“gt” — 2009/2/9 — 11:11 — page 61 — #1

Vol. 13, No. 4: 61-69

Efficient GPU-Based Texture
Interpolation using Uniform B-Splines

Daniel Ruijters
Philips Healthcare

Bart M. ter Haar Romeny
Eindhoven University of Technology

Paul Suetens
Katholieke Universiteit Leuven

Abstract. This article presents uniform B-spline interpolation, completely con-
tained on the graphics processing unit (GPU). This implies that the CPU does not
need to compute any lookup tables or B-spline basis functions. The cubic interpo-
lation can be decomposed into several linear interpolations [Sigg and Hadwiger 05],
which are hard-wired on the GPU and therefore very fast. Here it is demonstrated
that the cubic B-spline basis function can be evaluated in a short piece of GPU code
without any conditional statements. Source code is available online.

1. Introduction

Cubic B-spline interpolation produces results that are noticeably closer to
ideal sinc interpolation than nearest neighbor or linear interpolation (see Fig-
ure 1). Many image processing (e.g.,resampling and elastic registration) and
visualization (e.g.,volume rendering) applications benefit from the superior
interpolation quality, as is illustrated in Figure 2. With the increasing in-
terest in applying the GPU in signal and image processing tasks [Kriiger
and Westermann 05, Owens et al. 07, Strzodka et al. 04], there is a consid-

© AK Peters, Ltd.
61 1086-7651/08 $0.50 per page

“gt? — 2009/2/9 — 11:11 — page 62 — #2

62 journal of graphics tools

Figure 1. The left part of this figure was generated using trilinear interpolation on
a cross-section plane through a voxel data set. The right part is the continuation of
the same plane but using 3D cubic B-spline interpolation.

Figure 2. Left: source image. Middle: bilinearly zoomed fragment. Right: zoomed
fragment using bicubic interpolation.

erable benefit in having easy and fast cubic interpolation available on the
GPU.
2. Uniform B-Spline Interpolation

Uniform spline-based interpolation was introduced by Schoenberg [Schoen-
berg 46] and has been described exhaustively by Unser [Unser 99]. The start-

“gt? — 2009/2/9 — 11:11 — page 63 — #3

Ruijters et al.: Efficient GPU-Based Texture Interpolation using Uniform B-Splines 63

ing point for any degree of the B-spline function forms the B-spline basis
of degree 0, also known as the box function. We use the variant of the B-
spline function that is centered around the origin, which is chosen because its
symmetry can be exploited within the GPU program:

1, |z <3,
Bo(x) =14 3, lzl=3,
0, |z|> 3.

Any subsequent B-spline basis of degree n can be obtained by the recursive
convolution of the box function with the B-spline basis of degree n — 1:

Bn(x) = Bo() * Bn-1(), n>1.

Spline-based interpolation at a given position = € R is the summation of
the shifted central B-spline (3,,, weighted by the B-spline coefficients c(k):

sn(@) =Y c(k)Balx — k). (1)

keZ

Since B-splines have limited support, the number of coefficients c(k) that
play a role in the interpolation at position x is quite moderate. Evaluating
cubic B-spline interpolation for any given position involves the weighted addi-
tion of the four adjacent coefficients (see Figure 3), which allows Equation (1)
to be rewritten as

ss(i+a) = wo(a)- c(z — 1) +wi(a)- c(i)+

0, 2| = 2
Ba(z) =4 §-(2—|z])?, 1<z <2
3 — sl (2 J2)), lz| <1

Figure 3. Cubic B-spline interpolation. The image coefficients ¢ are multiplied by
the weights w, (). The weights are determined by the fractional amount « of the
present coordinate and by the B-spline basis function 33, which consists of a single
equation per quadrant. Index 7 is the integer part of the coordinate.

“gt? — 2009/2/9 — 11:11 — page 64 — #4

64 journal of graphics tools

whereby the weights w depend on the fractional amount « of the present
coordinate and on the cubic B-spline basis function. More specifically,

wola) = fPy(—a—1),

wi(a) = f3(—a),

we(a) = fP3(l —a), ®)
wz(a) = [B3(2—a).

It should be pointed out that c¢(k) = s(k) is only the case for the zeroth-
and first-order B-splines (corresponding to nearest neighbor and linear inter-
polation, respectively). The coefficients for the cubic B-spline can be readily
obtained, using a causal and anti-causal filter [Unser 99].

