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Abstract. Abduction can be seen as the formal inference corresponding
to human hypothesis making. It typically has the purpose of explain-
ing some given observation. In classical abduction, hypotheses could be
made on events that may have occurred in the past. In general, abduc-
tive reasoning can be used to generate hypotheses about events possibly
occurring in the future (forecasting), or may suggest further investiga-
tions that will confirm or disconfirm the hypotheses made in a previous
step (as in scientific reasoning). We propose an operational framework
based on Abductive Logic Programming, extending existing frameworks
in many respects, including accommodating dynamic observations and
hypothesis confirmation.

1 Introduction

Often, reasoning paradigms in artificial intelligence mimic human reasoning, pro-
viding a formalization and a better understanding of the human basic inferences.
Abductive reasoning can be seen as a formalization, in computational logics, of
hypotheses making. In order to explain observations, we hypothesize that some
(unknown) events have happened, or that some (not directly measurable) prop-
erties hold true. The hypothesized facts are then assumed as true, unless they
are disconfirmed in the following.

Hypothesis making is particularly important in scientific reasoning: scientists
will hypothesize properties about nature, which explain some observations; in
subsequent work, they will try to prove (if possible), or at least to confirm
the hypotheses. This process leads often to generating new alternative sets of
hypotheses. Starting from hypotheses on the current situation, scientists try to
foresee their possible consequences; this provides new hypotheses on the future
behavior that will be confirmed or disconfirmed by the actual events.

A typical application of abductive reasoning is diagnosis. Starting from the
observation of symptoms, physicians hypothesize in general possible alternative
diseases that may have caused them. Following an iterative process, they will try
to support their hypotheses, by prescribing further exams, of which they foresee
the possible alternative results. They will then drop the hypotheses disconfirmed
by such results, and take as most faithful those supported by them. New findings,
such as results of exams or new symptoms, may help generating new hypotheses.

We can then describe this kind of hypothetical reasoning process as composed
by three main elements: classically, explaining observations, by assuming possible



causes of the observed effects; but also, adapting such assumptions to upcoming
events, such as new symptoms occurring, and foreseeing the occurrence of new
events, which may or may not occur indeed.

In Abductive Logic Programming, many formalisms have been proposed [1–
6], along with proof procedures able to provide, given a knowledge base and some
observation, possible sets of hypotheses that explain the observation. Integrity
Constraints are used to drive the process of hypothesis generation, to make such
sets consistent, and possibly to suggest new hypotheses. Most frameworks focus
on one aspect of abductive reasoning: assumption making, based on a static
knowledge and on some observation.

In this work, we extend the concepts of abduction and abductive proof proce-
dures in two main directions. We cater for the dynamic acquisition of new facts
(events), which possibly have an impact on the abductive reasoning process,
and for confirmation (or disconfirmation) of hypotheses based on such events.
We propose a language, able to state desired properties of the events support-
ing the hypotheses: for instance, we could say that, given some combination of
hypotheses and facts, we make the hypothesis that some new events will oc-
cur. We call this kind of hypothesis expectation. Expectations can be “positive
(to be confirmed by certain events occurring), or “negative” (to be confirmed
by certain events not occurring). For this purpose, we express expectations as
abducible literals.

In our framework, we need to be able to state that some event is expected to
happen within some time interval: if the event does actually happen within it,
the hypothesis is confirmed, it is disconfirmed otherwise. In doing so, we need
to introduce variables (e.g. to model time), and to state constraints on variables
occurring in abducible atoms. Moreover, possible expectation could be involving
universal quantification: this typically happens with negative expectations (“The
patient is expected not to show symptom Q at all times”). For this reason, we also
need to cater for abducibles possibly containing universally quantified variables.

To summarize, the main new features of the present work with respect to
classical ALP frameworks are:

– dynamic update of the knowledge base to cater for new events, whose oc-
currence interacts with the abductive reasoning process itself;

– confirmation and disconfirmation of hypotheses, by matching expectations
and actual events;

– hypotheses with universally quantified variables;
– constraints à la Constraint Logic Programming [7].

We do it by defining syntax, declarative and operational semantics of an
abductive framework, based on an extension of the IFF proof procedure [4],
called SCIFF[8].3 The SCIFF has been implemented using Constraint Handling
Rules [9]. Being the SCIFF an extension of an existing abductive framework, it

3 Historically, the name SCIFF is due to the fact that this framework has been firstly
applied to modelling protocol in agent Societies, and that is also deals with CLP
Constraints.
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also caters for classic abductive logic programming (static knowledge, no notion
of confirmation by events). However, due to space limitations, in this work we
only focus on the original new parts.

In the following Sect. 2 we introduce our framework’s knowledge represen-
tation. In Sect. 3 and 4 we provide declarative and operational semantics, and
we show a soundness result. In Sect. 5 we give some information about its cur-
rent implementation. In Sect. 6 we show an example of the functioning of the
SCIFF in a multi-agent setting. Before concluding, we discuss about related work
in Sect. 7. Additional details about the syntax of data structures used by the
SCIFF and allowedness criteria used to prove soundness are given in appendix.

2 Knowledge Representation

In this section we show the knowledge representation of the abstract abductive
framework of the SCIFF. The knowledge base dynamically evolves as new events
are known. It is represented by the 5-tuple 〈KB,HAP,EXP, ICS ,G〉, where:

– KB is the knowledge base (an extended logic program);
– HAP is the History of happened events: atoms indicated with functor H;
– EXP is the set of abduced expectations: literals indicated by the functors

E, EN, ¬E and ¬EN;
– ICS is the set of Integrity Constraints (ICS); and
– G is the set of Goals.

