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S U M M A R Y  
There is a collection of core-sensitive normal modes that is split much more than 
predicted from the Earth's rotation, ellipticity, and lateral heterogeneity. Pk'lk'P 
traveltime observations suggest that the Earth's inner core exhibits cylindrical 
anisotropy about a nearly corotational axis. We investigate the effect of transverse 
isotropy, which is the simplest type of anisotropy that exhibits cylindrical symmetry, 
on the free oscillations of the Earth. We demonstrate that transverse isotropy with a 
symmetry axis parallel to the rotation axis produces splitting of the form h,,, = 

w ( u '  + c'm' + dm')), where m denotes the azimuthal order of a specific singlet within 
a given multiplet with degenerate eigenfrequency w ;  the scalars a ' ,  c' ,  and r l  
represent the effects of transverse isotropy on a particular normal mode. The effect 
of a tilt in the anisotropic symmetry axis relative to the axis of rotation can be easily 
incorporated and leads to non-zonal splitting 
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1 I N T R O D U C T I O N  

Masters & Gilbert (1981) were the first to  identify a 
collection o f  normal modes that is split much more than 
predicted from the Earth's rotation, ellipticity, and lateral 
heterogeneity. Over the last decade this collection has 
grown t o  a total of about 20 so-called anomalously split 
modes (Ritzwoller. Masters & Gilbert 1986, 1988: 
Woodhouse, Giardini & Li 1986; Giardini, Li & Woodhouse 
1988: Li. Giardini & Woodhouse 1991: Widmer, Masters & 
Gilbert 1992). All these modes are sensitive to  core 
structure and exhibit enhanced, predominantly quadratic, 
splitting. 

There is accumulating evidence from P K I K P  traveltime 
observations that the inner core exhibits cylindrical 
anisotropy about the Earth's rotation axis, although there is 
disagreement about the level of anisotropy (Morelli, 
Dziewonski & Woodhouse 1986; Shearer, Toy & Orcutt 
1988; Shearer & Toy 1991; Creager 1992; Song & 
Helmberger 1993: Su & Dziewonski 1995). Recently, Tromp 
(1993) demonstrated that most of the anomalous splitting of 
the currently identified normal modes can be explained in 
terms of inner-core anisotropy that is compatible with 
traveltime observations. The purpose of this research note is 
to give the theoretical background for Tromp's results. 

2 G E N E R A L  A N I S O T R O P Y  

We use degenerate perturbation theory to determine the 
first-order effects of general anisotropy on the Earth's 
eigenfrequencies. We make the self-coupling approximation, 
that is, we assume that a given singlet only couples to  
singlets within the same multiplet. For a given multiplet with 
degenerate eigenfrequency w ,  the splitting-matrix elements 
due to  a general elastic tensor .1 are given by (Woodhouse 
& Dahlen 1978) 

A,,,,,,. = ( 2 w )  ' 1 E, ,z , : . l :E: ,dr '  

The volume of the Earth is denoted by V ,  and the asterisk 
denotes complex conjugation. The singlet strain tensor E,,, is 
related to  the singlet displacement gradient Vu,,, by 

The vector fields u ,,,, m = -1 , .  . . , I ,  where I denotes the 
angular degree and ni denotes the azimuthal order. are the 
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displacement eigenfunctions o f  the 21 + I singlets within a 
given multiplet: they are orthonormalized such that 

where p denotes the distribution of density within the Earth. 
The singlet eigenfunction u,,, can be expressed in terms of 

radial eigenfunctions U ( r ) ,  V ( r ) ,  W ( r )  and spherical 
harmonics };,,,(3). where r denotes the radius and 3 denotes 
points on the unit sphere, as 

u,,, = U3I,,, + vv, 1;,,, - w3 x v, Y; ,,,. (4)  

The spherical harmonics Y;,,, are normalized according to  the 
convention of Edmonds (IY60). such that 

where 61 denotes the unit sphere. The surface gradient C ,  is 
related to the gradient V by 

C = i i ) , + r  ' V , .  (6) 

The radial eigenfunctions U ,  V ,  and W depend on the 
angular degree / and overtone number n of the multiplet; for 
brevity. we omit this dependence on I and n. For spheroidal 
modes W = 0, and the normalization (3) becomes 

[: p [ ~ '  + / ( /  + I )v+' tlr = I .  

