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We address the problem of scheduling a multiclass M/M/m queue with Bernoulli feedback on m parallel servers to minimize time-average
linear holding costs. We analyze the performance of a heuristic priority-index rule, which extends Klimov’s optimal solution to the single-
server case: servers select preemptively customers with larger Klimov indices. We present closed-form suboptimality bounds (approximate
optimality) for Klimov’s rule, which imply that its suboptimality gap is uniformly bounded above with respect to (i) external arrival rates,
as long as they stay within system capacity; and (ii) the number of servers. It follows that its relative suboptimality gap vanishes in a
heavy-traffic limit, as external arrival rates approach system capacity (heavy-traffic optimality). We obtain simpler expressions for the
special no-feedback case, where the heuristic reduces to the classical c� rule. Our analysis is based on comparing the expected cost of
Klimov’s rule to the value of a strong linear programming (LP) relaxation of the system’s region of achievable performance of mean queue
lengths. In order to obtain this relaxation, we derive and exploit a new set of work decomposition laws for the parallel-server system. We
further report on the results of a computational study on the quality of the c� rule for parallel scheduling.

1. INTRODUCTION

Can we match the performance of a fast processor (with
speed m) with a set of m slow parallel processors (with
speed 1)? Clearly not, because of the inefficiencies inherent
in parallel processing: The parallel system’s total process-
ing rate will fall below m when there are fewer than m jobs
available. How close, then, can we get to matching the per-
formance of the fast processor with the corresponding set
of slow processors, and how should we schedule the paral-
lel system to achieve its best performance? These issues are
significant in the design and operation of complex service
systems, such as flexible manufacturing systems and com-
puter communication networks. In this paper we address
such problems in the idealized setting of a versatile service
system model: a multiclass M/M/m queue with Bernoulli
feedback.
We shall thus consider the problem of allocating dynam-

ically m identical servers to customers in an n-class
M/M/m queueing network to minimize a performance
objective c1Eu�L1�+· · ·+cnEu�Ln� of expected linear hold-
ing costs, where Eu�Lj� represents the steady-state expected
number of class j customers in the system under policy u,
and cj � 0 their holding cost rate. Admissible scheduling
policies make history-dependent decisions, allow customer
preemptions, and are nonidling (no server can lie idle when
there are customers waiting). Consider now the correspond-
ing problem in which the m slow parallel servers (when
m� 2) are replaced by a pooled resource consisting of one

fast m-fold speed single server. While the parallel-server
optimal scheduling problem is likely to be computationally
intractable, the solution for the pooled resource consti-
tutes a classical result in the field of stochastic schedul-
ing: Klimov (1974, 1978) showed that the optimal policy is
characterized by class-dependent priority-indices �1� � � � �n,
efficiently computed by an adaptive greedy algorithm, so it
is optimal to give at each decision epoch higher service pri-
ority to a customer with larger index. Clearly, Klimov’s rule
extends naturally into a simple heuristic for the parallel-
server system: At each decision epoch, let servers select
preemptively available customers with larger indices. The
current paper investigates the performance of this heuristic.
In related work Weiss (1990, 1992, 1995) has analyzed

the performance of index-based heuristics in several models
for the optimal scheduling of a batch of stochastic jobs on
parallel machines. He has argued that the index rules con-
sidered, which may be thought of as policies whose aim is
to drive down fastest the cost rate of waiting jobs, are sub-
optimal because of an end effect caused by the loss of pro-
cessing efficiency when the number of machines exceeds
that of jobs present. He was able to bound the magnitude of
this effect by deriving and applying certain decomposition
formulae for the system’s total expected workload. He thus
obtained suboptimality bounds, independent of the batch
size, for the index rules considered. Asymptotic optimality
as the batch size grows to infinity follows. Weiss further
argued the importance of proceeding to analyze index rules
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in more complex models incorporating job arrivals, such
as queueing networks. This is the task we undertake in the
present paper.
In our analysis of the performance of Klimov’s rule in

the above multiclass M/M/m system we shall focus on the
following issues.

1. Approximate optimality. How far from the optimal
cost can the expected cost under Klimov’s rule be? How
large can the gap be between the expected cost achieved
by Klimov’s rule in the parallel and in the pooled systems?
Can one obtain simple bounds for the corresponding gaps?

2. Heavy traffic optimality. Does the relative subop-
timality gap for Klimov’s rule vanish in heavy traffic, as
arrival rates approach system capacity?
Our findings support the claim that Klimov’s rule is a

good heuristic for the parallel-server system: We show that
both its suboptimality gap and the gap between its expected
cost in the parallel and in the pooled systems are uni-
formly bounded with respect to (i) external arrival rates,
as long as they stay within system capacity; and (ii) the
number of servers. The first such uniform boundness result
implies its heavy-traffic optimality, in the following sense:
The relative suboptimality gap of Klimov’s rule vanishes
as external arrival rates approach system capacity. We note
that this notion of heavy-traffic optimality is not the stan-
dard one in the literature on queueing systems control (cf.,
Harrison 1998), where one typically considers the asymp-
totic behaviour of a sequence of systems appropriately
scaled in time and space. The form of heavy-traffic opti-
mality established in this paper is technically simpler, yet
we believe it has the advantage of being intuitive.
In fact, we establish a stronger result, namely that the

relative gap between the expected performance of Klimov’s
rule in the parallel and in the pooled systems vanishes in
heavy traffic, in the sense stated above. The fact that intel-
ligent dynamic scheduling of a queueing network may lead
to an effective pooling of processing resources in heavy
traffic has been studied in a variety of models (see, e.g.,
the review paper by Kelly and Laws 1993). However, as
pointed out by Harrison (1998), “studies of resource pool-
ing have been largely heuristic to date.” Harrison proves
a resource pooling result, and establishes a strong form of
heavy-traffic optimality for a specific policy in the context
of a model different from the one discussed here.
The approach in this paper to a rigorous development

of a resource pooling/heavy-traffic optimality result is rad-
ically different and is based on an analysis of the system’s
region of achievable mean queue lengths (see below). We
believe that this approach has the potential to be extended
to more complex systems.
Our mode of analysis is the so-called achievable

region approach to stochastic optimisation. In outline, this
approach proceeds as follows. With each admissible control
u for a stochastic system of interest, a performance vector
xu is associated, which in our analyses will always be a vec-
tor of mean queue lengths. A cost c�xu� is incurred when
control u is applied, which depends upon u only through

performance vector xu. The stochastic optimisation prob-
lem seeks a cost minimising control uOPT. We write

Zmin = inf	c�xu� 
 u ∈��� (1)

where � is a set of admissible controls. An achievable
region approach to such a problem will seek to obtain or
characterize the set of all possible performance vectors (the
achievable region) of the system, given by

� = 	xu 
 u ∈��� (2)

The approach will then identify a cost-minimising perfor-
mance xOPT, which attains the infimum in the equation

Zmin = inf	c�x� 
 x ∈ ��� (3)

Plainly, any control which realizes xOPT solves the stochas-
tic optimisation problem. The final step is to identify such
controls.
This approach was introduced in a seminal paper by

Coffman and Mitrani (1980) and has since been extended
to ever more encompassing frameworks in Gelenbe and
Mitrani (1980), Federgruen and Groenevelt (1988), Ross
and Yao (1989), Shanthikumar and Yao (1992), and
Bertsimas and Niño-Mora (1996). In all these analyses,
the agenda outlined in Equations (1)–(3) is carried through
in full. Bertsimas and Niño-Mora (1996) use the achiev-
able region approach to unify classical priority index opti-
mality results in a variety of problem domains, including
deterministic machine scheduling (Smith’s rule; see Smith
1956), multi-armed bandits (Gittins’ rule; see Gittins and
Jones 1974), and multiclass queueing networks (Klimov’s
rule; see Klimov 1974, 1978). The technical challenge
posed by the parallel server system studied here lies in the
fact that when m � 2, we cannot identify the achievable
region � . However, a new work decomposition result (see
Step 1 below) enables us to identify a polyhedron � which
contains � . It is this which facilitates the analysis.
The paper proceeds as follows. The parallel-server sys-

tem that is our prime object of study is described in §2. To
assist the reader we also give a brief account of an achiev-
able region analysis of this system in the single-server (or
pooled) case, when Klimov’s rule is optimal. In §§3–5 we
analyse the parallel server system according to the follow-
ing three-step plan:

