
Hardware Assisted Packet Filtering Firewall

Shubhash Wasti
Department of Computer Science

University of Saskatchewan
57 Campus Drive

Saskatoon, SK S7N 5A9
Canada

email: shw320@cs.usask.ca

Supervisor: Ralph Deters

Abstract

A packet filter is a hardware or software mechanism that can be configured to select packets from a
traffic stream based on some criteria. Many research works have been done in the past in the area of
classifying packets based on one or more packet header fields. Those works are directed towards finding
efficient algorithms and implementation architectures for high speed routing, Quality of Service (QoS),
security enforcement through the use of firewalls, and other similar applications. This paper presents
an overview of existing packet classification schemes, with particular attention to the ones that deal
with classification based on multiple fields, are suitable for firewalls, and have possibility of efficient
implementation using hardwares such as Content Addressable Memories (CAMs). With the availability
of more flexible and faster CAMs in the past few years, their use in search applications has become more
promising. Therefore, a major portion of this document also goes into discussing the possibilities of
using CAMs for packet filtering.

1 Introduction

A firewall is a system designed to prevent unauthorized access to or from a private network. Firewalls are fre-
quently used to prevent unauthorized Internet users from accessing private networks connected to the Internet,
especially intranets, although the use of firewalls to protect single PCs from the Internet is also growing, as more
and more computer users become aware of security implications of the networked world. Firewalls can be im-
plemented in both hardware and software, or a combination of both, and generally fall into one of the following
categories:packet filter, application gateways, circuit-level gateways, andproxy servers. While they all have
different levels of usefulness and drawbacks in different situations, this paper only deals with packet filters, as
they are more likely to be efficiently implemented in hardware.

Filtering packets based on their header fields is a well known method of restricting access to network resources
[Chapman, 1992, Corbridge et al., 1991]. Filtering requires the ability to classify packets according to specified
filter rules. The rules can be viewed as logical functions on the packet header fields. Classification of packets also
arises in other areas of computing, such as routing, policy based routing, differentiated Quality of Service, traffic
billing, etc. [Gupta & McKeown, 1999]. However, not all of them use or require classification based on multiple
fields in the packet header. For instance, a simple packet forwarding router only needs to classify packets based
on one field (destination IP address) to perform the routing correctly. The conceptsfiltering andclassification
are tightly tied together, and so, these terms will be used rather loosely in this document, unless a distinction is
necessary to avoid confusion.

The idea of packet filtering, or classification in general, was initiated in [Mogul et al., 1987] and later expanded
by others [McCanne & Jacobson, 1993, Yuhara et al., 1994, Begel et al., 1999]. Although packet classification
problem occurs in many areas of Computer Networks, the main focus of this paper is in the context of firewalls.
Fast and effective classification of packets based on multiple header fields is a challenging problem. There are

1



Shubhash Wasti

mainly two approaches to the implementation of filtering system:interpreter-based andpattern-based. The
first approach consists of a set of instructions (compiled from the rule specification) and an interpreter engine to
interpret the instructions (with the use of some form of processing power), while the latter approach matches a
pattern using some comparison mechanism and does not require an interpreter engine. It is also possible to use
both of those approaches together to achieve a balance between convenience and efficiency.

1.1 Filters and Rules

The criteria for classifying packets are calledfilters; in firewall terminology they are calledrules. In this paper,
these terms will be used interchangeably unless the distinction can improve clarity. A filter can be defined more
formally as an ordered pair(F,A), whereF is a boolean expression andA is the action to be taken if the
expression is true.

The information relevant to classification of a packet is contained in the header of each packet. For instance, the
relevant fields of an IPv4 packets could be the destination IP address (32 bits), the source IP address, the transport
level protocol field (8 bits), the source port (16 bits), the destination port (16 bits), and the TCP flags (8 bits). The
filter database, also known asaccess list, consists of a set of filters. Each filter requires the matching of a number
of fields. There are two administrative approaches for using a firewall:that which is not expressly forbidden
is permitted andthat what is not expressly permitted is forbidden. If none of rules in the access list matches
a packet, in the first approach the packet is accepted, whereas in the second approach the packet is rejected. The
second approach is more conventional and secure, and so used by many existing firewalls as default.

