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Abstract

The technical probleraddressed irthis paper is,
given two rule systems faronsequenceelations
X andY, how to construcY -approximations of
a given X-relation. While an upperY-
approximation can be easily constructed if \adl
rules are Horn, the construction of lowel -
approximations is lessstraightforward. We
address the problem by defining the notiorcof
closureunderco-Hornrules thatcan be used to
remedyviolation of certain rules byremoving
arguments. In particular, we show how the co-
closure under Monotonicity can be used to
construct the monotonicrestriction of a
preferential relation. Unlike the more usual
closure under the rules ofM, this co-closure
operatorsupports the intuition thapreferential
reasoning is more liberal than monotonic
reasoning. The approach is embedded gerzeral
framework for comparing rule systems for
consequenceelations. A salienfeature of this
framework is that it is also possible tompare
rule systems thaéire not related by metalevel
entailment.

considereefore(Stachniak, 1993), itloesnot seem to
occupy a central place ithe theory of nonmonotonic
consequenceelations, and operators to construct the
monotonic core of a given relatidravenot beendefined
beforel Krauset al. (1990)define amonotonic closure
operator, which however maps a consequence relation to a
monotonic superset (and may therefore be called the
monotonic extensiQnThe operator seems to espired

by the Horn form of the rules thegonsider. However, as
we show in this paper even with Horn rules it is possible
to apply them in thereverse direction to remove
arguments from the consequence relation.

Another aspect we clarify inthis paper isthe role of
metalevel entailmentetweenrule systems. For instance,
we havethat all the rules oP arerules ofM, hence all
monotonic consequenceelations are preferential. In our
view this is a special case of a m@eneralphenomenon,
namely thatP-semanticsencodesmore information than
M-semantics, because it has to distinguish more
consequence relations. However, the presence of metalevel
entailment doesiot, by itself,indicate whethethis extra
information is used to establish a more liberatather a
less liberal form of reasoning.

Moreover, metalevel entailment isot even anecessary
condition for one rule system to be more libeti@n
another. This will be demonstrated by defining a variant of
P that isincomparable to itwrt. metalevel entailment

(each system includes a rule that is not a rule obther
system), yet clearly and unambiguously axiomatises a less
liberal form of reasoning thaR. In fact, failure torelate

1.1 MOTIVATION AND SCOPE these rule systems by an existing comparisaterion
Nonmonotonic reasoning is the process of ‘tentativelywas the original motivation for this paper.

inferring from given informationrather more than is

deductively implied’ (Makinson, 1994). Nonmonotonic 1.2 AN EXAMPLE

reasoning canthus be said to bemore liberal than
monotonic reasoning. Correspondingly, the set o
argumentsaccepted by aonmonotonic reasoninggent
(also called @onsequence relatipanddefined as a&ubset
of LxL, whereL is the language) can bdivided into a
deductive or monotonic part and a nonmonotonic part. L
us call the function which maps anmbitrary consequence
relation to its monotonic core timeonotonic restriction

1. INTRODUCTION

onsidertwo reasoning agents NMnd CNM, which

iffer only in the way they handle contradictory
information: while NM infers everything from
contradictory premisses, CNMrefuses to draw any
onclusions from them. For all other premisses thgrge
egn the consequences. follows that the set of CNM-

Lie. operators that work directly on the consequence relation (rather

Although the notion of monotoniccore has been  than onits semantic characterisation).



Figure 1 NM is a more liberal reasoner than CNM.

arguments is a subset of the set of NM-arguments (Figu
1). For instance, both NMndCNM infer b from p, but
while NM infers anything (includingb) from p= b,

Clearly, M1 is strictly more liberal than Niénd M2 is
strictly less liberal than NM. Furthermore, NM is
perfectly able topredictthe behaviour of both M1 and
M2, but neither M1 nor M2can exactlyreproduceNM’s
behaviour. M1 cannot predict NNbecause NMreats the
arguments ‘fronb infer f' and ‘from p infer b’ differently,
while M1 treats them in the same way. Although M2 and
NM agree onwhat theyconsider contradictory, M2ioes
not knowfor what non-contradictorya#3 NM accepts
the argument ‘fronm infer 3’. In both cases, information
has been dropped that cannot be reconstructed. Nbtte
— compared to NM — M1 dropmformation to infer
more conclusions, while MZrops information to infer
less conclusions. Also, note that Mand M2 cannot

rr'??:produce each other’s behaviour.