An instance of the abductive system (in the following, we will call an abduc-
tive framework ALP , and ALPHAP a specific instance of it) takes into account
occurred events (HAP). Events are taken from an event queue, which is not
modelled here. Expectations can represent (i) events that should (but might
not) happen (and they are represented as atoms indicated with functor E), or
(ii) events that should not (but might indeed) happen (and they are represented
as atoms indicated with functor EN), in order for the previous hypotheses to be
confirmed. Their (default) negation is written as ¬E/¬EN.

The full syntax of our language is reported in Appendix A. We conclude this
section with a simple example in the medical domain, where abduction is used to
diagnose diseases starting from symptom observation. The aim of this example
is to show the two main improvements of the SCIFF with respect to previous
work: the dynamic acquisition of new facts, and the confirmation of hypotheses
by events.

Let us consider a symptom s, which can be explained by abducing one of
three types of diseases, of which the first and the third are incompatible, and
the second is accompanied by a condition (the patient’s temperature is expected
to increase):

symptom(s) : − E(disease(d1)),EN(disease(d3)).
symptom(s) : − E(disease(d2)),E(temperature(high)).
symptom(s) : − E(disease(d3)),EN(disease(d1)).
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ICS expresses what is expected or should happen or not, given some happened
events and/or some abduced hypotheses. They are in the form of implications,
and can involve both literals defined in the KB, and expectations and events in
EXPand HAP. For example, an ICS in ICS could state that if the result of
some exam r is positive, then we can hypothesize that the patient is not affected
by disease d1:

H(result(r, positive))→ EN(disease(d1))

Abducing EN(disease(d1)) would rule out, in our framework, the possibility to
abduce E(disease(d1)). We see how the dynamic occurrence of new events can
drive the generation and selection of abductive explanations of goals. Let us now
assume that the patient, at some point, shows the symptom temperature(low).
The following constraint can be used to express this fact to be inconsistent with
an expectation about his temperature increasing:

E(temperature(high))→ EN(temperature(low))

If the diagnosis E(disease(d2)),E(temperature(high)) is chosen for s, this ICS

would have as a consequence the generation of the expectation EN(temperature(low)),
which would be frustrated by the fact H(temperature(low)). The only possible
explanation for s thus remains E(disease(d3)),EN(disease(d1)). We see by this
example how the hypotheses can be disconfirmed by events.

The abductive system will usually have a goal, which typically is an obser-
vation for which we are searching for explanations; for example, a conjunction
of symptom atoms.

3 Declarative semantics

In the previous section, we have defined an instance of the abductive framework
as a tuple 〈KB,HAP,EXP, ICS ,G〉. In this section, we propose an abductive
interpretation for ALPHAP, depending on the events in the history HAP. We
adopt a three-valued logic, where literals of kind H() or ¬H() can be interpreted
as true, false or unknown.

Throughout this section, for the sake of simplicity, we always consider the
ground version of the knowledge base and integrity constraints, and do not con-
sider CLP-like constraints.

The set of expectations that we want to generate should satisfy the properties
that we list in the following. Firstly, we are interested in sets of expectations that
are compatible with the KB and the set HAP, and with ICS .

Definition 1. ICS-consistency. Given an instance ALPHAP, an ICS-consistent
set of expectations EXP is a set of expectations such that:

Comp(KB ∪EXP) ∪HAP ∪ CET |= ICS (1)

where Comp is three-valued completion [10] and CET Clark’s equational theory.
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ICS-consistent sets of expectations can be however self-contradictory (e.g., both
E(p) and ¬E(p) may belong to a ICS-consistent set). Therefore, we define two
other classes of consistency: E-consistency and ¬-consistency.

Definition 2. A set of expectations EXP is E-consistent if and only if for each
(ground) term p: {E(p),EN(p)} 6⊆ EXP

A set of expectations EXP is ¬-consistent if and only if for each (ground)
term p: {E(p),¬E(p)} 6⊆ EXP and {EN(p),¬EN(p)} 6⊆ EXP.4

Given an instance of an ALP, we name admissible a set of expectations which
satisfies Definitions 1 (Eq. 1), and 2, i.e. which is ICS-, E- and ¬-consistent.

Definition 3. Confirmation. Given an instance ALPHAP, a set of expecta-
tions EXP is confirmed if and only if for each (ground) term p:

HAP ∪ Comp(EXP) ∪ {E(p)→ H(p)} ∪ {EN(p)→ ¬H(p)} ∪ CET 6|= ⊥ (2)

If Eq. 2 does not hold, the set of expectations is called disconfirmed.

Note that we keep the same completion semantics (with the CET) taken by the
IFF proof procedure. However, we do not complete the set HAP, as new events
may occur in the following.

Definition 3 requires that each negative expectation in EXP has no corre-
sponding happened event, while it is weaker for positive expectations. In fact, in
general, we cannot disconfirm positive expectations, unless we assume at some
point that no more events will happen. In that case, a positive expectation can
be disconfirmed for instance if some deadlines are missed. To this purpose, we
introduce the following assumption:

Definition 4. Full temporal knowledge. We suppose that all the (signifi-
cant) events that have happened are known to the abductive system at any time.

