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Optimally Managing a Stochastic Renewable
Resource under General Economic
Conditions®

Bruce McGough, Andrew J. Plantinga, and Christopher Costello

Abstract

Empirical evidence indicates that environmental fluctuations have important effects on fish-
eries production. However, existing analytical solutions of stochastic fisheries models have been
produced only under highly simplified economic and biological conditions. The main contribu-
tion of this paper is to derive under general conditions a policy function for the management of a
stochastic fishery. Our model includes general specifications of demand and cost relationships and
a stochastic biological growth function with serially-correlated shocks. Applying methods from
the theory of dynamic stochastic general equilibrium modeling and multivariate linear expecta-
tional difference equations, we derive a linear approximation of the solution to the model. Our
main result is a reduced-form expression for an approximation to optimal escapement, which is
shown to be a function of the current stock, past environmental shocks, and model parameters.
This theoretically-grounded policy function has intuitive appeal, yields insights into comparative
statics, and provides a theoretically-grounded, practical starting point for fisheries management.
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1 Introduction

In many countries, fisheries are highly regulated in order to curtail the open
access use of the resource. Despite this, overexploitation of fish stocks is a
chronic problem worldwide (Food and Agriculture Organization 2004; Worm
et al. 2006). The management of fisheries is challenging, in part, because
of the complexity of underlying biological relationships that are influenced by
temporal variability in climate and ocean temperatures (Barber and Chavez
1983; Mann and Lazier 1996; McGowan et al. 1998; Finney et al. 2000). Pro-
ductivity shocks also have been shown to be serially correlated (Chavez et al.
2003; Pyper and Peterman 1998; Korman et al. 1995). These features render
the derivation of the economically-optimal management rule considerably more
difficult. Yet, only after identifying efficient catch levels can property-rights
approaches, such as catch shares, be effectively used to enhance biological and
economic outcomes (Costello et al. 2008). In previous papers, analytical so-
lutions have been produced only for highly simplified economic environments
and i.i.d. productivity shocks. To gain tractibility, researchers have been
forced to sacrifice both economic and biological realism.

This paper proposes a general solution to the management of a stochastic
fishery. In the following section, we apply techniques from the macroeco-
nomics literature on real business cycles (e.g., Kydland and Prescott (1982)
and Farmer (1999)) to solve a model with general specifications of demand and
cost relationships and a stochastic stock-recruitment function with serially-
correlated shocks. In contrast to previous studies, we derive an analytical
expression for the escapement® rule in a general framework. Two key steps are
required to solve the model. The first is to log-linearize the Euler equation and
the stochastic biological growth function about a deterministic steady state.
If the steady state is robust to perturbations, then adding small stochastic
shocks will not cause the system to deviate from the neighborhood in which
the approximation is valid. The second step is to apply results from the lit-
erature on multivariate linear expectational difference equations (see Evans
and Honkapohja (2001)) to solve for the rational expectations solution of the
model. Our key result is a reduced-form, linear approximation of the optimal
escapement rule, shown to be a function of the current stock, past environ-
mental shocks, and model parameters.

Early papers on fisheries economics (Gordon 1954; Scott 1955; Smith 1969;
Beddington et al. 1975; Levhari et al. 1981) derived management rules within

!Escapement refers to the stock of fish that remains after harvest and, thus, “escapes”
to the next period.
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a deterministic framework. In later papers, authors account for the effects of
environmental variability by introducing stochastic growth (stock-recruitment)
functions.? The seminal paper is Reed (1979) who shows, under the conditions
of his model, that a stochastic fish population should be harvested to achieve
the same escapement level in every period. This constant escapement level is
independent of the current stock size.

Accommodating environmental variability in fisheries models has come at
a cost. While concise management rules can be derived from deterministic
models under standard economic assumptions, general analytical results have
not been obtained for stochastic models. Reed (1979), for example, places
strong restrictions on the demand and cost functions by assuming that prices
and unit fishing costs do not depend on the level of harvest. Similarly, Clark
and Kirkwood (1986) and Weitzman (2002) assume marginal profits are inde-
pendent of harvest. Mirman and Spulber (1985) analyze a more general model
with downward-sloping inverse demand and harvest-dependent marginal costs,
but they are unable to obtain an explicit solution for the optimal harvesting
policy.®> Other authors adopt specific functional forms and provide results
based on numerical simulations (Sethi et al. 2005; Singh et al. 2006).* Among
these studies, only Singh et al. (2006) allow for serially-correlated productivity
shocks.

The main contribution of this paper is to provide new analytical results
for the general problem of fisheries management under uncertainty. Section
3 presents a series of propositions that demonstrate how the optimal escape-
ment rule derived from the linearization changes with different specifications
of demand, marginal costs, risk preferences, and the distribution of environ-
mental shocks. For example, Reed’s constant escapement policy is shown to
be a special case obtained with perfectly elastic demand, harvest-independent
marginal costs, and i.i.d. shocks. Under more general conditions, escapement
is a function of the current stock, and harvests are smoothed over time to bal-
ance its effects on prices, unit fishing costs, and the future stock. Numerical
simulations are used, in section 4, to explore further how optimal management
is affected by changes in parameters characterizing the economic environment
and the uncertainty. We show, for example, that greater positive serial cor-

2See Reed (1979), Clark and Kirkwood (1986), Mirman and Spulber (1985), Roughgarden
and Smith (1996), Weitzman (2002), Sethi et al. (2005), and Singh et al. (2006).

3In their paper, the optimal harvest rule in their Equation (17) is a function of h(z),
which is implicitly defined by their Equation (16).

4Pindyck (1984) considers a general model of renewable resource markets. He adopts
specific functional forms for demand, cost, and production functions and derives explicit
harvest policies.
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relation in the productivity shock increases the marginal impact of the shock
on escapement levels. Intuitively, higher serial correlation and a positive pro-
ductivity shock realization implies a higher expected return on non-harvested
fish, so optimal escapement levels increase.

