

- 1 -

A RETROSPECTIVE ON THE DESIGN OF THE GOPI
MIDDLEWARE PLATFORM

Geoff Coulson, Shakun Baichoo and Oveeyen Moonian

Distributed Multimedia Research Group,
Computing Department,

Lancaster University,
Lancaster LA1 4YR,

UK
contact: geoff@comp.lancs.ac.uk

ABSTRACT

This paper offers a high-level retrospective overview of the GOPI
middleware platform which is the outcome of a three year project aimed at
the development of generic, configurable and extensible middleware. GOPI
has a clearly defined modular structure, is widely extensible with plug-ins
at all levels of the architecture, and natively supports stream interactions
as well as standard operation invocation. It offers a generic framework for
quality of service (QoS) specification and management, and supports a
high level multimedia oriented programming environment that is
backwardly compatible with the OMG’s CORBA. At its lower levels it
supports QoS-driven resource management and features an optimised
IIOP stack. Despite its enhanced functionality, GOPI’s IIOP performance
equals or exceeds that of state-of-the-art CORBA platforms.

1. Introduction
Middleware based on the OMG’s CORBA [OMG,01], Microsoft’s DCOM

[Microsoft,01] and Java’s Remote Method Invocation (RMI) [Sun,01] has emerged in
recent years as a highly successful technology. Commonly referred to as object-based
middleware, the technology is now widely deployed in industry and commerce and
seems set to play an important role in the foreseeable future.

As a consequence of its success, there is now increasing desire to apply object-
based middleware in areas of distributed computing for which it was not originally
intended. Prime examples are mobile, real-time and multimedia computing; fault
tolerant systems; systems that must be continuously available (often referred to as
“7x24” systems); and systems involving groups and multipeer communication. In
addition, there is growing demand to deploy middleware in a burgeoning diversity of
hardware and operating system (OS) environments. Examples range from traditional
client/ server environments, through scientific supercomputers interconnected by high
speed networks, through small PDAs employing low-speed and wireless connectivity,
through embedded devices with very primitive OS support.

In light of these considerations, the research project that is the subject of this
paper has developed, over the past three years, a new middleware platform called
GOPI (Generic Object Platform Infrastructure). GOPI [Coulson,98] addresses the
above challenges by attempting to render middleware functionality, including low-

- 2 -

level ‘core’ areas, as generic, configurable and extensible as possible while retaining
backward compatibility with CORBA. It also emphasises the need to integrate
multimedia, QoS and multipeer-oriented functionality as ‘first class’ facilities in the
middleware domain.

In contrast to previously published papers that have addressed specific aspects of
GOPI’s design in depth [Coulson,98,99a,99b,99c,00,01a,01b], this paper offers a high-
level retrospective overview of the platform and focuses on experiences and overall
contributions. The remainder of the paper is structured as follows. First, section 2
enumerates and discusses the design principles underlying GOPI. Then section 3
briefly surveys the platform design as a necessary grounding for the rest of the paper.
This is followed, in section 4, by a discussion of key aspects of the design in more
depth in terms of our experience over the course of the project. Finally, section 5
relates our efforts to other relevant research and section 6 concludes and outlines our
current work and future directions.

2. Design Principles
As mentioned, the design of GOPI has been guided by general principles of

genericity, configurability, and extensibility. Ideally, we wanted our platform to be
capable of meeting the needs of any conceivable class of distributed application with
any conceivable requirement along any conceivable dimension, e.g. in terms of types
of interaction, topology, scalability, performance, predictability, memory footprint,
reliability, availability or adaptivity. In cases where the required functionality could
not be attained by configuring the existing platform, it should be possible to extend
the platform in the required direction in a natural and explicitly supported manner.

A supporting goal was to construct the platform in terms of a well-defined
modular structure. The issue of internal platform structure has been overshadowed by
the middleware standardisation process which, rightly, focuses on ‘black box’
behaviour rather than internal structure. Nevertheless, without a well-defined internal
structure, middleware platforms have severely restricted scope for configurability and
extensibility. On the other hand, given a suitably modular structure, it is much easier
to particularise platforms to niche application domains or deployment environments.
For example, a Real-Time CORBA-like particularisation [OMG,99a] might select a
profile that included thread pools together with a communications infrastructure that
supports explicit binding, client-propagated priorities, etc.

At the programming model level, our most fundamental design decision was to
base our design on the computational model defined by the ISO’s Reference model
for Open Distributed Processing (RM-ODP) [ITU-T,95], [Blair,97]. In particular, we
wanted to support the following aspects of RM-ODP:

• Integrated Interaction Types

CORBA supports traditional request/ reply operation invocations, media streams
[OMG,00a] and events [OMG,00b], but only the former interaction type is
directly supported by the core computational model in a ‘first class’ manner (i.e. is
apparent in interface definitions). In contrast, RM-ODP advocates an integrated
approach in which streams and events are first class entities in the computational
model. Advantages of this approach are that synchronisation and coordination
between interactions of different types (e.g. using operations to control media
streams) is easy to program and need not rely on specialised extensions like

- 3 -

CORBA’s A/V Streams service [OMG,00a], which may be heavyweight, complex
and not exactly what the programmer needs. Furthermore, we wanted all
interaction types to be supported by a common integrated platform infrastructure.
Such an infrastructure is well placed to make informed resource management
trade-offs which take account of the diverse quality of service (QoS) requirements
of different interactions and interaction types. Such an infrastructure can also
support synchronisation and coordination between interactions in a direct and
efficient manner.

• Quality of Service Support

RM-ODP allows interaction points in interfaces to be annotated with QoS
attributes that tailor interaction point behaviour in terms of any conceivable
dimension; examples are latency, periodicity, reliability, and levels of ‘guarantee’
of other attributes. This implies the need for infrastructure support in terms of: i)
suitable ontologies, or schema, for QoS specification, ii) mapping of QoS
specifications between layers or modules that may employ different schema, iii)
mapping of QoS specifications to appropriate platform-level resources like
threads, buffer pools or transport connections, iv) admission controlling of
resource allocation requests, and v) negotiation and perhaps dynamic re-
negotiation of resource allocation among principals such as the various end-
systems involved and the network. In addition, it implies that the infrastructure
must support resource schedulers that can appropriately multiplex dynamic
resources like CPU and network capacity in accordance with given allocations.

• Explicit Bindings

In CORBA, the process of ‘binding’ to a remote object, i.e. establishing a
connection and per-connection state, is implicit in the narrowing of a local proxy
object1. In contrast, the process of binding in RM-ODP is explicit: it requires the
binding creator to submit a list of endpoints that will participate in the binding
(including the ‘client’) together with a QoS specification. This submission then
results in the creation of a binding object, visible to the user, that encapsulates the
(QoS determined) infrastructure supporting the binding. One key benefit of this
approach is that it provides structure for the isolation of per-binding resources,
which is crucial in an environment that must support bindings with particular QoS
needs. Also, it naturally supports run-time management of the binding; for
example, the binding object can generate events when its QoS degrades, provide
operations that enable the binding user to alter its QoS, or provide operations to
add and remove participants (e.g. in a group binding). Finally, explicit binding
lends itself to a ‘plumbing’ approach in which bindings can be composed by third
parties into multi-stage topologies such as pipelines or trees. This is particularly
useful in media stream processing and group applications.

Building on explicit bindings, we also wanted the platform to support the
straightforward definition of new types of binding with arbitrary application specific
semantics. For example, in a multimedia application environment it may be useful to

1
 This is not true in Real-Time CORBA which does employ a species of explicit binding [OMG,01].

However, our point is that, rather than being available in only one specialised environment,
explicit binding should be an integral part of a generally applied computational model and
therefore should be available in any environment (e.g. mobile computing or group
communications).

- 4 -

define a multiplexor binding type that merges media packets from multiple sources to
a single sink according to a specified policy (e.g. round robin or first come first
served); the associated binding object would offer operations to dynamically add and
remove sources and/ or sinks. We also wanted to be able to define new binding types
in terms of value-added compositions of existing binding types. The motivation here
was to reduce development effort and encourage the establishment of extensible
libraries of binding types.

