
Vineyard: A Collaborative Filtering Service Platform in Distributed
Environment

Toshio Oka Hiroyuki Morikawa
The University of Tokyo

School of Frontier Science
3-7-1, Hongo, Bunkyo, Tokyo, Japan
{oka,mori}@mlab.t.u-tokyo.ac.jp

Tomonori Aoyama
The University of Tokyo

School of Information Science and Technology
3-7-1, Hongo, Bunkyo, Tokyo, Japan

aoyama@mlab.t.u-tokyo.ac.jp

Abstract

As the amount of data shared on the Internet drastically
increases, it becomes more important to utilize human feed-
backs in retrieving information. While collaborative filter-
ing of information is a promising approach to retrieve use-
ful information, unfortunately there is an obstacle in the
current collaborative filtering. Since a single system that
serves for every type of object with optimal performance is
unlikely, or at least likely to be too complicated as to im-
plementation, it is more practical to use multiple systems
each of which is dealing with a specific target. In many col-
laborative filtering systems, a system for book only deals
with books, and another system for movie only deals with
movies. The data stored in the former system is not acces-
sible from the latter, and vice versa. This situation brings
about inflexibility of collaborative filtering. We claim that
this issue can be addressed by realizing multiple collabo-
rative filtering systems on top of a single platform. Since
all the profiles are shared on a single platform, they are ac-
cessible from all the systems. The filtering accuracy of our
approach is identical with a certain kind of collaborative
filtering system under a certain condition. We describe a
design of collaborative filtering service platform in this pa-
per. Our design of platform is fairly generalized, and it can
be realized both in a centralized and peer-to-peer fashion.

1. Introduction

A large amount of data is shared on the Internet as
the digital media becomes widespread. We cannot, how-
ever, fully utilize the useful information on the Internet
since shared information is huge in its quantity. So, many
researchers are trying to alleviate this troublesome situa-
tion. One of the promising approaches is collaborative
filtering[1, 2, 4, 6, 7, 8, 9], which efficiently eliminates use-

less items by taking advantage of others’ ratings. While
content-based filtering that rely solely on feature vectors are
faced with difficulties as to certain kinds of applications,
collaborative filtering supports various applications, includ-
ing net news, music, movies, web content, books, and so
on. One of the typical approaches of collaborative filtering
is to employ correlation of user ratings towards target items.
In this approach, personalized ranking of items is computed
by using the ratings of others who have strong correlations
in profile with the user. We are dealing with this type of
collaborative filtering approach in this paper.

We observe that dedicated collaborative filtering for each
target field is desirable in order to improve the utility of
the system, because filtered results may still contain lots of
unnecessary items if the system handles excessively broad
areas. For instance, a collaborative filtering system that
doesn’t distinguish the subjects of pictures cannot necessar-
ily eliminate portraits, even if a user is looking for pictures
of beautiful scenery. It is advantageous to restrict the ob-
jects by some criteria also in other types of collaborative
filtering(e.g., movie, news mail, html). Besides, there is
another benefit of limiting the objects in collaborative fil-
tering. The system can be optimized for its application if
it handles specific objects. For example, a system for web
pages with RSS(RDF Site Summary) can provide additional
functionalities as compared with a system for ordinary web
pages.

However, we think that there is an apparent disadvan-
tage that users can retrieve only a limited kinds of objects
with the system. Imagine, for example, that a user wants
to retrieve all sorts of items of a TV personality including
movies, web pages, and books. In this case, he may find
only books of the personality with a dedicated system for
book. Similarly, people cannot find books about a movie
with a system only for movie. Notice that contacting all
the collaborative filtering systems for movie, web page, and
book is not satisfying solution because they cannot fully uti-

lize the client profile. Although the client has a profile that
is composed of movie, web page, and book of the TV per-
sonality, the collaborative filtering system for movie only
utilizes the profile entries as to movies when computing
correlation, because the system doesn’t store the data for
books nor web pages. Most entries of the client profile are
ignored during the computation. Accordingly, there is cer-
tain amount of degradation in filtering accuracy. So, col-
laborative filtering is also required to broaden its target in
a certain situation. We have directly-opposed requirements
for collaborative filtering systems. Instead of accomplish-
ing the two requirements with one system, we try to ad-
dress this issue by realizing various collaborative filtering
systems on top of a single platform. Since all the profiles
are managed by a single platform, systems can share their
profiles. As a consequence, each system can utilize user
input efficiently, and can gather a large number of profiles
instantly. Additionally, we can save the implementation and
processing cost by reducing the overlapping functions. Spe-
cific functions based on user requirement can be realized by
each system.