Finally, an instance of an abductive framework should explain the given obser-
vations:

Definition 5. Goal provability. Given an instance ALPHAP and a goal G,
we say that G is provable (and we write ALPHAP |≈EXP G) iff there exists an
admissible and confirmed set of expectations EXP, such that:

Comp(KB ∪EXP) ∪HAP ∪ CET |= G (3)

We conclude this section with a final remark about the relation of this declar-
ative semantics with that of other abductive systems of literature. Usually, an
Abductive Logic Program is defined to be a triple ALP = 〈KB,A, IC〉, where
A is a set of abducible predicates, KB is a logic program and IC a set of in-
tegrity constraints [11]. The abductive explanation of a goal/observation g given
an ALP is a set of hypotheses ∆ ⊆ A. If we consider a given static history
of events, and we map EXP onto such a ∆, Eq. 1 and Eq. 3 correspond to
the equations defining the declarative semantics of a classic ALP framework [4].
Def. 2 and 3 clearly show our extensions with respect to existing approaches.
4 For abducibles, we adopt the same viewpoint as in ACLP [5]: for each abducible

predicate A, we have also the abducible predicate ¬A for the negation of A together
with the integrity constraint (∀X)¬A(X), A(X) → ⊥.
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4 Operational Semantics

Our framework’s ICS are very much related to the integrity constraints of the
IFF proof procedure [4]. This leads to the idea of using an extension of the IFF
proof procedure for generating expectations, and check for their confirmation.

In particular, the additional features that we need are the following: (i) accept
new events as they happen, (ii) produce a (disjunction of) set of expectations,
(iii) detect confirmation of expectations, (iv) detect disconfirmation as soon as
possible.

The proof procedure that we are about to present is called SCIFF. Following
Fung and Kowalski’s approach [4], we describe the SCIFF as a transition system.
Due to space limitations, we will only focus here on the new transitions, while
the reader can refer to [4] for the basic IFF transitions.

4.1 Data Structures
The SCIFF proof procedure is based on a transition system. Each state is defined
by the tuple T ≡ 〈R, CS, PSIC,EXP,HAP,CONF,DISC〉, where R is the
resolvent, CS is the constraint store, PSIC is the set of partially solved integrity
constraints, EXP is the set of (pending) expectations, HAP is the history of
happened events, CONF is a set of confirmed hypotheses, DISC is a set of
disconfirmed expectations.

Variable quantification In the IFF proof procedure, all the variables that
occur in the resolvent or in abduced literals are existentially quantified, while
the others (appearing only in implications) are universally quantified. Our proof
procedure has to deal with universally quantified variables in the abducibles and
in the resolvent. In the IFF proof procedure, variables in an implication are
existentially quantified if they also appear in an abducible or in the resolvent.
In our language, we can have existentially quantified variables in the integrity
constraints even if they do not occur elsewhere (see Appendix A.3).

For all these reasons, in the operational semantic specification we leave the
variable quantification explicit. Moreover, we need to distinguish between vari-
ables that appear in abduced literals (or in the resolvent) and variables occurring
only in integrity constraints. The scope of the variables in abduced literals and
in the resolvent is the whole tuple. The scope of the other variables is the impli-
cation in which they occur.

Initial Node and Success A derivation D is a sequence of nodes

T0 → T1 → . . .→ Tn−1 → Tn.

Given a goal G and a set of integrity constraints ICS , the first node is:

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉

i.e., the resolvent is initially the query (R0 = {G}) and the partially solved
integrity constraints PSIC is the set of integrity constraints (PSIC0 = ICS).
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The other nodes Tj , j > 0, are obtained by applying the transitions defined in
the next section, until no transition can be applied anymore (quiescence). Every
arc in a derivation is labelled with the name of a transition.

Definition 6. Starting with an instance ALPHAPi there exists a successful
derivation for a goal G iff the proof tree with root node 〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉
has at least one leaf node 〈∅, CS, PSIC,EXP,HAPf ,CONF, ∅〉 where HAPf ⊇
HAPi and CS is consistent (i.e., there exists a ground variable assignment such
that all the constraints are satisfied). In that case, we write:

SHAPi |∼HAPf

EXP∪CONF G

From a non-failure leaf node N , answers can be extracted in a very similar way
to the IFF proof procedure. First, a substitution σ′ is computed such that σ′

replaces all variables in N that are not universally quantified by ground terms,
and σ′ satisfies all the constraints in the store CSN . If the constraint solver is
(theory) complete (i.e., for each set of constraints c, the solver always returns
true or false [12], and never unknown), then there will always exist a substitution
σ′ for each success node N . Otherwise, if the solver is incomplete, σ′ may not
exist: this is discovered during the answer extraction phase. In such a case, the
node N will be marked as failure node, and another leaf node can be selected
(if there exists one).

Definition 7. Let σ = σ′|vars(G) be the restriction of σ′ to the variables occur-
ring in the initial goal G. Let ∆ = (CONFN ∪ EXPN )/σ′. The pair (∆, σ) is
the abductive answer obtained from the node N .

The SCIFF proof procedure performs some inferences based on the semantics
of time, under the full temporal knowledge assumption (Def. 4).

4.2 Transitions
The transitions are those of the IFF proof procedure, enlarged with those of
CLP [7], and with specific transitions accommodating the concepts of confirma-
tion of hypotheses, dynamically growing history and consistency of the set of
expectations with respect to the given definitions (Definitions 1 and 2).

In this section, the letter k will indicate the level of a node; each transition
will generate one or more nodes from level k to k + 1. We will not explicitly
report the new state for items that do not change; e.g., if a transition generates
a new node from the node

Tk ≡ 〈Rk, CSk, PSICk,EXPk,HAPk,CONFk,DISCk〉
and we do not explicitly state the value of Rk+1, it means that Rk+1 = Rk.