Our approach of log-linearizing the Euler equation has three important
advantages. First, it facilitates an analytical solution (even for very com-
plex problems), so studying the properties of the solution is straightforward.
Second, the solution has practical appeal because it fits within the class of
harvest policies often applied in the real world (e.g., constant escapement).
Third, this method applies equally in situations when numerical approaches
(e.g., dynamic programming) are computationally intractable.” The rule is
derived in closed form and is straightforward to calculate from the primitives
of the problem: production function of fish, demand, cost, and stochasticity.
Because the rule is derived by log-linearizing the Euler equation, it represents
a first-order approximation of the fully optimal rule. However, our section 5
demonstrates with numerical simulations that it provides solutions that are
nearly identical to those derived from a non-linear model. We conclude that,
for practical purposes, our escapement rule can be treated as the optimal pol-
icy function and used to gain insights into optimal fisheries policy. In the final
section, we summarize our findings and discuss application of our methods to
the broader class of renewable resource problems.

2 Model

We model a price-setting regulator facing a downward sloping (inverse) de-
mand curve given by p(q). Resource stock, s;, is known at the beginning of
period t, at which time harvest, h;, is chosen. The remaining stock available
for reproduction is the “escapement,” x; = s; — h;. Following Reed (1979),
Weitzman (2002), Costello et al. (2001), Costello and Polasky (2008), and oth-
ers, we treat escapement (rather than harvest) as the control variable. This
choice is for mathematical convenience and, by the identity x = s — h, does
not affect results or interpretation.
Resource production is a random variable given by

Sep1 = z1 f (24), (1)

5More specifically, many non-linear solutions methods require that the modeler identify
an equilibrium with the solution to an associated planner’s problem; however, in case of
distortions, the equilibrium may not be efficient, and a constrained planner may be difficult
to identify. A pertinent case (not examined here) is market equilibrium in a many-agent
fishery with externalities.
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where f' > 0, f” < 0, and z is a stationary, possibility serially correlated,
multiplicative production shock, with small positive support and unconditional
mean equal to one.® Production shocks have state transitions

2 = U2y, (2)

where v, is independently and identically distributed with mean 1, and p is the
serial correlation. We assume 2 exists with f(z®) = 2®, which represents
the unharvested deterministic steady state; i.e., the carrying capacity of the
resource in the absence of environmental variability.

Given a stock level s; and escapement decision x;, net economic surplus
from harvesting in period t is given by

S(sy,my) = /Ohtp(w)dw — /St c(w, 8y — w)dw. (3)

Tt

Here, marginal harvest cost of a unit of stock depends on stock (i.e., a stock
effect on cost) and on harvest; thus, ¢ = ¢(s, h), where we make the standard
assumptions that ¢; < 0 and ¢y > 0. The regulator may have non-neutral risk
preferences over surplus, which we model with a constant relative risk aversion
as follows:

U(S) = s,

where ¢ = 0 implies risk neutrality.

The objective is to choose a contingency plan for escapement levels that
maximizes the discounted expected future stream of surplus, accounting for
risk by guarding against surplus variation. Specifically,

max F S'U (S(sy, 4
s B30 (S(s0m) )
st s =zf(xq)
2z = 0zh 4
Ty given,

for discount factor .

6The restriction on the size of the shock’s support depends on the curvature of the
nonlinear system.
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The Euler equation” associated with an interior solution® to this program-
ming problem is given by

Sy (st — ) — (g, 8¢ — x1)) = Of'(x4) * (5)
E, (Zt+15t+01 <p(5t+1 - $t+1) - C(5t+17 0) - / C2(W7 St+1 — w)dw)) )

Tt41

where S; = S(sy, x;). This condition is familiar; at the optimum, the marginal
utility of escapement in period ¢t must equal the discounted expected marginal
return in the subsequent period. To intuit this equation, set ¢ = 0 and
zt41 = 1. Then allowing an additional fish to escape in period t reduces
surplus by the left hand side of (5). The expected increase in (discounted)
surplus in period ¢ + 1 then must account for the fish stock’s growth, f’(x;),
the additional revenue obtained by harvesting the new “larger” fish tomorrow,
P(St41 — T441), minus the additional cost incurred by harvesting this fish. The
additional cost has two terms: ¢(s;11,0) captures the fact that this fish can be
harvested first (i.e., when stock is high and harvest is zero), and the second
term accounts for the added cost of harvesting future fish due to the harvesting
of the first fish. Provided the right concavity conditions are met, the Euler
equations, together with a transversality condition, are necessary and sufficient
to characterize the optimal contingency plan.

The Euler equation (5) and the production function (1) define the model’s
implied time-path of stock and escapement.” Note immediately the familiar
special case without costs, downward-sloping demand, risk, or shocks. In that
case 0 = 0, p is constant, ¢ = 0, and z = 1, and we obtain f'(z) = 1/6. More
generally, solutions to nonlinear systems of expectational difference equations
are intractable analytically, but analytical approaches have been developed for
rigorous approximation of their solution (Woodford 1986). Following Wood-
ford (1986), we log-linearize the model around the deterministic steady-state,
which is implicitly defined by the following equation:

p(f(z) — x) — e, f(x) — ) = (6)
f(z)
51 () (p(f () — 2) — e(f(),0)) - / o, f() — w)do:

"See Chapter 4 of Stokey and Lucas (1989) for the derivation of the Euler equation in
discrete-time.

8Some specifications of the model lead to corner solutions that indicate a zero optimal
harvest level. We restrict attention to specifications with solutions near an interior steady
state, so that the optimal harvest level is positive. In this case, the interior Euler equation
is the relevant first-order condition for our purposes.

9Again, these dynamics are subject to the transversality condition, which will require
that they remain bounded in a natural sense. See Stokey and Lucas (1989) for details.
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where z is the optimal deterministic steady-state escapement, and the associ-
ated stock is s = f(x).