3. GPU Cubic B-Spline Evaluation

Sigg and Hadwiger have described how cubic B-spline interpolation can be
performed efficiently by the GPU [Sigg and Hadwiger 05]. Their method
is based on decomposing the cubic interpolation into 2% weighted linear in-
terpolations, instead of 4V weighted nearest neighbor interpolations, where
N is the dimensionality. Since linear interpolations are hard-wired on the
graphics hardware, they can be performed much faster than addressing the
corresponding set of nearest neighbor look-ups.

The basic idea can be understood by considering 1D linear interpolation,
which can be expressed as follows:

s1i+a)=(1—a) so(i) +a-so(i+1),

with ¢ € N being the integer part of the interpolation coordinate and o € R
being the fractional part in the range [0,1]. Building on this equation, the
weighted addition of two neighboring samples can be rewritten to be expressed
as a weighted linear interpolation:

a-so(i)+b-so(i+1) = (a+b)-s1(i+ 725). (4)

Using Equation (4), Equation (2) can be decomposed into two weighted
linearly interpolated look-ups:

Sg(i-FOz) =4go- Cl(i+h0) +g1 . Cl(i+h1),

go = wo + w1, (5)
g1 = w2 + ws,

ho = (w1/g0) — 1,

hy = (w3/g1) + 1,

“gt” — 2009/2/9 — 11:11 — page 65 — #5

Ruijters et al.: Efficient GPU-Based Texture Interpolation using Uniform B-Splines 65

where c¢; expresses linear interpolation between the cubic B-spline
coefficients.

This scheme can easily be extrapolated to the N-dimensional case, which
for 3D cubic interpolation means that 64 nearest neighbor lookups can be
replaced by eight linear interpolations. On modern GPUs, that leads to a
considerable performance gain.

Sigg and Hadwiger put gg, hg, and h; as a function of « in a 1D look-
up texture (g; is redundant) and use this texture to obtain the variables g
and h in the GPU program. They suggest using an RGB texture, consist-
ing of 128 samples of 16-bit accuracy, and using linear filtering between the
samples. For 3D interpolation, this approach involves three look-ups in this
texture, and from the resulting parameters the eight coordinates for the linear
interpolations are calculated.

4. Avoiding the Look-up Table

The look-up table distributes the cubic interpolation into two parts in your
code: the GPU part that performs the actual interpolation, and the CPU
part that creates the look-up table. Further, the look-up table is one of
the sources of imprecision, since for any value between its entries linear in-
terpolation is used. Therefore, we explore the on-the-fly calculation of the
weights on the GPU, reducing source code complexity and improving the
precision.

Equation (5) shows that the variables g and h are a function of the B-spline
weights w obtained in Equation (3). Since the B-spline is composed of piece-
wise polynomials, it would appear that a GPU implementation would involve
a number of undesirable conditional statements, leading to a considerable
slowdown of the GPU program. However, the conditional statements can be
avoided, since the determination of the weights is facilitated by the fact that
wy is always located in the first quadrant of the cubic B-spline, w; always in
the second, etc. Since the cubic B-spline (as well as its derivatives) consists
of a single equation per quadrant (see Figure 3), the following equations for
the set of weights can be established:

’ (1 - O‘)Bﬂ

— 102 (2—a),

— %(1 —a)?-(1+a),

(@)’

After the weights have been established, the variables g and h can be cal-

culated using Equation (5). The GPU source code in Section 6 illustrates this
process for the 2D case.

D= Wl W &=

“gt” — 2009/2/9 — 11:11 — page 66 — #6

66 journal of graphics tools
Method RMS Time (ms)
Look-up table | 9.39-107° 0.96
On-the-fly 8.58-107° 0.74

Table 1. Accuracy and timing of cubic interpolation with and without using a
look-up table. All measurements were obtained on an NVIDIA GeForce 9800 GTX.

In Table 1, the deviation from the expected interpolated value is given for
both cubic interpolation methods. The error is defined as the pixel intensity
calculated by the GPU program minus the intensity calculated by the CPU
using double floating-point precision. The root mean square of the errors
was calculated for 5122 pixels. The on-the-fly method is both more accurate
and faster. However, on older graphics hardware (before 2007), the on-the-fly
approach is slightly slower than the look-up table method, while still being
more accurate.