In these examples NM embodiethe prototypical

CNM considers those premisses to have no consequencasonmonotonic reasoner, who is willing itafer f from b

Notice that NM and CNM can predict each other's
behaviour and hence, in a sense, employ tleame
information in their reasoning. Specifically, CNM can
reconstruct X’'s behaviour by the rule ‘if don't infer
anything from given premisses, NM wilhfer everything
from them; if on the otherhand | do infer some
consequences, NMiill infer exactly the same’. lother
words, CNM drops conclusions without dropping
information

As indicated inFigure 1 NM doesnot concludef from
b= f, i.e. NM considersh@ f to be contradictory. Since
NM does concludé from b it follows that NM is a
nonmonotonic reasoner. Now consider two other
reasoning agents M1 and M2, neither of whidtepts an
inference from o to [ without treating a@p as
contradictory premisses (from whi¢hey, like NM, infer
everything). This means that neither M1 nor M2 ca
reason exactly like NM: if they want to keep thésrence
from b to f they should, unlike NM,consider b f
contradictory, while if they follow NM in notonsidering
b= f contradictory they shouldrop the inferencefrom b
tof. As it turns out, M1 takes the first opti@md hence
infers everything fromb[# f, while M2 drops the
inference fronb to f (Figure 2).

Figure 2 Upper and lower approximations of NM.

by default, atthe same timeacceptingb f as an
exceptionalbut not contradictory circumstanoghe reader
may want to read ‘it is a bird’ fdy, ‘it flies’ for f, and ‘it
is a penguin’ fop — note that thenferencefrom p to b
is treated as a deductive inference &l reasoners). In
contrast, Mland M2 areclassical monotoniceasoners,
who areunable todealwith suchdefault inferenceshey
either accept the exception bl f as being non-
contradictoryand dropthe default inferencéM?2), or else
reconstruct thelefault inference as a deductive inference,
turning the exception into a contradiction (M1).

It is easy enough to define a closure operator constructing
M1 from NM. In this paper wedefine a co-closure
operator constructing M2 from NM. As M2 represents the
monotoniccore of NM, this operatorstays close to the
intuition that NM ‘jumps to conclusions’. We wilhlso
explain why CNM may be considered a memnservative

form of reasoning tharNM, even though there is no

closure operator to map NM to CNM wice versa

1.3 APPROACH

In this paper wewill addresghe issuesnentionedabove
by introducing a concept oéductionthat is similar to its
counterpart in computational complexity theoryXlfand
Y are rule systems, we definereduction ofX to Y as a
function f mappingconsequenceelations to conseguence
relations, such thax satisfies the rules oK iff f(x)
satisfies the rules ofY. A reduction establishes a
correspondence betweErreasoners and-reasoners, such
that any X-reasoner can predidhe behaviour of the
corresponding Y-reasoner. This correspondencethen
establishes a relatidoetweenX andY; for instance, it
may map any-relation to aY -relation that is a subset or
superset. Itcan also beused toinvestigate the relation
betweenrule systems thatreincomparable by metalevel
entailment.

The rest of thepaper is organised dsllows. Theformal
preliminaries are given in Section 2. SectiomBoduces
reductions, and the derived notions of extension and



restriction,and applies these to various rule systems.

Inset of such metalevel ruledenoted byabbreviations in

Section 4 we discuss the main implications of this work. boldface capitals.

2. PRELIMINARIES

The formal background of this paper is rooted in ek
on abstractonsequenceelations thatare axiomatised by
metalevel rules (Gabbay, 1985; Makinson, 1989; Kietus
al., 1990). Kraus, Lehmanmnd Magidor have char-
acterisedseveralsets of such metalevel rules itmeir
seminal paper (Kraust al, 1990), the most important of
which areM for monotonic ordeductivereasoningP for
preferentialreasoning,and C for cumulative reasoning.

These rule systems are related by metalevel entailment:

axiomatisation ofP is obtained byaddingthe rule of Or
to C, andthereforeall rules of C are entailed byP (see
Definition 1 below). Similarly,M is axiomatised P
augmented with the rule of Monotonicity.

ETALANGUAGE

ion wedefine the metalanguage
rule systems. We mostly f
ndnotation of(Krauset al, 1990)

he papdr is a propositional langus
t of propositiosymbols, closed.