Our platform provides primitive functions for collabo-
rative filtering that utilizes correlation of user profiles. In
this paper, we describe how basic and extension functions
should be decoupled in collaborative filtering especially in
the context of distributed environment. Furthermore, we
discuss the way how we realize the extension functions. We
also describe the load balancing mechanism of the platform.
Load balancing is a crucial matter since the platform is as-
sumed to deal with various kinds of items that can be ob-
jects of collaborative filtering, including web pages, books,
movies and etc.

The reminder of this paper is organized as follows. Sec-
tion 2 describes the overview and the design of the Vineyard
platform. In section 3, we discuss the detail of each com-
ponent, especially load balancing one, and we mention the
implementation of this platform in section 4. We conclude
this paper in section 5.

2. System Design

Collaborative filtering aims at saving users’ labor in find-
ing useful items by filtering out irrelevant ones based on
user profiles. To the best of our knowledge, the term, col-
laborative filtering, firstly appeared in [2]. According to
[2], it simply means ”people collaborate to help one another
perform filtering” by recording their reactions to items they
have already seen. In many collaborative filtering, ratings
of items are predicted in advance before users actually see
them, so users don’t have to spend time for items with low
predicted ratings. One of the typical approaches to predict
ratings utilizes correlation of user profile that contains list of
(item, rating) pairs(Table 1). In Table 1, each row indicates

a b c d e f g h i
user P 3 5 1 1
user Q 5 4 5 1 1
user R 1 1 5 4
user S 1 4 3 3
user T 5 5

U 4 3 5 5 2 x

Table 1. Rating of each Item

an user’s preference profile for items. The numbers(5-1) in
the table indicate user evaluation, excellent(5) to awful(1).
For example, user P likes item e, but takes item g to be
useless. Predicted value x of item i is computed based on
others’ ratings, but each rating is weighted by the correla-
tion of profile between the target user U and other users.
The rating for i by user Q is the most dominant entry in this
case.

An interesting topic is how we realize various collabora-
tive filtering systems on a single platform that manages the
entire user profiles. The platform must provides simple and
common functions that are required in general collaborative
filtering systems. We describe the design of the platform
that is composed of 4 components. Rough sketch of these
components are depicted in Figure 1.

Server components

CServComp(Correlation Server Component)
CServComp stores the list of (item, rating) pairs (Table
1) and finds users whose profiles have strong correla-
tion with the client user.

PServComp(Profile Server Component)
PservComp stores user profiles and provides the pro-
files for ClientComp. The format of stored data is the
RDF(Resource Description Framework) style.

CServComp and PServComp run on a number of hosts
in order to achieve load balancing.

We will illustrate how CServComp works by an example
of user U. CServComp has a table shown in Table 1. When
a request of user U arrives, CServComp put her profile in
its table. Next, it sends a list of users who have strong cor-
relation with user U. Thus, CServComp keeps a rating table
and shows a list of users who have strong correlation with
the client. Note that CServComp doesn’t show an end re-
sult.

Function of PServComp is also simple. PServComp just
shows a profile of the user designated in the request(e.g.,
user Q) to its client. It also gives metadata of items in the
user Q’s profile along with a response. In order to avoid

User Local

Data Store
Profile Data

Metadata

LMComp

ClientComp
CServComp

PServComp

1, task assign

1, task assign

4, 7, lookup

2, make profile

8, request

5, request

9, response

6, response

End System

3, request10
, r

es
p
on

se

Figure 1. Overview

sending irrelevant items, items with low rating or items
without metadata specified in the request are filtered. With
these two server components, CServComp and PServComp,
user U can obtain important information: users who have
strong correlation with the client user U, their preference
profiles, and metadata for items.

The both two components described above provide quite
generic functionalities, and some may feel that the server
components don’t satisfy the original goal to realize a va-
riety of collaborative filtering systems. One solution to
get around this issue is to realize additional functions on
the CServComp. Convenient functions(e.g., monthly ac-
cess ranking) can be implemented as standard functions
on CServComp. Although only a limited number of func-
tions can be deployed as standards, it is still powerful ap-
proach. Another solution is to run programs downloaded
from clients under the protection of Java security mecha-
nism. Although this approach is costly in terms of network
and processing resources, it can satisfy various kinds of user
demands. Our main solution, however, is to realize the sys-
tem specific functions on the client-side. This approach
doesn’t require modification to CServComp, nor download-
ing of programs from client. Since these three solutions are
complimentary, users can use these solutions according to
situations.
Client component

End system provides some functionality peculiar to each
filtering system. As is depicted in Figure 1, end system
is realized on the ClientComp, and it communicates with
CServComp and PServComp via ClientComp. End system
decides ranking of items based on user instructions and pro-
files provided by PServComp.