[Molitor, 1995] describes a general architecture for packet filtering. He defines an access policy asa collection of
lines of text, each line describing a certain class of data (for example, TCP packets from host A to host B) and a
reaction to take to such a data (e.g. drop it and log an access violation to host D). He also insists that the definition
of dataand thereactionshould be left as open-ended as possible, so that a perfect architecture for implementing
access policy would permit anything whatsoever to appear in those imaginary lines of text. He stresses more
on flexibility than on the performance issues, giving the reason thatperformance is in general adequate, which
unfortunately is not true any more.

The following is an example of a partial set of rules. These rules can be viewed as lines of text as described above
or from a more abstract level, in which case, these are human-readable representations of logical expressions.

RULE DIRECTION TYPE SRC ADDR DEST ADDR DEST PORT ACTION
1 in tcp 135.29.* 169.228.63.5 25 permit
2 out tcp * 128.245.9.29 any deny
3 any any any any any deny

One of the major shortcomings of packet filtering as an access policy paradigm is the stateless nature of it, i.e. the
only information about the packet currently being examined can be used to make the filtering decision. However,
applications are not in general stateless, and often one would like to be able to gather information and examine
state at a level closer to that of the application.

More advanced packet filtering systems known asdynamic packet filtersor stateful packet filtersare also in
existence, which offer state tracking and/or protocol checking. These systems provide the ability to do things
which can not be done otherwise, but they also add complications such as exposing themselves to a number of
denial of service attacks and address forging. A stateful packet filtering system allows to specify rules like the
following [Zwicky et al., 2000, pp.169-70]:

Let the incoming UDP packets through only if they are responses to outgoing UDP packets already seen.

1.2 Filter Matching Problem

Packet filtering or classification problem, using multiple packet-header fields and allowing range matches, is
difficult to implement at high speeds and with a large rule set [Lakshman & Stiliadis, 1998]. We need to consider

2



Hardware Assisted Packet Filtering Firewall

mainly three types of matching of a field [Srinivasan et al., 1998]:

• Exact match: This type of matching requires exact matching of the filter field, i.e. there is only one value given
in the filter for that field. Requiring the source port of the packet to be equal to80 would be an exact match.

• Prefix match: It requires the filter field to be the prefix of the header filed of the incoming packet. If the rule is
designed to block access from any source with the IP address128.233.*.* , then it requires a prefix match.
A slight variation of prefix matching can be achieved by allowing arbitrary masking of the filter field, but this
type of matching is rarely useful. The arbitrarily masked filters will be calledmask-based filtersin this paper.

• Range match: A range match requires the value of a header field to lie in a range specified by the filter. This
is useful in specifying port number ranges like1 – 1024 .

Both the range match filters and prefix match filters represent a collection of exact match filters, but they are not
expressible in terms of each other. [Woo, 2000] points out that there is no direct mapping from range-based filters
to mask-based filters and vice-versa. In other words, some range filters (e.g. 9 – 21) can not be expressed as
a single equivalent mask-based filter and some mask-based filters (e.g. *1*1) can not be expressed as a single
equivalent range filter. He further mentions that when a range-based filter is expressed in terms of mask-based
filters, the number of mask-based filters ranges from 1 tof − s + 1, wheres andf are the lowest and highest
values in the range.

The problem of IP routing is a simplified version of a more general problem of packet classification based on
multiple fields. The main difference between routing table lookup performed by a router and the filter matching
done by other packet classification systems is usually in the number of rules and number of fields that they have
to deal with. A router’s routing table may consists of a large number of filters, whereas a packet filtering firewall
would probably contain a much smaller rule database. Moreover, the routing decision of the router is usually
based on only one field (destination IP address), which is not the case for more general packet classifiers such as
a firewall.

The general packet classification problem can be viewed as a classical problem in computational geometry known
as point-location problem in multidimensional space[Lakshman & Stiliadis, 1998]. The point-location prob-
lem is defined as follows: Given a point in ad-dimensional space, and a set ofn d-dimensional objects, find
the object that the point belongs to. Existing algorithms dealing with this problem are limited to the case of
non overlapping objects. The best algorithms in this category are either anO(logd−1 n) time-complexity with
O(n) space-complexity, or anO(log n) time-complexity withO(nd) space. These algorithms measure well for
a system with small number of rules, but become impractical for large number of rules with many dimensions
[Lakshman & Stiliadis, 1998]. For the special case of two dimensions and non-overlapping rectangles, there exist
some solutions that are much more efficient time and space-wise. However, these can not be applied to the general
case of packet filtering problem simply because of the number of dimensions and overlapping rules.