Also in the spirit of extensibility, we rejected from the outset the notion of a single
‘standard’ schema for QoS specification, and opted for the co-existence of multiple
application-domain-tailored, per binding type, schemata. For example, the above
mentioned multiplexor binding type might employ a simple enumeration-based
schema that enables choice from a selection of named policies, whereas a more
sophisticated schema used by an audio transport binding might support the
specification of rules (expressed, e.g., in XML) for switching to alternative encodings
as a function of bandwidth variation [Coulson,99c].

As a final goal, we decided to focus on the support of distributed multimedia
applications. We saw multimedia as a particularly challenging application domain that
demands a superset of the functionality required by many other domains. For
example, it has strong requirements for interaction type integration, particularly of
media streams and operations, and for QoS specification and resource management. It
also has obvious extensibility requirements in terms of media specific protocols and
filters. In addition, multipeer operation could be exercised in the form of media
dissemination scenarios, and, because multimedia is demanding in terms of
performance, we would be forced to keep our design and implementation tight and
efficient.

3. An Overview of GOPI
3.1 Architectural Overview

As shown in Figure 1, GOPI’s architecture at the coarsest granularity comprises
two levels:

• the GOPI-core level, and above that,

• the API personality level.

This architecture is clearly related to that of micro-kernel operating systems such
as Spring [Sun,93], and is inspired by similar reasoning. The aim is to provide
common, generic functionality in the core, and application-domain-specific,
specialised programming models (i.e. high level abstractions and semantics) at the
personality level. At a finer granularity, each level of the architecture is internally
structured in a modular manner. For example, GOPI-core includes independent
concurrency, communication and binding modules (see below).

Multiple personalities, each with their own independent programming model, can
co-exist in the same address space and share the generic low-level GOPI-core API. To
date, two personality layers have been built: a multimedia oriented personality (an
early version was described in [Coulson,99b]), and a standard CORBA personality
[Coulson,01a]. We briefly describe these in section 3.3, having first discussed
noteworthy aspects of the design of GOPI-core in section 3.2.

- 5 -

Transport Buf/Chan Thread

...

protocols

trans-
ports

buffer
pools

schedulers

Pers
on

ali
ty

 le
vel

Protocol module

G
O

PI
-c

or
e

le
ve

l

Ir
ef

Multimedia
personality

IIOP-bindQoS-bind

CORBA
personality

Figure 1: Overall GOPI Architecture

3.2 GOPI-core
GOPI-core consists of approximately 20,000 lines of C and runs on a variety of

platforms including SunOS, Linux and Win32. It comprises the following modules:
• Thread is a sophisticated concurrency package that simultaneously supports

multiple co-existing plug-in modules, called schedulers, that encapsulate their
own scheduling policy for user-level threads. Each scheduler can be
configured in terms of its own QoS schema and autonomously manages its
own encapsulated resources (kernel threads).

• Buf manages buffer pools which are implemented as plug-ins; the associated
Chan module provides an efficient inter-thread buffer passing service.

• Transport provides a common abstraction layer over a set of OS-supported
plug-in transport protocols (such as TCP, UDP, pipes, shared memory etc.).

• Protocol provides a framework above the transport layer for the deployment
of stacks of user-defined plug-in modules, called protocols, each of which can
be configured in terms of its own QoS schema. Protocols also monitor their
own QoS and can generate events when QoS degrades.

• Iref supports location transparent communication endpoints called irefs that
act as participants in bindings at the GOPI-core level; for CORBA
compatibility, routines are provided to translate irefs to and from CORBA
IORs.

• QoS-bind supports the abstraction of QoS bindings which conform to the
model of explicit binding outlined in section 2.

• IIOP-bind provides a set of support services for IIOP bindings. These are
standard CORBA bindings and are layered over a plug-in protocol
implementation of CORBA’s GIOP protocol [OMG,01] and used by the
CORBA personality.

As can be seen, a notable feature of GOPI-core is its aggressive use of plug-ins.
For example, the Thread module supports plug-in schedulers, and the Transport and
Protocol modules support plug-in transports and higher-level protocols respectively.

- 6 -

In addition, the IIOP-bind module supports plug-in request demultiplexors and thread-
pools. In the GOPI context, plug-ins are defined as software objects that, while
conforming to a well-defined interface, implement that interface in terms of varying
behaviours. Crucially, plug-ins can be added to the system not only statically, at
compile time, but dynamically, at run-time. They are uniformly and efficiently
implemented as arrays of pointers to functions.

Whereas plug-ins represent GOPI-core’s unit of fine grained extensibility, GOPI-
core can also be extended at a coarser granularity by adding new top-level modules.
To facilitate this mode of extension, which is only available statically, a layering
principle is adopted whereby earlier listed modules (as ordered in the above list) are
not permitted to employ the services of later listed modules. This makes it easier to
modify, add or replace higher-level (later listed) modules without widespread impact.
The linkages between modules are straightforwardly implemented as procedure calls.

3.3 The Personality Level

As mentioned, we have implemented two separate personalities on top of GOPI-
core; the standard CORBA personality is layered atop IIOP-bind, while the
specialised multimedia programming environment builds on QoS-bind. In this section
we focus on the multimedia personality as this is essentially a superset of the CORBA
personality. Both personalities are implemented in C++. Detailed descriptions of an
early version of the multimedia personality are available in [Coulson,99b] and
[Coulson,00].

To support interaction type integration at the personality level, the multimedia
personality extends the CORBA Interface Definition Language (IDL) with signals,
streams and QoS-groups. Signals are used for one-off messages whereas streams are
used for continuous message flows (e.g., video or audio streams). Both these
interaction types are unidirectional and capable only of either emitting or receiving
messages [ITU-T,95]. So-called QoS-groups are used to partition the interaction
points in an interface into disjoint sets that will share the same QoS at run-time. More
specifically, each QoS-group will, at run-time, be underpinned by a separate GOPI-
core binding, the protocol stack and QoS of which will be determined at either service
creation time or bind time (or both).

The following example illustrates the IDL extensions:
// GOPI extended CORBA IDL
interface MediaServer {

typedef char Title [512]
sequence<Title> Titles;
sequence<char> VideoFrame;
sequence<char> AudioPkt;

videoqos streamout video(out VideoFrame f);
audioqos streamout audio(out AudioPkt a);
void getTitles(out Titles ts);
void selectTitle(in Title t);
command sigin start();
command sigin stop();
titleevent sigout newTitleAdded(out Title t);

};

This ‘media server’ emits video and audio at two producer (‘streamout’) stream
interaction points, respectively video() and audio(), each of which is placed in its own
dedicated QoS-group (respectively, videoqos and audioqos). In addition, the service

- 7 -

has standard operational interaction points to browse the available video titles
(getTitles()) and to select a particular title (selectTitle()). These operations have no
associated QoS-group and therefore will use a default protocol and QoS at bind time.
There are also two consumer (‘sigin’) signal interaction points, start() and stop(), in a
common QoS-group (command) which are used to turn the flow of media on or off,
and there is a producer (‘sigout’) signal, newTitleAdded(), in its own dedicated QoS-
group (titleevent), which asynchronously notifies the availability of a new title (titles
are assumed to be added via a separate management interface).

As well as the IDL extensions, the multimedia personality employs a number of
run-time abstractions as follows2:

• InterfaceRefs are location independent endpoints that encapsulate a set of
GOPI-core irefs, one for each QoS-group in an associated IDL specification.
InterfaceRefs also embed typing information and are characterised with a
‘role’ that can be either provider or requirer or both. The provider role
represents a unit of service provision (an object implementing an IDL
interface), while the requirer role represents a unit of service requirement (a
client proxy). Note that role is orthogonal to the directionality (in or out) of
stream and signal interaction points. Provider InterfaceRefs also contain a
default protocol type and QoS specification (expressed in the protocol’s native
schema) for each QoS-group.