IFF-like transitions The SCIFF proof procedure contains transitions bor-
rowed from the IFF proof procedure, namely Unfolding, Propagation, Splitting,
Case Analysis, Factoring, Equivalence Rewriting and Logical Equivalence. They
have been extended to cope with abducibles containing universally quantified
variables and with CLP constraints. We omit them here for lack of space; the
basic transitions were proposed by Fung and Kowalski [4], while the extended
ones can be found in a technical report [13].

7



Dynamically growing history The happening of events is considered by a
transition Happening. This transition takes an event H(Event) from the external
queue and puts it in the history HAP; the transition Happening is applicable
only if an Event such that H(Event) 6∈ HAP is in the external queue.

Formally, from a node Nk transition Happening produces a single successor

HAPk+1 = HAPk ∪ {H(Event)}.

Note that transition Happening should be applied to all the non-failure nodes
(in the frontier).

Confirmation and Disconfirmation

Disconfirmation EN Given a node N with the following situation:

EXPk = EXP′ ∪ {EN(E1)} HAPk = HAP′ ∪ {H(E2)}

Disconfirmation EN produces two nodes N1 and N2, as follows:

N1 N2

EXP1
k+1 = EXP′ EXP2

k+1 = EXPk

DISC1
k+1 = DISCk ∪ {EN(E1)} DISC2

k+1 = DISCk

CS1
k+1 = CSk ∪ {E1 = E2} CS2

k+1 = CSk ∪ {E1 6= E2}

Example 1. Suppose that HAPk = {H(p(1, 2))} and ∃X∀Y EXPk = {EN(p(X,Y ))}.
Disconfirmation EN will produce the two following nodes:
∃X∀Y EXPk = {EN(p(X,Y ))} HAPk = {H(p(1, 2))}

CS1
k+1 = {X = 1 ∧ Y = 2} CS2

k+1 = {X 6= 1 ∨ Y 6= 2}
DISC1

k+1 = {EN(p(1, 2))}
CSk+2 = {X 6= 1}

where the last simplification in the right branch is due to the rules of the con-
straint solver (see Section CLP).

Confirmation E Starting from a node N as follows:

EXPk = EXP′ ∪ {E(E1)}, HAPk = HAP′ ∪ {H(E2)}

Confirmation E builds two nodes, N1 and N2; in node N1 we assume that the
expectation and the happened event unify, and in node N2 we hypothesize that
the two do not unify:

N1 N2

EXP1
k+1 = EXP′ EXP2

k+1 = EXPk

CONF1
k+1 = CONFk ∪ {E(E1)} CONF2

k+1 = CONFk

CS1
k+1 = CSk ∪ {E1 = E2} CS2

k+1 = CSk ∪ {E1 6= E2}
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Disconfirmation E In order to check the disconfirmation of a positive expectation
E, we need to assume that there will never be a matching event in the external
queue. We can, e.g., exploit the semantics of time. If we make the hypothesis of
full temporal knowledge (Definition 4), we can infer that an expected event for
which the deadline is passed, is disconfirmed.

Given a node:

– EXPk = {E(X,T )} ∪EXP′

– HAPk = {H(Y, Tc)} ∪HAP′

– ∀E2, T2 : H(E2, T2) ∈ HAPk, CSk ∪ {(E2, T2) = (X, T )} |= ⊥
– CSk |= T < Tc

transition Disconfirmation E is applicable and creates the following node:

– EXPk+1 = EXP′

– DISCk+1 = DISCk ∪ {E(X, T )}.
Operationally, one can often avoid checking that (X, T ) does not unify with every
event in the history by choosing a preferred order of application of the transitions.
By applying Disconfirmation E only if no other transition is applicable, the check
can be safely avoided.

Notice that this transition infers the current time from happened event; i.e.,
it infers that the current time cannot be less than the time of a happened event.

Symmetrically to Disconfirmation E, we also have a transition Confirmation
EN, which we do not report here for lack of space; the interested reader is
referred to [13].

Note that the entailment of constraints from a constraint store is, in general,
not easy to verify. In the particular case of CSk |= T < Tc, however, we have
that the constraint T < Tc is unary (Tc is always ground), thus a CLP for finite
domains solver CLP(FD) is able to verify the entailment very easily if the store
contains only unary constraints (it is enough to check the maximum value in
the domain of T ). Moreover, even if the store contains non-unary constraints
(thus the solver performs, in general, incomplete propagation), the transition
will not compromise the soundness and completeness of the proof procedure. If
the solver performs a powerful propagation (including pruning, in CLP(FD)),
the disconfirmation will be early detected, otherwise, it will be detected later
on.

Consistency In order to ensure E-consistency of the set of expectations, we
impose the following integrity constraint:

E(T ) ∧EN(T )→ ⊥

while for ¬-consistency, we impose the following integrity constraints:

E(T ) ∧ ¬E(T )→ ⊥ EN(T ) ∧ ¬EN(T )→ ⊥
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CLP Here we adopt the same transitions as in CLP [7]. Therefore, the symbols
= and 6= are in the constraint language. Note that a constraint solver works
on a constraint domain which has an associated interpretation. In addition, the
constraint solver should handle the constraints among terms derived from the
unification. Therefore, beside the specific constraint propagation on the con-
straint domain, we need further inference rules for coping with the unification.
For space limitations, we cannot show them here: but they can be found in
Appendix A.4.

For instance, CLP transitions avoid having a node with such an expectation
as E(p(X)) with the X > 3 ∧X < 2 CLP constraints on X.

4.3 Soundness
The following proposition relates the operational notion of successful derivation
with the corresponding declarative notion of goal provability.