Step 1. Formulate a family of work decomposition
laws for the parallel-server system. This is the subject
matter of §3. In a system whose n customer classes are
labelled 	1�2� � � � � n� ≡ � we obtain, for each S ⊆ � ,
an expression for the mean workload over classes in S
(S-workload). The S-workload under control u is given
by

∑
j∈S V S

j x
u
j , where V = �V S

j �j∈� � S⊆� is a matrix whose
nonnegative entries have a workload interpretation and xu

j

is written for Eu�Lj�, the mean queue length of class j
under u. Theorem 1 gives an expression for this quantity for
our model, which decomposes it into interpretable compo-
nents. We describe how this new result relates to previous
work decomposition results in the literature.
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Step 2. Use the work decomposition laws to demon-
strate approximate optimality of Klimov’s rule. Refer
to our brief description of the achievable region approach
in Equations (1)–(3) above. In our analysis, xu is the vec-
tor of mean queue lengths under u and c�xu� is linear and
given by

c�xu�=
n∑

j=1

cjx
u
j �

In the parallel server case (m � 2), the achievable region
� is not available. However, we utilise the work decompo-
sition laws in Theorem 1 to show that a polyhedron � of
the form

� =
{
x ∈ �n

+ 

∑
j∈S

V S
j xj � ��S�� S ⊆ �

}
(4)

contains � . In this situation, Equation (4) now extends to

Zmin= inf
{ n∑

j=1

cjxj 
 x∈�
}
�min

{ n∑
j=1

cjxj 
 x∈�
}
� (5)

where the last term in (5) is the value of a linear program
(LP) and is denoted by ZLP. We are able to identify a fea-
sible solution to the dual of this LP with associated value
ZD. Writing ZKR for the cost associated with Klimov’s rule,
we invoke weak LP duality to infer that

ZD
� ZLP

� Zmin
� ZKR� (6)

which immediately yields ZKR − ZD as a bound on the
suboptimality gap ZKR −Zmin. These ideas are presented
in the context of general service systems in §4, which
extends and develops earlier work by Glazebrook and
Garbe (1999). This general theory is applied to the paral-
lel server queueing network in §5. A simple bound on the
suboptimality gap ZKR−Zmin is given in Theorem 3, which
is our principal approximate optimality result. The uniform
boundedness results mentioned above follow simply. See
Corollary 2.

Step 3. Use the approximate optimality results to
infer heavy-traffic optimality. From the approximate opti-
mality result in Theorem 3 it is a relatively straightfor-
ward matter to establish that the relative suboptimality gap
of Klimov’s rule, namely �ZKR−Zmin�/Zmin, vanishes in a
suitably defined heavy-traffic limit. The same is true of a
related quantity which measures the relative performance
degradation of Klimov’s rule due to parallelism. The details
are given in Corollary 3.

§6 ends the paper with some concluding remarks and direc-
tions for further research.

2. THE MODEL

We consider a single-station Markovian multiclass queue-
ing network populated by n customer classes which are
serviced by m identical parallel servers. Customers of class

i ∈ � = 	1� � � � � n� (or i-customers) arrive at the network
from outside, according to a Poisson process with rate
i � 0. They may be processed by any server, and their
service time is drawn from an exponential distribution with
rate �i. Upon completion of his service, an i-customer is
subject to Bernoulli routing, moving on to receive further
service as a j-customer with probability pij , and leaving
the network with probability 1−∑

j∈� pij . Routing prob-
ability matrix P = �pij�i� j∈� is such that I−P is invert-
ible, which ensures that a single customer entering the
network eventually exits. We further assume that all cus-
tomer arrival processes, service times and routing events are
mutually independent. This model is related to the multi-
class M/G/1 queueing network studied by Klimov (1974).
It is more general in that it incorporates parallel servers,
and yet it is more restricted in requiring exponential ser-
vice times rather than the general service times of Klimov.
Research aimed at extending the results of the paper to
a model with general service times and nonpreemptive
scheduling policies is ongoing.
We next describe other quantities of interest for our sys-

tem. The total arrival rate of j-customers, denoted by �j ,
is given by the solution of the traffic equations,

�j = j +
∑
i∈�

�ipij� for j ∈ � �

and corresponds to the rate at which j-customer arrivals
(external and internal) occur. The traffic intensity of
j-customers, denoted by �j , is given by

�j =
�j

�j

� for j ∈ � �

and represents the steady-state expected number of
j-customers in service. The total traffic intensity � is
given by

�= ∑
j∈�

�j

and represents the steady-state expected number of busy
servers. Given a subset of customer classes S ⊆ � , we
define similarly the traffic intensity of S-customers by

��S�=∑
j∈S

�j�

To develop more general notions of traffic intensity/
system workload, we require the notion of the mean S-
workload of a j-customer, for j ∈ S, denoted by V S

j . We
define this as the mean remaining service time a current
j-customer receives until he leaves classes in subset S for
the first time following completion of his current service.
The V S

j s can be computed by solving the linear system

V S
i = 1

�i

+∑
j∈S

pijV
S
j � for i ∈ � � S ⊆ � � (7)
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whose solution also defines parameters V S
i , for i ∈ Sc =

� \S. We further define the external traffic intensity for
S-customers by

�0�S�=∑
j∈S

jV
S
j �

The network evolution is governed by a scheduling pol-
icy, which is a rule for dynamically allocating servers to
available customers. We consider the space � of admis-
sible scheduling policies to consist of all policies that are
(1) nonanticipative (scheduling decisions are only based on
system history up to and including the present time), (2)
preemptive (the service of a customer may be interrupted
at any time and resumed later), and (3) nonidling (a server
is not allowed to stay idle when there are customers wait-
ing). To guarantee that all such policies are stable, we shall
assume the well-known condition

� < m

to hold.
We consider the following stochastic processes, which

describe the system’s evolution:
• Lj�t� 
 number of j-customers in the system at time t.
• Bk

j �t� 
 1 if server k is busy with a j-customer at time t;
0 otherwise.
• Bj�t� 
 1 if a j-customer is in service at time t; 0

otherwise.
• Bk�t� 
 1 if server k is busy at time t; 0 otherwise.
We assume that the network operates in a steady-state

regime, and we write Lj , B
k
j , Bj , and Bk to denote ran-

dom variables with the steady-state distributions of the
corresponding processes at an arbitrary time. It will sim-
plify our notation considerably if we now introduce perfor-
mance vector xu. This is the vector of mean queue lengths
whose jth component is xu

j = Eu�Lj�, where Eu�·� denotes
a steady-state expectation taken under policy u. We now
develop the optimal scheduling problem of interest by con-
sidering a cost structure in which j-customers incur linear
holding costs at rate cj � 0 per unit time in the system
(waiting or in service). Our concern is with the problem
of finding a scheduling policy to minimize the steady-state
expected holding cost rate, and with evaluating the corre-
sponding minimum cost, Zmin. We write

Zmin = inf
{∑

j∈�
cj x

u
j 
 u ∈�

}
� (8)

2.1. The Single-Server Case

An exact solution of the above problem is available in
the special single-server case and is due to Klimov (1974,
1978). It will assist the reader if we sketch the main ideas
involved in the achievable region approach to this special
case, because our analysis of the parallel-server model is
based on and extends them. To be precise, in this section
we shall consider a system with a single server of speed m.

