous’ funding rates; on the other hand there are floating-rate borrowers who
want to reduce their risk by purchasing interest rate protection. In order to ob-
tain the advantageous yields or funding rates investors or issuers, respectively,
tend to sell the right to call or put a bond, ie, swaption-type optionality, which
is typically ’sold-on’ to investment houses. See [Rebonato (1998)] for a descrip-
tion of these structures. These will therefore find themselves systematically long
swaption optionality.

At the same time, floating-rate corporate borrowers will seek to limit their
exposure to rising rates by purchasing caps from the same trading desks. The
latter will therefore find themselves systematically long swaption optionality
and short caplet optionality.

A case has therefore been made as to why there might be a systematic excess
demand of cap volatility and excess supply of swaption volatility. Clearly, how-
ever, both caps and swaptions share the same underlyings (ultimately, forward
rates). Therefore pseudo-arbitrageurs should be enticed to take advantage of
whatever move away from ’fundamentals’ the supply/demand imbalance might
create in the relative prices of caps and swaptions. Are there reasons to believe
that their effectiveness might in practice by hampered?

11.3.2 Possible Limitations to Pseudo-Arbitrageur Activity

What can prevent pseudo-arbitrageurs from carrying out their task of bring-
ing prices in line with fundamentals? To begin with, (see [Shleifer (2000)] or
[Shleifer and Vishny (1997)] for a fuller discussion) these pseudo-arbitrageurs
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(hedge funds, relative-value traders, etc) often take positions not with their
own money, but as agents of investors or shareholders. If the product is com-
plex, and so is the model necessary to arrive at its price, the ultimate owners
of the funds at risk might lack the knowledge, expertise or inclination to asses
the fair value, and will have to rely on their agent’s judgement. This trust,
however, will not be extended for too long a period of time, and certainly not
for many years. Therefore, the time span over which securities are to revert
to their fundamental value must be relatively short. If the supply-and-demand
dynamics were such that the mispriced instrument might move even more vi-
olently out of line with fundamentals, the position of the pseudo-arbitrageur
could swing further into the red, and the ‘trust-me-I-am-a-pseudo-arbitrageur’
argument might rapidly lose its appeal with the investors and shareholders.

Another source of danger for relative-value traders is the existence of
institutional and regulatory constraints that might force the liquidation of posi-
tions before they can be shown to be ‘right’: the EMH does not know about the
existence of stop-loss limits, VaR limits, size constraints, concentration limits
etc.

Similarly, poor liquidity, often compounded with the ability of the mar-
ket to guess the position of a large relative-value player, also contributes to the
difficulties of pseudo-arbitrageurs. In this context, the role played by pseudo-
arbitrageurs as ultimate providers of liquidity has been discussed by [Scholes (2000)].

Finally, very high information costs might act as a barrier to entry,
or limit the number, of pseudo-arbitrageurs. Reliable models require teams of
quants to devise them, scores of programmers to implement them, powerful
computers to run them and expensive data sources to validate them. The per-
ceived market inefficiency must therefore be sufficiently large not only to allow
risk-adjusted exceptional profits after bid-offer spreads, but also to justify the
initial investment.

In short, because of all of the above, even in the presence of a significant
imbalance of supply or demand, relative-value traders might be more reluctant
to step in and bring prices in line with fundamentals than the EMH assumes.

11.3.3 Empirical Evidence

The literature covering empirical tests of market efficiency is far too large to
survey even in a cursory manner (a recent count of papers in behavioural finance
aimed at displaying failures of the EMH exceeded the 2,000 entries), and, beyond
the statement that markets are ’by and large’ efficient, there has been a strong,
and unfortunate, polarization of academic opinion. However, questions of more
limited scope can be posed, such as: ’Is there any evidence about that the
mechanisms discussed above do hamper the activity of pseudo-arbitrageurs?’, or
’Does the relative price of caplets and swaptions provide any indication of price
deviations from fundamentals compatible with the supply/demand dynamics
discussed in Section 11.3.1?’. Both question are difficult to answer, the first
because of the clearly secretive nature of the activities of pseudo-arbitrageurs
(hedge funds and proprietary traders); the second, because showing that some
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prices are ’incorrect’ always requires working under a joint hypothesis: what it
tested is the deviation from a pricing model, given that the pricing model itself
is correct. [Reference here]. Nonetheless, some pertinent observations can be
made.