An important operation before the interaction with server
components is to make a preference profile. Every client
has a data store locally, and each system makes its own user
profile that is extracted from the stored items, ratings and
metadata. For example, the profile of book filtering system
contains (book, rating) pairs selected from the store, and

the profile of collaborative filtering system for show busi-
ness may contain items related to TV personalities that are
also selected from the same store. The profile is transmitted
to the CServComp along with the request. It is notewor-
thy that the users specified in the response from the CServ-
Comp has similar profiles with the client profile. When the
client sends a profile for books, a person who has similar
taste with the client regarding movie is not necessarily in
the response, because items as to movie are not counted in
computation of correlation.
Load-balancing component

If our platform handles only a limited number of items,
these three components stated above are suffice. The plat-
form, however, is intended to manage a huge number of
items that can be object of collaborative filtering, so load
balancing among servers is a crucial matter. It is LMComp
that provides a load balancing property in the platform. One
of its important roles is to serve as a guide to direct the
ClientComp to the appropriate servers to contact. The other
role of this component is to assign each server its responsi-
ble task.

Although we discussed the roles of the components, it is
still unclear how the components are involved in total pro-
cedures of collaborative filtering. So, the procedures are
presented below:

a, LMComp, CServComp, and PServComp are already
running

b, ClientComp is installed in every user host, and several
filtering systems are installed as user needs arise

c, A user performs rating of her own items, adding at-
tributes, and mapping between items and systems
through system user interfaces

d, Others’ ratings and item attributes have been registered
in PServComp

e, The user specify target areas and make profile selected
from the local data store

f, The end system hand the profile to the ClientComp along
with a request

g, The ClientComp asks the LMComp the server to contact

h, The ClientComp send a request to CServComp and ob-
tain a list of users who have strong correlation with the
client

i, The ClientComp sends a list of the users(obtained in 2.)
to PServComp along with a request, and get the infor-
mation of items they have

a b c d e f g h i
user Q 5 4 5 1 1
user R 1 1 5 4

U 4 3 5 5 2 x
user P 3 5 1 1
user S 1 4 3 3
user T 5 5

user Q (a, 5) (c, 4) (f, 5) (g, 1) (i, 1)
user R (a, 1) (b, 1) (d, 5) (h, 4)
user U (a, 4) (b, 3) (c, 5) (f, 5) (g, 2)

Table 2. Profiles Stored in CServComp α

j, The ClientComp hand the information to the end system

k, The end system performs ranking of items

3. Operation

3.1. Load Balancing

Although we mentioned that LMComp performs load
balancing of the platform, we didn’t refer to the mechanism
how it achieves the load balancing. First of all, we must
consider how to distribute the requests among the servers.
A naive solution is to use mirroring. Client can simply send
queries to the least congested server because all the servers
provide the same functions. No restriction, however, is im-
posed on the request in mirroring, so every server must have
a complete set of data in order to cope with any kind of re-
quest. This approach is very costly when we deals with
a huge amount of data. We must place some constraints
on the request to the servers, so that the servers have only
to store a part of the entire data. The key to address this
problem is the required functions in the collaborative filter-
ing servers(especially CServComp here). The CServComp
returns the users who have strong correlation in terms of
evaluation for the items specified in the request. There-
fore, users who don’t have these items at all won’t be in
the response, and their profiles are needless in resolving this
query. Consider, for example, if all the queries to a certain
server contain item a, then the server have only to manage
the profiles with item a. Some may claim that people who
have strong correlation with the user, but don’t have item a
won’t be counted in this approach. In Table 2, the CServ-
Comp in a host α manages the profile of user Q and R, but
don’t manages the profile of user P, S, and T since they don’t
have item a in their profiles. So, the request by the user U
cannot be fulfilled in the host α. This claim is rational if the
user U can send request(s) only to a single host. The user

Node

Key

02
160

1-

Figure 2. ID Space of Consistent Hashing

U, however, can send requests to the host β, γ, δ that are re-
spectively responsible for the item b, c, g to get around this
problem. These hosts can compute the correlation with user
P, S, and T.