• GenericBinding is a C++ class that can be used to bind any pair of type and
role compatible InterfaceRefs (one must be a requirer and the other a
provider), regardless of the location of their referents (i.e. third party binding
is supported). The class supports operations to get and set the binding’s QoS;
these allow the programmer to override the default QoS associated with the
provider iref both at bind time and while the binding is active. These
operations are implemented in terms of underlying QoS negotiation and
renegotiation services offered by GOPI-core’s QoS-bind module as discussed
in section 4.3.

• QoS specification classes are used to specify per-protocol QoS for both
InterfaceRefs and GenericBindings. Each QoS class, conventionally named
<protocol-name>_QoS after one of the protocols supported by the GOPI-core
Protocol module, derives from a base class called QoS. Each derived class
typically adds constructors that take parameters relating to the associated
protocol’s QoS schema, and get and set methods relating to individual
elements of the QoS schema. Base QoS class functionality offers generic
operations to marshal and unmarshal the encapsulated QoS data so it can be
passed around the distributed system.

• Optional QoS manager classes are also associated with a particular protocol
(although each protocol can have multiple QoS managers) and derive from a
base class called QoSM. QoS managers are attached to particular
GenericBindings at run-time. Each QoS manager implements a virtual method
qos_event(QoS *current_qos) which encapsulates a QoS-manager-specific
policy for dealing with a protocol-specific event. For example, a qos_event()
implementation in a video protocol stack’s QoS manager may respond to a

2
 More detail on the use of these abstractions can be found in Appendix A.

- 8 -

‘degraded frame rate’ event by renegotiating the QoS of the GenericBinding.

Another key dimension of flexibility offered by the multimedia personality is the
availability of a variety of binding styles. These are supported partially by the
underlying protocol and partially by having the IDL compiler generate multiple, per
binding style, stub and skeleton formats that can be selected at run-time. The active
binding style is useful for media stream bindings and employs upcall oriented stubs so
that the upcall style of user/ binding interaction traditionally employed at the provider
(or server) side of a binding can also be employed at the requirer (or client) side. This
allows QoS management to be fully delegated to an specialised underlying protocol
stack, which creates a thread that repeatedly upcalls the stub with a periodicity that is
a function of the QoS specification that was passed to the binding on its creation. Also
for media streams, we support direct bindings in which the underlying protocol
bypasses the application and directly sources or sinks messages itself. This binding
style is typically used for reasons of efficiency. For example, we have a video
protocol that directly gets or puts packets from or to a video card without incurring
the overhead of passing them through the application. In the direct binding style, stubs
and skeletons are still upcalled on message dispatch or arrival in the usual way, but
only vestigial ‘meta-data’ (i.e. an integer representing a counter) are passed so that
higher level code can track and synchronise with the flow of data.

Furthermore, to support the aggregation of multiple GenericBindings we provide
pipelined and multipeer binding styles. In the former, multiple GenericBinding
instances (which must employ the same IDL type) are linearly concatenated. At each
‘link’ in the pipeline a combined stub/ skeleton is employed for which a single upcall
suffices to both deliver an incoming message from the upstream binding and, on
return of the upcall, to pass the message (or a transformation of it) to the downstream
binding. This implementation yields a very simple programming model for pipelines
and is also highly efficient as no context switch is involved between stages. In
multipeer bindings, a single distinguished provider InterfaceRef is used to represent a
‘group’, and group members are represented by requirer InterfaceRefs. Requirers
become group members by being bound individually to the distinguished provider
InterfaceRef using the standard point-to-point GenericBinding mechanism discussed
above. However, at the protocol level, transparently to the user, these multiple
bindings are mapped to a single multicast address by the underlying (multipeer
binding style capable) protocol3.

Finally, layered on the above abstractions, the multimedia personality supports the
definition of application specific bindings (ASBs). ASBs are encapsulations of
multiple GenericBindings (especially pipelined and multipeer bindings) and/ or other
(recursively nested) ASBs. Crucially, like GOPI-core protocols, ASBs offer
specialised QoS schema and run-time QoS management classes that either build
directly on GenericBinding-level QoS or QoS management classes, or on those of
their nested ASBs.

3
 To avoid a single point of failure in multipeer bindings, the provider InterfaceRef can be passively

replicated in an arbitrary number of address spaces using a standard GOPI-core service
[Saikoski,00]. However, machinery to replicate state held in the ‘group’ protocol instance is not
provided by default and must be specially implemented if required. Group management
functionality such as authorisation and authentication is not provided at this level either.

- 9 -

Application Specific Binding

source node

sink objects

GenericBindings

application server

source object

filter object

high-speed network
low-speed network

InterfaceRef

Figure 2: Application Specific Binding Example
As an example of an ASB, consider the media dissemination scenario of Figure 2

in which a media stream is piped through compression software on an application
server machine before being disseminated over a low speed segment of the network.
This scenario can be realised as an ASB that i) remotely instantiates the compression
filter object (this is done using a generic GOPI service), ii) creates, using an active
GenericBinding (or, indeed, a nested ASB), a third party binding between the media
source object and the filter, iii) similarly creates a multipeer binding over the low
speed network by remotely establishing multiple GenericBindings between the filter
and the sink objects. In addition, a pipelined binding style could be employed to
ensure an efficient implementation of the compressor object.

4. Experiences
4.1 Overview

In this section we discuss our experiences with the design and implementation of
GOPI. More specifically, the following sub-sections discuss our experiences in the
following areas: GOPI’s modular structure, its approach to QoS management, its
approach to resource management, programming with the multimedia personality’s
API, and performance.

4.2 Modular Structure

We have found a liberal application of the ‘plug-in’ concept to be extremely
useful in rendering key areas of the architecture extensible in terms of both
mechanism and policy (specific examples were given in section 3.2). For example, we
have implemented a wide range of protocols including: i) a plug-in that implements
the CORBA GIOP protocol, ii) a simple stream-oriented protocol for generic
continuous media types, iii) more sophisticated ‘adaptive’ protocols for audio and
video, and iv) unreliable and reliable message-oriented multicast protocols. In
addition we have implemented a number of scheduler plug-ins including dynamic
priority, earliest deadline first (EDF) and rate monotonic.

On the down side, however, when we asked our students to write plug-ins they
found it initially difficult to deal with the significant amount of context involved.
Protocol implementers in particular have to deal with many issues over and above
basic protocol functionality; for example, QoS mapping, event reporting and binding
style semantics. There were also problems with the coarser grain modular structure. In

- 10 -

particular, our simple procedure call implementation of inter-module linkages was
found to be a limitation as it supports only compile time extensibility in a natural way.
Furthermore, we found it hard to maintain the discipline of restricting dependencies
between modules without explicit programming model support. Our currently
favoured solution to all these problems is to implement both modules and plug-ins as
components (see section 5). We also exploit the related notion of component
frameworks [Szyperski,98] to give additional structure and guidance to plug-in
developers.

4.3 Approach to QoS Management

GOPI’s approach to QoS specification and management is in many ways its most
unique and innovative characteristic. We have found that the use of per-plug-in QoS
schemas (both in the Protocol and Thread frameworks and in ASBs) yields maximal
simplicity, flexibility and extensibility in comparison to related systems which use a
fixed QoS ontology and QoS mapping rules (e.g. MULTE-ORB [Kristensen,01]). For
example, new protocols do not have to be written in terms of a fixed, pre-existing set
of QoS parameters such as delay, jitter and throughput. The apparent downside to this
is that each plug-in must be responsible for interpreting and mapping its own QoS
specifications without generic system support. In practice we have not found this to
be a burden; it is usually straightforward for plug-ins to map to either generic GOPI-
core resources such as threads, buffers or transports, or to the QoS schema of other
plug-ins on which they may be layered.