This can be helpfully thought of as an approximation to
the above parallel-server system with m servers each of
speed 1.
Klimov (1974, 1978) showed that the optimal policy

for such a single-server network is given by the following
priority-index rule: Compute index vector � = ��j�j∈� by
running Klimov’s adaptive greedy algorithm (see Figure 1)
on input �c�V�, where c= �cj�j∈� and V= �V S

j �j∈� � S⊆� is
the matrix with entries obtained from (7). Klimov’s index
rule operates by giving at each time higher preemptive pri-
ority to a customer with larger index. He interpreted the
index �i as the maximum rate of decrease in expected hold-
ing cost per unit of expected processing time for a customer
currently in class i.
Tsoucas (1991) extended Klimov’s work by elucidating

properties of performance vector xu, defined above as the
vector of steady-state expected queue lengths. He demon-
strated the existence of a non-negative set function b�S�,
such that for any admissible scheduling policy u and S⊂� ,∑
j∈S

V S
j x

u
j � b�S�� (9)

with equality achieved in Equation (9), when policy u gives
preemptive priority to classes in S. Moreover, for S = �
we have for all admissible u that∑
j∈�

V �
j xu

j = b�� �� (10)

An explicit expression for b�S� was given in Bertsimas
et al. (1994), which, incorporating speedup factor m, sim-
plifies to

b�S�=
∑

j∈S �jV
S
j

m−�0�S�
� S ⊆ � � (11)

Consider now the achievable performance region � =
	xu 
 u ∈ ��, spanned by vector xu as u ranges over �.
Tsoucas (1991) showed that, in the single-server case,
� is precisely the bounded polyhedron defined by linear
constraints (9) and (10), namely,

�pooled =
{
x ∈ �n

+ 

∑
j∈S

V S
j xj � b�S�� S ⊂ � � and

∑
j∈�

V �
j xj = b�� �

}
�

It thus follows that the minimum cost for the optimal
scheduling problem, which we denote by Zmin

pooled (as it is
achieved by Klimov’s rule), can be computed as the opti-
mal value of an LP problem as follows:

Zmin
pooled =min

{∑
j∈�

cj xj 
 x ∈�pooled

}
� (12)

The optimality of Klimov’s rule is a consequence of the
fact that his adaptive greedy algorithm produces an optimal
solution 	ȳ�S�� S ⊆ � � to the dual of LP Problem (12).
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Figure 1. Klimov’s adaptive greedy algorithm.

Input: �c�V�, where c= �cj�j∈� and V = �V S
j �j∈� �S⊆� .

Output: ��� y� ��, where � = ��1� � � � ��n� is a permutation of � , y= �y�S��S⊆� and � = ��1� � � � � �n�.
Step 1. Set S1 = � ;

set ȳ�S1�=min 	ci/V
S1
i 
 i ∈ S1�;

pick �1 ∈ argmin 	ci/V
S1
i 
 i ∈ S1�;

set ��1
= ȳ�S1�.

Step k. For k = 2� � � � � n:
set Sk = Sk−1 \ 	�k−1�; set ȳ�Sk�=min 	�ci−

∑k−1
j=1 V

Sj
i ȳ�Sj��/V

Sk
i 
 i ∈ Sk�;

pick �k ∈ argmin 	�ci−
∑k−1

j=1 V
Sj
i ȳ�Sj��/V

Sk
i 
 i ∈ Sk�;

set ��k
= ��k−1

+ ȳ�Sk�.
Step n+1. For S ⊆ � :

set ȳ�S�= 0 if S �∈ 	S1� � � � � Sn�.

This result was actually the crux of Klimov’s (1974) orig-
inal analysis, based on an equivalent LP formulation, and
has recently been extended by Bertsimas and Niño-Mora
(1996) into a general framework. This approach yields the
result that

Zmin
pooled =

n∑
j=1

��j −�j−1� b�	j� � � � � n��� (13)

where the customer classes are renumbered so that
�1 � · · · � �n, and we adopt the convention that �0 = 0.
In §5.1, Identity (13) will allow us to compare the perfor-
mance of Klimov’s rule in the parallel and pooled networks.

3. WORK DECOMPOSITION LAWS

The properties of performance vector xu enunciated in
Equations (9)–(10) are central to the analysis of the single-
server case. Bertsimas and Niño-Mora (1996) introduced
the term generalised conservation laws (GCL) to describe
this set of relations and showed that such laws are satis-
fied in a range of systems for suitably chosen xu� V and b.
They further showed that, for a performance vector xu that
satisfies GCL, the problem of finding a scheduling policy
that optimizes a linear performance objective is solved by
a priority-index rule. It will emerge in our analysis that our
parallel-server system does not satisfy GCL when m � 2,
yet it comes close to doing so. Consequently, a suitably
constructed priority-index rule comes close to being opti-
mal for our linear objective. From Equations (9)–(10), we
note that the key to developing such ideas lies in an abil-
ity to characterise the quantities

∑
j∈S V S

j xu
j for any u and

S ⊆ � . The appropriate characterisation is given in the
work decomposition result in Theorem 1, which is the main
result of this section.
In a variety of single-server multiclass queueing sys-

tems, researchers have identified work decomposition laws,
which describe a linear relation between the steady-state
expected number in system from each customer class at an
arbitrary time and at an arbitrary time during an interval
when the server is idle. These laws have played a major
role in the performance analysis of vacation and polling

models (see, e.g., Boxma 1989 and references therein).
Recently, Bertsimas and Niño-Mora (1999a, 1999b) have
extended this work by identifying new work decomposition
laws satisfied by (semi-) Markovian multiclass queueing
networks with one or multiple single-server stations and
have applied them to obtain improved performance bounds.
We extend that line of research by obtaining the family of
new work decomposition laws given in Theorem 1 below
for the parallel-server model under study. These laws will
play a central role in our analysis of Klimov’s rule as it
is developed in §§4 and 5. We remark that Weiss (1992)
has established a similar work decomposition result for the
batch case, which is also central to his approach. The reader
should note that in Theorem 1, the matrix V and the per-
formance vector xu are as in §2.

Theorem 1 (Work Decomposition Laws). Under any
nonanticipative, stable and preemptive scheduling policy
u, and for any subset S ⊆ � of customer classes,∑
j∈S

V S
j x

u
j = b�S�+�u

pr�S�+�u
id�S�� (14)

where

b�S�=
∑

j∈S �j V
S
j

m−�0�S�
�

�u
pr�S�=

∑
i∈Sc �i V

S
i

∑
j∈S V S

j Eu

[(∑m
k=1B

k
i

)
Lj

]
m−�0�S�

� (15)

�u
id�S�=

∑
j∈S V S

j Eu

[(∑m
k=1�1−Bk�

)
Lj

]
m−�0�S�

�

The quantity on the left-hand side of Equation (14) can
be thought of as a measure of the steady-state mean amount
of work in the system resulting from jobs in S (S-workload)
under policy u. Close inspection of the terms in (14) will
yield the conclusion that �u

pr�S� is a priority term identify-
ing a contribution to the mean S-workload under policy u
when other classes (in Sc) are in service. Similarly, �u

id�S�
is an idleness term identifying such a contribution when
some server is idle. Note that the priority term disappears
when S = � .
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3.1. Derivation of the Work Decomposition Laws

To establish Theorem 1 we use the following two-step
approach, introduced by Bertsimas and Niño-Mora (1999a,
1999b), in the setting of multiclass queueing networks with
single-server stations.

Step 1. Utilise flow balance ideas to develop a set of
linear equations involving the performance xu and some
auxiliary performance measures. This gives Lemma 2.

Step 2. Reformulate the resulting set of equations to
derive the required work decomposition laws in Theorem 1.