Log-linearization allows us to express the variables of this model as percent
deviations from the steady state, which we will denote with a tilde (e.g., Z;
is the percentage deviation of x; from the deterministic steady state x: z; =
log(z¢) — log(z)). Log-linearizing the system (1) and (5), we obtain

a:ﬁt -+ bgt = dEt'%t—i-l + eEt§t+1 —+ ggt (7)

St = mIiq+ z,

where the parameters a, b, d, e, g, and m are defined in the Appendix. Note
that these parameters are scalar functions of the original model parameters
and are straightforward to calculate given specific functional forms.

The system (7) has a closed-form, intuitive solution that is summarized in
the following proposition.

Proposition 1 If the Euler equations (plus transversality) are sufficient for
optimality and the support of the productivity shocks is small, then there exist
scalars @ and b, defined in the Appendiz, so that the optimal escapement plan
is well-approzimated by:'°

Ty = aF_1 + bz (8)
Further, z, is a covariance-stationary process.

The scalars @ and b are defined by the model’s parameters and are com-
puted in the Appendix. A brief description of the solution method used to
prove this proposition and to compute these scalars is warranted. Equations
(7) form a system of expectational difference equations capturing the linear
approximation to the optimal solution to the recursive programming problem
(4). Under the imposed convexity assumptions, this problem will have a unique
solution, which is reflected in the “saddle-path stability” of the system (7)."
The solution method used to compute (8) involves identifying the restrictions
needed to guarantee that a process satisfying (7) is on the stable manifold. In
simple linear models, such as the one above, these restrictions are obtained
using matrix decomposition methods. For details on solving this model, see
the Appendix, and for solving general expectational difference equations, see
Blanchard and Kahn (1980).

0By “well-approximated” we mean that the linearized plan will deviate from the nonlinear
plan by a residual that is proportional to the square of the productivity innovation’s support,
which is assumed small.

1 This saddle-path stability property is entirely analogous to the continuous time stability
properties of the dynamic solution to the standard Ramsey problem.
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Equation 8 completely characterizes the linear approximation to the opti-
mal contingency plan in the fishery. Notice that because Z; and Z; represent
percent deviations from steady state, the magnitude of parameters @ and b
will govern return-to-steady state dynamics. To satisfy the transversality con-
ditions, and thereby rule out explosive responses to shocks, the absolute value
of @ must be less than one. This implies that Z; returns asymptotically to zero
following a one-time shock. Thus, harvests are smoothed, in contrast to a con-
stant escapement policy. Equivalently, the relationship in 8 can be re-cast as
a linear function of stock and escapement (by combining 7 and 8), as follows:

iz't = Agt -+ Bgt, (9)
where A = % and B = b — % The next section of this paper is devoted to

interpreting this fundamental equation and extracting its general characteris-
tics.

3 Characterizing optimal escapement

In the sequel, we refer to Equation 9 as the “optimal” state-contingent escape-
ment plan. It is optimal conditional on the log-linearization, but to the extent
that the problem is nonlinear, may deviate from the fully optimal policy (which
can typically only be solved numerically).!? While the mathematical form of
that plan is simple (percent deviation from steady state is a linear function of
the most recent deviation of stock and the most recent environmental shock),
the coefficients (A and B) are complicated functions of the rest of the model
parameters and of deterministic steady-state values. While these complicated
functions are difficult to analyze in general, several special cases of this model
reveal useful insights into the optimal policy function.
It is helpful to define the following conditions:

A.1 Shocks are i.i.d. (p =0)
A.2 Demand is perfectly elastic (p’ = 0)
A.3 Risk neutrality (o = 0)

A.4 Marginal harvest costs are not a direct function of the quantity harvested
(c2 = 0)

12The extent of this deviation is the focus of Section 5.

Published by The Berkeley Electronic Press, 2009 7
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Condition A.1 regards the environmental shocks, and excludes the possibility
that shocks are correlated across periods. Conditions A.2-A.4 concern the
economic environment and exclude what would be considered typical economic
conditions (downward-sloping demand, risk aversion, nonlinear harvest cost).
In what follows it is helpful to classify any given manifestation of this problem
along two dimensions: (1) whether the shocks are i.i.d. (Condition A.1); and
(2) whether Conditions A.2-A.4 hold. If A.2-A.4 hold then profits are a linear
function of harvest, which we refer to as the case of linear profits.

3.1 Is ‘constant escapement’ optimal?

Much of the previous literature focuses on the class of harvest policies char-
acterized by “constant escapement.” A constant escapement rule is one in
which the regulator harvests down to a (time-invariant) pre-determined level
every period. Constant escapement policies are not only practically appealing,
they have been shown to be optimal under certain economic conditions (see
Reed (1979), Roughgarden and Smith (1996), Weitzman (2002)). A constant
escapement policy has commensurately been adopted in many managed fish-
eries worldwide. Yet the literature lacks a decisive analysis or conclusion about
the conditions under which the constant escapement policy is, or is not, opti-
mal. The generality of the setup and result derived above allows us to provide
that analysis. The result is summarized with the following propositions:

Proposition 2 (Reed) Under the model given in Equation 4, constant es-
capement 1s optimal if Conditions A.1-A./ hold.

This proposition confirms the result of Reed (1979) that A.1-A.4 are sufficient
for constant escapement to be optimal. Establishing necessity is more subtle:
because the effect of violating one of the assumptions may interact with the
effect of violating another assumption, it is not possible to show in general
that A.1- A.4 are jointly necessary for constant escapement to be the optimal
policy. Taken individually, however, the assumptions are necessary, as the
following proposition shows.

Proposition 3 Fori =1,...,4, if condition A.i is violated, and the rest of
the conditions hold, then constant escapement is not optimal.