Protocol layering and QoS mapping function as follows: newly instantiated
protocol instances can choose, on the basis of their given QoS specifications, to
instantiate below themselves a further protocol instance (or instances) to which they
will pass a QoS specification expressed in the schema of that protocol type. When this
process is applied recursively it naturally leads, with minimal framework support, to
the instantiation of stacks of QoS configured protocols. In this scheme, unlike that
employed by traditional protocol stack frameworks such as Ensemble [van
Rennesse,98], the mode of protocol stacking is implicit and hidden from the user who
merely selects a top level protocol and provides an associated QoS specification. The
shape of the subsequently established stack is determined solely by the private
choices (presumably made on the basis of its given QoS specification) of each
recursively instantiated protocol instance.

We have found that, despite supporting arbitrary QoS schema, a simple generic
QoS negotiation protocol has sufficed for all the protocols we have implemented to
date or can envisage implementing. The form of this negotiation protocol, which is
implemented in the QoS-bind module, is shown in Figure 3. As mentioned, the
protocol can also be re-invoked while a binding is in existence to renegotiate the
binding’s QoS.

- 11 -

QoS1 QoS4

listen() connect()accept()

…

requirer
protocol 1

requirer
protocol n-1

requirer
protocol n

provider
protocol n-1

provider
protocol 1

provider
protocol n

QoS2

QoS3

…

transporttransport

Figure 3: GOPI’s Generic QoS Negotiation Protocol
Referring to Figure 3, each protocol instance on the requirer side, starting with the

initially instantiated ‘requirer protocol n’, first maps its given QoS specification
(initially QoS1), either directly to a transport or to the QoS schema of a further
protocol instance that it may choose to instantiate below itself at layer n-1. Then,
having tentatively reserved resources4, it returns a possibly revised QoS, QoS2, which
will differ from QoS1 if the latter cannot be achieved. QoS2 is then carried by the
binding protocol (using a standard CORBA binding) across to the provider side where
a similar process unfolds. Eventually, the top level revised QoS at the provider side,
QoS3, is passed back to the requirer side when it is again passed down through the
stack for ultimate confirmation, and finally returned as QoS4.

Although the recursive protocol stack instantiation scheme has worked well, we
have identified certain drawbacks. One limitation is that, in terms of topology, only
trees of protocols (rooted at the top) are supported. This, of course, allows linear
stacks but precludes more general graphs of protocols. A second limitation is that
‘receive’ calls can only be issued from the top protocol in a stack and this precludes
the use of upcall-driven control structures which are beneficial where it is useful to
have incoming packet headers determine a path up through the stack. Finally, a third
possible limitation is that, because protocol stacks instantiate themselves
transparently, it is not possible to change the QoS of an existing binding by
dynamically inserting new protocols into a stack from the ‘outside’; this can only be
achieved via top-down QoS renegotiation5.

Subsequent work that attempts to address the above limitations (at the cost of an
increase in complexity) is reported in [Kramp,00] and the relation of our framework
to other protocol framework is further discussed in section 5.

4
 In addition to a layer n-1 protocol or a transport, protocols may of course map to and allocate any

other GOPI resource type—e.g. buffers and threads. They may also instantiate multiple layer n-1
protocols to form a tree topology.

5
On the other hand, inserting protocols from the outside is potentially dangerous. It is arguably far
safer to declaratively specify a changed requirement and then allow the stack itself to perform any
required reconfiguration.

- 12 -

4.4 Approach to Resource Management

The QoS specification, negotiation and management framework discussed above
relies on the availability of low level resources with which to underpin its QoS
provision. In this regard, we have found that, even given a lack of OS support for
guaranteed resource allocation, there still is a lot that can usefully be done at the user
level. First, we have implemented a buddy based [Knuth,73] buffer management
plug-in that supports multiple buffer pools (as multiple plug-in instances) so that
individual bindings (or, more precisely, protocol plug-ins participating in a binding)
can allocate from a ring-fenced pool of buffers. The buddy based buffer manager is
able to allocate and deallocate buffers at over twice the speed of a simpler and smaller
plug-in based directly on malloc() [Coulson,99a].

The most important aspect of resource management, however, has proved to be
the GOPI-core Thread module’s scheduler framework. This framework enables the co-
existence of independent scheduling environments each of which offers user-level
threads with a particular scheduling policy, concurrency style (i.e. non-preemptive,
preemptive or timesliced) and underlying set of resources in terms of kernel threads.
In accordance with the principles laid out in section 1, the form of each scheduler’s
QoS schema is entirely the concern of the scheduler itself. As a simple example, the
schema associated with our EDF scheduler consists simply of two integer parameters:
‘deadline’ and ‘period’.

We have found the scheduler framework to be a crucial underpinning for
predictability, relative prioritisation and general QoS support. By employing distinct
schedulers for, say, incoming invocation handling and media stream handling, we can
coherently schedule instances of each of these interaction types (e.g. using priority
scheduling for the former and EDF for the latter), while simultaneously dedicating
processing resource (i.e. underlying kernel threads) to each type so that neither can
starve the other. Furthermore, we can dynamically alter the QoS and scheduling
policy of existing threads by migrating them to a different scheduler, and can load and
unload schedulers as application activity evolves. We also believe that the plug-in
scheduler concept has significant potential in implementing real-time middleware
environments such as Real-Time CORBA.

An apparent downside to the use of the scheduler framework is that, at least to
some extent, it compromises GOPI’s portability because user-level thread
implementations are inherently less portable than kernel threads (this is because they
require small sections of CPU specific code to initialise a run-time stack and to save
and restore CPU state). Despite this, our use of user level concurrency has not proved
problematic in practice. For example, we have quickly and easily ported GOPI from its
original SunOS reference platform to a number of other UNIX platforms and to
Win32. The main reason for this is that machine dependent code can be eliminated on
almost all modern platforms through the use of widely deployed standard facilities
such as POSIX’s ucontext(3) (see [Engelschall,99]). This issue, together with a
detailed treatment of the whole scheduler framework, is further discussed in
[Coulson,01b].

4.5 Programming with the Multimedia Personality’s API

Our experience has been that the multimedia personality makes it very easy to
create distributed applications that employ and control media streams, QoS and
multipeer topologies. Apart from the generally high degree of abstraction and

- 13 -

integration, the fact that standard IDL parameter structuring is generally available is
particularly useful for applications that employ highly structured streams and signals
(e.g., distributed virtual reality or remote data collection). In addition, the availability
of third party binding has proved invaluable, particularly as an underpinning for
ASBs. To more concretely illustrate the use of the API, Appendix A outlines the code
required to set up a simple video connection based on the MediaServer example of
section 3.3.

At a more detailed level, we have found that allowing a mixture of interaction
types in the same interface has proved a fortunate design decision. This is in contrast
to RM-ODP and other stream capable platforms (e.g. MULTE-ORB [Kristensen,01])
that require all interactions points in an interface to be of the same type. We have
found that our approach permits a more flexible separation of concerns; in particular,
as illustrated in the MediaServer example in section 3.3, it is often more useful to
separate concerns in terms of base functionality versus management functionality
rather than simply in terms of interaction type (in the MediaServer example,
management functionality consists of adding titles, which involves only standard
operational interactions, whereas the service’s base functionality additionally relies on
streams and signals). Furthermore, the notion of QoS-groups has proved very
successful. The essence of this mechanism is to provide compile-time structure for
QoS specification but to defer the actual specification to run-time. It thus represents a
satisfying compromise between a static compile time QoS specification style and a
style that relies exclusively on run-time QoS specification.

We have also found the multipeer binding style to be a great success in terms of
ease of programming. Multipeer bindings render multicast based group
communications transparent so all the user has to do is build up a desired topology in
terms of point-to-point connections. As an example of the naturalness of integration
of multipeer support, it is trivial (and probably sensible) to choose at service creation
time to underpin the ‘titleevent’ QoS-group in the example of section 3.3 with a
multipeer binding style compliant reliable multicast messaging protocol rather than a
conventional peer-to-peer protocol. The downside of our multipeer approach is that
group management functionality (e.g. admission testing of new members) is left to
individual protocols in GOPI-core’s Protocol module. Ideally, there should be a better
way of i) providing generic and reusable implementations of such services and ii)
integrating them with the personality level API. As with the general modularity issues
outlined in section 4.2 our currently favoured approach is to employ reflection (see
section 6) as a solution to this problem so that group management is available at the
‘meta-level’ through a standard interface accessible to both GOPI-core level protocols
and personality level programmers.