Step 1. Flow Balance Equations. We now give a brief
overview of the flow balance ideas we require before apply-
ing them to the parallel-server system of interest. A classi-
cal result of queueing theory states that, in a stable queue-
ing system in which customers arrive and leave one at a
time, the steady-state distribution of the number in system
observed just before embedded arrival epochs, L−, equals
that just after departure epochs, L+ (see, e.g., Burke 1956,
and Finch 1959). This result, which follows from the sys-
tem’s flow balance equations, implies that

EA�L−�= ED�L+�� (16)

where EA�·� (respectively ED�·�) denotes a steady-state
expectation taken at embedded customer arrival (respec-
tively, departure) epochs. It has been shown in Bertsimas
and Niño-Mora (1999a, 1999b) that event-average identity
(16) can be applied to a variety of multiclass queueing net-
work models with single-server stations to formulate linear
equations on performance measures representing steady-
state expectations at an arbitrary time (time averages).
The resulting equations are precisely those derived previ-
ously through the so-called potential function method in
Bertsimas et al. (1994) and in Kumar and Kumar (1994),
and thus reveal their fundamental physical interpretation.
Note that a derivation of Theorem 1 via the potential func-
tion method would exploit the time independence of the
second moment of the random quantity

∑
j∈S V S

j Lj�t� taken
with respect to the steady-state distribution. We finally
point out the fact that the flow-balance approach pursued
here to derive linear equations on network performance
measures was actually introduced by Klimov (1974) in his
pioneering analysis of the single-server network; It thus
predates by two decades recent derivations of his equations
via the potential function method.
The basic idea for reformulating event-average iden-

tity (16) into an identity involving only time averages in
a general queueing system is as follows: Let 	L�t�� t �
0� be the number-in-system process, and suppose cus-
tomer arrivals and departures are driven by nonanticipative
stochastic intensity processes 	��t�� t � 0� and 	��t�� t �
0�, respectively, so that for any time t � 0, E���t�� =
E���t�� = �, where E�·� denotes a steady-state time-
stationary expectation. The key tool to relate event and time
averages in the presence of stochastic intensities is Papan-
gelou’s formula of Palm calculus (see Papangelou 1972,
Brémaud 1989), an extension of the well-known PASTA

(Poisson Arrivals See Time Averages) property of queueing
theory, which yields

�EA�L−�= E���t�L�t��� and

�ED�L+�= �ED�L−−1�= E���t��L�t�−1��

= E���t�L�t��−��

The next result presents the corresponding reformulation of
flow-balance identity (16) in terms of time averages.

Lemma 1. Under the above assumptions, for any t � 0,

E����t�−��t��L�t��= �� (17)

We shall now apply these ideas to the parallel-server net-
work under consideration. To do so we require some addi-
tional notation. We shall write, for a scheduling policy u,

xu
ij = Eu

[{ m∑
k=1

Bk
i

}
Lj

]
� Xu = �xu

ij�i� j∈� � (18)

and

xu
0j = Eu

[{ m∑
k=1

�1−Bk�

}
Lj

]
�

We note in passing that the identity

Bk =∑
i∈�

Bk
i

implies that

xu
j = Eu�Lj�=

∑
i∈�

Eu�B
k
i Lj�+Eu��1−Bk�Lj�� (19)

whereupon summing both sides of (19) over k, 1� k�m,
yields

mxu
j =

∑
i∈�

xu
ij +xu

0j � j ∈ � � (20)

We apply next the previous ideas to obtain a set of
flow-balance equations on network performance measures
in Lemma 2. As mentioned before, the corresponding set of
equations for the special single-server case was first derived
by Klimov (1974), also using flow-balance arguments. Let
�= �j�j∈� and let D� (respectively, D�) denote the diag-
onal matrix corresponding to vector � = ��j�j∈� (respec-
tively, �= ��j�j∈� ). We further denote by I the appropriate
identity matrix.

Lemma 2. Under any nonanticipative and preemptive
scheduling policy u, performance measures xu and Xu sat-
isfy the following set of linear equations:

−�xu
′ −xu�′ + �I−P�′D�X

u+Xu′D��I−P�

= �I−P�′D�+D��I−P�� (21)
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Proof. Diagonal Equation �j� j�. The jth diagonal
equation in (21) formulates flow-balance identity (16) as it
applies to the queueing system consisting of j-customers
only,

EAj �L−
j �= EDj �L+

j ��

where EAj �·� (respectively EDj �·�) denotes an expecta-
tion taken with respect to the steady-state distribution at
net j-customer arrival (respectively departure) epochs, i.e.,
excluding feedback epochs from class j into itself. The
stochastic intensity of net j-customer arrivals at time t is
given by

�Aj �t�= j +
∑

l∈� \	j�
�lplj

m∑
k=1

Bk
l �t�� (22)

whereas the stochastic intensity of net j-customer depar-
tures at t is

�Dj �t�= �j�1−pjj�
m∑

k=1

Bk
j �t�� (23)

with E��Aj �t�� = E��Dj �t�� = �j�1− pjj�. Hence when
applied to this case, Lemma 1 yields the equation

Eu�	�
Dj �t�−�Aj �t��Lj�t��= �j�1−pjj�� (24)

Substituting from Equations (22) and (23) into (24) and
utilising (18) we conclude that

−jx
u
j +

n∑
l=1

�l��lj −plj�x
u
lj = �j�1−pjj�� (25)

where �ij is Kronecker’s delta. We note that (25) is the jth
diagonal equation in (21) scaled by 1/2.

Equation �i� j�. The equation corresponding to row i and
column j in (21), with i �= j, formulates the flow-balance
identity (17) in Lemma 1 as it applies to the queueing sys-
tem of 	i� j�-customers, having Li�t�+Lj�t� customers in
the system at time t. The stochastic intensity of net 	i� j�-
customer arrivals, i.e., excluding feedback epochs from
classes in 	i� j� into 	i� j�, is

�Aij �t�= i+j +
∑

l∈� \	i� j�
�l�pli+plj�

m∑
k=1

Bk
l �t��

whereas the stochastic intensity of net 	i� j�-customer
departures is

�Dij �t�= �i�1−pii−pij�
m∑

k=1

Bk
i �t�

+�j�1−pjj −pji�
m∑

k=1

Bk
j �t��

having as steady-state expectation at an arbitrary time

Eu��
Aij �t��= Eu��

Dij �t��

= �i�1−pii−pij�+�j�1−pjj −pji��

We now substitute these expressions into (17) and simplify
by using the ith and jth diagonal equations. This yields

−ix
u
j −jx

u
i +

n∑
l=1

�l��lj −plj�x
u
li

+
n∑

l=1

�l��li−pli�x
u
lj =−pji�j −pij�i�

which is precisely the equation in position �i� j� in (21).
This completes the proof. �

Step 2. Workload Reformulation. We now show that
the equations in Lemma 2 can be reformulated to yield
the work decomposition laws of Theorem 1. In develop-
ing the analysis we shall require the following notational
conventions: If S� T ⊆ � � z = �zi�i∈� is an n-vector, and
A= �aij�i� j∈� is an n×n matrix, we shall write

zS = �zj�j∈S� and AST = �aij�i∈S� j∈T �

Proof of Theorem 1. Let S ⊆� , and let v�S� denote the
n-vector

v�S�=
(
VS

S

0

)
�

We shall derive work decomposition identity (14) from (21)
by pre- and post-multiplying both sides of (21) by v�S�′

(the transpose of v�S�) and v�S�, respectively. We shall
then simplify the resulting equation using (20).
The calculation based on the right-hand side of (21)

yields (we incorporate a 1/2 scaling factor for convenience)