1 ( 1 +  l ) [ ; p w Y d r =  1. (8) 

( 7 )  

where LI denotes the radius o f  the Earth. For toroidal modes 
L' = C '  = 0, and the normalization (3) reduces to 

For practical purposes. it  is convenient to consider tensors 
relative t o  the canonical basis C , C,,, e , . which is related to 
the spherical basis 6. 6, i by (Phinney & Burridge lY73) 

We use Greek indices a,  p. etc. to denote the components 
o f  tensors rclative t o  the basis (C , C,,, C ,  ); they can take on 
the V ~ U C S  -. 0. and +. The Cartesian components o f  
tensors will be indicated by using indices which take on the 
values I ,  7, o r  3. The canonical unit vectors arc orthonormal 
in the sense 

6 ; .  C l j  = 6,w (10) 

Contractions o f  tensors are performed by means o f  the 
metric tensor, which has components 

This implies that gill, = I .  g ,  = g , = -1. and K , , ~ ~  = 0 if 
(r +/3 -0. We can express a singlet eigenfunction u,,, in 
terms of its components 11 ' '  relative to the canonical basis C,, 
a s  

u,,, ( r )  = u'"( r Y ~ , , ( W v ,  (12) 

where ,Y = a. Throughout this paper summation over a 

repeated Greek sub- and superscript is implied. The 
generalized spherical harmonics Y l ,  are fully normalized 
such that 

Notice that v,:,, = Y;n2.  The two descriptions of the singlet 
displacement field (4) and (13) are, of course, equivalent; 
the scalar fields u . u", u +  are related to the radial 
eigenfunctions U ,  V ,  W by 

11 * = C$( V + iW 1, 

C1: = [I(/ + N ) ( I  - N + 1)]"2. 

u" = U ,  (14) 

where 

(15) 

The singlet strain tensor E,,, can also be expressed in 

(16) 

where N = a + 0. In terms of the radial eigenfunctions U. 
V ,  W the elements of the singlet strain tensor are given by 

terms of generalized spherical harmonics: 

E,,, (r )  = E " ' j ( r )  Y;,(f)CJ%, 

E"=S$'R;r ' ( V + i W ) ,  (17) 
E"" = ,If, 

E"' = g1:('%, * iZ), 
E" = - I F ,  

where a dot . denotes d l d r  and where we have defined 

F = r ' [ 2 U  - /(/ + l ) V ] ,  

.Y = V + r ' ( u  - v ) ,  
z = W - r  'w. ( 2 3 )  

Finally, we can express the elastic tensor ,4 in terms of 
generalized spherical harmonics: 

where N = a + p + y + 6. Using the generalized spherical 
harmonic decompositions of the singlet strain tensor (16) 
and the elastic tensor (24), the matrix elements ( 1 )  become 
(Mochizuki 1986: Li er d., 1991) 

A,,,,,,, = W) I 2 ,r,yz,:I; 
, ( I  2,4, , I 

x Ecrfi&; fi'Y"EYS*g ( " (1  ,g ,,' r2  ( I r ,  ( 2 5 )  

where N '  = a + p, N = y + 6 ,  and N - N '  = a' + p' + y + 6. 
The parameters ,r;;z', are given in terms of Wigner 3-j 
symbols (Edmonds 1960) by 

>I-,;,,:: = Jl, Y;;;.Y: ,v'vt,*rin 

= ( - 1 ) , v t " y 2 1 t  l ) ( L )  ,.s + 1 
dlr 
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where t = m - m’. Notice that in this approximation only 
even angular degrees s contribute to  the splitting. 

Equation (25) determines the splitting of the Earth’s free 
oscillations due to  general anisotropy. In the next section we 
consider splitting due to  transverse isotropy, which is the 
simplest kind of anisotropy that exhibits cylindrical 
symmetry. 

3 T R A N S V E R S E  ISOTROPY 

In this section we consider the effect of transverse 
anisotropy. which is a relatively simple case of the general 
anisotropy considered in the previous section, on the Earth’s 
free oscillations. In Section 3.1 we consider transverse 
isotropy with a symmetry axis parallel to  the Earth‘s 
rotation axis. The effect of transverse isotropy with a 
symmetry axis that is tilted relative to  the rotation axis is 
discussed in Section 3.2. We only consider spheroidal modes 
because the collection of anomalously split modes consists 
excusively of PKIKP equivalent free oscillations. 