Taken together, these propositions reveal that despite the ubiquity and appeal
of the constant escapement policy, individual deviation from conditions A.1 —
A .4 will overturn the constant escapement result. This finding is in line with
emerging papers that find special cases (which violate A.1-A.4 in one way or

http://www.bepress.com/bejeap/vol 9/issl/art56 8
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another) in which escapement should not be held constant (see e.g. Mirman
and Spulber (1985), Singh et al. (2006), Carson et al. (2009)).!3

3.2 Independently distributed stocks

While Proposition 3 provides that a violation of one of the conditions A.1 —
A.4 will over-turn Reed’s constant escapement result, it gives little insight into
the nature of the new optimal rule. In this and the next section, we relax the
restrictions imposed by conditions A.1 — A.4 and consider the resulting impact
on the optimal policy parameters A and B. We begin by considering nonlinear
profits with i.i.d. productivity shocks. We have the following result:

Proposition 4 Under A.1 but without requiring A.2-A.4, optimal escapement
1s dependent at most on the current stock: T, = AS;.

Proposition 4 implies that when environmental shocks are i.i.d., the op-
timal escapement policy depends only on the current size of the stock and,
in particular, does not depend separately on the productivity shock.!* The
dependence on the stock is a result of the nonlinear dependence of profits on
harvest, and, for example, may be intuited as follows: consider the case of
a downward sloping inverse demand (violation of A.2), and suppose stock is
high. A constant escapement rule would dictate selling all excess stock to-
day, and thus facing a drastically reduced price. The optimal rule suggests
smoothing behavior by saving some of the excess stock today (i.e. increasing
escapement), thereby decreasing the magnitude of the price reduction. That
current productivity shocks do not separately impact the escapement deci-
sion follows from the fact that they are i.i.d. and so provide no information
about future productivity shocks. Rather, the effects of the current shock are
transmitted through the current stock s;.

3.3 Linear profits

In the previous section we assumed that environmental shocks were i.i.d., but
we allowed for profits to exhibit a nonlinear dependence on harvest. Here, we
switch those conditions, allowing environmental shocks to be correlated across
periods but constraining ourselves to linear profits. The following proposition
characterizes optimal harvest under those conditions:

13Non-constant escapement can also be achieved by changing the informational timing in
the model (Clark and Kirkwood 1986).

140f course the optimal policy is statistically dependent on the productivity shock through
the dependence of the stock on z;.
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Table 1: The Optimal Escapement Policy Under Alternative Representations
of Profits and Uncertainty

Shocks Linear profits Nonlinear profits
None constant esc. stock dep.
ii.d. constant esc. (Prop. 2) stock dep. (Prop. 4)
Correlated | shock dep. (Prop. 5) | stock and shock dep. (Prop. 1)

Proposition 5 Under A.2-A.} but without requiring A.1, optimal escapement
depends at most on the productivity shock: T, = BZz;.

Proposition 5 implies that the current size of the environmental shock is
the only information that is required to set the current escapement. In other
words, it rules out the possibility that the size of the resource stock is of any
use in setting the escapement policy. Intuitively, the current environmental
shock is useful because it facilitates the prediction of the next period’s shock,
and thus provides information about the next period’s production. A special
case is when the shocks are uncorrelated (i.i.d.) in which case Proposition 2
obtains.

3.4 Summary of escapement plans

It is instructive to summarize our results thus far. Table 1 characterizes the na-
ture of optimal escapement policies under different assumptions about profits
and the distribution of environmental shocks.

The first row of Table 1 simply reproduces well-known results of optimal
exploitation of renewable resources in a deterministic environment (see, e.g.,
Clark (1990)). If the profits are linear in harvest, a bang-bang result obtains
and the optimal escapement is independent of time. On the other hand, if are
profits nonlinear, the escapement level will depend on the stock size, implying
that harvests are smoothed in order to maximize surplus.

The second row of the table presents the optimal escapement plans under
i.i.d. production shocks. With linear profits, the optimal escapement is again
constant, a result that was obtained by Reed (1979) and is also proven in
Proposition 2 of this paper. However, as in the deterministic case, when
shocks are i.i.d and profits are nonlinear, we find via Proposition 4 that the
optimal escapement depends on the current stock size.

The final row of the table allows the environmental shocks to be correlated
across time so that this period’s shock contains some information valuable for

http://www.bepress.com/bejeap/vol 9/issl/art56 10
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the prediction of next period’s shock. We find that when profits are linear,
the escapement function depends only on the most recent shock (Proposition
5). In the most general case, when profits are nonlinear and the productivity
shock is forecastable, escapement will depend both on the stock and shock, as
shown by Proposition 1.

Two insights emerge from this summary. First, regardless of one’s as-
sumption about the nature of the productivity shocks, if profits are linear,
the optimal escapement function depends, at most, on the most recent pro-
ductivity shock (and never on the current stock size). Second, regardless of
one’s assumption about profits, if the shocks are uncorrelated across periods,
the optimal escapement function depends, at most, on the current stock size
(and never on the productivity shock). We thus find that only in case of seri-
ally correlated shocks and nonlinear profits will the optimal escapement rule
exhibit a dual dependence on stocks and shocks: in this case, the predictive
role of the productivity shock must be separated from its impact on the stock
level.

4 Comparative statics

In the previous section we established that the optimal escapement rule is
given, in general, by Z; = AS; + BZ; (equation 9). In this section, we develop
intuition for this rule by evaluating how this functional relationship changes
as the demand, cost, and production specifications are varied. Specifically,
we present comparative statics for the coefficients A and B, which, as shown
in the appendix, are functions of model parameters and deterministic steady-
state values. Because A and B are too complicated to analyze in their general
form, we present a numerical analysis. Our results are easier to interpret if
the escapement rule is rewritten in terms of levels of the variables (xy, s, 2;):

Tt = CY—‘-ASt—FBZt,

where the constants A, B, and C' depend on the specific functions and pa-
rameter values. In terms of the previously defined parameters, they are C' =
r(1—A—B), A= A(x/s), and B = B(z/z). A and B provide the marginal
effect of the stock and productivity shock on the optimal level of escapement.
We examine how these marginal effects are altered as parameters of the model
change.