1
2

(
VS′

S 0
)
	�I−P�′D�+D��I−P��

(
VS

S0

)
= (

VS
S

′ 0
)
�I−P�′D�

(
VS

S0

)
=

{(
IS −PSS −PSSc−PScS ISc −PScSc

)(
VS

S0

)}′
D�

(
VS

S0

)
=

((
1
�i

)′

i∈S

(
1
�i

)′

i∈Sc
−VS

Sc
′ )D�

(
VS

S0

)
=∑

j∈S
�jV

S
j �

The calculation based on the left-hand side of (21) yields
1
2
v�S�′	−�xu

′ −xu�′

+�I−P�′D�X
u+Xu′D��I−P��v�S�

=−�v�S�′���v�S�′xu�

+
{(

IS−PSS −PSSc−PScS ISc −PScSc

)(
VS

S
0

)}′
D�X

u

(
VS

S

0

)
=−�v�S�′���v�S�′xu�+

((
1
�i

)′

i∈S

(
1
�i

)′

i∈Sc
−VS′

Sc

)
×D�

(
Xu

SS Xu
SSc

Xu
ScS Xu

ScSc

)(
VS

S

0

)
=−�0�S�

∑
j∈S

V S
j x

u
j +

∑
i∈S

∑
j∈S

V S
j x

u
ij

−∑
i∈Sc

∑
j∈S

�i

(
V S
i −

1
�i

)
V S
j x

u
ij � (26)
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If we now equate the above two equivalent expressions
and utilise (20) within (26), we obtain

	m−�0�S��
∑
j∈S

V S
j x

u
j =

∑
j∈S

�jV
S
j +∑

i∈Sc
�iV

S
i

∑
j∈S

V S
j x

u
ij

+ ∑
j∈S

V S
j x

u
0j �

which immediately yields Theorem 1. �

4. WORK DECOMPOSITION LAWS AND THE
CLOSENESS TO OPTIMALITY OF
KLIMOV’S RULE

We now broach the question of how to deploy the work
decomposition laws in Theorem 1 to analyse the stochas-
tic optimisation problem of interest to us. For the single-
server case discussed at the end of §2, Theorem 1 yields
immediately the generalised conservation laws (GCL) in
Equations (9)–(10). As outlined in §2, satisfaction of
these laws implies the optimality of Klimov’s rule via
an achievable region analysis. In the parallel-server model
with m� 2, we can utilise the achievable region approach
together with Theorem 1 to obtain information on the
closeness to optimality of Klimov’s rule. To emphasise the
broad scope of the ideas, we shall develop the material in
the context of a general service system. The results here
expand and reformulate the account given by Glazebrook
and Garbe (1999). We shall indicate after Theorem 2 how
Glazebrook and Garbe’s results emerge from our analysis.
In §5, the results of this section are applied to the queueing
network under study.
Consider a general dynamic and stochastic service sys-

tem consisting of a set of servers that provide ser-
vice to customers belonging to a finite set of classes
� = 	1� � � � � n�. The system evolution is controlled by a
scheduling policy u, one of a set of admissible policies
�, which specifies dynamically how servers are allocated
to available customers. System performance under policy
u ∈� is measured by a performance vector xu = �xu

j �j∈� ,
where xu

j is a non-negative performance measure (an expec-
tation) for class j customers. A central notion in this frame-
work is that of priority. Given a subset S ⊆ � of customer
classes, we say that a scheduling policy gives priority to
S-customers (whose class is in S) over Sc-customers (where
Sc = � \S) if no Sc-customer is allowed to enter service at
the expense of an available S-customer having to wait.
Let V = �V S

i �i∈� � S⊆� be a matrix with V S
i > 0, for i ∈ S.

For each subset S ⊆ � , let us define ��S� � 0 to be
the minimum value achievable by performance objective∑

j∈S V S
j x

u
j under admissible policies, namely

��S�= inf
{∑

j∈S
V S
j xu

j 
 u ∈�

}
� (27)

For any policy u ∈�, let �u�S�� 0 denote its correspond-
ing suboptimality gap with respect to the objective stated
above,

�u�S�=∑
j∈S

V S
j xu

j −��S�� (28)

Finally, let ��S� denote the corresponding worst-case sub-
optimality gap achievable under admissible policies that
give priority to S-customers,

��S�= sup 	�u�S� 


u gives priority to S-customers�� (29)

If the set function � defined in Equation (29) is identically
zero, we say that the system satisfies generalised conser-
vation laws and priority index policies are optimal for lin-
ear performance objectives (see Bertsimas and Niño-Mora
1996). Our goal in this section is to investigate the close-
ness to optimality of index policies when GCL are not
satisfied. Before proceeding further with our general devel-
opment, note that for our multiclass M/M/m queue with
feedback, we will choose the matrix V = �V S

i �i∈� � S⊆� to
be that defined at Equation (7) and xu to be the vector of
mean queue lengths under admissible control u. From the
work decomposition laws in Theorem 1, we note that for
this model and for these choices we have

��S�= b�S�+�∗�S�� (30)

where

�∗�S�= inf
{
�u

pr +�u
id�S� 
 u ∈�

}
� (31)

It then follows that

�u�S�= �u
pr +�u

id�S�−�∗�S�� (32)

and

��S�= sup 	�u
pr�S�+�u

id�S� 
 u gives

priority to S-customers�−�∗�S�� (33)

We postpone further consideration of this model to §5.
Returning to our general dynamic and stochastic service

system, we introduce the system’s achievable performance
region � , defined by

� = 	xu 
 u ∈�� �

It may be hard to fully characterise the performance region
� by means of constraints. However, note from (27) that
� is contained in the polyhedron

� =
{
x ∈ �n

+ 

∑
j∈S

V S
j xj � ��S�� S ⊆ �

}
�

Suppose that the optimal scheduling problem of interest
is to choose an admissible control to minimise a linear per-
formance objective. If the optimal value is Zmin, we write

Zmin = inf
{∑
j∈�

cjx
u
j 
 u ∈�

}
� (34)

where c = �cj�j∈� � 0 is a given cost vector. In what
follows, we shall write Zu for the cost under control u,
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namely
∑

j∈� cjx
u
j . We now consider an LP relaxation of

this scheduling problem that consists of minimising the
objective

∑
j∈� cjxj over the polyhedron �. If the optimal

value of this LP is ZLP, we write

ZLP =min
{∑
j∈�

cjxj 
 x ∈�

}
� (35)

Because � ⊆�, it must follow that

ZLP
� Zmin� (36)

We develop next a primal-dual approach to the optimal
scheduling problem in (34), based on constructing simulta-
neously a heuristic solution for it and a feasible solution to
the dual of LP relaxation (35). A suboptimality bound for
the heuristic will follow by comparing the values of both
solutions. The procedure is as follows:

Step 1. Run Klimov’s adaptive greedy algorithm (see
Figure 1) on input �c�V� to obtain output ��� ȳ���.

Step 2. Take as a heuristic solution to Problem (34) the
priority-index rule that gives higher priority to classes with
higher index �i. We denote by ZKR (KR ≡ Klimov’s rule)
its corresponding objective value.

Step 3. Take as a feasible solution to the dual of LP
relaxation (34) vector ȳ, with corresponding dual value ZD.
We assume in what follows that classes are renumbered

so that permutation � returned by Klimov’s algorithm is
� = �1� � � � � n�, (i.e., class n has highest priority), and
hence

�1 � · · ·� �n�

From weak LP duality and (36), we have the inequalities

ZD
� ZLP

� Zmin
� ZKR� (37)

The next result gives a representation of objective Zu under
a general policy u ∈�. This is fundamental to our subse-
quent analysis. Here and elsewhere we adopt the convention
that �0 = 0.

Lemma 3. For any admissible scheduling policy u ∈�,

Zu = ZD+
n∑

j=1

��j −�j−1��
u�	j� � � � � n��� (38)

where

ZD =
n∑

j=1

��j −�j−1���	j� � � � � n��� (39)

Proof. The dual of LP problem (35) is

max
∑
S⊆�

��S� y�S��

subject to∑
S	i

V S
i y�S�� ci� for i ∈ � �

y�S�� 0� for S ⊆ � �

Now it is easily verified that the ȳ computed by Klimov’s
algorithm is a dual feasible solution that satisfies the con-
straints with equality (see Bertsimas and Niño-Mora 1996
for details):∑
S	i

V S
i ȳ�S�= ci� for i ∈ � � (40)

Note also from Klimov’s algorithm that ȳ�S�= 0 when S �=
	i� � � � � n� for some i, and that

�i−�i−1 = ȳ�	i� � � � � n��� for i ∈ � � (41)

It is straightforward from these observations that the dual
value of ȳ, given by

ZD = ∑
S⊆�

��S�ȳ�S��

reduces to the expression in (39).
We now use (40) and (41) to develop an expression for

Zu as follows:

Zu =
n∑

i=1

cix
u
i

=
n∑

i=1

∑
S	i

V S
i ȳ�S�x

u
i

=
n∑

j=1

��j −�j−1�
n∑
i=j

V
	j���� �n�
i xu

i

=
n∑

j=1

��j −�j−1����	j� � � � � n��+�u�	j� � � � � n���� (42)

by (28). Identity (38) now follows from (39) and (42). �

Our next result gives alternative representations for the
gaps Zmin−ZD and ZKR−Zmin in the string of Inequalities
(37), in terms of the functions �u�·� introduced above. Our
prime interest is in the difference ZKR −Zmin, which mea-
sures the suboptimality gap of Klimov’s rule. The notation
�KR�S� to be used in what follows refers to �u�S� when
u is the priority-index (Klimov’s) rule previously defined.