Table 1. Generalized spherical harmonic expansion coefficients 
.I::”’ for the elastic tensor .1 defined by eq. ( 2 3 ) .  In terms of 
the transvcrsely isotropic elastic parameters A,  c‘, L ,  N, F the 
parameters A , ,  A,. A,, A,, A5 arc given by A ,  = hA + (’- 4L - 
ION + XF, 
14N i SF. A , =  A i C i 3L - 7N - 2F, A, = A  i C - 4 L  - 2F. 

A,=A i C + 6 L  + SN -2F. A , =  ~ hA + C - 4 L  + 

3.1 Corotational symmetry axis 

Let the z-axis be defined by the Earth‘s axis o f  rotation. The 
following nine Cartesian elements of the elastic tensor .1 are 
non-zero (Love 1927): 

(‘7) ,I I I 1 1  = A”” = A ,  *M’ C, 

A -2N.  ( 3 8 )  .\I313 = L\2‘“” = L ,  *I212 = N, ,,I 122 = 

‘ \ I 1 7 3  = ,2237 = I;, 

Notice that there are only five independent elastic 
parameters: A ,  C, F. I>. and N .  

To obtain the components of the elastic tensor relative t o  
the canonical basis G,,, cy = - , 0, + ,  we can either use a 
direct transformation from Cartesian coordinates t o  
canonical coordinates. or convert from Cartesian t o  
spherical coordinates, after which we can use the results in 
Appendix A of Mochizuki (1986) to  obtain the canonical 
representation. The non-zero generalized spherical har- 
monic coefficients are listed in Table 1. Notice that all 
non-zero expansion coefficients have azimuthal order t = 0: 
this is to  be expected since our transverse isotropy exhibits 
zonal symmetry. Notice also that the non-zero elements 
involve angular degrees 0, 2, and 4 only: there are tive 
non-zero coefficients with angular degree 0. 1 1  non-zero 
coefficients with angular degree 2. and 13 non-zero 
coefticients with angular degree 3. The degree 0 coefficients 
are determined exclusively by the parameters A ,  = 6A + 
C - 4L - ION + 8 F  and the 
degree 3 coefficients are completely determined by the 
parameters A 7  = -6A + C ~ 41. + 13N + S F  and A, = A + 
C + 3 L  -7N - 2 F ,  and the degree 4 coefficients are all 
completely determined by the parameter A,  = A + c‘ - 4L - 
2 F. 

A, = A + C + 61- + SN - 21.1 

Generalized Legendre functions PI: are defined by 

As a result we have 

(30 )  

The generalized Legendre functions P 1, which are relevant 
to the expansion coefficients h:fY;‘ listed in Table 1 are given 
in Table 2. 

Because the non-zero expansion coefficients have 

Table 2. Generalized Legendre functions f ‘>) ( .~) ,  whcrc A = co5 8. 
that are relevant in the context of transverse isotropy. 

s = o  s = %  s = 4 
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azimuthal degree i = i n  - rn' = 0, the splitting matrix (25 )  
becomes 

A,,,,,, = 6w,,,6 ,,,,,I . 

LJsing the results 

(33)  

x "3rn' - l(1 + 1 )], (33)  

x { h ( l +  7 ) (1+ 1)1 (1 -  I )  

+ [SO - 601(1 + I)]rn' + 70rn4}, (34) 

i t  is straightforward to demonstrate that 

( 5 2 )  
= w ( a '  + c'in2 + drn'l). ( 3 5 )  

For spheroidal modes. the scalars u ' ,  c', and d are  given 
hY 

The splitting matrix (31) may be expressed in terms of 
splitting-function coefficients c, ,~ as follows: 

(53)  

The splitting-function coefficients L',(~ are given by 

The splitting function 

f =  c c,,y: 

is purely zonal because the coefficients c,, are zero if t # 0. 
The relatively simple form of the splitting predicted by eq. 

(35) exhibits a quadratic as well as a quartic dependence on 
the azimuthal order  m. These splitting characteristics are  in 
accordance with the observed anomalous splitting. 

where i,, = 5, i ,  = 3,  i2 = 3,  i, = I ,  and i ,  = 1. The kernels ,K\L 
are given by 

3.2 Tilted symmetry axis 

Recent work by Su & Dziewonski (1995) indicates that the 
symmetry axis of the inner-core anisotropy is slightly tilted 
relative to  the Earth's rotation axis. In this section we 
investigate the effect of such a tilt on the Earth's normal 
modes. 