Finally, in terms of extensibility the ASB concept has proved a great success in
offering extensibility at a higher level of abstraction than protocols. ASBs are
particularly useful for wrapping pipeline or tree topologies. Furthermore, their
relatively high level of abstraction does not significantly impact performance because
at run-time they are ultimately just concatenations of GenericBindings. On the other
hand, extensibility at the protocol level has proved less successful. Beyond the
general issues mentioned in section 4.2, adding a new protocol involves not only
integrating a new protocol into the GOPI-core Protocol module but also providing
personality level QoS and QoSM classes that are programmed in a different language

- 14 -

and environment. We are currently investigating methods of streamlining and
automating the procedure for adding new protocols and their associated machinery.

4.6 Performance

We have investigated the performance of stream bindings in the multimedia
personality using a variety of media specific protocols. In particular, we have
compared the performance of simple stream binding with that of a minimal C-
language socket-based client/ server program that has none of GOPI’s general
middleware related support. In such a comparison we have found that GOPI can
stream packets at around 57% of the rate of the socket-based program [Coulson,01a].
Furthermore, the attained rate is around 72% of that of a minimal socket-based
program written in Java. We believe that these results provide strong evidence that the
sophisticated programming environment made possible by a stream capable
middleware platform need not be bought at the expense of unacceptable performance.

However, our most detailed performance analysis has been directed at the
standard CORBA personality. This has revealed that GOPI’s modular structure and
built-in extensibility has not been detrimental to performance: as shown in detail in
[Coulson,01a], GOPI’s performance equals or exceeds that of well-known high-
performance ORBs like OmniORB [Lo,98] and TAO [Kuhns,99]. A digest of these
results is given in Figure 46.

1 1024 2048 4096 8192

25
15

19
72

18
18

15
71

94
2

24
92

20
46

18
71

15
20

10
7213

58

12
00

11
76

10
89

91
4

48
1

44
3

43
5

41
1

37
0

0

500

1000

1500

2000

2500

3000

ca
lls

 p
er

 s
ec

on
d

payload sizeOrbix TAO OmniORB GOPI

Figure 4: Comparative Performance of the CORBA Personality

Overall, we believe that the following optimisations have most directly
contributed to GOPI’s high GIOP performance:

• an optimisation that caches GIOP headers and predicts the contents of
commonly used fields based on typical usage;

• the use of only a subset of the GIOP protocol while remaining fully GIOP
compatible; in particular, GIOP’s fragmentation and request cancellation

6
 Figure 4 illustrates numbers of invocations achieved per second as a function of different payload

sizes. In all cases the tests involved a minimal IDL interface with a single operation that accepts
and returns an array of octets (the ‘payload’). No processing or copying of the payload was
performed at either the client or the server, both of which ran on the same machine (an otherwise
unloaded 360MHz Sun SPARC Ultra 5 with 64MB of main memory and running SunOS 5.7) and
communicated over TCP/IP loopback. The compared ORBs were Washington University’s TAO
1.1/ ACE 5.1, AT&T’s OmniORB 2.8.0, and Iona’s Orbix 3.0. See [Coulson,01a] for more detail.

- 15 -

messages are not used, and the close connection message is ignored wherever
possible.

• a ‘read-ahead’ optimisation in which the number of OS level recv() calls per
GIOP message converges to one; this is in contrast to the two recv() calls
employed by most ORBs (one for the header and another for the payload);

In addition, our GIOP implementation supports the option of non-multiplexed,
per-binding, connections which boost performance by avoiding the overhead of reply
demultiplexing at the client side. Finally, the implementation is supported by a
number of general GOPI-core level optimisations relating to notification of incoming
messages, context switching, inter-thread communication, connection cache
management, request demultiplexing and buffer management. Full details of all these
optimisations are given in [Coulson,01a].

5. Related Work
The OMG’s CORBA forum has produced a comprehensive body of work relating

to the interests of this paper. For example, in recognition of the need to support
interaction types other than operations, CORBA has produced specifications for the
control and management of audio and video streams [OMG,00a], for event handling
and notification [OMG,00b] and for messaging [OMG,98]. Similarly, in recognition
of the need to particularise the core middleware architecture for various purposes, it
has produced or is producing specifications such as real-time CORBA [OMG,99a],
embedded CORBA [OMG,00c], high-performance CORBA [OMG,99b], pluggable
protocols [OMG,99c] and portable interceptors [OMG,99d]. In addition, CORBA
supports ‘policy objects’ which are used to configure aspects of the ORB’s service
(e.g. in areas such as the portable object adapter, asynchronous messaging, security,
transactions and real-time).

While these extensions successfully address genuine needs, their architects are
often forced to compromise to meet the overarching imperative of minimal change to
existing specifications. In this way, for example, the A/V streams specification settles
for merely ‘supervising’ streams which must themselves be implemented outside the
CORBA environment. Similarly, portable interceptors can only be attached at limited,
pre-specified, points in the middleware architecture. Furthermore, the extensions
frequently have the appearance of having been ‘grafted on’ to the existing standard in
a way that meets the immediate need but may lead to complications in the long run.
For example, real-time CORBA is obliged to define an independent architecture
distinct from that of the original, non-real-time, design. These limitations are probably
inevitable given the environment of standards conformance and (hence) incremental
development in which they were developed. Our long term, unconstrained and
‘idealistic’ perspective is that such extensions should be capable of being
accommodated without compromise and without necessitating fundamental changes
to the computational model or core middleware architecture. We believe that GOPI,
despite being conceived before these CORBA extensions were defined, is
nevertheless capable of accommodating many of them in a far more integrated
manner without change to its fundamental computational model or modular structure.

In the academic research field, workers at Washington University, St. Louis
publish widely on their TAO middleware platform. This is at the cutting edge of
CORBA research; the TAO team have contributed to many, and implemented all, of
the above mentioned CORBA extensions. Of particular interest, [Kuhns,99] reports

- 16 -

on the integration of ‘pluggable protocols’ into TAO and [Wang,00] discusses the use
of the CORBA component model to support QoS. However, because of its close
adherence to CORBA, TAO does not support equivalents of GOPI’s integrated
interaction types, or the latter’s open approach to QoS specification, mapping and
negotiation, or GOPI’s various binding styles (active, direct, pipelined and multipeer),
or run-time QoS management and renegotiation capabilities, or ASBs. Furthermore,
although it features a high degree of compile-time and deploy-time configurability,
TAO does not support an equivalent of the run-time configurability offered by GOPI’s
plug-ins.

At the University of Illinois, workers have developed a platform called
dynamicTAO [Kon,00] which enhances TAO with ‘configurator’ meta-objects that
facilitate dependency tracking and support run-time attachment and detachment of
pre-loaded components. DynamicTAO currently supports configurable components in
the areas of threading, request multiplexing, request scheduling, and connection
management. They have also developed a fully componentised ORB called LegORB
[Roman,00] which applies similar ideas and additionally incorporates dynamically
loadable components. Generally speaking, this works offers run-time configurability
but does not explicitly address QoS. For example, it does not offer QoS specification,
negotiation, and run-time management as does GOPI. Other research at Illinois (see,
e.g., [Wichadakul,01]) does address QoS issues but is primarily concerned with
higher level services like QoS compilation, profiling and mapping, distributed
resource management and visual programming. It is thus complementary to our work
which focuses more on enabling mechanisms in the ORB core.