Lemma 4. The gaps Zmin−ZD and ZKR−Zmin can be rep-
resented as follows:
(a)

Zmin−ZD = inf
{ n∑
j=1

��j −�j−1��
u�	j� j+1� � � � � n��


u ∈�

}
�

(b)

ZKR−Zmin = sup
{ n∑
j=1

��j −�j−1�
[
�KR�	j� j+1� � � � � n��

− �u�	j� j+1� � � � � n��
]

 u ∈�

}
�
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Proof. Part (a) is an immediate consequence of Identity
(38) in Lemma 3. As for part (b), we first use (38) to obtain,
for any policy u ∈�, the identity

ZKR−Zu =
n∑

j=1

��j −�j−1�
[
��KR	j� j+1� � � � � n��

−�u�	j� j+1� � � � � n��
]
�

and then maximise both sides over u ∈�. �

We next apply Lemmas 3 and 4 to obtain upper
bounds for the suboptimality gap of Klimov’s rule, namely
ZKR−Zmin.

Theorem 2. The following relations hold:

ZKR−Zmin
� ZKR−ZD (43)

=
n∑

j=1

��j −�j−1��
KR�	j� � � � � n�� (44)

�

n∑
j=1

��j −�j−1���	j� � � � � n��� (45)

Proof. Inequality (43) follows from (37), whereas Identity
(44) follows from (38) in Lemma 3. Inequality (45) is a
consequence of the definition of � in (29) and the fact that
Klimov’s rule gives priority to classes in 	j� � � � � n� over
those in 	1� � � � � j−1� for all j. �

As a convenient shorthand we shall refer to the subop-
timality bounds in Identity (44) and Inequality (45) as �KR

and �, respectively. Note that it is the bound � that is recov-
ered from Glazebrook and Garbe’s (1999) analysis based
on approximate conservation laws. For systems satisfying
GCL, �≡ 0 so that �= 0. Hence, (45) implies the optimal-
ity of Klimov’s rule in such cases. This is the main result
of Bertsimas and Niño-Mora (1996). Note further that the
bound �KR is tight in the special case when all nonzero
Klimov indices are equal. To see this, suppose that, for
some S ⊆ � ,

�j =
{
� for j ∈ S

0 for j ∈ Sc = � \S� (46)

with � > 0.

Corollary 1. When all nonzero Klimov indices are equal,
it follows that

ZKR−Zmin = �KR�

Proof. Because �KR is defined by the right-hand side in
Identity (44), it follows from (46) that

�KR = ��KR�S��

while from the form of Klimov’s adaptive greedy algorithm
we can conclude that

� = cj/V
S
j � for j ∈ S�

and

cj = 0� for j ∈ Sc�

Hence, we see that Condition (46) implies that the objective
is of the form

Zu = �
∑
j∈S

V S
j xu

j �

This fact, together with the definition of �u in (28), imme-
diately yields the result. �

5. ANALYSIS OF KLIMOV’S RULE FOR THE
PARALLEL-SERVER SYSTEM

In this section, we deploy the theoretical framework
and results developed in §4 in support of our principal
objective, namely, the assessment of Klimov’s rule as a
scheduling policy for the multiclass queueing network on
parallel servers described in §2. In principle, the application
of the material in §4 to the model of interest is a straightfor-
ward matter. As indicated in Equations (30)–(32), the work
decomposition laws in Theorem 1 provide us with appro-
priate choices for matrix V , performance vector xu, and set
functions � and �u. The space of admissible scheduling
policies � is as outlined in §2. We utilise these choices
within Lemma 4(b) and Theorem 2 to obtain, respectively,
an exact expression for and bounds on ZKR−Zmin, the sub-
optimality gap of Klimov’s rule. It will assist the reader
to refer back to the definition and interpretation of b�S�,
�u

pr�S� and �u
id�S� given just before the start of §3.1. It

is only in §5.1 that we make extensive use of the precise
forms of �u

pr�S� and �u
id�S�. Recall from (32) that, for each

admissible policy u, the set function �u takes the form

�u�S�= �u
pr +�u

id�S�−�∗�S��

We can now express the suboptimality bound for
Klimov’s rule �KR given by Identity (44) in the previous
section as the right-hand side in (47):

ZKR−Zmin
�

n∑
j=1

��j −�j−1��
KR�	j� � � � � n��

=
n∑

j=1

��j −�j−1�
[
�KR

pr �	j� � � � � n��

+�KR
id �	j� � � � � n��−�∗�	j� � � � � n��

]
� (47)

The reformulation of bound �KR given in (47) reveals its
intuitive interpretation: the jth term of the sum, which
gives �KR involves a weight �j −�j−1 � 0, which depends
on cost vector c, and a difference �KR

pr �	j� � � � � n�� +
�KR

id �	j� � � � � n��−�∗�	j� � � � � n�� � 0. Note that the latter
does not involve c and can be thought of as a measure
of excess expected workload incurred by Klimov’s rule
because of inefficiencies in the handling of priorities and
processing capacity over 	j� � � � � n�-customers.
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In what follows, the performance objective Zmin
pooled

achieved by an optimally scheduled single-server pooled
resource, as discussed in §2.1, will play a key role in our
analysis. We shall employ the representation of Zmin

pooled given
in (13), namely

Zmin
pooled =

n∑
j=1

��j −�j−1� b�	j� � � � � n���

We now state and prove three identities relating Zmin
pooled,

with the objective Zu =∑n
i=1 ci x

u
i achieved by an arbitrary

policy u ∈ �, the lower bound ZD defined in the previ-
ous section and the optimal objective value Zmin. We shall
make use of these results in establishing our approximate
optimality results in Theorem 3.

Lemma 5. The following identities hold:
(a) for any admissible scheduling policy u ∈�,

Zu = Zmin
pooled+

n∑
j=1

��j −�j−1�
[
�u

pr�S�+�u
id�S�

]
� (48)

(b)

Zmin−Zmin
pooled = inf

{ n∑
j=1

��j −�j−1�
[
�u

pr�	j� � � � � n��

+�u
id�	j� � � � � n��

]

 u ∈�

}
� (49)

(c)

ZD−Zmin
pooled =

n∑
j=1

��j −�j−1��
∗�	j� � � � � n��� (50)

Proof. (a) The result follows directly from Lemma 3
together with Identities (13), (30), and (32).
(b) This follows directly from part (a).
(c) This is a direct consequence of (13), (30), and

(39). �

Note that because �∗�S� � 0 for all S, it follows from
the above that

Zmin
pooled � ZD�

i.e., Zmin
pooled is a weaker lower bound than ZD for the optimal

problem value Zmin. Furthermore, note that the positive gap
Zmin −Zmin

pooled in Lemma 5(b) may be thought of as the
parallel-server system’s performance degradation from the
pooled ideal, or the cost of parallelism.
We shall not take this general discussion any further here.