Proposition 1. Given an instance ALPHAPi of an ALP program and a ground
goal G, if ALPHAPi |∼HAP

EXP∪FULF G then ALPHAP |≈EXP∪FULF G.

This property has been proven for some notable classes of ALP programs. In
particular, a proof of soundness can be found in [13] for allowed ALPs (for a
definition of allowedness see Section A.3). The proof is based on a correspon-
dence drawn between the SCIFF and IFF transitions, and exploits the soundness
results of the IFF proof procedure [4].

5 Implementation

The SCIFF proof procedure, defined in Section 4, has been implemented using
Constraint Handling Rules (CHR). CHR [9] are essentially a committed-choice
language consisting of guarded rules that rewrite constraints in a store into sim-
pler ones until they are solved. CHR define both simplification (replacing con-
straints by simpler constraints while preserving logical equivalence) and propa-
gation (adding new, logically redundant but computationally useful, constraints)
over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend
existing ones. However, although ours is not a classic constraint programming
setting, the computational model of CHR presents features that make it a useful
tool for the implementation of the SCIFF proof procedure.

Following Fung and Kowalski’s approach [4], we defined the proof tee inde-
pendent of the search strategy, which has to be defined instead at the implemen-
tation level. The current implementation is based on a depth-first strategy [8].
This choice, enabling us to tailor the implementation for the built-in computa-
tional features of Prolog, allows for a both simpler and more efficient implemen-
tation of the proof procedure, although, in this way, we miss the possibility of a
global representation of the frontier of the proof tree.

The implementation is based on the following idea:

– the data structures of the proof procedure (Section 4.1) are mapped into
CHR constraints
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– the transitions are mapped into CHR rules.

In a sense, the data structures are seen as new constraints whose propagation is
defined by the transitions of the proof procedure.

Moreover, variables are represented by attributed variables [14]. Attributes
can represent a variable’s quantification and flagging, as well as quantifier re-
strictions: all of these attributes influence a variable’s behavior with respect to
unification.

For unification and non-unification constraints, reified unification is exploited:
the ternary CHR constraint reif unify(Term1,Term2,B) expresses that Term1
and Term2 unify iff B = 1 (B is a binary variable). An ad hoc constraint solver has
been implemented to handle reified unification, which takes into account variable
attributes such as quantification. A description of the implemented system can
be found in [15].

6 Using the SCIFF for agent compliance verification

Abduction has been used for various applications, and many of them (e.g. diag-
nosis) could benefit from an extension featuring hypotheses confirmation, such
as the one depicted in this paper. We have applied the language to a multi-agent
setting, in the context of the SOCS project [16].

In order to combine autonomous agents and have them operate in a coordi-
nated fashion, protocols are often defined. Protocols show, in a way, the ideal
behaviour of agents. But, since agents are often assumed to be autonomous, and
societies open and heterogeneous, agent compliance to protocols is rarely a rea-
sonable assumption to make. Agents may violate the protocols due to malicious
intentions, to wrong design or, for instance, to failure to keep the pace with tight
deadlines.

With our language, protocols can be easily formalized, and the SCIFF proof
procedure can be used then to check whether the agents comply to protocols. For
instance, let us consider the (very simple) Query-ref protocol: an agent requests
a piece of information to another agent, which may either provide it or refuse
it, but not both. The protocol can be expressed by the following three integrity
constraints (where D represents a dialogue identifier):

IC1: H(tell(A, B, query-ref(Info), D), T ) →
E(tell(B, A, inform(Info, Answer), D), T1) ∧ T1 ≤ T + 10 ∨
E(tell(B, A, refuse(Info), D), T1) ∧ T1 ≤ T + 10

IC2: H(tell(A, B, inform(Info, Answer), D), T ) →
EN(tell(A, B, refuse(Info), D), T1) ∧ T1 ≥ T

IC3: H(tell(A, B, refuse(Info), D), T ) →
EN(tell(A, B, inform(Info, Answer), D), T1) ∧ T1 ≥ T

IC1 expresses that an agent that receives a query-ref must reply with either
an inform or a refuse by 10 time units; IC2 and IC3 state that an agent that
performs an inform cannot perform a refuse later, and vice-versa.

Let us suppose that the following events happen:
H1: H(tell(alice, bob, query-ref(what-time), d0), 10)
H2: H(tell(bob, alice, refuse(what-time), d0), 15)
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and consider how SCIFF verifies that such an history is compliant to the inter-
action protocol.

The H1 event, by propagation of IC1, will cause a disjunction of two expec-
tations to be generated, which will split the proof tree into two branches:

1. In the first branch, EXP = {E(tell(bob, alice, inform(what-time,Answer), d0), T1)}
and CS = {T1 ≤ 20}. When H2 happens, by propagation of IC2, EXP =
{E(tell(bob, alice, inform(what-time,Answer), d0), T1),
EN(tell(bob, alice, inform(what-time,Answer), d0), T2)} , with CS = {T1 ≤ 20, T2 ≥
15}. Then, by enforcing E-consistency, the domain of T1 is reduced: CS = {T1 ≤
14, T2 ≥ 15}. Now, Disconfirmation-E can be applied:
E(tell(bob, alice, inform(what-time,Answer), d0), T1) is moved from EXP to DISC;
this means that this branch cannot be successful.