Researchers at BBN [Zinky,01] have developed a reflective ORB called QuO that
employs specialised declarative languages to specify QoS, together with courses of
action to be taken when QoS degrades. QuO’s approach to QoS specification is
arguably more sophisticated than GOPI’s, but, again, GOPI takes a lower level, more
procedural, approach to the realisation of QoS. In addition, QuO is not specifically
targeted at multimedia; e.g. it does not support streams. GOPI’s approach can therefore
be seen as largely complementary to QuO’s (for example, a QuO-like personality
could be built on top of GOPI-core).

Citrix’s DIMMA project [Donaldson,98] has addressed issues of multimedia support
in distributed object platforms. DIMMA enhances an earlier platform (ANSAware)
with a flexible multiplexing structure and abstractions for resource management.
However, it focuses on global QoS configurability rather than fine-grained, per-
binding, configurability. The finer grained configurability in GOPI is achieved largely
through explicit bindings and the protocol and scheduler frameworks. These are
lacking in DIMMA, as is a run-time QoS management facility. FlexiNet [Hayton,98]
and FlexiBind [Hanssen,99] are more recent offerings from Citrix. These are Java
ORBs that focus on the provision of a highly flexible binding framework through
dynamic tailoring of protocol stacks. They do not address the wider issues of
configurability explored by GOPI.

The ReTINA project [ReTINA,99] has designed a CORBA platform featuring
streams and QoS extensions. Similarly to GOPI, the architecture offers a clean
separation between generic ORB support mechanisms such as interface reference
management, threads, buffers etc., and extensible ‘binding classes’ that provide
tailored communications services. While comparable in terms of their overall goals,
ReTINA focuses more on static QoS management issues such as binding

- 17 -

establishment than the dynamic QoS management issues emphasised in GOPI. A
related project at France Telecom is continuing the main themes of the ReTINA
research in the context of a Java ORB called Jonathan [Dumant,98].

At the University of Oslo, researchers are developing a multimedia capable ORB
called MULTE-ORB [Kristensen,01]. This work has so far integrated a protocol
framework called Da Capo into an existing, traditionally architected, CORBA v2
ORB called COOL. The resultant platform, which incorporates an extensible set of
binding protocols—cf. GOPI’s QoS negotiation protocol, supports flexible QoS
enabled bindings but does not provide full support for multimedia streams as it relies
on a traditional CORBA API. In their K-ORB project [K-ORB,01] researchers at
Trinity College Dublin are applying their previous work on the Iguana reflective C++
extension to the area of modular, pluggable, ORB architectures. In terms of
pluggability, this work is taking a basically similar approach to that of GOPI but the
emphasis is not particularly on QoS or multimedia support—rather it is on the OMG’s
minimumCORBA specification. The work is also at a relatively early stage of
development, with only the IIOP area of the ORB architecture having been fully
developed to date.

Finally, GOPI’s contributions in the specific area of protocol frameworks can be
related to work such as Horus and Ensemble from Cornell University [van
Rennesse,98], Tau from the Georgia Institute of Technology [Clayton,98], Coyote
from the University of Arizona [Bhatti,98] or Da Capo++ from the University of
Zurich [Stiller,98]. Generally speaking, these frameworks are considerably more
sophisticated than GOPI’s Protocol module, but do not address the latter’s central aims
of simple and flexible QoS specification, mapping, negotiation, and run-time QoS
management (i.e. event production and renegotiation). As mentioned, subsequent
work in [Kramp,00] has attempted to extend GOPI’s framework (e.g. in terms of fully
general graph topologies as opposed to GOPI’s tree topologies, and exception handling
support) while retaining GOPI’s core emphasis of minimally prescriptive QoS support.

6. Conclusions, Current Work and Future Directions
Looking back over the project, we believe we have successfully demonstrated that

ORB architectures can incorporate fully integrated media streaming and QoS support
in a natural, efficient and easy to program fashion while retaining backward
compatibility with CORBA. In particular, we would characterise GOPI’s major
contributions as follows:

• the definition of a configurable and run-time-extensible modular ORB
structure that has the potential to be applied in a wide variety of applications
and systems environments;

• the realisation of an RM-ODP based multimedia programming model that
gives first class status to media streams, events and QoS support;

• the definition of an approach to QoS management that accommodates QoS
specification, mapping, monitoring and (re)negotiation, in a completely
generic and non-prescriptive manner;

• the development of a sophisticated multimedia programming environment that
features various binding styles (active, direct, pipelined and multipeer) and
extensibility through the notion of application specific bindings (ASBs);

- 18 -

• a comprehensive approach to resource management that helps underpin the
QoS requirements of individual bindings even in a commodity operating
system environment;

• the development of a novel protocol stack framework that focuses on QoS
specification and management;

• the development of a novel thread scheduling framework that focuses on QoS
specification and management;

• a highly optimised IIOP stack that equals or exceeds the performance of other
ORBs.

As a result of experiences from the GOPI project, we are currently developing a
new middleware platform called OpenORB [Blair,01] that builds on GOPI’s successes
and addresses its weaknesses. In particular, while retaining GOPI’s basic structure and
functionality, and reusing a significant amount of its codebase, OpenORB makes
radical enhancements to GOPI’s models of extensibility and configurability.

First, OpenORB strengthens GOPI’s modular structure by applying a well-founded
component model for the definition of modules and plug-ins. This facilitates dynamic
loading and unloading of components, explicitly records the dependencies of each
component in terms of other components, enables components to be written in
different languages, and permits components to have multiple interfaces. Second,
OpenORB provides sophisticated reflective facilities that significantly enhance the
management of configurability and reconfigurability in the middleware architecture.

We believe that reflection will play a key role in future middleware architectures
as it promises a principled and consistent methodology for (re)configuration,
management, extensibility and long term evolution. The essence of reflection is to
provide causally connected meta-models of the structure and functionality of the
architecture. This means that when the meta-model is changed, the underlying
middleware changes accordingly, and vice versa. As an example, OpenORB’s
architectural meta-model comprises graph structures that represent current
component configurations (e.g. of the middleware as a whole or of a single binding or
ASB). By inspecting this graph one can discover the current configuration and then
change it simply by manipulating the graph.

A final area in which we hope to further enhance GOPI’s level of extensibility is in
terms of interaction types. GOPI supports integrated operations, signals and streams
but this list is currently non-extensible. Our aim is to build a framework that allows
new interaction types to be defined in terms of existing types. For example, we may
want to define an asynchronous interaction type for mobile computing [Davies,97] by
building on the signal interaction type. Due to its fundamental nature, this mode of
extensibility requires considerably more sophisticated support than GOPI’s plug-ins.
However, its availability should yield an entirely new dimension of flexibility. Our
current explorations in this area are reported in [Blair,01].

References
[Bhatti,98] Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W., “Coyote: A

System for Constructing Fine-Grain Configurable Communication Services”,
ACM Transactions on Computer Systems, Vol 16, No 4, pp 321-366, November
1998.

- 19 -

[Blair,01] Blair, G.S., Coulson, G., Anderson, A., Blair, L., Clarke, M., Costa, F.,
Duran-Limon, H., Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N.,
Saikoski, K., “The Design and Implementation of Open ORB v2”, Special Issue
of IEEE Distributed Systems Online on Reflective Middleware,
http://www.computer.org/dsonline/, 2001.

[Blair,97] Blair, G.S., Stefani, J.B., “Open Distributed Processing and Multimedia”,
ISBN 0201177943, Addison-Wesley, 1997.

[Clayton,98] Clayton, R., Calvert, K., “A Reactive Implementation of the Tau
Protocol Composition Mechanism”, Proc. IEEE Conference on Open
Architectures and Network Programming (OpenArch), San Francisco, California,
1998.

[Coulson,98] Coulson, G and Clarke, M.W., “A Distributed Object Platform
Infrastructure for Multimedia Applications”, Computer Communications, Vol 21,
No 9, pp 802-818, July 1998.

[Coulson,99a] Coulson, G., “A Configurable Multimedia Middleware Platform”,
IEEE Multimedia, Vol 6, No 1, pp 62-76, January - March 1999.