Published by The Berkeley Electronic Press, 2009 11
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Figure 1: Top Panel: Dependence of marginal effect of stock (A) on inverse
demand elasticity _(qb) Bottom Panel: Dependence of marginal effect of pro-

ductivity shock (B) on inverse demand elasticity (¢). Plots are drawn for
various levels of serial correlation (p).

For this exploratory analysis we adopt the following parameterization:

Demand: p(s—x) = 10(s—x)~?
Marginal Cost: c(z,s —x) = z7%+W(s—x)¥ (10)
Production: f(z) = 10z°.

We assume constant price elasticity of demand; the inverse of the demand
elasticity is constrained to the unit interval (0 < ¢ < 1), implying elastic
demand for output ¢. Inelastic demand needs to be ruled out, because with
non-decreasing costs, profits can always be raised by reducing output, indicat-
ing an optimal harvest close to zero. Marginal cost has two additive effects:
(1) a stock effect, where marginal harvest cost depends on fish density (Reed
(1979) adopts this functional form); and (2) a harvest effect where marginal
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Figure 2: Top Panel: Dependence of marginal effect of stock (A) on stock effect
parameter (0). Bottom Panel: Dependence of marginal effect of productivity

shock (B) on stock effect parameter (). Plots are drawn for various levels of
serial correlation (p).

costs may increase in harvest volume. Changes in ¢ have the same qualita-
tive effects on A and B as do changes in ¢, so we set W = 0. Finally, the
production function is extremely simple, but retains the desired properties
outlined above. We require that it exhibit diminishing marginal returns, so
0 < a < 1. The discount factor is set at § = 1/1.05, and we consider a
risk-neutral decision-maker (o = 0).

We first consider, in Figure 1, how A and B change as we vary ¢ from 0
to 0.9 and the serial correlation p (see equation (2)) from -0.9 to 0.9. Specifi-
cally, for six values of p, the values of A and B are plotted against the varying
demand elasticity; thus, six plots appear in each panel. First consider the top
panel. Notice that the plots are identical across serial correlation values (p).
Given the timing of the model, the productivity shock z; is observed before
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Figure 3: Top Panel: Dependence of marginal effect of stock (A) on biological
density dependence goz). Bottom Panel: Dependence of marginal effect of

productivity shock (B) on biological density dependence (a). Plots are drawn
for various levels of serial correlation (p).

escapement x; is chosen; thus the value of p only affects the forecastability of
the productivity shock, and does not influence the marginal effect of the stock.
Next, notice that A equals zero when demand is perfectly elastic (¢ = 0), cor-
responding to the result in Reed (1979) that escapement is independent of the
stock level when price is constant. The marginal effect of stock on escapement
increases as ¢ increases. As demand becomes more inelastic, harvesting an
extra unit of the stock has ever greater effects on price. Therefore, to avoid
depressing current prices, more of the stock is allowed to escape to the next
period.

Now turn to the bottom panel of Figure 1, which shows how B, the marginal
effect of the current shock z; on escapement, varies with ¢, and again plotted
for different values of p. The dashed plot corresponds to p = —.9 and for
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fixed demand elasticity values, as p increases, so does B. First notice that
the sign of the marginal effect coincides with the sign of the serial correla-
tion: if p > 0, then a positive shock in the current period indicates positive
expected future shocks; escapement is increased because the expected “rate of
return” on future stocks is high. However, as demand becomes more inelastic
(¢ increases), escapement is reduced to avoid depressing future prices. The re-
lationship is reversed when p < 0. Now, a positive shock in the current period
implies a relatively low return on future stocks, and escapement is reduced.
As demand becomes more inelastic, escapement increases to avoid depressing
current prices. These effects are magnified as p increases in absolute value and
future shocks are more highly correlated with the current shock. In contrast,
when p = 0, the current shock provides no information about future shocks
and, as in Reed (1979), it has no effect on optimal escapement.

In Figure 2 we explore the effects of the cost parameter # on A and B, again
for varying p, just as in Figure 1. For a given level of the stock, marginal costs
decline as @ increases. Likewise, for given #, marginal costs fall as the stock
increases (the stock effect). For the parameter values we consider and in the
neighborhood of our steady state, the stock effect is smaller at larger values
of . The top panel shows that the marginal effect of the stock on escapement
declines as the stock effect diminishes. As # increases, more of an additional
unit of stock is harvested (less escapes) in the current period for two reasons:
first, the marginal cost of harvesting today is reduced; and second, the cost
reduction tomorrow obtained by allowing a fish to escape today is diminished.
The autoregressive parameter p has no effect on the marginal effect of the
stock for the same reasons discussed above.

In the lower panel of Figure 2, we show the marginal effect of the produc-
tivity shock on escapement for different values of # and p. As in the bottom
panel of Figure 1, the sign of the marginal effect coincides with the sign of
the serial correlation: if p > 0, then a positive shock in the current period
indicates a high return on future stocks and the marginal effect of the stock
on escapement is positive. A higher 6 indicates lower marginal costs in the
future and reinforces this effect, raising escapement even more. In contrast,
when p < 0, diminishing future marginal costs compete against the effect of
low expected future returns on stocks. This explains the asymmetric response
to 0 and p evident in the figure.