A realistic packet filtering system contains more than one filter. When there are a number of filters, they have
to be represented by some data structures in an efficient way so that the collection can be searched as quickly as
possible. There is a delicate balance between the search speed and the amount of storage used. Various software
based packet filters have their own algorithms to search the filters, and structures to store them in memory. Mostly,
these structures are variations of PATRICIA [Morrison, 1968] and some form of trie [Clément et al., 1999] trees.
[Woo, 2000] has noted that an efficient search requires a global optimization of the data structures, which can be
computationally very expensive, and the suitability of a search algorithm can be highly dependent on the total
number of filters.

When more than one filters are applicable to an IP packet, the packet classifier has to make a decision as to which
filter to apply. Most packet filtering systems use the technique of filter prioritization. The highest priority filter is
applied in the case of conflict. However, [Hari et al., 2000] claims that conflict resolution by prioritization does
not always work. The authors of the paper model each filter by a node of a directed graph and show that the filter
conflict problem can be formulated as acycle elimination problemin a directed graphC . They have shown that
if the graphC contains a cycle, it is not possible to resolve the filter conflict by filter re-ordering. Since conflict

3



Shubhash Wasti

resolution of rules is an entirely different issue and a difficult problem to solve in general, it will not be further
discussed in this paper.

2 Design Issues of a Packet Filter

Although the design of a packet filtering system is primarily influenced by its use, more flexibility and efficiency
are almost always desired. Efficient use of available resources and maintainability of the system are of high
priority in all packet filtering systems. The following considerations are necessary to make robust and flexible
packet filtering firewall [Feldmann & Muthukrishnam, 2000, Jayaram & Cytron, 1995]:

• Resource limitations: There should be a balance in the memory requirement and the time taken to classify the
packet. While the goal should be to minimize the time required to classify each packet, it should not lead to an
unreasonably high memory demand.

• Number of rules to be supported: The packet filter should not have arbitrary limits on number of rules that
can be present in the system.

• Number of fields (dimensions) used: The packet filter should allow the user to specify any number of header
fields for the purpose of packet classification. Arbitrary restrictions on the use of headers for classification
reduces the flexibility and control that might be necessary for a desired level of protection.

• Nature of rules: The rules should allow all types of matches (exact, mask-based, and range-based matches) as
far as possible.

• Protocol independence: The filtering system should be protocol independent, so that filtering is supported for
different protocols and at different levels.

• Specification language: The filter specification language should be general and sufficiently expressive to spec-
ify various types of filters.

• Fragmentation: The packet filter should be able to handle packet fragmentation.

• Scalability: It should be scalable with the number of rules as well as the volume of traffic.

• Efficient rule update: The system should allow the addition and removal of rules with minimum disruption in
the processing of packets.

• Auditing : The packet filter should have mechanisms to audit. In other words, it should be able to keep a log
of all access attempts, both accepted and blocked, if required, as well as information that may be of statistical
significance.

• Rules prioritization : In the case where a packet matches more than one rules, the packet filter should allow
arbitrary priorities to be imposed on those rules, so that only one rule will be finally applicable.

• Arbitrary field matching : The packet filter should be able to match arbitrary fields, including that from link-
layer, network layer, and transport layer. In some cases, even application layer headers might be of interest.

• Maintainability : The set of rules in a packet filtering system can be large and these rules might have been
added to the list over a period of time, and possibly by more than one person. Any reordering of the rules
within the list can completely alter the semantics of the rule set. Furthermore, there might be conflicting rules
which can cause undesirable filtering behavior. This naturally makes the verification of the access list and its
maintenance difficult and error-prone. If the packet filter system can provide easy and visual ways to specify
the rules and if it can visually show the semantics and relationships of the rules in the access list, that would be
a very highly desired feature.

Although the above list reflects what is desirable in a packet filtering system, not all existing packet filters meet
all of the requirements. Some packet filters might focus more on some of the above aspects while ignoring other
aspects that they consider less important or are too difficult to implement.