Now, the load balancing mechanism performed in the
LMComp is clear. The LMComp divides the entire item
set into a number of small ones and assign the responsibil-
ity for a set to each server. For instance, the CServComp in
the host α is responsible for the profiles that contain item a,
and the CServComp in the host β is responsible for the pro-
files that contain item b. Note that you can use hash in order
to keep the size of set uniform, and achieve the load balanc-
ing property. Consider itemID to be the key and (IP, Port)
pair of the responsible server to be the value, then the hash
table in the LMComp can tell which server is responsible
for each itemID.

Although the interface of the hashing scheme is appro-
priate, there is serious disadvantage in the simple hash. The
problem is that the table size of the simple hash is static.
We have to reconstruct hash table, or rehash, if there is a
big growth in number of users, thereby requiring installation
of more servers. The cost of rehashing is prohibitive espe-
cially in the distributed environment because a large amount
of data must be transferred in rearrangement. We adopt dis-
tributed hashing scheme in our Vineyard platform. We refer
to consistent hashing here[3], which is one of the distributed
hashing schemes. First of all, we explain how items with a
key are mapped onto servers. In consistent hashing, we as-
sume ring ID space(e.g., 160bit ID space) as illustrated in
the Figure 2, and bucket(i.e., server here) is mapped to a
randomly chosen point in the space. The item of the key is
placed in the first node from the key in the clockwise direc-
tion. If the LMComp knows hostIDs and (IP, Port) pairs of
all the hosts, it can solve which host is responsible for a key
according to the key-bucket mapping rule. Under the con-
dition where keys are uniformly distributed in the ID space,
the number of keys a server is responsible for is roughly
proportional to the length the server is responsible for. Ac-
cording to [3], the length each server is responsible for can
be less than (1 + ε) × L

n for arbitrary ε with high proba-

int GetRating(userIDu, itemIDi)
{

if((u, i) ε dataset) return(ru,i);
else return(DEFAULT);

}

double ComputeCorr(Profiletarget, Profilecprof)
{

double corr=0;
double cMean=cprof.mean;
double tMean=target.GetMean();

for(i=0, i<cprof.size, i++){
itemID it=cprof.item[i].ID;
int cRating=cprof.item[i].rating;
int tRating=GetRating(target.userID, it);
corr += (cRating-cMean)*(tRating-tMean);

}
return(corr);

}

void CResponse(Dataset dataset, Profile cprof, double thresh)
{

Response response; double corr;
for(i=0, i<dataset.size, i++){

corr = ComputeCorr(dataset.profile[i], cprof);
if(corr>thresh)

response.insert(dataset.profile[i], corr);
}
SendResponse(response);

}

void OnRecvCRequest(Server serv, Requestrequest)
{

Profile cprof = request.GetProfile();
double threshold = request.threshold;

Register(cprof);
CResponse(serv.dataset, cprof, threshold);

}

Table 3. Pseudocode for CServComp

bility by using virtual servers(L:total length, n:the number
of real servers). Therefore, we can achieve load balanc-
ing property with statistically assured performance. As it is
clear from the Figure 2, the data transfer is little even if a
bucket(i.e., server) is inserted/deleted. The transferred data
during the node join/leave is the data transferred to/from the
host that is going in and out, which is optimal in terms of
quantity. Fault-tolerance and dynamic load balancing can
be achieved in consistent hashing[5, 10].

3.2. Correlation Server Component

The outline of the CServComp is already discussed, so
we are going to clarify the detail. CServComp returns the
IDs of the users who have strong correlation with the client.
Precisely, the correlation coefficient must be more than a
certain threshold designated in the request. The correlation

bool SatisfySpec(MetaDataTree mdTree, SpecTree spec)
{

bool result; MetaDataTree childMD;
SpecTree childSpec = spec.begin();//first child
while(childSpec!=NULL){

childMD = GetChild(mdTree, childSpec.avpair);
//get child tree that satisfies attribute-value pair
//Note that value can be “Don’t care”

if(childMD==NULL) return(FALSE);
result = SatisfySpec(childMD, childSpec);
if(!result) return(FALSE);

}
return(TRUE);

} // recursive version

void OnRecvPRequest(Server serv, Request request)

{
ProfileSetprofSet = serv.profSet;

SpecTreespec = request.GetSpec();

Profileprof = profSet.GetProfile(request.userID);

Response response;

for(int i=0; i<prof.size(); i++){ //for each item

MetaDataTree mdTree = prof.GetMDataTree(i);

if(SatisfySpec(mdTree, spec))

response.insert(prof.GetItem(i));

}
SendResponse(response);

}

Table 4. Pseudocode for PServComp

coefficients are sent along with the response. The pseu-
docode for the CServComp is shown in Table 3. Please note
that the code is fairly abbreviated, and the language is quite
different from existing one.