No particular significance should be assigned to the result that B = 0 when

= 0. If, for instance, we choose a lower value of ¢, B remains positive or
negative at 8 = 0. As demand becomes more elastic, escapement increases
(p > 0) or decreases (p < 0), just as in the bottom panel of Figure 1. If,
instead, we choose large values of ¢, B becomes zero at a positive value of 6.
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Finally, we consider the effect of the biological production parameter a on
A and B (Figure 3). Larger values of « correspond to higher productivity of
the stock. As well, the marginal productivity of the stock is increasing in a.
Due to this latter effect, A is increasing in o (top panel). When an additional
unit of the stock provides a higher future return, more of the stock is allowed
to escape. As above, this relationship does not change with different values of
p. The top panel was produced for a fixed value of ¢. As indicated by Figure
1, escapement also increases as demand becomes more inelastic. Thus, we see
that higher productivity and more inelastic demand have reinforcing effects
on harvesting smoothing. Finally, as seen in Figures 1 and 2, B is positive for
p > 0 and negative for p < 0 (bottom panel). Higher values of « increase the
expected future productivity of the stock and escapement is increased (p > 0)
or decreased (p < 0).

5 Efficiency of the linearized model

By log-linearizing the Euler equation about the deterministic steady state,
we have derived a state-contingent policy whose properties are easily studied
and that is both intuitively appealing and easy to implement. A natural
question is to what extent this simple policy and its associated stocks and
profits deviate from the fully optimal (i.e. non-linearized) policy function.
While this question is most certainly empirical, and will depend on the specifics
of any given problem, here we examine this question over a large range of
reasonable parameter values for the model in Equations 10.

The first step in comparing our linearized policy with the fully optimal
policy involves solving for the optimal policy function. As noted above, while
special cases of our problem have known analytical solutions, a fully optimal
analytical solution to the general problem has never been found. We thus rely
on numerical dynamic optimization techniques to derive the optimal solution.
Specifically, we use value function iteration (Judd 1998), which involves iter-
ating on the two-dimensional value function, until the (also two-dimensional)
policy function converges. By choosing a finer and finer grid, this method
allows us to get arbitrarily close to the fully optimal policy (albeit at consid-
erable computational expense). The Bellman equation for our problem is:

Vi(st, 2e) = fo S(st,7¢) + 0B Vig1(Se41, Ze41)- (11)

Upon convergence, the infinite-horizon policy function, z; (s, z;) gives the op-
timal escapement as a function of stock and the most recent environmental
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Figure 4: Diagnostics of the optimal nonlinear policy vs. the linearized model.
Panel 1 shows the sample policy function. Panel 2 shows the difference between
policy functions. Panel 3 shows the density of steady state stock. Panel 4
shows the density of profit.
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Figure 5: Fully optimal nonlinear rule (solid) and the linearized rule (dotted)
for a case in which extinction under the linearized rule may be possible.

shock with no presumption about the functional form of this relationship. In
contrast, by log-linearizing the Euler equation, we obtain an explicit policy
that is linear in the two state variables: x; = C + As; + Bz,.. The final de-
tail required to implement our comparison is a specification of the statistical
distribution of the environmental shocks. Recall equation (2),

— P
2t = ViZp_q-

For the purposes of this experiment, we assume v; ~ N(1,02), and we use
standard deviation o, = 0.2. To guard against the possibility that z; = 0,
which implies extinction of the resource, we truncate this distribution slightly
above zero.
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Figure 6: Probability of extinction over time from strict application of the
linear rule when extinction is possible.

5.1 Base case comparison

Our base case parameters include a downward-sloping demand curve (¢ = 0.5),
a stock effect on harvest cost (f = 0.35), and positive serial correlation (p =
0.5). The optimal policy, derived numerically, is tangent to the linearized
policy around the deterministic steady state, but is strictly concave rather
than linear. Panel 1 of Figure 4 plots the two policy functions for the case
where z; = 1.0. Overall, the policies are nearly coincident. When the stock
deviates significantly from the deterministic steady state, the optimal policy
is to escape slightly fewer fish than would be called for under the linearized
policy. The deviation in policy functions, represented by the light shade in
panel two, depends on the particular combination of z; and s;. Near the de-
terministic steady state (approximately z; = 1, s, = 50 for these parameters),
the difference is negligible. Deviations of up to 5 are possible, if z; is extremely
low and s; is extremely high. Deviations of the converse (z; high and s; low)
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are misleading because the linearized policy suggests a policy where x; > s,
which violates the non-negativity constraint on harvest (thus the dashed line
in Panel 1 has a kink where it intersects the 45° line).

Under the base case parameters, our conclusion is that the two policy
functions are very close, at least around the deterministic steady state. A
related question arises: How different are the dynamics of the two systems?
We already noted that the optimal policy leaves slightly lower escapement
than the linearized policy. Do these differences magnify as a result of sys-
tem dynamics, or are they dampened? To examine this question, we calculate
the long-run steady-state distribution of stocks, s;, under each policy function
using a Markov transition model for this (optimally controlled) stochastic pro-
cess. The third panel of Figure 4 plots the c.d.f. of the long-run steady state
distribution of stock under the linearized and optimal policies. The circle and
star on the horizontal axis shows the mean of each. Two results emerge. The
first is that the steady-state distributions of stock are nearly identical. The
second is that the long-run mean stock under the linearized policy is slightly
above that of the optimal policy. This makes intuitive sense upon reflection
that the escapement of the latter is always slightly lower than the former. Not
surprisingly, profits follow a similar pattern. The fourth panel of Figure 4 plots
the c.d.f. of the steady-state distribution of annual profits under each policy.
Note here that expected profits under the optimal policy (* on horizontal axis)
is larger than under the linearized policy (O on axis), though by less than 1%.

5.2 Comparison over general parameter values

Provided that the assumptions of this model are met, the linearized policy
continues to perform extremely well over a wide range of reasonable parameter
values.'® Expected net present value of the fishery under the linearized model
was typically less than 0.1% smaller than the value under the optimal policy; in
no case did the deviation exceed 1%. Perhaps equally relevant is the effect on
the long-run steady-state distribution of stock. We found that the linearized
policy can either yield larger, or smaller expected stocks than the optimal
policy, but the deviations were small - typically less than 0.5%, and never
greater than 3%. Distributions of stocks were nearly coincident.