, and a satisfaction rel
well-behavedwith respect tothe
nd corggact. As usual, we writ
, for aj@itrarya L. Note thatU
proper suliBet of f{ set of all truth-assignm
proposition symbof@ inL, which would reflect f
knowledge orbackd@@undknowledge of the reaso
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2.1.1 Syntax

The metalanguage
tions is arestricted
unary metapredicati® in prefix notati
validity with respec inL) and a bi
{- in infix notation (standing for annspg
consequence). In referring to object-le
we employ a countable set ofetavaria
..., andthe logical connectives frorh
symbols on the metaleveletalevel i
formulae or their negationinstead of- (@) we write
a, and instead of (o { B) we writea 8. Formulaeli
the metalanguage, ofteaferred to asules or propertles

are of the fornP,,...,P,/ Q for n=0 (usually written in an
expandedSentzen-stylenotation), where P,,...,P, and Q

r reasoniabout g
edicatéanguagel

sequence

etapredid
iedrelation

$x1 1 y1
t as funct
alsare ato

are literals. Intuitively, such a rule should be interpreted as

an implication with antecedentP,,...,P,, (interpreted
conjunctively)and consequentQ, in which all variables
areimplicitly universally quantified. Arule systemis a

the

er a

2.1.2 Semantics

Consequence relationprovide the semantics forthis
metalanguage, by fixing the meaning of thetapredicate
t. Formally, aconsequenceelation is a subset dfxL.
They will beused tomodel part orall of the reasoning
behaviour of a partjgmlar reasoning agent, Illsfing a
number ofargumentjibairs of premissand conclusion
the agent isprepare ccept. A consequenceelation
satisfies a rulevhendger |tsat|sf|es all mstances of the
anle, and violates it e ofe
is obtained by repl
formulae fromL. A
instance of a rule
literals in theantece
consequent. Acons
groundliteral |f it do

nsequenceelation satisfies an
henever it sat|sf|es theground

ot satisfy theunnegated ground

is satisfied whenever the
la fromL denoted bya is
y model itJ;

a { B is satisfied whenever the
of propositional formulae fron denoted by
an element of theconsequence

relation.

0' ignore the distinctidoetween the
metalanguage and its semantics by referring particular

consequenceelation asf- andwriting p - g instead of
ule system, @&onsequenceelation

satisfying the rules oK is called anX-relation. Rule
systemX entailsrule systemY if every X-relation is a
Y -relation.

U U ary

2.2 RULE SYSTEMS

In this section we introduce the r
this paper.

systeroasidered in

5 C, P an

Among the rule systems studied
the following.

ON le system
rule systemC (for cum
consists of the following rul
Reflexivity:

Left Logical Equivalenc

Right Weakening:

Cut:




apFB,afry
aB vy

ntial reasoning)
the following

Cautious Monotonicity:

The rule systemP (for pref
consists of the rules of pl
rule:

Or:

The rule systenM (for mo
consists of the rules oP pl
rule:

Monotonicity: oy

The axiomatisations o€, P andM have been chosen
such that they can be obtained from one anotheadoing
or deleting rules. ConsequentM, entailsP andP entails
C. Note that Cautious Monotonicitgnd Left Logical
Equivalence are redundantM since t reimplied by
Monotonicity.

acharacterisa-
of the following

The main result ofKrauset al, 1990
tion of these rule systems in ter
semantics (with slight changes of ter

DEFINITION 2 (Cumulative, pre
monotonic structures). Aumulati
a tripleW = [§1,<[J whereSis a s
S-.2Y is a function that labels ev

nonempty set of modelsand < abinary
relatior? on S. A states[]S satisf@i§ aformula
adL iff for every modelmi(s), m a; the set

of states satisfyingt is denoted d]. The

consequenceelation defined byW is denoted by
w and is definedoy: a -, B iff every state
minimal (wrt. <) in p] satisfiesp.

A preferentialstructure is a cumulativetructure
[8l,<Owhereeverylabel I(s) is a singleton, and

< is a strict partial order (i.e., < igeflexive and

transitive).

A monotonicstructure is a preferential structure
(81,00, i.e. the preference relation is empty.

The intermediate level of states allows the samoglel to
appear at several points in the ordering.

2.2.2 The system CP

In order tocapturethe behaviour of the reasonimgent
CNM from the introduction of this paper, whefuses to
draw any conclusion fromcontradictory premisses, we
introduce the following rule system.

2< is not necessarily a partial order, but it should satisfy a certain
‘smoothness condition’, which is for instance satisfied if < does not
have infinite descending chains.