2. In the second branch, EXP = {E(tell(bob, alice, refuse(what-time), d0), T1)} and
CS = {T1 ≤ 20}. By propagation of IC2, after H2,
EXP = {E(tell(bob, alice, refuse(what-time), d0), T1),
EN(tell(bob, alice, inform(what-time,Answer), d0), T2)}, with CS = {T1 ≤ 20, T2 ≥
15}. By Confirmation E, H2 also causes
E(tell(bob, alice, refuse(what-time), d0), T1) to be moved from EXP to CONF,
with T1 = 15. If no more events happen, this branch is successful.

Through this simple example, we showed how a protocol can be easily cast in
our model. More rules can be easily added, to accomplish more complex proto-
cols. In other work, we have shown the application of this formalism to a range
of protocols [17, 18]. The use of expectations generated by the SCIFF could be
manifold: by associating Confirmation/Disconfirmation with a notion of Fulfill-
ment/Violation, we can verify at run-time the compliance of agents to protocols.
Moreover, expectations, if made public, could be used by agents planning their
activities, helping their choices if they aim at exhibiting a compliant behaviour.

7 Related Work

This work is mostly related to the IFF proof procedure [4], which it extends in
several directions, as stated in the introduction.

Other proof procedures deal with constraints; in particular we mention ACLP
[5] and the A-system [6], which are deeply focussed on efficiency issues. Both
of these proof procedures use integrity constraints in the form of denials (e.g.,
A,B, C → ⊥), instead of forward rules as the IFF (and SCIFF). Both of these
proof procedures only abduce existentially quantified atoms, and do not consider
quantifier restrictions, which make the SCIFF in this sense more expressive.

Some conspicuous work has been done with the integration of the IFF proof
procedure with constraints [19]; however the integration is more focussed on a
theoretical uniform view of abducibles and constraints than to an implementa-
tion of a proof procedure with constraints.

In [20], Endriss et al. present an implementation of an abductive proof pro-
cedure that extends IFF [4] in two ways: by dealing with constraint predicates
and with non-allowed abductive logic programs. The cited work, however, does
not deal with confirmation and disconfirmation of hypotheses and universally
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quantified variables in abducibles (EN), as ours does. The two works also differ
in their implementation: Endriss et al.’s is a metainterpreter which exploits a
built-in constraint solver, whereas we implement the proof transitions and vari-
able unification by means of CHR and attributed variables. Both works have
been conducted in the context of the SOCS project [16]: the main application of
Endriss et al.’s is the implementation of the internal agent reasoning, while ours
is the compliance check of the observable (external) agent behaviour.

Many other abductive proof procedures have been proposed in the past; the
interested reader can refer to the exhaustive survey by Kakas et al. [11].

In [22], Sergot proposed a general framework, called query-the-user, in which
some of the predicates are labelled as “askable”; the truth of askable atoms can
be asked to the user. The framework provides, thus, the possibility of gathering
new information during the computation. Our E predicates may in a sense be
seen as asking information, while H atoms may be considered as new information
provided during search. However, as we have shown in the paper, E atoms may
also mean expected behavior, and the SCIFF can cope with abducibles containing
universally quantified variables.

The concept of hypotheses confirmation has been studied also by Kakas and
Evans [21], where hypotheses can be corroborated or refuted by matching them
with observable atoms: an explanation fails to be corroborated if some of its
logical consequences are not observed. The authors suggest that their framework
could be extended to take into account dynamic events, eventually, queried to
the user: “this form of reasoning might benefit for the use of a query-the-user
facility”.

In a sense, our work can be considered as an extension of these works: it
provides the concept of confirmation of hypotheses, as in corroboration, and it
provides an operational semantics for dynamically incoming events. Moreover,
we extend the work by imposing integrity constraints to better define the feasible
combinations of hypotheses, and we let the program abduce non-ground atoms.

In Speculative Computation [23, 24] hypotheses are abduced and can be con-
firmed later on. It is a framework for a multi-agent setting with unreliable com-
munication. When an agent asks a query to another agent, it also abduces its
(default) answer; if the real answer arrives within a deadline, the hypothesis is
confirmed or disconfirmed; otherwise the computation continues with the default.
In our work, expectations can be confirmed by events, but the scope is different.
In our work, if a deadline is missed the computation fails, as an hypothesis has
been disconfirmed.

Other implementations have been given of abductive proof procedures in
Constraint Handling Rules [25, 26]. Our implementation is more adherent to the
theoretical operational semantics (in fact, every transition is mapped onto CHR
rules) and exploits the uniform understanding of constraints and abducibles
noted by Kowalski et al. [19].

Finally, in Section 6 we considered multi-agent systems to show an applica-
tion of the SCIFF. Some discussion about other formal approaches to protocol
verification can be found in [13].
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8 Conclusions

In this paper, we proposed an abductive logic programming framework which
extends most previous work in several directions. The two main features of this
framework are: the possibility to account for new dynamically upcoming facts,
and the possibility to have hypotheses confirmed/disconfirmed by following ob-
servations and evidence. We proposed a language, and described its declarative
and operational semantics. We implemented the proof-procedure for a system
verifying the compliance of agents to protocols; the implementation can be down-
loaded from http://lia.deis.unibo.it/Research/sciff/ [8].
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A Syntax

A.1 Syntax of the EXP

The sets HAP and EXP contain information about the (past) events and ob-
servations, and about the current expectations. There can be alternative EXPs
for a given HAP, as usually there can be several explanations for a given event.
The syntax of HAP and EXP is as follows:

HAP ::= [H(Event [,Time])]?

EXP ::= Expectation [ ∧ (Expectation|Constraint)]?