An important caveat remains. For the linearization to be valid, we require
that perturbations do not catapult the system far away from the deterministic
steady state. An example of a clear violation of this criterion is when following

15We conduct the experiment described above for a full factorial of parameter values in
the ranges ¢ € (0,0.7), 8 € (0,0.9), and p € (—0.7,0.7).
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the linearized policy leads to extinction of the stock. Importantly, because the
only source of stochasticity is a multiplicative shock to production, only two
avenues can lead to extinction. The first is that z; = 0 for some ¢, a case
we rule out by assumption. The second possibility is x; = 0 for some t.
Provided the discount rate is sufficiently small, forced extinction could never
be optimal. However, because the linearized policy does not explicitly account
for possibilities such as extinction, the linearized policy could lead to forced
extinction.

Consider, for example, the model above with ¢ = .7, § = 0, p = 0, and
standard deviation of shocks o, = 0.3. In this case, the linearized policy
intersects the stock axis, even for z = 1 (Figure 5). While the policy performs
very well near the deterministic steady state, the large standard deviation on
stochastic shocks can occasionally reduce stocks to unsafe levels (e.g. if z =1,
then s < 20 would lead to immediate extinction under a strict application
of the linearized policy). How likely is this outcome? Figure 6 shows the
probability of extinction under strict application of the linearized policy; the
stock is likely to go extinct within 20-30 years. Applying the fully optimal
policy (solid line in Figure 5) results in a probability of extinction of zero.

While this example illustrates our caveat, we found that it is the exception,
not the rule. For over 90% of the cases examined in this experiment, extinction
did not occur under either policy. While our framework does not technically
apply in the extinction case (we restrict attention to interior steady states),
we offer the following suggestion: If the linearized policy function does not
intersect the s axis (i.e. if C'+ Bz > 0, Vz), then forced extinction is not
possible. If C'+ Bz < 0, then the possibility exists, and some precaution is
warranted when stocks approach dangerously low levels.

6 Conclusion

Most fisheries are characterized by nonlinear economic relationships and in-
herent environmental stochasticity. In combination, these two features signifi-
cantly complicate analytical models of optimal fishery management. As such,
earlier authors have either ignored one of these complications or resorted to
numerical analysis. In this paper, we apply to the stochastic fisheries problem
tools of dynamic stochastic general equilibrium and multivariate linear expec-
tational difference equations developed in the macroeconomic literature. By
adopting these techniques, we are able to solve the fisheries harvest problem
in a general model that includes serially-correlated shocks, downward sloping
demand, quantity-dependent marginal costs, and risk aversion. The solution,
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based on a linear approximation, yields a simple policy function. Optimal es-
capement is a linear function of the current stock and productivity shock, with
coefficients that depend on the root parameters of the model and steady-state
values.

The properties of this linear policy function are easily studied, and we
establish a number of new theoretical results. We present the sufficient con-
ditions for the optimality of a constant escapement policy that is currently
applied in many actual fisheries. These include i.i.d. productivity shocks, per-
fectly elastic demand, risk neutrality, and harvest-independent marginal costs.
Further, we show that if any one of these conditions fails to hold, then constant
escapement is no longer optimal. The assumption of a constant price may be
reasonable for fisheries that represent a small share of a global market, such
as national fisheries for tuna, crab, and squid. Even when a species is caught
elsewhere, however, demand in local markets for live fish can be inelastic. As
well, single fisheries may represent large shares of the global market, as with
Bristol Bay sockeye salmon, Alaskan halibut, and Peruvian anchoveta. Fur-
ther, as noted above, evidence indicates that productivity fluctuations in ocean
fisheries exhibit serial dependence. We show that downward-sloping demand,
and other nonlinearities in profits, causes optimal escapement to depend on
the current stock. With serially-correlated shocks, optimal escapement also
becomes a function of the current shock.

Numerical analysis helps us understand how the model parameters affect
the optimal policy function. Two general insights emerge. The first is that
nonlinear profits induce the optimal smoothing of harvests. Consider, for
example, a fishery with a stock above its steady-state value. With downward-
sloping demand and harvest-dependent marginal costs, the manager should
not harvest all of the surplus at once, as under a constant escapement pol-
icy, but rather smooth the harvest over time to avoid depressing prices and
raising marginal costs. The second insight is that serial correlation in the
productivity shocks provides the manager with information about the future
“rate of return” on escaped fish. When the correlation is positive, a positive
current shock signals positive shocks in the future, and escapement should
be increased to take advantage of higher future productivity. With negative
correlation, a positive current shock indicates lower future productivity and
escapement should be curtailed, a result whose intuition is echoed by Costello
et al. (2001) and Carson et al. (2009).

To solve the model, we linearize the Euler equation and production func-
tion around a deterministic steady-state. Thus, a natural question is whether
the resulting approximate solution departs considerably from the fully optimal
solution. Markov Chain simulations reveal that the linearized policy performs

http://www.bepress.com/bejeap/vol 9/issl/art56 22



McGough et al.: Stochastic Resource Management

almost identically to the fully optimal program (profits less than .1% smaller).
This finding has practical implications for fisheries management. When the
assumptions needed for constant escapement are violated, our approach can
be used to derive simple policy rules. We demonstrate that the model can be
solved for general specifications of demand, costs, and risk preferences, indi-
cating that our approach can accommodate whatever economic information
is available for the fishery (provided the required convexity assumptions are
met). Moreover, while we used a standard representation of the stochastic
stock-recruitment relationship, the approach is flexible in this regard. In par-
ticular, the shock need not be multiplicative nor be limited to a first-order
autoregressive process.

While we analyze a standard model of a stochastic fishery, the methods
are applicable to a broader class of renewable resource problems. The model
considered here can be extended to represent capital, entry-exit, and other
common features of fisheries. As well, the approach can be adapted to other
natural resources such as forests, wetlands, and wildlife species. McGough
et al. (2004) use these methods to study price dynamics in a rational tim-
ber market. In the macroeconomics literature, these methods were developed
to study general equilibrium with imperfect markets and endogenous policy
responses. Clear parallels to renewable resource markets exist, including fish-
eries with incomplete property rights and endogenous regulation, e.g. Homans
and Wilen (1997). The techniques presented here can be used to approximate
the market equilibrium when numerical methods are intractable.