5. Discussion

It should be noted that there are some precision issues associated with the
hard-wired linear texture interpolation. When, e.g.,an eight-bit texture is
filtered, most people would expect that first the neighboring texture knots
are queried, casted to floating point, and then weighted and added. This is,
however, not the case; the texture knots are first weighted and added, and
then casted to floating point, which limits the precision to the least significant
bit of the texture data format [Ruijters et al. 08], as is illustrated in Figure 4.
As a consequence, higher accuracies can only be obtained by using larger
texture words, and thus at the cost of texture memory consumption.

1.2 0.54
0.53

1 0.52 —

0.51
0.8 05
049
08 048
0.4 0.47
046
02 0.45

0.44
0 043
1 128 255

Figure 4. The left graph shows linear interpolation between 0 and 1/65535 using a
16-bit integer texture (purple) and a 16-bit floating-point texture (blue). The right
graph zooms in on the blue line, showing the limited precision of the fixed-point
texture coordinates.

“jgt” — 2009/2/9 — 11:11 — page 67 — #7

Ruijters et al.: Efficient GPU-Based Texture Interpolation using Uniform B-Splines 67

A further precision issue of the linear texture interpolation is caused by the
fact that the accuracy of the texture coordinates is limited to a fixed-point
format with eight bits of fractional value [NVIDIA 08]. This means that
there are only 254 discrete coordinate positions between two texture knots,
as shown in the zoomed graph in Figure 4, which is especially of interest
when the knots are far apart (e.g.,in a B-spline deformation field for elastic
registration). The mentioned texture interpolation accuracy effects are the
cause for the deviations of the on-the-fly method in Table 1.

Performance measurements of the 3D cubic B-spline interpolation, using
a CUDA implementation of the on-the-fly method on an NVIDIA GeForce
9800 GTX, reached 356 - 10° cubic interpolations per second. As a reference,
a straightforward CUDA implementation using 64 nearest neighbor look-ups
delivered 93.6 - 10% cubic interpolations per second, and simple trilinear inter-
polation delivered 486 - 10° linear interpolations per second. Cubic interpola-
tion was also implemented to run on the CPU. On an Intel Xeon 5140 2.33
GHz, a straightforward implementation delivered 0.45 - 10° cubic interpola-
tions per second, and a multi-threaded SSE implementation managed 10.3-10°
cubic interpolations per second.

Since the tricubic approach uses eight trilinear interpolations per cubic
interpolation, a slowdown of factor eight could be expected. The cubic in-
terpolation scores much better than this, which can be explained by the fact
that the mentioned eight linear interpolations are spatially very close to each
other, and the data, therefore, is still locally present in the texture cache.
This favorable performance aspect, together with the compact code, makes
the cubic B-spline interpolation an attractive solution for fast and high-quality
interpolation on the GPU.

6. Source Code

The CUDA code [Buck 07] below illustrates the cubic B-spline interpolation,
with inline evaluation of the variables g and h. It should be noted that the code
can be ported very easily to, e.g.,Cg [Mark et al. 03], the OpenGL Shading
Language, or DirectX HLSL.

__device__ float interpolate_bicubic(texture tex, float x, float y)
{
// transform the coordinate from [0,extent] to [-0.5, extent-0.5]
float2 coord_grid = make_float2(x - 0.5, y - 0.5);
float2 index = floor(coord_grid);
float2 fraction = coord_grid - index;

float2 one_frac = 1.0 - fraction;
float2 one_frac2 one_frac * one_frac;
float2 fraction2 fraction * fraction;

“gt? — 2009/2/9 — 11:11 — page 68 — #8

68 journal of graphics tools

float2 wO = 1.0/6.0 * one_frac2 * one_frac;
float2 wl = 2.0/3.0 - 0.5 * fraction2 * (2.0-fraction);
float2 w2 = 2.0/3.0 - 0.5 * one_frac2 * (2.0-one_frac);
float2 w3 = 1.0/6.0 * fraction2 * fraction;

float2 g0 = w0 + wi;

float2 gl = w2 + w3;