4



Hardware Assisted Packet Filtering Firewall

3 Current Packet Classification Schemes and Implementation Issues

3.1 Classification Algorithms

A packet filtering system requires a set of rules to operate properly. Each ruleR specifies aclassthat a packet
may belong to based on some criteria on the packet headers. An alternative way of viewing the ruleR is the set
of all packets with headers that could match R[Gupta & McKeown, 1999]. This set theoretic view of rule allows
us to define some terms that are useful in discussing the rules. Two distinct rules are said to be eitherpartially
overlapping, non-overlapping, or one is a subset of the other. In many access lists, not all rules are disjoint. In
such a case, the filters are prioritized according to their ordering or in some other ways, and the highest priority
rule is said to have matched a packet.

The suitability of an algorithm to a packet filter depends on many factors such as the number of rules, number
of dimensions, the target environment (e.g. hardware or software), expected volume of traffic, etc. Therefore,
an algorithm developed for a particular situation may not be the best choice for another situation. Many research
works in the past have focused on the single-field packet classification, used by many routers for packet forwarding
[Filippi et al., 1999, Harbaum et al., 1998, McAuley & Francis, 1993, Gupta et al., 1998, Waldvogel et al., 1997].

While it is difficult or impossible to examine the algorithms and approaches used by many of the commercial
implementations of packet filters, there are some algorithms and their implementations that are published in the
literature, which can be used to explore packet filtering techniques. Not all of those algorithms were designed
or optimized for hardware implementation. Some of the most popular packet classification algorithms are listed
below with short descriptions:

1. Sequential matching: For each arriving packet, each rule is evaluated sequentially until a rule is found that
matches all the packet headers that are of concern. Despite its simplicity and efficient use of memory, it has
poor scaling properties since the time to perform classification grows linearly with the number of rules.

2. Hardware algorithms using ternary CAMs : Ternary CAMs (content addressable memories) can store words
with three-valued-digits: ‘0’, ‘1’ and ’*’ (wildcard). Each rule is represented by one or more entries in the
CAM. Since the CAM does not support some operators such asgreater thanor less than, some rules need to be
broken down into multiple entries in the CAM to be represented by the available three-digit based patterns. The
CAMs also have built in priority mechanism so that the entries with lower address values have higher priority in
the case of multiple matches. The comparison is performed in parallel, which makes it an attractive alternative
to the linear search algorithm.

3. Grid of tries : [Srinivasan et al., 1998] proposes a scheme in which the trie data structure is extended to two
fields. This provides a good solution if there are only two fields, however, for more than two fields, it does not
extend very well. They also describe another more general solution called‘Crossproducting’, which can handle
more than two fields. According to their experiment, it uses 1.5 MB of memory for 50 rules. For more rules,
they suggest a form of caching technique.

4. Bit-parallelism in hardware : [Lakshman & Stiliadis, 1998] describes a scheme optimized for hardware imple-
mentation, which employs bit-level parallelism to match multiple fields concurrently. The authors implemented
five dimensional packet classification in a high speed router prototype using a FPGA device and five 1M-bit
SRAMs. They achieved a classification rate of 1 million packets per second (in the worst case) for 512 rules.
Two variations of the algorithms have been suggested, one is space efficient while other is time efficient.

5. RFC classification: [Gupta & McKeown, 1999] points out that in reality the packet filtering rule sets contain a
considerable structure and redundancy that can be exploited by the classification algorithms. They estimate that
a multi-stage algorithm, called RFC (recursive flow classification) can be used to classify 30 million packets
per second in pipelined hardware, or one million packets per second in software.

This paper focuses primarily on the hardware implementation of the packet filter, and so, will not go into depth of
all of the algorithms listed above.

5



Shubhash Wasti

3.2 Existing Packet Filters

There are a number of packet filters currently available, both commercial and non-commercial. Due to the lack of
knowledge about the underlying implementation of commercial packet filters, only the publicly available packet
filtering systems are discussed below:

1. CSPF (CMU/Stanford Packet Filter): CSPF is an interpreter-based filtering mechanism. The filter specifi-
cation language is stack-based and contains binary operations which are used to evaluate boolean operations.
The filter programs evaluate a logical expression on the fields of the header of the received packet, accepting
packets based on the result. The expressions to be evaluated is structured as a tree, with internal nodes per-
forming boolean operations (OR/AND) and leaf nodes performing comparisons. Some of the shortcoming of
CSPF are redundant computations caused by the tree model of evaluation, lack of indirection operator in the
specification language (which forces to deal with only fixed length fields), and lack of support for composition
of filters [Jayaram & Cytron, 1995].