[Coulson,99b] Coulson, G., and Baichoo, S., “A Distributed Object Platform for
Multimedia Applications”, Proc. IEEE Multimedia Systems, Florence, Italy, pp
122-126, June 1999.

[Coulson,99c] Coulson, G., Blair, G.S., Davies, N., Robin, P. and Fitzpatrick, T.,
“Supporting Mobile Multimedia Applications through Adaptive Middleware”,
IEEE Journal on Selected Areas in Communications, Vol 17, No 9, pp 1651-1659,
September 1999.

[Coulson,00] Coulson, G., and Baichoo, S., “Experiences in Implementing a
Distributed Object Platform for Multimedia Applications”, Software Practice and
Experience, Vol 30, pp 663-683, 2000.

[Coulson,01a] Coulson, G., and Baichoo, S., “Implementing the CORBA GIOP in a
High-Performance Object Request Broker Environment”, ACM Distributed
Computing, Vol 14, No 2, pp 113-126, April 2001.

[Coulson,01b] Coulson, G., and Moonian, O., “A Quality of Service Configurable
Concurrency Framework for Object Based Middleware”, Concurrency Practice
and Experience (to appear), 2001.

[Davies,97] Davies, N., Wade, S., Friday, A., Blair, G., “Limbo: A Tuple Space
Based Platform for Adaptive Mobile Applications”,
 Proc. IFIP International Conference on Open Distributed Processing and
Distributed Platforms (ICODP/ICDP), Toronto, Canada, 27-30 May 1997.

[Donaldson,98] Donaldson, D., Faupel, M., Hayton, R., Herbert, A., Howarth, N.,
Kramer, A., MacMillan, I., Otway D. and Waterhouse, S., “DIMMA - A Multi-
media ORB”, Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware), The Lake District,
England, November 1998.

[Dumant,98] Dumant, B., Horn, F., Dang-Tran, F. and Stefani, J.-B., “Jonathan: an
Open Distributed Processing Environment in Java”, Proc. IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware), The Lake District, England, November 1998.

[Engelschall,99] Engelschall, R., “Portable Multithreading: the Signal Stack Trick for
User-Space Thread Creation”, paper included with GNU Portable Threads
distribution, http://www.gnu.org/software/pth, 1999.

[Hanssen,99] Hanssen, Ø., and Eliassen, F., “A Framework for Policy Bindings”,
Proc. IEEE International Symposium on Distributed Objects and Applications

http://www.gnu.org/software/pth

- 20 -

(DOA), Edinburgh, September 1999.
[Hayton,98] Hayton, R., Herbert, A., Donaldson, D., “FlexiNet: A Flexible

Component-oriented Middleware System”, Proc. ACM SIGOPS European
Workshop on Support for Composing Distributed Applications, Sintra, Portugal,
September 1998.

[ITU-T,95] ITU-T, ISO/IEC Recommendation X.902, International Standard 10746-
2, “ODP Reference Model: Descriptive Model”, January 1995.

[Knuth,73] Knuth, D.E., “The Art of Computer Programming, Volume 1:
Fundamental Algorithms”, Second Edition, Reading, Massachusetts, USA, ISBN
0201896834, Addison Wesley, 1973.

[Kon,00] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., and
Campbell, R.H., “Monitoring, Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB”. Proc. IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware),
IBM Palisades Executive Conference Center, New York, April, 2000.

[K-ORB,01] Trinity College’s K-ORB project:
http://www.dsg.cs.tcd.ie/Research/minCORBA, 2001.

[Kramp,00] Kramp, T and Coulson, G., “The Design of a Flexible Communications
Framework for Next-Generation Middleware”, Proc. IEEE International
Symposium on Distributed Objects and Applications (DOA), Antwerp, Belgium,
September 2000.

[Kristensen,01] Kristensen, T., Berlin Kalleberg, I., Plagemann, T., “Implementing
Configurable Signaling in the MULTE-ORB”, Proc. IEEE Conference on Open
Architectures and Network Programming (OpenArch), Anchorage, Alaska, pp
137-146, April 2001.

[Kuhns,99] Kuhns, F., O’Ryan, C., Schmidt, D.C., Othman, O. and Parsons, J., “The
Design and Performance of a Pluggable Protocols Framework for Object Request
Broker Middleware”, Proc. IFIP International Workshop on Protocols for High-
Speed Networks (PfHSN), Salem, MA, USA, August 1999. (See also:
http://www.cs.wustl.edu/~schmidt/PfHSN.ps.gz)

[Lo,98] Lo, S.L. and Pope, S., “The Implementation of a High Performance ORB
over Multiple Network Transports”, Proc. IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware),
The Lake District, England, November 1998. (See also:
http://www.uk.research.att.com/omniORB/omniORBPerformance.html)

[Microsoft,01] Microsoft’s DCOM web page:
http://windows.microsoft.com/com/tech/dcom.asp.

[OMG,98] CORBA Messaging Submission, http://cgi.omg.org/cgi-bin/doc?orbos/98-
05-05, 1998.

[OMG,99a] Real-Time CORBA Specification, http://www.omg.org/cgi-
bin/doc?orbos/99-02-12, 1999.

[OMG,99b] CORBA Real-Time PSIG High Performance Working Group
Homepage,
http://www.omg.org/homepages/realtime/working_groups/high_performance_cor
ba.html, 1999.

[OMG,99c] CORBA Telecom SIG’s RFP on Extensible Transport Framework,
http://www.omg.org/cgi-bin/doc?telecom/99-10-05, 1999.

[OMG,99d] CORBA Portable Interceptors Working Draft, http://cgi.omg.org/cgi-
bin/doc?orbos/99-10-01, 1999.

[OMG,00a] Object Management Group, Control and Management of Audio/Video

http://www.dsg.cs.tcd.ie/Research/minCORBA
http://www.cs.wustl.edu/~schmidt/PfHSN.ps.gz
http://www.uk.research.att.com/omniORB/omniORBPerformance.html
http://windows.microsoft.com/com/tech/dcom.asp
http://cgi.omg.org/cgi-bin/doc?orbos/98-05-05
http://cgi.omg.org/cgi-bin/doc?orbos/98-05-05
http://www.omg.org/cgi-bin/doc?orbos/99-02-12
http://www.omg.org/cgi-bin/doc?orbos/99-02-12
http://www.omg.org/homepages/realtime/working_groups/high_performance_corba.html
http://www.omg.org/homepages/realtime/working_groups/high_performance_corba.html
http://www.omg.org/cgi-bin/doc?telecom/99-10-05
http://cgi.omg.org/cgi-bin/doc?orbos/99-10-01
http://cgi.omg.org/cgi-bin/doc?orbos/99-10-01

- 21 -

Streams, v1.0, http://www.omg.org/, 2000.
[OMG,00b] Object Management Group, Event Service v1.0, OMG Document

formal/2000-06-15, 2000.
[OMG,00c] CORBA Embedded Systems Working Group Homepage,

http://www.omg.org/homepages/realtime/working_groups/embedded_systems.ht
ml, 2000.

[OMG,01] The Common Object Request Broker: Architecture and Specification,
http://www.omg.org/, 2001.

[ReTINA,99] ReTINA, “Extended DPE Resource Control Framework
Specifications”, ReTINA Deliverable AC048/D1.01xtn, European Union ACTS
Project AC048, Brussels, January 1999.

[Roman,00] Roman, M., Mickunas, D., Kon, F., and Campbell, R.H., LegORB and
Ubiquitous CORBA”, IFIP/ACM Workshop on Reflective Middleware, IBM
Palisades Executive Conference Center, New York, April 2000. (See also:
http://www.comp.lancs.ac.uk/computing/rm2000/program.html)

[Saikoski,00] Saikoski, K. B. and Coulson G., “Configurable and Reconfigurable
Group Services in a Component Based Middleware Environment”, Proc.
Workshop on Dependable and Group Communication (DSMGC) at IEEE
International Symposium on Reliable Distributed Systems (SRDS), Nürnberg,
Germany, October 2000.