// h0 = w1/g0 - 1, move from [-0.5, extent-0.5] to [0, extent]
float2 hO = (wl / g0) - 0.5 + index;

float2 hl = (w3 / gil) + 1.5 + index;

// fetch the four linear interpolations
float tex00 = tex2D(tex, hO.x, hO.y);
float tex10 = tex2D(tex, hl.x, hO.y);
float tex0O1 tex2D(tex, hO0.x, hl.y);
float texi11 tex2D(tex, hl.x, hl.y);

// weigh along the y-direction
tex00 = lerp(tex01, tex00, g0.y);
tex10 = lerp(texll, tex10, g0.y);

// weigh along the x-direction
return lerp(tex10, tex00, g0.x);

Acknowledgments. We would like to thank Javier Olivan Bescos for helping
to correct some bugs in the cubic interpolation code.

References

[Buck 07] Ian Buck. “GPU Computing: Programming a Massively Parallel Proces-
sor.” In Code Generation and Optimization, CGO’07, p. 17. Los Alamitos, CA:
IEEE Press, 2007.

[Kriiger and Westermann 05] Jens Kriiger and Riidiger Westermann. “Linear Al-
gebra Operators for GPU Implementation of Numerical Algorithms.” In ACM
SIGGRAPH 2005 Courses, Article No. 234. New York: ACM Press, 2005.

[Mark et al. 03] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J.
Kilgard. “Cg: A System for Programming Graphics Hardware in a C-like
Language.” ACM Trans. Graphics 22:3 (2003), 896-907.

[NVIDIA 08] NVIDIA Corporation. “Linear Filetering.” In NVIDIA CUDA Com-
pute Unified Device Architecture: Programming Guide, Appendix D.2, 2008.

[Owens et al. 07] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris,
Jens Kriiger, Aaron E. Lefohn, and Timothy J. Purcell. “A Survey of General-
Purpose Computation on Graphics Hardware.” Computer Graphics Forum 26:1
(2007), 80-113.

“gt? — 2009/2/9 — 11:11 — page 69 — #9

Ruijters et al.: Efficient GPU-Based Texture Interpolation using Uniform B-Splines 69

[Ruijters et al. 08] Daniel Ruijters, Bart M. ter Haar Romeny, and Paul Suetens.
“Accuracy of GPU-based B-Spline Evaluation.” In Computer Graphics and
Imaging (CGIM), pp. 117-122. Calgary, AB, Canada: ACTA Press, 2008.

[Schoenberg 46] 1. J. Schoenberg. “Contributions to the Problem of Approximation
of Equidistant Data by Analytic Functions.” Quarterly of Applied Mathematics
4:1 (1946), 45-99 and 112-141.

[Sigg and Hadwiger 05] Christian Sigg and Markus Hadwiger. “Fast Third-Order
Texture Filtering.” In GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation, edited by Matt
Pharr, pp. 313-329. Boston, MA: Addison-Wesley Professional, 2005.

[Strzodka et al. 04] R. Strzodka, M. Droske, and M. Rumpf. “Image Registration by
a Regularized Gradient Flow: A Streaming Implementation in DX9 Graphics
Hardware.” Computing 73:4 (2004), 373-389.

[Unser 99] Michael Unser. “Splines: A Perfect Fit for Signal and Image Processing.”
IEEE Signal Processing Magazine 16:6 (1999), 22-38.

‘Web Information:

The CUDA source code regarding 2D and 3D cubic B-spline interpolation, as pre-
sented in this work, is available at http://jgt.akpeters.com/papers/RuijtersEtA108/.

Daniel Ruijters, Cardio/Vascular Innovation, Philips Healthcare, Veenpluis 6, 5680
DA Best, The Netherlands (danny.ruijters@philips.com)

Bart M. ter Haar Romeny, Eindhoven University of Technology, Department of
Biomedical Engineering, Biomedical Image Analysis & Interpretation, Den Dolech
2 — WH 2.101, PO Box 513, NL-5600 MB Eindhoven, The Netherlands
(B.M.terHaarRomeny@tue.nl)

Paul Suetens, Katholieke Universiteit Leuven, Medical Imaging Center, UZ Here-
straat 49 — Bus 07003, B-3000 Leuven, Belgium (paul.suetens@esat.kuleuven.be)

Received June 23, 2008; accepted in revised form February 3, 2009.