2. BPF (BSD Packet Filter): BPF is also an interpreter-based filtering mechanism, however, the filter specifica-
tion language is register-based (instead of stack-based). It provides support for handling varying length fields.
Furthermore, it uses DAGs as model to evaluate filter expressions, avoiding redundant computations inherent
in CSPF.

3. MPF (Mach Packet Filter): MPF extends the BPF filter specification language by adding instructions for
handling filter composition and fragmentation. The main focus of MPF is on demultiplexing packets to multiple
endpoints efficiently by composing filters and on handling fragmented packets. MPF supports only one specific
case of filter composition, namely, the case where the filters share an identical prefix and followed by a variation
at a single point in the header.

4. PATHFINDER : PATHFINDER [Bailey et al., 1994] is a pattern-based filtering mechanism which allows more
general composition of filters with common prefixes than MPF. It is suitable for both software and hardware
implementations.

5. BPF+: BPF+ extends BPF by adding powerful optimization techniques. It includes a filter program translator,
a byte code optimizer, a byte code safety verifier, and a just in time assembler to convert byte codes to efficient
native code [Begel et al., 1999].

6. DPF (Dynamic Packet Filters): DPF uses the declarative packet-filter language that is aggressively optimized
using dynamic code generation. Dynamic code generation is the creation of executable code at run time. The
basis of DPF is also filter interpretation, as is the case for many other filters including BPF and MPF. The
authors of DPF claim that the performance of DPF compares very closely to in-kernel routines while retaining
all the flexibility of the packet filter model [Engler & Kaashoek, 1996].

3.3 Problems in Packet Filter Implementations

A number of difficulties arise in the design and implementation of a secure and efficient packet filtering firewall.
Some of the problems that need to be addressed are listed below:

• Although packet filtering systems generally do not depend on the source IP address, there are some which
depend on it (especially the stateful packet filters). As the source IP address can be spoofed, a packet filter may
wrongly classify a packet. Filtering based on source port faces similar problem, as the source machine might
be running an unsuspected client or server on that port.

• Since the IP packet header can have variable length (due to theoptionsfield), it can be difficult to locate the
higher level protocol information, such as TCP/UDP headers, when using simple offset-based pattern matching
techniques.

• A packet may be fragmented to allow it to pass through a network that only supports smaller frame size. When a
packet is fragmented, only the first fragment contains the higher level protocol headers from the original packet,

6



Hardware Assisted Packet Filtering Firewall

which may be necessary to make filtering decisions for each of the fragments. Some packet filters just drop
the first fragment hoping that the other fragments will be useless to the receiver. However, this assumption can
be dangerous, since hackers have found ways to fool the system throughtiny fragment attacksandoverlapping
fragment attacks[Ziemba et al., 1995]. Another possibility is to keep a cache of recently seen packets and
simulate the reassembly process [Corbridge et al., 1991], however, it can significantly complicate the packet
filtering process.

• Many filter engines come with predefined header fields that can be used in packet filtering. This has severe
impact on flexibility. Unless the administrator can specify precisely which header fields are to be used in
decision making, the desired security policy can not be effectively implemented. For instance, one may wish
to block packets with TCP “SYN” flag set, but the packet filter may not allow this field to be used for filter
specification.

4 Hardware Implementation of Packet Filters

1. PATHFINDER [Bailey et al., 1994] is one of the early attempts of hardware implementation of packet filters. It
uses an offset based pattern matching algorithm and can be implemented in either hardware or software. A filter
is represented by aline, which is a collection ofcells. Each cell is given by a tuple consisting ofoffset, length,
mask, andvalue. If all the cells in a line match a packet, then the line is said to match the packet. Intuitively, a
line attempts to match a single protocol header; each cell matches a different field in that header.