[Stiller,99] Stiller, B., Class, C., Waldvogel, M., Caronni, G., Bauer, D., Plattner, B.,
“A Flexible Middleware for Multimedia Communication: Design,
Implementation, and Experience”, IEEE Journal on Selected Areas in
Communications: Special Issue on Middleware, Vol 17, No 9, pp 1580-1598,
September 1999.

[Sun,01] Sun’s RMI-IIOP web page: http://java.sun.com/products/rmi-
iiop/index.html, 2001.

[Sun,93] Sun’s Spring Microkernel, http://www.sun.com/research/technical-
reports/1993/abstract-14.html, 1993.

[Szyperski,98] Szyperski, C., “Component Software: Beyond Object-Oriented
Programming”, ISBN 0201178885, Addison-Wesley, 1998.

[van Renesse,98] van Renesse, R., Birman, K.P., Hayden, M., Vaysburd, A., Karr,
D., “Building Adaptive Systems Using Ensemble”, Software Practice and
Experience, Vol 28, No 9, pp 963-979, August 1998.

[Wang,00] Wang, N., Parameswaran, K., Kircher, M., Schmidt, D.C., “Applying
Reflective Middleware Techniques to Optimize a QoS-enabled CORBA
Component Model Implementation”, Proc. International Computer Software and
Applications Conference (COMSPAC), Taipei, Taiwan, October 2000.

[Wichadakul,01] Wichadakul, D., Nahrstedt, K., Gu, X., Xu, D., “2KQ+: An
Integrated Approach of QoS Compilation and Reconfigurable, Component-Based
Run-Time Middleware for the Unified QoS Management Framework”, Proc. IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware), Heidelberg, Germany, November 2001.

[Zinky,01] Zinky, J., Schantz, R., Loyall, J., Anderson, K., Megquier, J., “The
Quality Objects (QuO) Middleware Framework”, Special Issue of IEEE
Distributed Systems Online on Reflective Middleware,
http://computer.org/dsonline/, 2001.

http://www.omg.org/
http://www.omg.org/homepages/realtime/working_groups/high_performance_corba.html
http://www.omg.org/homepages/realtime/working_groups/high_performance_corba.html
http://www.omg.org/
http://java.sun.com/products/rmi-iiop/index.html
http://java.sun.com/products/rmi-iiop/index.html
http://www.sun.com/research/technical-reports/1993/abstract-14.html
http://www.sun.com/research/technical-reports/1993/abstract-14.html

- 22 -

Appendix A: Example Use of the Multimedia Personality API
In this appendix we present a slightly simplified and abbreviated example of

application programming with GOPI’s multimedia personality. The example builds on
the MediaServer IDL interface that was presented in section 3.3 by illustrating the
creation and management of a binding between a provider service supporting this
interface and a remote requirer (client). The example is coded in C++.

A.1 Compiling the Interface

When the IDL interface is compiled, templates of requirer-side and provider-side
implementation classes, called r<interface_name> and p<interface_name>
respectively, are generated. In our specific case, these are named rMediaServer and
pMediaServer. As is traditional, the provider-side implementation class template
contains skeletons corresponding to each IDL operation (these are to be completed by
the application programmer). But, in addition, to support signal and streams, the
provider class also contains skeletons for all sigin and streamin/ streamout interaction
points. Furthermore, in addition to the traditional stubs, the requirer class contains
upcall oriented skeletons corresponding to all sigout and streamin/ streamout
interaction points7.

The implementation class templates also contain implementations of two standard
management methods that will be referred to later:

InterfaceRef *getInterfaceRef(void);
void set_default_QoS(String qosgroupname, QoS *qos);

A.2 Creating the Service and Specifying Default QoS

The following code fragment associates a protocol called STRM, together with a
corresponding default QoS specification, with the videoqos QoS-group of a newly
created provider-side MediaServer implementation object. The STRM_QoS class
through which the QoS is defined offers a constructor to which a desired frame rate
can be passed. It also offers the following set and get methods that will be referred to
below in section A.3: int get_rate() and void set_rate(int rate).

// C++
pMediaServer *pMS = new pMediaServer();
STRM_QoS *my_video_qos = new STRM_QoS(24); // 24 is the frame rate
pMS->set_default_QoS(“videoqos”, my_video_qos);

The call of the provider-side implementation class’ set_default_QoS() method
creates a per-QoS-group GOPI-core-level iref, suitably configured with the given
protocol and default QoS specification. Similar calls would be made to associate other
default protocols and QoS specifications with the other MediaServer QoS-groups.
These irefs will eventually be embedded in an InterfaceRef that can be obtained using
the above mentioned getInterfaceRef() call.

A.3 Implementing a QoS Manager

The following is an example QoS manager that can be associated with the STRM
protocol used above. Note that provision of QoS management is optional and,
furthermore, QoS managers do not have to be provided for all QoS-groups in an IDL

7

These are needed at the source end of stream bindings in case the user chooses to employ active
binding semantics; see sections 2.3 and A.4.

- 23 -

defined service.

In the following, we use the following methods defined in the GenericBinding
class: QoS get_QoS(String qosgroupname), void set_QoS(String qosgroupname, QoS
newqos, QoSM *qosmanager) and void bind(). Additionally, this_bind is a public
variable of type GenericBinding that is defined in the virtual class QoSM from which
STRM_QoSM derives.

// C++
class STRM_QoSM : QoSM {

STRM_QoSM(GenericBinding *b) {QoSM(b);};
void qos_event(QoS *current_qos)
{

GenericBinding *b = this_bind;
STRM_QoS *oldq = b->get_QoS(“videoqos”); // last config’d QoS
STRM_QoS *newq = new STRM_QoS();
STRM_QoS *nowq = (STRM_QoS *)current_qos;
int new_rate;

if (nowq->get_rate() < oldq->get_rate() / 2) {
// if rate has dropped significantly…

/* now, do something to set the source codec to run at a
* lower rate, new_rate – CODE NOT SHOWN HERE
*/

// adjust binding rate to new codec rate
newq->set_rate(new_rate);

// modify QoS, renegotiate and rebind
b->set_QoS(“videoqos”, newq, this);
b->bind();

}
}

};

The qos_event() implementation (which overrides a virtual method defined in
class QoSM) reacts in an appropriate way to QoS reports from the underlying
protocol stack. Note that the above code just illustrates the principle; it is not
necessarily intended to represent a realistic policy.

A.4 Establishing and Operating the Binding

Having deployed the provider-side service and implemented the QoS manager, we
are ready to establish and manage a GenericBinding. Assuming that InterfaceRef prov
has already been obtained from the previously instantiated pMediaService
implementation object (using the getInterfaceRef() method referred to above), we now
create a requirer implementation object, create a suitable binding, customise the latter
with the appropriate QoS specification and QoS manager, and set the binding in
motion. Note that we specify the use of the active binding style when creating the
requirer implementation object. Note also that, thanks to third party binding, the
following code can run anywhere in the distributed system; it does not have to run on
either the client or the server machine.

/* create the requirer implementation object; select ‘active binding’
* semantics; obtain an InterfaceRef from the requirer
*/

rMediaServer *rMS = new rMediaServer(ACTIVE); // create requirer
InterfaceRef *reqr = rMS->getInterfaceRef(); // get its InterfaceRef

/* create the binding */

- 24 -

GenericBinding *b = new GenericBinding(reqr, prov); // create binding

/* set up QoS and QoS management for the videoqos QoS-group */
STRM_QoS *my_video_qos = new STRM_QoS(8192, 24);
STRM_QoSM *my_video_qosm = new STRM_QoSM(b);
b->set_QoS(“videoqos”, my_video_qos, my_video_qosm);

/* allocate resources and start the binding */
b->bind();

At this point, the binding is in existence, resources have been allocated, and data
is flowing on the active QoS-bindings (in this case, those underlying the video() and
audio() streams). The binding is also ready to have its video() stream managed by the
my_video_qosm object when the underlying STRM protocol stack delivers an
appropriate QoS report.