Many questions of interest are prompted by the above dis-
cussion. For example, the results obtained for the batch case
(where there are no arrivals but a finite number of jobs that
have to be scheduled) by Weiss (1990, 1992, 1995) sug-
gest that we might expect ZKR−Zmin to be much smaller in
general than Zmin −Zmin

pooled. From the previous discussion,
this conjecture could be explored via appropriate study of

the quantities �KR
pr , �

KR
id , and �u

pr, �
u
id, for u ∈�. This will

be the subject of future work.
What we shall establish in §5.1 is the result that the gap

ZKR−Zmin
pooled, which measures the performance degradation

of Klimov’s rule due to parallelism, is uniformly bounded
above by a constant with respect to (i) external arrival rates,
as long as they vary within system capacity and (ii) the
number of servers. From (i) it will follow that the corre-
sponding relative gap vanishes in heavy traffic (as external
arrival rates approach system capacity). Because the sub-
optimality gap of Klimov’s rule, ZKR −Zmin, is bounded
above by ZKR−Zmin

pooled, the corresponding results extend to
the former.

5.1. Approximate and Heavy-Traffic Optimality
of Klimov’s Rule

Our concern in this section will be to develop simple and
interpretable bounds for the suboptimality gap of Klimov’s
rule, ZKR −Zmin, and for its performance degradation due
to parallelism, ZKR −Zmin

pooled, expressed in terms of model
parameters. We will use these bounds to establish the
asymptotic optimality of Klimov’s rule in an appropriate
heavy-traffic limit. The bounds we develop in the course
of the analysis will certainly not be the tightest available,
but they will be sufficient for our purposes. In particu-
lar, as mentioned above, our bounds imply that the gap
ZKR − Zmin

pooled, and hence, ZKR − Zmin remains uniformly
bounded above by a constant with respect to external arrival
rates, as long as they vary within system capacity, and with
respect to the number of servers.
We begin in Lemmas 6 and 7 by developing simple

bounds on the crucial last two terms in the Work Decom-
position Law (14). We require the notation

V �
max =max

j∈�
V �
j �

and

��V ��max =max
j∈�

�j V
�
j �

The next result gives an upper bound on the priority term
�u

pr�S�.

Lemma 6. For any admissible scheduling policy u
that gives preemptive priority to S-customers over
Sc-customers,

�u
pr�S�� �V �

max ��V �
�
max 1	m > 1�� for S ⊂ � �

Proof. Inspection of the �u
pr�S� term in (14) yields imme-

diately the conclusion that in the case m = 1, it becomes
0 under any policy u that gives preemptive priority to
S-customers.
Suppose now m � 2. Let BS (respectively, BSc ) denote

the number of S-customers (respectively, Sc-customers) in
service. Note that because u gives preemptive priority to
S-customers, it follows that with probability 1,

BSc

∑
j∈S

Lj = BSc BS � �m−BS�BS� (51)
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By standard results, we have

��S�= Eu�BS��
√
Eu

[
�BS�

2
]
�

and hence taking expectations through (51), we conclude
that

Eu

[
BSc

∑
j∈S

Lj

]
� ��S� �m−��S���

The result now follows from the form of �u
pr�S� in (14)

and from the facts that �0�S�� ��S�� �, �iV
S
i � ��V ��max

and V S
j � V �

max for each i� j. �

A very similar argument to that in Lemma 6 yields the
upper bound on idleness term �u

id�S� stated in the following
result. Recall that admissible policies are required to be
nonidling. This is necessary for the bound given next to
hold.

Lemma 7. For any admissible scheduling policy u,

�u
id�S�� �V �

max 1	m > 1�� for S ⊆ � �

Major simplifications result when we consider the ver-
sion of our model without feedback (where pij = 0 for all
i� j). We write(
1
�

)
max

=max
j∈�

(
1
�j

)
�

Lemma 8 (No-Feedback Case). For any admissible
scheduling policy u that gives preemptive priority to
S-customers over Sc-customers,

�u
pr�S�+�u

id�S�� �

(
1
�

)
max

1	m > 1�� for S ⊆ � �

Proof. Fix S ⊆ � . In the no-feedback case the definition
of the matrix V given in §2 yields

V S
i = 1

�i

� for i ∈ � � (52)

We now observe that in this case the performance over
S-customers of a policy that gives preemptive priority to
S-customers is identical to that obtained in a reduced sys-
tem in which there are only S-customers. Applying Work
Decomposition Law (14) to this reduced system and using
(52) yields

�u
pr�S�+�u

id�S�

=
∑

j∈S
1
�j
Eu��# servers not busy with S-customers) Lj�

m−��S�
� (53)

From this point, the calculation follows closely that of
Lemma 6. We omit the details. �

We shall next use the bounds in Lemmas 6–8 together
with the results of §4 and the beginning of this section to
derive some simple suboptimality bounds for Klimov’s rule

for our multiclass queueing system on parallel servers. We
deal with the general model (with feedback) first, and retain
the customer numbering in which �1 � �2 � · · · � �n. We
shall further use the notation Zc� to denote the performance
objective Zu in the no-feedback case under the c� rule
(where Klimov’s indices reduce to �j = cj �j , for all j),
and write

�c��max = max
1�j�n

cj �j�

Theorem 3 (Approximate Optimality of Klimov’s

Rule). The following inequalities hold:
(a)

ZKR−Zmin
� ZKR−Zmin

pooled

� �
[
�nV

�
max+ ��n−�1���V �

�
maxV

�
max

]
·1	m > 1�� (54)

(b) In the no-feedback case, where Klimov’s rule
reduces to the c� rule, we have

Zc�−Zmin
� Zc�−Zmin

pooled

� ��c��max

(
1
�

)
max

1	m > 1�� (55)

Proof. (a) The inequality ZKR −Zmin � ZKR −Zmin
pooled fol-

lows from Lemma 5(b). As for Inequality (54), we have

��S�� sup
{
�u

pr�S�+�u
id�S� 


u gives preemptive priority to S-customers
}

�

{
�
[
��V ��max+1

]
V �
max1	m > 1� if S ⊂ �

�V �
max1	m > 1� if S = � �

where the first inequality uses (33) and the subsequent
inequality combines the results in Lemmas 6 and 7. The
result then follows immediately from Inequality (45) in
Theorem 2.
(b) Inequality (55) follows by applying the same argu-

ment as in part (a), but using Lemma 8 to bound the ��S�
terms. �

Corollary 2 is an immediate consequence of the above
approximate optimality result.

Corollary 2. The gaps ZKR − Zmin and ZKR − Zmin
pooled

are uniformly bounded above with respect to (i) external
arrival rates vector , as long as it stays within system
capacity (� < m); and (ii) the number m of servers.

Proof. From Bound (54) in Theorem 3 it follows that as
the vector  of external arrival rates varies within system
capacity we have � < m, and hence

ZKR−Zmin
� ZKR−Zmin

pooled

�m
[
�nV

�
max+ ��n−�1���V �

�
maxV

�
max

]
1	m > 1��
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The result follows by noting that the last bound in the pre-
vious equation does not depend on  (see the correspond-
ing parameter definitions in §2).
It follows by noting that for any number m � 2 of

servers, the last bound in the string of inequalities

ZKR−Zmin
� ZKR−Zmin

pooled

� �
[
�nV

�
max+ ��n−�1� ��V �

�
max V

�
max

]
does not depend on m. �

We next investigate the asymptotic performance of
Klimov’s rule in the heavy-traffic limit, as �↗m. To this
end we consider a sequence of models in which only the
external arrival rates vary, while all other parameters remain
fixed. In particular, we suppose that the vector of external
arrival rates � = �j�j∈� varies according to a convergent
sequence 	�k��k=1 with limit �∗ such that, in an obvious
notation,

lim
k→�

���k�= ���∗�=m�

with

���k� < m� for each k � 1�

We shall write, in the same way, ZKR��k�, Zmin��k�, and
Zmin
pooled��

k�, for k � 1.
It is a simple consequence of the uniform boundedness

result in Corollary 2(i), which we deduced from Theorem 3
that both the relative suboptimality gap of Klimov’s rule,
and its relative performance degradation because of par-
allelism, vanish as external arrival rates approach network
capacity. We assume now for convenience that c �= 0. The
new notation V �

min, �c��min, �1/��min used below has the
obvious meaning, consistent with that introduced above for,
e.g., V �

max.