DEFINITION 3 (Consistentprefe
ing). The rule systertP consist
P with the exception of

additionally the following two rul

the rules of
and

o}
Consistent Reflexivity.

Consistency

A consistent preferentiatructure is a preferential
structureW = [§1,<0 The consequenceelation
defined byW s denoted by, and is defined by:
a tw B iff (i) [a]=0, and (i) every state
minimal in [a] satisfies.

Similar forms of reasonindpave beerconsidered in the
literature beforge.g. Benferhatet al,, 1992). The system
CP is included heramainly for the sake of argument;
however, we will briefly pause to comment on one of its
possible applications.

Consistentpreferential reasoningvas studied in (Flach,
1995) as amodel for a certagekind of inductiocalled
confirmatory inductionwhich ila form ofclosed-world
reasoning based on the assuidtion ‘objects thatvén't
havéke objects Iha een’. Inthis form of
reasoningx - B is interpreted @@bservationsa confirm
inductive hypothesisf’, and
that contradictory obs
ses. Apart from beiri
enables the unification of ¢
explanatoryinduction where
entail the observations unless

ations| confirm any
itively justifiable, this

ey are contradictory.

Clearly, in the presence of C
such as Supraclassicality (frot — 3 derivea - B) are
too strong; this is remedied by¥eplacing Reflexiwitith
the weakerrule Consistent Reflexivity. ConsequentR,
andCP do not entaileachother. Notice that consistent
preferential structuresonsist of the same information as
preferentialstructures, but this information igsed in a
different way by the addition afondition {). For aproof

of the completeness o€P with respect toconsistent
preferential structures see (Flach, 1995; 1996).

istency, various properties

2.3 CLOSURES AND CO-CLOSURES

We introducesome new terminologydrawing upon an
analogy with logic programming. This analogy is revealed
by viewing the formulae from the object langudgeas
ground terms in a Herbrand universe. Consequence
relations thencorrespond to Herbrandnterpretations
(restricted tothe metapredicatg-) of the metalanguage,
whose rules can be easily transformed to clausal notation.




2.3.1 Closure under Horn rules

DEFINITION 4 (Definite rules,indefinite rules,

and denials). A rul@,,...,P,/ Qs called

1. definiteif all of P,,...,P, and Q are positive
literals;

2. indefinite if at least one ofP,,...,P, is a
negative literal and Q is a positive literal;

3. adenialif all of Py,...,P, arepositive literals
and Q is a negative literal.

This exhausts all the possibilities: tlcasethat atleast
one ofP,,...,P, is a negative literahndQ is a negative
literal can be rewritten to case 1 or case 2.

EXAMPLE 1. All of the above rulesare definite,
except the added CP-rules: Consistent
Reflexivity is an indefinite ruleand Consistency
is a denial.

As is well-known, with a set aflefinite rulesD one can
associate an immediate consequence operghich maps
a set of argumenta to its immediateconsequencesnder
D, as follows(ground (D) stands for theset of ground
instances of rules iD over the Herbrand universg:

Tp(A) ={Q | P,,...,P,/ Qis a definite rule in
ground (D) andP,,...,P, is satisfied b

We will make use of the followingproposition,
known from logic programming theory.

PROPOSITION1 (Horn closure)LetD be a s
of definite rules. The intersection of any se
D-relations is also @&-relation. The smallesb-
relation containing a given set adrguments i
unique and equal tothe intersection of allD-
relations containingthe given arguments,
also to the leastfixpoint of the immediat
consequence operatop] starting from thegiven
arguments.

The latter construction i<alled the D-closure of the
original set of arguments. As @enial doesnot produce

positive consequences, Proposition 1 also holds for sets

definite rules and denials, jointly calletbrn rules

Although they don’t use thq@iabd@erminology, Kraus et
al. define, for each rule g they consider, a
corresponding closure of ese cl

operators use the metalev
derive further arguments.
operator will turn a prefere
monotonic superset. Intu

Stance, thd-closure

3ror determining whether a rule i
literals with the ‘built-in’ predicate|

2, indefinite or a denial,
can be ignored.

from the assumption that thdefault rules employed by
the preferential reasoner are actually without exceptions.

EXAMPLE 2. Consider Figure 2. NM violates
Monotonicity becausb {- f while b f  f. The
M-closure operatowill addb(% f - f by virtue
of Monotonicity. Furthermore, assuming that
NM is a P-reasoner walreadyhavebs f + -f
by Reflexivity andRight Weakening. In a next
iteration theM -closure operator will therefore add
b f - fi3 f by virtue of RightAnd (a derived
rule of M). Finally, we obtainbz f - & for all
oL because oRight Weakening,i.e. b® f is
contradictory. Notice that in general it is
insufficient to close off under Monotonicity only
(see Example 5 for a counter-example).