The client request is mainly composed of userID, and
the list of (itemID, rating) pairs. When receiving a request,
CServComp calls OnRecvCRequest function. After it reg-
isters the client’s profile, it computes the correlation and
sends a response to the client. In the pseudocode, itemID is
a GUID(globally unique identifier) generated by hash func-
tion like SHA-1. Naming of userID depends on implemen-
tation, but must be unique on the platform. One alterna-
tive for userID is hashed value of the user host IP. This en-
ables CServComp to avoid receiving massive registration
from the same user. Another alternative is to use a num-
ber assigned by an entity(a person or an organization). The
number must be signed by the entity, so that CServComp
can verify that she is an authorized user.

Stored data on the server is maintained in soft state. After
some time passes since it stores the data, the data is changed
into cache. Client periodically renews the registration.

3.3. Profile Server Component

The pseudocode for the PServComp is shown in Table 4.
When receiving a request, PServComp calls OnRecvPRe-
quest function. The basic action of PServComp is to return
user items and their information when it receives a query
that specifies a user. Here, not all item data is sent to the
client simply because all the data is not required in many
cases. The items whose metadata satisfy the specification
designated in the request are sent along the response. The
processing of specification matching is shown in the Table
4 (SatisfySpec()).

Maintenance of data is performed by soft-state also in
the PServComp. It is desirable that the interval until data
is deleted is close to the interval in CServComp because it
makes sense only when both data in CServComp and PServ-
Comp are available.

3.4. Client Component and End System

ClientComp provides common functions required for ev-
ery end system. First, ClientComp functions as an interface
to other components so that each end systems don’t have to
have their own implementation. Retrieved data from other
components is cached in this component, and once the data
is cached locally, client doesn’t have to retrieve it from the
distant servers. Second, it sends periodic registration mes-
sage to the remote servers. If a certain end system is unused
for a long time, it stops sending soft-state message. Third, it
works as a data store for the end systems on it because stor-
ing user data in each end system respectively is inefficient.
The format for the stored date is illustrated in the Table 5.
When the end system wants to make the preference profile,
it gives ClientComp a specification for the profile. For in-
stance, the specification might contain “filetype=html” and
“subject=wine” if the end system make a profile for wine.

3.5. End System

System-specific functions are implemented in the end
system. Four main functions are enumerated below:

• To add metadata to items in the data store

• To extract items from the data store and make profiles

• To present the ranking of items

• To work with other applications

When items are registered with systems, the items are
assigned attributes peculiar to the system. Further, addi-
tional attributes are added according to the system schemes.
The attributes are composed of various entries including

<? xml=version=”1.0” ?>
<rdf:RDF xmlsn:rdf=”http://www.w3.org \
/1999/02/22-rdf-syntax-ns#”
xmlsn:vin=”http://foo.bar.com/scheme/”>
<rdf:Description about=”urn:publicid:-:foo:sha-1:EN \
:1234567890abcdef1234”>
<vin:field>TV program</vin:field>
<vin:title>Full Home</vin:title>
<vin:genre>situation comedy</vin:genre>
<vin:director>Tom </vin:director>
<vin:star>
<vin:actor>Michael</vin:actor>
<vin:actoress>Lisa</vin:actoress>
</vin:star>
<vin:date>
<vin:year>2000</vin:year>
<vin:month>1</vin:month>
</vin:date>
<vin:filetype>wmv</vin:filetype>
</rdf:Description>
</rdf:RDF>

Table 5. Item Metadata

field, file type, subject, artist, author, actor, company, pub-
lisher, date, and what not. The example of the attributes
is illustrated in Table 5. Since URN name space for SHA-
1 has not yet been formally documented, we temporarily
use “urn:publicid:-:foo:sha-1:EN” as the name space for the
subject of the items.