Corollary 3 (Heavy-Traffic Optimality of

Klimov’s Rule). We have (a)

ZKR��k�−Zmin��k�

Zmin��k�
�

ZKR��k�−Zmin
pooled��

k�

Zmin
pooled��

k�

�
(
m−���k�

)
· �n V

�
max+ ��n−�1� ��V �

�
max V

�
max

�1 V
�
min

·1	m > 1�

= O
(
m−���k�

)→ 0 as k→��

(b) in the no-feedback case, where Klimov’s rule reduces
to the c� rule, we have

Zc���k�−Zmin��k�

Zmin��k�
�

Zc���k�−Zmin
pooled��

k�

Zmin
pooled��

k�

= (
m−���k�

) �c��max

(
1
�

)
max

�c��min

(
1
�

)
min

·1	m > 1�

= O
(
m−���k�

)→ 0 as k→��

Proof. (a) The first inequality follows from the fact that
Zmin

pooled��
k� � Zmin��k� � ZKR��k�. In the second inequal-

ity, we note that (11) and (13), together with the fact that
�1 is the smallest index, yield

Zmin
pooled��

k�� �1

∑n
j=1 �j��

k�V �
j

m−���k�
� �1 V

�
min

���k�

m−���k�
�

The second inequality in the statement of Corollary 3(a) is
now immediate from Theorem 3(a), and the remainder of
the result follows easily. Part(b) follows by applying the
same line of argument as in part(a), but using the bounds
in Theorem 3(b). �

Note the presence of the factor 1	m > 1� in Theorem 3
and Corollary 3. This ensures that the well-known optimal-
ity of the corresponding index rule in the single-server case
is recovered from our analyses.

5.2. Numerical Investigation of �KR

As explained at the beginning of §5.1, the goal was to
develop bounds on the suboptimality gaps of interest that
were simple and adequate to be deployed in proving the
theoretical results above. If we return to Theorem 2 in
§4, we see that all the bounds developed in §5.1 in fact
utilised Inequality (45), rather than the tighter Inequality
(44). However, the bound �KR given by the r.h.s. of (44)
and (47) has intuitive appeal (see the comments following
(47)) and is known to be tight under simply stated condi-
tions (see Corollary 1). To investigate the tightness of �KR

more widely, computational experiments were conducted.
The system studied was a two-class M/M/2 queue with no
customer feedback. The vectors of costs and service rates
are given, respectively, by (c1� c2� and (�1��2). Arrival
rates 1 and 2 are always set equal to 1, as is c1. The
Klimov indices in this case are ci�i, i= 1�2 with Klimov’s
rule now the celebrated c� rule. Hence, we introduce the
quantity

K = �c1�1− c2�2�/�c1�1+ c2�2�

as a natural measure of the extent to which the condition of
equal indices (which guarantees the tightness of �c�) fails;
see Corollary 1. For each (��K)-pair with traffic inten-
sity � drawn from the set 	0�5�0�8�1�0�1�2�1�4� and K
from 	0�0�025�0�05�0�075�0�100�0�150�0�200�, we inves-
tigated 50 examples where

1
�1

∼ U�0�2� �−0�2� and
1
�2

= �− 1
�1

�

with c2 set equal to

�1�1−K�/��2�1+K���

For each problem studied, approximate optimal costs
(Zmin) were computed by truncating the state space of
queue lengths and using the Value Iteration Algorithm of
dynamic programming. Initially, the truncation was set at
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Table 1. Computational results.

�

0.5 0.8 1.0 1.2 1.4

0�202 0�026 0�668 0�095 0�820 0�122 0�910 0�138 0�843 0�1320�000 0�202 0�026 0�668 0�095 0�820 0�122 0�910 0�138 0�843 0�132
0�066 0�014 0�373 0�070 0�493 0�089 0�539 0�095 0�517 0�0900�025 0�154 0�026 0�577 0�094 0�765 0�123 0�855 0�135 0�830 0�131
0�020 0�006 0�222 0�048 0�306 0�063 0�343 0�069 0�342 0�0660�050 0�142 0�026 0�535 0�092 0�711 0�119 0�795 0�132 0�773 0�127
0�010 0�001 0�149 0�032 0�229 0�045 0�279 0�052 0�296 0�052K 0�075 0�162 0�024 0�635 0�089 0�856 0�118 0�968 0�132 0�949 0�128
0�000 0�000 0�089 0�022 0�148 0�033 0�184 0�040 0�202 0�0420�100 0�153 0�023 0�601 0�086 0�811 0�113 0�919 0�126 0�903 0�123
0�000 0�000 0�017 0�006 0�047 0�014 0�075 0�021 0�125 0�0290�150 0�118 0�021 0�476 0�083 0�650 0�112 0�741 0�126 0�805 0�127
0�000 0�000 0�003 0�002 0�015 0�005 0�025 0�009 0�068 0�0170�200 0�088 0�019 0�361 0�075 0�495 0�106 0�570 0�114 0�920 0�125

25 customers for each class. This limit was increased until
the difference between successive calculations was negli-
gible. A similar approach was used for the expected cost
under the c�-rule (Zc�) and the suboptimality bound �c�.

The results of the study are given in Table 1, where the
table entries corresponding to each pair �K��� are in the
form:

A1 A2

A3 A4�

where

A1 = Ê

[
Zc�−Zmin

Zmin

]
×100�

A2 = �̂

[
Zc�−Zmin

Zmin

]
×100�

A3 = Ê

[
�c�

Zmin

]
×100�

A4 = �̂

[
�c�

Zmin

]
×100�

In the above expressions, Ê and �̂ denote the sample mean
and sample standard deviation, respectively.
From Table 1 we observe that the c� rule exhibits an

excellent level of performance across the range of problems
investigated. Its relative suboptimality gap never exceeds
1%. As indicated by Corollary 1, the bound �c� is tight
when K = 0. As expected, the quality of the bound deterio-
rates with increasing K, although never exceeds 1% of the
optimal cost on average. We note that it follows from
the results in §5.1 that the ratio �c�/Zmin tends to zero in
the heavy traffic limit �↗ 2.

6. CONCLUDING REMARKS

We have analyzed a simple heuristic index policy that
extends Klimov’s classical solution for the single-server
case to the general parallel-server model, presenting closed-
form suboptimality bounds that imply its asymptotic opti-
mality in a heavy-traffic limit. Ideas that emerge from our

analysis include the following: (1) Understanding of a sim-
ple single-server system has yielded useful insights into the
performance of its more complex parallel-server counter-
part; (2) understanding the fundamental laws of a complex
parallel-server model (flow balance and work decompo-
sition) has yielded a key to its analysis; (3) investigat-
ing strong linear programming relaxations of a complex
stochastic optimization problem has yielded an approxi-
mate and asymptotic analysis of a heuristic, which had
resisted traditional approaches. We believe these ideas,
which guided our approach, should prove fruitful for
addressing other complex stochastic optimization problems.
We refer the reader back to the discussion in the paragraph
following Lemma 5 for indications of further work to be
done on the current model.
In a companion paper (see Glazebrook and Niño-Mora

1999) we carry out a corresponding analysis of priority
index rules for scheduling Markovian multiclass queue-
ing networks with multiple service stations. Although such
rules are known to perform poorly in general for the latter
type of networks, in that paper we present suboptimality
bounds under appropriate light-traffic conditions.
It should be remarked that while Klimov’s optimal

solution for the single-server model applied to multiclass
M/G/1 networks, i.e., it was valid under general service
time distributions, our analysis requires the latter to be
exponential. Extending our approach to a model with gen-
eral service time distributions and nonpreemptive policies
would require the development and application of work
decomposition laws for such a model. Carrying out this
extension remains a challenging problem.
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