2.3.2 Co-closure under co-Horn rules

A less common but in the context of thgaper very
useful dual of the above isobtained if we consider
complements of consequence relations, and viejv 3 as
a ‘co-positive’ literal andx - B as a ‘co-negative’ literal.

DEFINITION 5 (Co-definite rules, co-indefinite
rules, co-denials,and co-Horn rules). A rule
P,....P,/Qis called

one ofP,;...,P, is a
a positive literal;

t two ofP,,...,P, are
a positive literal;
u..-,Pn are negative
ive literal;

r co-definite or a co-

al Equivalence,Right
, ConsistentReflex-
re co-definite; Cut,
d Or areco-indefinite;
nial.

We can thuglefine animmediateco-consequence operator
given a set ofo-definiterulesCD, which operates on a
¢t of argumentA and computes the set of immediate co-
consequences oA (arguments to beemovedfrom A)
underCD.

CTcp(A) ={P |=P,,...,mP,P/Qis a co-definite rule
in ground (CD) and-P,,...,~P, and
- Q are satisfied by}

ation into &he following proposition is the dual of Proposition 1:

PROPOSITION2 (Co-Horn co-closure)Let C D
be a set ofco-definiterules. Thelargest CD-
relation contained in @iven set ofarguments is



unique and equal to the union of &D-relation
contained inthose argumentsand also to th
complement of theleast fixpoint of th
immediate co-consequence operator gp,
starting from the complement of the gi
arguments.

The latter construction isalledthe CD-co-closureof the
original set of arguments. It is the main technicall for
obtaining the results in the next section.

EXAMPLE 4. Consider again Figure 2. The co-

closure of NMunderMonotonicity will remove
b {1, sincebs f{fis satisfied by NM.

3. COMPARING RULE SYSTEMS

formation than theY-
relations are images under
cs would need additional
seY-relations not in the
thaft encodeghe difference
dy.

DEFINITION 6 (Reduction). Given tworule

systemsX andY, areductionof X to Y is a
function f mapping consequencerelations to
consequenceelations, such thati)(x is an X-

relation iff f(x) is a Y-relation; (i) every Y-

relation is thd-image of anX-relation. If such a
mapping exists we say thdtreduces tor. If in

additionY reduces t&, we say thakK andY are
reduction-equivalent otherwise X  properly
reduces to .

We now come to the main part of the paper. Section 3.1

defines reductions betweemule systems, and the

Notice that the relatiorreducesto’ is a pre-order(it is

conditions under which these may establish extensions égflexive and transitive).

restrictions. The relationsetweenP andM and between
P andCP are studied in Sections 3.2 and 3.3.

3.1 REDUCTIONS, EXTENSIONS AND
RESTRICTIONS

We want to characterisethe difference in information
encoded inrule systemsX andY, or equivalently in the
semantics characterisingthem. Generally speaking, a
semantics foX has two purposes:

1. to distinguish between differextrelations, and

2. to distinguishbetweenX-relations and non-X-
relations, i.e. taanswerthe decisionproblem ‘is
x anX-relation?’

Theidea of areduction is to find aule systemY and a
mapping f such that this lattedecision problem is
equivalent tothe decisionproblem ‘isf(x) a Y-relation?’
(Figure 3). We may lose the distinctitretweensome of
the X-relations in the process, in whiatasethe X-

Figure 3 A reduction ofX to Y.

3.1.1 Reductions between Horn systems

TheM-closure as defined by Kraesal is not a reduction

of anything else than the empty set of ruleMtosince it
mapsany consequence relation into a monotonic superset.
In general, a reduction of to Y must be strongnough

to transformX-relations into Y-relations, but not so
strong that it transforms noxX-relations intoY -relations.
Clearly, theM-closure is too strong in this sen3éere

is, however, a wayut by taking thedifferencebetween
the P-closure and th#l-closure.

THEOREM 3 (Horn reduction)Let X andY be
two rule systems, such thétentailsX. If every
rule of X andY is Horn, thenX reduces toY; if
in addition X doesnot entail Y the reduction is
proper.