Starting from the question regarding the actual impact of the factors dis-
cussed above on the effectiveness of the pseudo-arbitrageurs, some indirect ev-
idence can be obtained from reconstructions of the market events that sur-
rounded the near-collapse of the LTCM hedge fund in 1998. (See [Jorion (2000)]
and [Das (2002)] for a description of the events from a risk management per-
spective). Both [Dunbar (2000)] and [Scholes (2000)], although from different
perspectives and drawing different conclusions, describe a situation when the
long-dated (5-year) equity implied volatility had reached in the autumn of 1998
levels that would imply for the next several years a realized volatility much
higher than what ever observed over similar periods. Yet traders (LTCM in

primis) who attempted to short volatility found their positions moving further
into the red before the volatility finally declined. Many traders/arbitrageurs,
including LTCM, faced with margin calls and with their request for additional
’arbitrage’ capital from the (technically uninformed) investors turned down,
had to cut the positions at a loss before the ’correctness’ of their views could be
proven. Similarly, swap spreads which are but tenuously linked to the default
risk of banks, reached during the same period levels difficult to reconcile with
any plausibly-risk-adjusted probability of bank default44. Finally, and most
relevantly for the topic of this survey, a reconstruction of events from market
participants who prefer to retain anonymity suggests that a major international
investment house observed during the same period swaptions and caplet volatil-
ities to move away from levels that most plausible models could explain. In
particular, for most plausible instantaneous volatility functions that recovered
caplet prices, the ’implied correlation’ was very different from correlations esti-
mated statistically. The same house is widely thought to have put large, (and
’correct’), swaption-caplet ’arbitrage’ trades in place, only to have to unwind
them at a loss as the positions temporarily moved even more strongly away from
’fundamentals’.

The possible impact of the systematic supply/demand imbalances on the rel-
ative prices of caplets and swaptions is particularly relevant to the topic of this
survey. Since a swap rate is a combination of forward rates, both caplets and
swaptions can be expressed as a function of the dynamics of either forward rates
or swap rates alone (if the volatility and correlation functions are assigned). If
the account given above is correct, and if therefore supply and demand cannot
be arbitraged away efficiently by proprietary traders, one would expect to see

44Given the role of pseudo arbitrageurs as providers of liquidity alluded to above,
[Scholes (2000)] argues that, in order to assess the ’fair’ level of the swap spread, one should
factor in the (time-varying) price for liquidity. If this view is correct, there would be no mar-
ket inefficiency at play. From the point of view of the calibration of a model, however, the
existence of an important, and unhedgeable, risk factor (in this case liquidity) neglected in
the pricing would raise similar concerns as to the appropriateness of using the market-implied
estimate.
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the market-implied forward-rate instantaneous volatilities estimated from swap-
tion prices systematically lower than the same quantities estimated from caplet
prices. This is a testable hypothesis. Is it borne out by empirical evidence?
[Rebonato (2002)] displays graphs of the instantaneous volatilities of forward
rates for several currencies estimated from the caplet and from the swaption
markets45. The instantaneous volatility functions turned out to have a very sim-
ilar qualitative shape irrespective of the instruments used for their estimation,
but to be systematically lower in all currencies when estimated from swaption
data. Similarly, using different market data, [Rebonato (2000)] finds that the
implied correlation required to price a set of co-terminal swaptions given the
market prices of the caplets is much lower than what historically observed.

It must be stressed that these results must be interpreted with care, because
what is tested is the joint assumption that supply and demand skew the prices
of a theoretically replicable set of securities and that the model used for the
pricing (with the chosen parametric forms for the volatility and the correlation)
is correct. Even with these caveats, the results appear to provide corroboration
for the hypothesis that supply/demand imbalances do affect the relative prices
of caplets and swaptions.

11.4 Conclusions

This discussion brings us back to the calibration issue. The prevalent mar-
ket practice, as evidenced by the references quoted above, seems to favour the
’implied’ estimation approach. There appear to be sufficient reasons, however,
to doubt the informational efficiency of the plain-vanilla instruments used for
model calibration. Therefore the generally accepted practice to fit the free
parameters of a model so as to recover the prices of as many plain-vanilla in-
struments as possible should be strongly questioned. I have argued that a more
relevant criterion for choosing these input functions should be their ability to
recover plausible future prices of the re-hedging instruments.

12 Summary and Further Perspectives

I have reviewed in this survey the interaction between the theoretical develop-
ments and the market practice in the context of interest-rate derivatives pricing.
I have tried to show that this interaction is rather complex, and a ’linear’ evolu-
tionary account would not only be historically incorrect, but probably suggest
inaccurate pointers as to where the theory might evolve in the near future. In
particular, I have highlighted that models are not abandoned unless a computa-
tionally feasible better alternative is found, and that new directions of research
become established only once new technological developments (more powerful

45A variety of correlation functions were used in the calibration to swaption prices. For
economterically plausible correlations the results displayed weak dependence on the level
and details of the correlation functions.See also [De Jong, Driessen and Pelsser (1999)] on this
point.
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computers, low-discrepancy series, etc) become available. In this ’punctuated
evolutionary’ account, familiarity with a set of modelling co-ordinates (eg, log-
normal rates or prices) plays a strong role in establishing the modelling direction.
Statistical information has obviously played a role in this process, but, again,
a simple picture of ’falsification by experiment’ appears to be fundamentally
inadequate to account for the observed evolution of the modelling theory.

Moving to more practical aspects, I have stressed the importance of the
calibration process, and questioned the soundness of what appears to be preva-
lent market practice. I have also argued that recent market developments (to-
wards slimmer margins and more complex products) are putting under strain
the pricing approach (based on the assumption of perfect payoff replicability)
that was appropriate for the first- (and second-) generation derivatives products.
A comparison with pricing practice in a germane area, ie the mortgage-backed-
securities market, is in this respect very illuminating.