Let A,',@yci denote the generalized spherical harmonic 
coefficients of the elastic tensor in the rotating reference 

(43) 

(43) 
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frame. The generalized spherical harmonic coefficients of 
the elastic tensor in a tilted frame whose z-axis coincides 
with the symmetry axis of the anisotropy are denoted by 
A:;(’yh. and are listed in Table 1. The coefficients A,‘,‘@ys 
and A:fY8 may be related to each other by a simple rotation 
(Edmonds 1960): 

(57) 
The matrix elements y:,’ describe a rotation of generalized 
spherical harmonic coefficients from the tilted reference 
frame to the corotational reference frame. Using eq. (57) in 
eq. ( 2 5 )  we obtain the following expression for the splitting 
matrix due to tilted, transverse isotropy: 

~ ; ‘ B Y a ,  , ( s , k v a Y s  
J,fl ,I1 . 

1 
A,,,,,, = ( 2 w )  ’ 1 ( - I ) ” ’ ( ? / + l ) (  -in t m’ 

< 0 . 2 . 4 ,  \ 

The splitting-function coefficients c,:, are given in terms of 
the coefficients e\,l by 

which amounts to  a simple harmonic rotation. As a result of 
this rotation the splitting function (56) exhibits non-zonal 
behaviour, which is something that may be observed in the 
data. 

3.3 Body-wave velocity perturbations 

Let the unit vector i; denote thc propagation direction of a 
body wave, and let the unit vector fi denote its polarization. 
Then the perturbation in body-wave velocity 6v due to a 
perturbation in the elastic tensor ,4 is determined by 

Let 5 denote the angle between the direction of a 
body-wave trajectory and the symmetry axis (z-axis) of the 
transverse isotropy; this axis may or  may not coincide with 
the Earth’s rotation axis. For the transversely isotropic 
elastic tensor given by eq. (28) the perturbations in P and S 
velocity are determined by 

p 6 ~ f .  = A + 2 ( A  - F - 2 L )  C O S ‘ ~  

+ ( A  + c - 2~ - 4 ~ )  C O S ~  5. 

- ( A  + C - 2F - 4L) COS‘ 5, 

(61) 

(62) 
(63) 

p 6 ~ : ~ ~ ~  = L + ( A  + C - 2F - 4L) COS’ 5 

~ 6 ~ 1 : ~ ~  = N + (LA - N )  COS? 6, 
where S,,, denotes the S wave polarized in the meridional 
plane and S,, denotes the S wave polarized in the equatorial 
plane. N o  inner-core shear wave, let alone inner-core shear 
anisotropy, has ever been unambiguously observed. 

4 CONCLUSIONS 

The Earth’s largest deviations from sphericity are its 
rotation and ellipticity of figure. The associated splitting is 
predicted to be of the form (Woodhouse & Dahlen 1978) 

(64) 
The first-order effects of the Earth’s rotation are 
represented by the parameter b and produce linear splitting 

w,,, = w (  1 + a + hrn + crn’). 

as a function of rn. The Earth’s ellipticity of figure and 
second-order effects of its rotation are represented by the 
parameters a and c and produce quadratic splitting in rn. 
The combined splitting due to  rotation. ellipticity. and 
transverse isotropy is obtained by adding eqs (64) and (35): 

w,,, = w[l + (u  + a ’ )  + hrn + ( c  + c’)rn’ + h4]. (65) 

Tromp (1993) used eq. (65) to  invert for a transversely 
isotropic inner core model that predicts the observed 
anomalous splitting reasonably well; this inner-core model is 
compatible with traveltime observations. 

Additional splitting of the Earth’s spheroidal free 
oscillations due to  lateral heterogeneity and boundary 
topography can be incorporated by calculating the 
eigenvalues of a (21 + 1)(2/ + 1 )  Hermitian matrix with 
elements 

ff,,,,,, + A,,,,,, ‘ (66) 
The matrix elements H,,,,,, are defined by eq. (97) of 
Woodhouse & Dahlen (1978) and incorporate splitting due 
to rotation, ellipticity, lateral heterogeneity, and boundary 
topography. The matrix elements A,,,,, determine the effects 
of inner-core anisotropy and are  given by eq. (53). 

Both Creager (1992) and Su & Dziewonski (1994) report 
a slight tilt in the symmetry axis of the anisotropy relative to 
the Earth’s axis of rotation. The matrix elements A,,,,,, that 
describe normal-mode splitting due to  tilted transverse 
isotropy can be determined by a simple rotation of the 
coefficients of the splitting function and are given by eq. 
( 5 8 ) .  
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