Proof. If X andY areHorn, then the closure of
- underX andY is well-defined and denoted
tx and{-y, respectively. Consider the followi
function:

f(H)=tv —(tx—1)

We will prove thaff establishes aeduction ofX
to Y. If |- is anX-relation thent- = {, andthu
f(+ ) =tv. On the othehand, if - violates
rule of X becausea { B anda - B, then th
inference is removedtom {, and thus f( { )
violates the same rule of. Clearlyf maps ont
the whole ofY becauseér -relationsare mappe|
onto itself.

If X does not entalY there are mor&-relation
thanY -relations,hence there is no reduction
Y to X.

Notice that bothX andY arerequired to beHorn — we
cannot use the construction in the proof of Theorem 3 to
reduce a non-Horn system to a Horn system.



3.1.2 Extensions and restrictions

Once we have established a reductiorXofo Y, we may
want to investigate the relatidmetweenX-relations and
theY -relations they are mapped to.

DEFINITION 7 (Extensionandrestriction).Given
a reduction o to Y, its restriction to the set of
X-relations is called semi-reductiorof X to Y.
A semi-reduction is aaxtensior(restriction) if it
mapsevery consequenceelation to asuperset
(subset); we say that extends to(restricts tQ
Y. The extension (restriction) iproper if in
additionX properly reduces t¥.

The relations'extendsto’ and ‘restricts to’ are partial
orders, buiX may bothextendandrestrict toY (we will
see below that this is the case FoandM).

atp
Monotonicity Right Weakening
VEB afd
Right Weakening Monotonicity
yt9o

(a) Right Weakening

afod Btd

Monotonicity or

ypo a2
\onttnici
Or
YB3
(b) Or

atp afB 9o

Monotonicity Monotonicity
Cut

YtB afd yIBtd

Cu

2

(c) Cut

Figure 4 Confluence of Monotonicity with rules &%

COROLLARY 4. C properly extends t&, andP
properly extends t.

Proof. We can use Kraust al’s P-closure as
extension ofC to P, andtheir M-closure as
extension ofP to M.

As we have argued before, this closure approach
establishes a relatiorbetween P and M which is
intuitively unsatisfactorybecause it deems preferential
reasoning more conservatitiean deductivereasoning. In
the next section wdefine areduction ofP to M that is
intuitively more appealing.

3.2 COMPARING P AND M

It is straightforward to obtain dual to Theorem 3 which
relates co-Hornrule systems by means of their co-
closures. Such a resulvould however have limited
practical importance, since none tfe rule systems
considered irthis paper areco-Horn. However, note that
Monotonicity is aco-definiterule; we will show that the
co-closure under Monotonicity yields a restrictionFofto
M, without further help of the rules &f

The restriction of P to M

llowing Lemma provides the key insight.

of. Clearly the co-closure unde
any consequenceelation is a
will s

onotonicity
bset that

d Right Weakening).
r Right Weakening, suppose
- 8. a - 0 would beremoved if
o for somey, but then wewou
Y I+ B by Right Weakeninghencea { 3 would
be removed, preventinthe violation of Right
Weakening.

For Or and Cut an analogous argument hold
Figure 4).
Finally, Left Logical Equivalenceand Cautiou
Monotonicity are implied by Monotonicity.

It should be noted that the dual of Lemma 5 does not hold:
if we would close off apreferential relation under
Monotonicity only, the resulting relation mayiolate
some rule ofP. Monotonicity by itselfdoesnot fully
characterise the difference betwedn-eelation andits M-
extension.



EXAMPLE 5.
with statess<t

sider thepreferential structure

sa, ' , andu

dd. We thushavea - b and
fd, c b, andc { d.

—a, then closing offunder
Monotonicity #8sc { b but notc { d. The
resulting relation violates Cuand is therefore
not anM -relation.

We will now show that there is@duction ofP to M of
which theco-closureunder Monotonicity establishes the
semi-reduction.

THEOREMG. P properly restricts tdM.
Proof. Let} be an arbitrargonsequenceelation,
let +-» denoteits P-closure,andlet f, denote
the co-closure under Monotonicity of .
Consider the functiog defined as follows:

Ofw if Fe=F
9(t)=0 .

O | otherwise
We will prove thaig establishes a reduction Bf
to M. If - satisfiesP thent = and therefor
g(t ) =tw which satisfiesM by Lemma 5. O
the other hand, if violates a rule oP thent,
# t, hencey( t+ ) =t violatesM.
Since P doesnot entailM there are more P-
relations thanM-relations, hence there is
reduction ofM to P.
Finally, we havethat P-relationsare mapped
subsets, which means that the semi-reductio
restriction.