12.1 Comparison of Pricing and Modelling Practices

In the mortgage-backed-securities (MBS) area pre-payment models are coupled
with interest-rate models in order to produce the present value of the expected
cashflows arising from a pool of mortgages (see, eg, [?]or [Hayre (2001)] for a
description of the market and of the prevalent pricing approaches). As a first
stage in arriving at a price for, say, a pass-through the cash-flows (including pre-
payments) are discounted at the riskless (LIBOR) rate. The implicit assumption
in doing so is that not only the interest-rate, but also the pre-payment model
should provide a perfect hedge for the cash-flow uncertainty. From the model
point of view, this is perfectly justifiable, because the vast majority of pre-
payment models use interest rates as state variables, and therefore allow for
theoretically perfect hedging the pre-payment risk by trading in interest-rate
sensitive underlying products (swaps, caps, swaptions, indexed-principal swaps,
spread locks, etc). However, it has always been recognized in the MBS market
that other variables (such as unemployment, GDP growth, etc) strongly affect
pre-payments, and that these variables are very imperfectly correlated with the
interest-rate state variables.

Because of this, the concept of the option-adjusted spread (OAS) has been
introduced. The OAS is defined to be the spread to be added to the LIBOR-
derived forward rates in order to obtain the discount factors to present-value
the expected cashflows. A non-zero OAS therefore explicitly adjusts the price
for all the undiversifiable (unhedgeable) sources of risk, for model uncertainty,
for liquidity effects, etc. It is by no means a second-order effect, since, especially
in periods of great pre-payment uncertainty (eg, during the unprecedented wave
of mortgage refinancing of 2002, when pre-payment models were constantly ’re-
calibrated’ by trading houses, and the coupon on every outstanding issue was
higher than the current par coupon) it reached values well over 100 basis points.

Why has the equivalent of an OAS not developed in the interest-rate (LI-
BOR) derivatives area? Apart from issues of product liquidity and standardiza-
tion, I believe that an important reason has been the different ’starting points’
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for the two markets. Even the first mortgage-backed-securities (pass-throughs)
have always been complex, because of the inherent difficulty in hedging the
non-interest-rate-related risk factors. The appearance of more complex prod-
ucts (IOs, POs, sequentials, PACs, etc) simply added to an existing substantial
modelling complexity, and to the relatively poor ability to hedge. Assuming
perfect replication, in other terms, was never a realistic working hypothesis.

First-generation derivatives products, on the other hand, were relatively sim-
ple, and, given the well-known robustness of the BS model to reasonable mis-
specification of the input volatility, payoff replicability (with the corollary of
risk-less discounting) was a very reasonable working assumption. As new prod-
ucts have been introduced, each incremental increases in complexity has not
been so big as to require a totally new and fresh pricing approach. The cumu-
lative effect of this ever-increasing complexity, however, has produced products
whose pricing requires the simultaneous modelling of compound optionality aris-
ing form the evolution over thirty years or more of two yield curves, of their
volatilities and correlations, of the correlations among the forward rates of the
two currencies, of the spot FX rate, and of its correlation with the interest
forward rates. Pricing developments in related areas (credit derivatives, and
n-th-to-default swaps in particular) bring about even greater modelling chal-
lenges (and implicitly make liquidity assumptions for the hedging instruments
which are even more difficult to justify). One can therefore argue that these
products have become no simpler, and their payoff replication not any easier,
than the first pass-throughs. Nonetheless, no equivalent of the OAS has been
introduced in pricing of these assets, and the paradigm of risk-neutral valuation
still reigns supreme. Model reserves are sometimes applied when recognizing
the book value of these products, but this has not affected the ’mid’ mark-
ing to model. The reasons for this, I believe, can be traced to the power of a
robust and elegant conceptual framework (the BS replication insight) and the
self-sustaining nature of the ’inertial momentum’ that a successful modelling
framework generates (see Section 2.3).

If this analysis is correct the implications for interest-rate derivatives pricing
are not that the approaches described in the preceding sections are of little use:
even in the MBS arena state-of-the-art models are continuously refined and de-
veloped for the diversifiable risk factors, and the interest-rate models of choice
have closely followed the evolution of the LIBOR market. What is required, I
believe, is a re-assessment of the limitations of the pure-replication-based pricing
philosophy, and the introduction in the price-making process of explicit recog-
nition of the existence of substantial unhedgeable components. Perhaps this
’LIBOR-OAS’ could be arrived at in a coherent and theoretically robust manner
by following one of the approaches (see, eg, [Cochrane and Saa-Requejo (2000)])
recently introduced in the literature to account for this very state of affairs. I
can appropriately close by quoting [Cochrane (2000)]:

Holding [an] option entails some risk, and the value of that option
depends on the ’market price’ of that risk - the covariance of the risk
with an appropriate discount factor. Nonetheless we would like not
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to [...] go back to ’absolute’ methods that try to price all assets. We
can [...] still form an approximate hedge based on [...] a portfolio of
basis assets ’closest to’ the focus payoff. [..]. Then the uncertainty
about the option value is reduced only to figuring out the price of
the residual.
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