Expectation ::= [¬]E(Event [, T ]) | [¬]EN(Event [, T ])
Event ::= Term

(4)
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Atom and Term are intended as usual in Logic Programming [27]. Constraint
is a constraint in the CLP sense [7]: as usual in CLP, we will suppose to have
a language ΣC of atoms that are interpreted as constraints in a domain C. A
solver, solvC represents the operational counterpart, and the type of inferences
it is able to perform are typical of the chosen domain [7].

Events are expressed as
H(Event [,Time]) (5)

where Event is a term describing the occurred event and Time is the time at
which the event occurred. We omit the time parameter in some of the examples,
for the sake of simplicity.

Events are mapped into a H predicate. The history HAP grows monoton-
ically as new events are recorded. A H atom is always ground: when an event
happens, we suppose to be given all the significant information about it.

Expectations (positive and negative) are hypotheses about the (future) events;
the events that will actually happen may then fulfill or not the expectations.

The syntax of expectations is the following:

E(Event [,Time]) (6)

EN(Event [,Time]) (7)

for, respectively, positive and negative expectations. E is a positive expectation
about an event (the event is expected to happen) and EN is a negative expecta-
tion, (i.e., the event is expected not to happen in order to fulfill the protocols).

Note the difference between ¬E(X) and EN(X). The first expresses the fact
that there is no expectation about the happening of event X (yet, if the event
happens, no expectation will be disconfirmed), while the second expresses the
fact that the event is expected not to happen.

Expectations can have non-ground terms as arguments. Variables in an E
atom are always existentially quantified. We often need to share variables be-
tween expectations; thus the scope of the existentially quantified variables in
abducibles is the whole set of expectations.

On the other hand, EN atoms represent something that hopefully will not
(ever) happen. Variables in a EN atom are universally quantified if they are not
shared with an E atom. To sum up

– variables in E atoms are always existentially quantified with scope the entire
set of expectations

– the other variables, that occur only in EN atoms are universally quantified.

In the following, we will use the notation EXP for the set of expectations.
Finally, the variables in expectations can be constrained by means of CLP

constraints; for example, the EXP may contain

E(p(X), T ), X > 10, T < 20
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meaning that the event p(X) is expected for some X greater than 10, in some
time before the instant 20 (i.e., ∃X,T E(p(X), T )∧X > 10∧T < 20). On univer-
sally quantified variables, quantifier restrictions [28] can be imposed. For exam-
ple, the formula:

EN(q(X), T ), T > 20

means that the event q(X) is expected not to happen for all values of X in all
times before instant 20 (no expectation holds after time 20). This means that

∀X ,∀T>20,EN(q(X), T )

which means, according to Bürckert [28],

∀X , ∀T , T > 20⇒ EN(q(X), T ).

We restrict ourselves to unary quantifier restrictions, meaning that they involve
only one variable. Formally, we give the following definition.

Definition 8. A quantifier restriction for a universally quantified variable X is
a (unary) constraint c(X) indicating the values that the variable X represents.
If QR(X) is the set of quantifier restrictions of X, then the following formula:

∀XQR(X)F

holds iff the following holds:

∀X, QR(X)⇒ F.

Note the difference between quantifier restrictions and constraints. A constraint
would mean that

∀X, c(X) ∧ F

which is false if c(X) is not satisfied for every possible X.
In the case of existentially quantified variables, however, the two coincide:

Definition 9. A quantifier restriction for an existentially quantified variable X
is a (unary) constraint c(X) indicating the values that the variable X represents.
If QR(X) is the set of quantifier restrictions of X, then

∃XQR(X)F
def⇐⇒ ∃X, QR(X) ∧ F.

A.2 Syntax of the KB

We consider the KB to be a logic program. Its syntax is the following:

KB ::= [Clause]?

Clause ::= Atom←Body
Body ::= ExtLiteral [ ∧ ExtLiteral ]?

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T ]) | [¬]EN(Event [, T ])

Literal ::= Atom | ¬Atom | true

(8)

In a clause, the variables are quantified as follows:
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– Universally, if they occur only in literals of kind EN (and possibly con-
straints), with scope the Body;

– Otherwise universally, with scope the entire Clause.

A.3 Syntax of ICS

The ICS in ICS are used to check that the combinations of generated expec-
tations are consistent with the knowledge base and the history. Intuitively, ICS

are rules used to provide information about the expected outcomes.
The syntax of ICS is as follows:

ICS ::= [ICS ]?

ICS ::= χ→ φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]?

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [ ∨HeadDisjunct ]?|⊥

HeadDisjunct ::= Expectation [ ∧ (Expectation|Constraint)]?

Expectation ::= [¬]E(Event [, T ]) | [¬]EN(Event [, T ])
HEvent ::= [¬]H(Event [, T ])
Literal ::= Atom | ¬Atom | true

(9)

Given a ICS χ → φ, χ is called the body (or the condition) and φ is called
the head (or the conclusion).

Syntactic restrictions, scope and implicit quantification of variables
The rules of scope and quantification are as follows:

1. A variable must occur at least in an Event or in an Expectation.
2. The variables that occur in the body are quantified universally with scope

the entire ICS .
3. The variables that occur only in the head have as scope the disjunct they

belong to and
(a) if they occur in literals E or ¬E are quantified existentially;
(b) otherwise they are quantified universally.

4. the quantifier ∀ has higher priority than ∃ when they have the same scope
(e.g., literals will be quantified ∃∀ and not vice-versa).