7 Appendix

The linearization

The log-linearization technique employed here is standard, and can be found,
for example, in Evans and Honkapohja (2001). The parameters of equation
(7) are given by a = a; — ag where

S
a; = (—O’S_U_l%(p —¢)+ 5, %(ca — 1 — p’)) x

ay, = 0f"S7° <p—c—/ CQ(W,S_W>dCU) x,
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and

053 ,
b= (oS- 5w -

d = of (—0550_1% (p— c—/ ca(w, s —w)dw) —S577 @ — cg)> T

e = 5f’{—05t01% (p—c—/ @(w,s—cu)dw),

+S57° <p’ — —/ Coo(w, s — w)dw) }3,

g = of <5§”(P—C—/;62(w,8—w)dw)>p.

Here m = 2'(z)/ f (),

8

Ox .

(;_S = p(§—x)—c(s,0) — / o (w, s — w)dw,
S T

= c(x,s—x)—p(s—1)

and everywhere, p ane p’ are evaluated at s — z, in a; and b the functions c,
c1 and ¢y are evaluated at (x,s — x), in as, d, e, and ¢ the functions ¢ and ¢
are evaluated at (s,0) and ¢y at (z,s — x).

Proof of Proposition 1

To prove this proposition, we solve equation (7) for its unique covariance sta-
tionary solution, which is precisely the linear approximation to the unique
process satisfying the Euler equations and the transversality condition.!

For notational simplicity, we drop the tildes on the variables. Write (7) as

(a —em)xy + bmaxy_q + bzy = dEyxii1 + (ep + g) 2t (12)

Now let & be the manager’s forecast error for escapement. Then & = z; —
FE;_1x;. Because the manager is rational, his expected forecast error is zero,
that is, & forms a martingale difference sequence. Our task is to find the

16Tn the parlance of expectational difference equations, the system (7) is said to be “de-
terminate,” which, in this linear case, means there is a unique non-explosive solution. This
“determinacy” follows from the fact that we have imposed sufficient convexity assumptions
on the model to guarantee that the programming problem has a unique solution.
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correct restriction on this sequence so that (7) is not explosive. To this end,
replace Fyxyyq in (12) with x40 — &11. We may then form the stacked system

(a—em) bm b— (ep+g) Ty
1 0 0 Ti—1
0 0 p 2t
d 0
0 0
0 1

0 Tit1

0 2, _ ( §t41 ) ‘

1 Zt+1 UH_I
Letting wy = (24, x4-1,2¢), & = (&, v¢)’, we may write this in VAR(1) form
as w; = Dw;_1 + Fe;. Now write D = S(A\; @ Xy @ p)S~! where the \; are
endogenous eigenvalues of D written in decreasing order of magnitude, and
the columns of S are the associated eigenvectors. The saddle-path stability of
the system is reflected in the fact that the modulus of Ay is larger than one
while the modulus of Ag is less than one. For this VAR(1) system to be non-
explosive, it must be the case that the forecast error is chosen is such as way
as to impose that the vector w; remain in the direct sum of the eigenspaces
spanned by the second and third columns of S, i.e. the spaces for which
the associated eigenvalues are contracting. This is accomplished by letting
Wy = S~lw, and setting w;; = 0. This equality places a linear restriction on
the entries in wy, namely Sz, + 52z, 1 +532 = 0, where S¥ is the ij'" entry
of S1. We may solve this linear restriction for z;. For notational simplicity,
we make the following definitions:

I
o O X
o~ o

d b —b
Rl == ) R2 = — m ) Rg = u (13)
a—em a—em a—em
Algebra shows
1—v1-4 _
a= Ml nd =2 g (14)
2R1 1 —Rl(a+p)

Proof of Proposition 2

This proof and the remaining proofs rely on the algebraic dependence of A
and B , which are easily computed to be

A:g and B=0b— A.
m

Constant escapement obtains if and only if A = B = 0. Now notice that A.1
implies p-e =0 and g = 0 and A.2, A.3 and A.4 imply b = 0. Thus R3 = 0
so that a and b are zero. m
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Proof of Proposition 3

Using the notation from the previous proof, it suffices to show that if A.i is
violated, with A.j holding for 7 # ¢, then R3 # 0. In case ¢ = 2,3, or 4, this
follows from the facts that 1. if p =0 then e- p+ ¢g = 0; and 2. the condition
p > ¢ (which is necessary for optimality), together with one of the assumptions
A7, implies b # 0. In case p # 0, and A.2, A.3, and A.4 holding, we have that

ep+9="30fplp—(c+ci))

This expression can not be zero because p > ¢ and we have assumed decreasing
marginal costs of harvest, i.e. ¢; <0.m

Proof of Proposition 4

Optimal escapement is given by equation (8) above. To prove this result, it
suffices to show that bm = a, because, by (8), this implies that
xy = b(mxzy_y + 2) = bsy,

where the last equality follows from the linearized production function. To
demonstrate bm = a, use p = 0 to obtain

- R3m

bm = ——— 15
" T 1-Ra (15)
1++v1—-4R R,
2Rym (1 — 1 —4R/R;) Ry _
= = —ma. (17)
4R Ry Ry
By the definitions above,
By _b-yg
RQ B bm ’

and since g = 0 whenever p = 0, it follows that (R3/R:)m =1. =

Proof of Proposition 5

Notice that p’ = 0,0 = 0, and ¢, = 0 implies that b = 0 and d = 0. By the
above relations, we get that R; = 0 and Ry = 0. Now notice that

ft = RlEt:itH + Rgft_l + Rgzt.

Because Ry = Ry = 0, the result obtains. m
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