Next, we refer to the topic as to making profiles. The
number of queries sent to the servers is relevant to the way
we make profiles. We will explain this by the notion of
“view” in systems. Here, behavior of a system with a cer-
tain profile is referred to as view. If a system uses several
profiles, then the system has several views. Each view peri-
odically send queries to the servers and refresh the ranking
of items. Consider, for example, a music collaborative fil-
tering system that has two views, R&B view and classic
view. Then the system has two profiles, and the host must
typically send queries twice as much as the case only with
one view. Let S be the number of systems in a user host,
Vs be the number of views in the system s, and pij be a
profile of the view vj of the system si. The total number of
queries the host must send to CServComp during a periodic
interval(say, a month) is:

S∑

i=0

Vsi∑

j=0

sizeof(pij)

Although we can make a lot of views easily by selecting
items from the local data store(ClientComp), we can have
only a moderate number of views in a real sense because
more network and computing resources are consumed with
more system views.

The third role of the end system is to present the ranking
of items. A typical approach for ranking is to calculate the
average rating of others weighted by the correlation coeffi-
cient. But we don’t define the methodology of this proce-
dure not to lose the flexibility of the systems. The rating
can be weighted by metadata like subject, date, artist and so
forth.

Lastly, we mention the cooperation with other appli-
cations. An obvious example of the application is web
browser. You can enter an item by drag-and-drop from the
browser, or load html pages onto web browsers. Further-
more, book collaborative filtering system can check the rec-
ommended items in the online bookstore, and system for
technical papers can check the author in digital libraries.
Another example is to display thumbnail in a collaborative
filtering system for picture.

3.6. Optional Components

Optional components are downloaded from the clients
under the protection of Java security mechanism as already
stated in section 2. It is similar to Java applet, but the down-
loaded code can access to the data of the Vineyard platform
with read-only permission. The code cannot have an access
to other data in the server host. Since it requires computa-
tional and network resource, the servers can refuse to serve
this function when it is in a high workload. While this op-
tional component seems to have much flexibility, it is un-
certain if it really works in the real circumstances. This
mechanism is left for the future work.

4. Implementation

Currently, we are implementing a prototype of Vineyard.
We use DHT(Distributed Hash Table) in implementing LM-
Comp instead of original consistent hashing. We adopt
Chord as DHT, which belongs to consistent hashing family.
Although the performance of Chord protocol greatly affects
our platform, the details of Chord are beyond the scope of
this paper. The platform of the prototype is written in Visual
C++ on Windows OS. Current implementation is merely a
prototype, so not all the functions described in this paper
are implemented.

5. Conclusion

We designed a platform for collaborative filtering ser-
vice in this paper. Unlike the normal monolithic collabo-
rative filtering systems, we can easily realize fine-grained
filtering services for the entire users on the platform. We
studied required technologies to achieve the platform, es-
pecially about load balancing and the description of meta-
data. As we adopt a generalized algorithm(i.e., consistent

hashing), we have two choices(centralized and peer-to-peer
manner) to achieve the goal. If we deploy this platform on
commodity computers, we may have to discard some data in
order to avoid overload. Our current interest is the degree of
accuracy degradation caused by the data discard. We must
deploy this platform and clarify if the DHT approach appro-
priately works in a real environment.

References

[1] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Pro-
ceedings of the 14th Conference on Uncertainty in Articial
Intelligence(UAI’98), pages 43–52, July 1998.

[2] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using
collaborative filtering to weave an information tapestry. In
Communications of the ACM, December 1992.

[3] D. Karger, E. Lehman, T. Leighton, M. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide
web. In Proceedings of the 29th ACM Symposium on Theory
of Computing (STOC97), pages 654–663, May 1997.

[4] D. M. Nichols. Implicit rating and filtering. In Proceedings
of the 5th DELOS Workshop on Filtering and Collaborative
Filtering, pages 31–36, November 1997.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured p2p systems. In Pro-
ceedings of the 2nd International Workshop on Peer-to-Peer
Systems, February 2003.

[6] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens : An open architecture for collabora-
tive filtering of netnews. In Proceedings of the Conference
on Computer Supported Cooperative Work(CSCW’94), Oc-
tober 1994.

[7] J. Rucker and M. Polanco. Siteseer : Personalized navi-
gation for the web. In Communications of the ACM 40(3),
pages 73–76, March 1997.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Pro-
ceedings of the 10th International World Wide Web Confer-
ence(WWW10), pages 285–295, May 2001.

[9] U. Shardanand and P. Maes. Social information filtering :
Algorithms for automating ’word of mouth’. In Proceed-
ings of the Conference on Human Factors in Computing Sys-
tems(CHI’95), pages 210–217, May 1995.

[10] I. Stoica, R. Morris, M. Kaashoek, and H. Balakrish-
nan. Chord : A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communica-
tion(SIGCOMM’01), pages 149–160, August 2001.