The reductiong in the proof of Theorem 6 iadmittedly
not very elegant — note however tigat- ) =y — (-
) doesn’'t work because co-closure under
Monotonicity mayremoveviolations of P. In any case,
the importance othis result is that wéave obtained an
alternative way of relating@ andM, by definingthe M-
restriction of a P-relation as its co-closure under
Monotonicity.

3.2.2 Semantic characterisations

For completeness we also give semaotiaracterisations
of the above semi-reductions®fto M. TheM -extension
of a P-relation is obtained bythrowing outevery state
which represents an exception topeeferential argument

(the preference order becoming obsolete in the protess).

4similar results have been obtained by (Stachniak, 1993; Benfgrhat
al., 1996).

THEOREM 7 (Semantic characterisation of
extension ofP to M). Let |- be a preferential
relation characterised byhe preferential structure
[$,1,<f] and let ' be characterised by the
monotonic structuré®',l, 1] with
S'=S —{d/S | s satisfiegr[53 for somea |~ 3}
1" is theM-extension of-.
Proof. For everyargumenta {~ B we have that
everystate inS' satisfiesa - 3, hence' is a
superset of-. Sincef' is monotonicand t is
the smallest monotonic superset taf we hav
' O tv; we will prove that' [ .
Supposethereforea ' 3; we will prove thal
oy B-If a - B thenclearly o - B; so
supposea { B, i.e. there exist states inS
satisfyinga@B . Sincea ' B all such stat
have beememovedfrom S — that is, for eve
states]S satisfyinga@3 thereared,e00L suc
thatd { € ands satisfiesd[#¢ . Let A denote th
thesed,e[L, then w
by a validP-derivatio
nd wehaved {- € for
reforetrue  0-¢
wehavea -y A-f3

B.

n isobtained byignoring

c characterisation of
et - be a preferential
e preferential structure
characterised by the
NI, ' is the M-

re we denotihe M-restriction o

imal in @]) satisfyinga@p . It
B B, hencey f P for eve
4B -y due tothe constructio
ure under Monotonicity — in
particulara f. B.

As a generatonclusion we may say that threlation
betweerP andM is ambiguous (at least on purdbrmal
grounds), sinc® both extendsand restricts toM . Our
intuition that P establishes a logic of ‘jumping to
conclusions’ mustherefore be rooted ipragmatics. We
will return to the issue in Section 4 below.



3.3 COMPARING P AND CP

The relationbetweenP and CP is of interest,because

In the literature the emphasis hbsen on extensions
through closure operators. This suggestseradency to
view metalevel rules as uni-directionaiference rules,

neither of these rule systems entails the other. We shoused to expand given set of argumentef( the question

that they are still comparable within our framework.

THEOREM®. P restricts toCP, andCP extends
to P.

Proof. A bijection between the set &frelations

and the set o€P-relations isestablished by the
fact that their semantic structures take tame

form. So let(§,l,<0be a (consistenreferential

structure defininghe P-relation - andthe CP-
relation t+'. Thesetwo consequencerelation
only differ in arguments with premisses tha
are unsatisfiable in S: such premisses
uniquely defined by a =a or alternativel
a f# a. We canthen define the following
functions:

h(t+)=t+—{,p0a,pOL anda |- -a}
h(t+')=t'0{ @,p0a,B0L anda ¥ a}

It is easy to showthat these functionglefin
reductionsfrom P to CP andfrom CP to P,
respectively. Thecorresponding semi-reducti
establish a restriction oP to CP and an
extension ofCP to P, respectively.

This resultunequivocally establishé® as a more liberal
form of reasoning tha@P.

4. DISCUSSION

In this paper we have proposéite notion ofreducibility
between rule systems inorder to characterise their
difference. A reduction oK to Y, if it exists, shows that
X-semantics has moralegrees of freedonthan Y-
semantics. It also constructs d-approximation’ for a
given X-relation. Wehavedemonstratedhat this notion
is more generalthen metalevel entailment oclosure
operators by applying it to rule systems tbah't entail
each other.