There are several reasons why we decided to adopt this convention. Firstly, we
wanted to keep the notation simple. We did not want to load the notation with
explicit quantification symbols in the ICS , and at the same time we wanted ICS

to have a simple reading, and an intuitive meaning associated. Secondly, we had
to take into account compatibility issues: as described in the syntax of EXP
(Section A.1), E atoms in EXP are existentially quantified, and EN atoms are
universally quantified. The syntax of the KB is consistent with that of EXP,
so atoms occurring in the Head of a ICS are quantified in the same way (rule 3
above); for the same reason we impose the following allowedness condition:
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Definition 10. A ICS is Quantifier Allowed if every variable occurring in the
head in literals of type E, ¬E, or (in the body) in a negative, defined literal

– either does not occur in the body
– or it occurs in the body in a literal of type H, E, ¬E.

Variables in Integrity Constraints, in ALP, are usually universally quantified
with scope the whole Integrity Constraint, and rule 2 above states that the
other variables in the ICS are quantified accordingly, suggesting that ICS are
considered as particular Integrity Constraints.

Since we restrict ourselves to quantifier restrictions that are unary (see Sec-
tion A.1), we impose an allowedness condition for ICSs:

Definition 11. A ICS is Constraint Allowed if

– all the variables that are universally quantified with scope the body do not
occur in restrictions;

– for each restriction c occurring in the ICS,
• either c only involves variables that also occur in E, ¬E, H atoms
• or it involves only one variable occurring in EN atoms and the others

must occur in H atoms.

A clause is Constraint Allowed if the variables that are universally quantified
with scope the body do not occur in restrictions, and all variables that occur in
restrictions also occur in atoms E.

An Abductive Logic Program is Constraint Allowed if all the ICS and all the
clauses in the KB are constraint allowed.

A.4 Inference rules for CLP unification

Concerning equality constraints, we suppose that:

– the constraint theory contains rules for the equality constraint
– the constraint solver contains the same rules for equality that are in the IFF

proof procedure, i.e., the function infer(CS) performs the following substi-
tutions in the constraint store:
1. Replaces f(t1, . . . , tj) = f(s1, . . . , sj) with t1 = s1 ∧ . . . ∧ tj = sj .
2. Replaces f(t1, . . . , tj) = g(s1, . . . , sl) with false whenever f and g are

distinct or j 6= l.
3. Replaces t = t with true for every term t.
4. Replaces X = t by false whenever t is a term containing X.
5. (a) Replaces t = X with X = t if X is a variable and t is not

(b) Replaces Y = X with X = Y whenever X is a universally quantified
variable and Y is not.

6. (a) If X = t ∈ CSk, applies the substitution X/t to the entire node.
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Note that the symbol = is overloaded since it is used for both representing the
equality constraint in the constraint domain and the unification among terms. As
it is usual in CLP [12], we distinguish between the two by means of types. Some
predicates, the so called constraints, do not have a definition in the program, but
their semantics is embedded in the constraint solver. Also, some of the functor
symbols are not simply Herbrand terms, but are associated with symbols in
the constraint domain (e.g., the symbol + represents the addition, etc.), and
variables can be associated to domains. In this way, the terms that are built
from CLP functors and variables can be distinguished, and the correct = can be
applied.

Concerning 6=, we will again suppose that it is possible to syntactically dis-
tinguish the CLP-interpreted terms and atoms; the solver will perform some
inference on the interpreted terms (typically, depending on the CLP sort), and
will moreover contain the following rules, for uninterpreted terms:

1. Replaces f(t1, . . . , tj) 6= f(s1, . . . , sj) with t1 6= s1 ∨ . . . ∨ tj 6= sj .
2. Replaces f(t1, . . . , tj) 6= g(s1, . . . , sl) with true whenever f and g are distinct

or j 6= l.
3. Replaces t 6= t with false for every term t.
4. Replaces X 6= t by true whenever t is a term containing X.
5. (a) Replaces t 6= X with X 6= t if X is a variable and t is not

(b) Replaces Y 6= X with X 6= Y whenever X is a universally quantified
variable and Y is not.

6. (a) Replace A 6= B with false if A is a universally quantified variable with-
out quantifier restrictions (i.e., QR(A) = ∅)

(b) If A is a universally quantified variable with quantifier restrictions QR(A) =
{c1(A), . . . , cd(A)}, and B is not universally quantified, replace A 6= B
with ¬c1(B) ∨ . . . ∨ ¬cd(B).5

(c) If A and B are universally quantified, with quantifier restrictions QR(A)
and QR(B) then
– if ¬QR(A) ∩ ¬QR(B) = ∅, replace A 6= B with true.6

– otherwise, replace A 6= B with false.

Note that we do not introduce explicitly a rule for existentially quantified vari-
ables. In this case, we delegate to the specific solver (we do not make assumptions
on its behaviour). Some solvers can easily propagate constraints of this type. E.g.,
given X 6= 1 a Finite Domain solver can delete the value 1 from the domain of
X. If the second term is not ground, the constraint is typically suspended (thus
we do not have a transition). We will delay the 6= constraint until it can be
propagated by the given rules.

5 Intuitively, A is universally quantified, thus it assumes every possible value except
the ones forbidden by one of the ci. Thus, the only way to satisfy this constraint is
to impose that B assumes one of the values excluded for A.

6 Intuitively, if the values taken by A have no intersection with the values taken by
B, then A 6= B is true.
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The constraint solver also deals with quantifier restrictions. If a quantifier
restriction (due to unification) gets all the variables existentially quantified, then
we replace it with the corresponding constraint. E.g., if in the tuple we have two
variables X and Y quantified as follows: ∃Y, ∀X 6=1, and variable X is unified
with Y , we obtain that ∃Y , Y 6= 1 (the quantifier restriction X 6= 1 becomes a
constraint on the variable Y ).
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