In our framework the relation betweenM and P is

inherently ambiguous: by throwingway exceptions to
defaults weconstruct anM-extension of apreferential
relation, by throwingaway the defaults themselves we
construct anM -restriction. While the lattereduction is
the reason for saying thateferential reasoningimps to
conclusions thatare not deductively justified, our
framework provides no formal reason for preferringhthe
restriction over thél-extension as the canonical reduction
of P to M. This can of course be seen astartcoming

of our framework, but it seems to be very hard to explai

in a semantics-independent way, why it is more natural t
construct a monotonic structure from a preferential one bﬁ’l

throwing away the preference orderatherthan removing
exceptional states.

ngﬁeir Applications where an earlieversion of thispaper

‘What does a conditional knowledge base entail?’ (Kedus
al., 1990; Lehmann & Magidor, 1992)However, we
haveshown that,even if a rulelike Monotonicity is a
definite rule, it may be sometimes more natural to apply
its contrapositive. In othewords, such rulesare not
primarily inferencerules, butratherrationality postulates
constraining reasoning behaviours. Angonsequence
relation satisfying gparticular rulesystem isconsidered
rational with respect to the reasoning form axiomatised by
stronger rule systguoits
reasoning behaviours — but
whether the extra riged

| form of reasoning.

rify the situation wigbpect
onotonicity, astudied by

).

a f-B.,aty
aP vy

extendedwith Rational
nal Monotonicity is an
n losure operatofthere may
be severalsmallest R-relations containing a given
consequenceelation ). From the metalevel viewpoint
this is a perfectly naturalsituation: our metarules are
rationality postulates, which may be simply taeak to
fully prescribe the behaviour of a reasoning agent. On the
other hand, fromthe connective viewpoint such
indefiniteness is clearlynsatisfying,and Lehmann and
Magidor go at greatengths to define the notion of
rational closure (greferredsuperset of- satisfyingR).
However, noticethat Rational Monotonicity is a co-
definite rule, hence wemay investigate itsco-closure.
Now, if Rational Monotonicitywere independent of the
rules of P in the same way as Monotonicity is
independent of the rules Bf(Lemma 5), itwould follow
thatP actuallyrestrictsto R, and wecould definerational
‘closure’ of an arbitraryconsequenceelation asclosure
under P followed by co-closure under Rational
Monotonicity. We leave the investigation of this
conjecture as future work.

Acknowledgements

When writing thispaper | have profiteffom discussions
with Joe Halpern, Daniel Lehmann, John-JuMsyer,

Mark Ryan,and participants of theThird Dutch/German
Workshop on Nonmonotonic Reasonifgchniques and

as presented.Remarks of anonymougseviewers have
so beenhelpful. Part of this work wasupported by
Esprit IV Long Term Research Project 20237 ILP2.



References

SalemBenferhat, DidieDubois and Henri Prade(1992).
Representing default rules possibilistic logic.Proc. 3d

Int. Conf. on Principles of Knowledge Representation and
Reasoningpp.673—-684. Morgan Kaufmann.

SalemBenferhat, DidieDubois and Henri Prade(1996).
Beyond counter-examples tmnmonotonic formalisms: a
possibility-theoretic analysi®roc. 12th Int. Eur.Conf.
on Artificial Intelligence pp.652—656. John Wiley.

Peter Flach (1995). Conjectures: an inquiry concerning the
logic of induction. PhD thesis, Tilburg University.

Peter Flach (1996). Rationality postulates for induction.
Proc. 6th Int. Conf. on Theoretical Aspects of Rationality
and Knowledgepp.267-281. Morgan Kaufmann.

Dov Gabbay (1985). Theoretical foundations for non-
monotonic reasoning imxpertsystems. InLogics and
Models of Concurrent Systenmg.439-457. Springer.

Sarit Kraus, Daniel Lehmanm@and Menagem Magidor
(1990). Nonmonotonic reasoningreferential models and
cumulative logicsAtrtificial Intelligence 44:167-207.

Daniel Lehmannand Menagem Magidor(1992). What
does a conditional knowledge basentail? Artificial
Intelligence 55:1-60.

David Makinson (1989).Generaltheory of cumulative
inference.Proc. 2ndInt. Workshop on Non-Monotonic
Reasoning pp.1-18. Lecture Notes in Artificial
Intelligence 346, Springer.

David Makinson (1994). General patterns in
nonmonotonic reasoning. ImHandbook of Logic in
Artificial Intelligence and Logic Programming Vol.3,
pp.35-110. Clarendon Press.

Zbigniew Stachniak (1993)Algebraic semantics for
cumulative inference operatioraroc. 11th Nat. Conf. on
Artificial Intelligence AAAI-93pp.444—-449. MIT Press.