For the hardware prototype implementation, they have used Altera FPGAs, but suggest that the use of custom
VLSI chips can increase both the number of cells and the speed. In their implementation, each cell matches a
single value, but they mention that range matching can be implemented by using two comparators. The authors
report that their hardware implementation can keep up with the OC-12 (622 Mbps) link. A detailed description
of PATHFINDER and its hardware/software implementation can be found in [Bailey et al., 1994].

2. [Woo, 2000] suggests a modular approach to packet classification which can be implemented in either hardware,
software or a combination of both. The idea behind the algorithm is divide-and-conquer, which operates first
by decomposing large filter table into smallerfilter bucketsof a fixed maximum size (from 8 to 128), and
processing filter buckets of limited size to find the match. It can optimize the search data structure by taking
into account the relative usage of the individual filters in a filter table. In an abstract level, this approach divides
the search space into three layers:index jump table, search tree, andfilter buckets. The jump table records the
location of each group of filters (represented by trees) which have been categorized using some initial prefixes
of selected dimensions. The search trees are2m-ary trees, which are constructed by examiningm bits of the
filters at a time, and dividing them into2m groups. The filter buckets consist of the set of filters left at the
leaf nodes when the division process terminates. In other words, a filter bucket contains the filters that are not
distinguished further. The search of the data structure is performed by first “jumping” to a specific subtree via
the jump table followed by a sequence of branching over the trees and finally landing in a filter bucket. Then the
bucket is searched using a linear search, a binary search, or a CAM-assisted search. The author mentions that
a CAM can be used to store each dimension (prepended with the filter bucket ID) of a filter in a filter bucket.
Each dimension can be concurrently searched and the results can be combined in a parallel step to obtain a
match.

3. Lakshman and Stiliadis [Lakshman & Stiliadis, 1998] have suggested an algorithm based on bit-parallelism.
Due to its use of very simple operations, it it can be implemented in hardware quite well. It only performs
integer comparison in binary search and parallel AND operation. The authors believe that despite the linear
time complexity of the algorithm, the use of bit-parallelism significantly accelerates the filtering operation. The
algorithm works in the following way:

A set ofn packet filtering rules ink dimension are defined. Let’s denote the set of ranges that define rulerm in
thek dimension by{e1m, e2m, . . . , ekm}. There are two stages of the algorithm:

• Filter setup stage: For each dimensionj (where1 ≤ j ≤ k), project all intervalseji (where1 ≤ i ≤ n)
on thej-axis, by extracting thejth element of every filter rule for alln filter rules. There are a maximum of

7



Shubhash Wasti

2n + 1 non-overlapping intervals that are created on each axis. Let’s denote thek sets of these intervals by
Pj (where1 ≤ j ≤ k).

For each intervali ∈ Pj , for all j in {1, 2 . . . , k}, create sets of rulesRij (where1 ≤ i ≤ 2n+1, 1 ≤ j ≤ k),
such that a rulerm belongs in setRij if and only if the corresponding intervali overlaps withejm in thejth

dimension, i.e. if and only ifi ⊆ ejm whereejm is thejth element of rulerm.

Without loss of generality, it can be assumed that the rules are sorted based on their priorities, i.e. higher
priority rule comes first. Let’s suppose that a packet with fieldsE1, E2, . . . , Ek arrives in the system.

• Packet filtering stage: For each dimensionj, find the intervalij on setPj thatEj belongs to. The authors
suggest using binary search or any other efficient algorithm for this purpose. After the intervals are found,
create the intersection of all setsRijj (whereij ∈ {1, 2, . . . , 2n + 1} by ANDing the corresponding bit-
vectors in the bit arrays associated with each dimension and determine the highest priority entry in the
resultant bit vector. The rule corresponding to the highest priority is applied to the arriving packet.

4. [McAuley & Francis, 1993] describes the use of CAMs for fast routing table lookup techniques, where the
table is composed of hierarchical IP addresses. Hierarchical addresses are the addresses that are arranged in
the fashion similar to the national telephone network. The hierarchies are created based on the initial prefixes
of the IP address. In the fixed-position hierarchical addresses, a fixed number of bits are used to create the
hierarchies whereas in the variable-position hierarchical addresses, a variable number of bits (not necessarily
prefix) are used to create the hierarchies. This scheme can be viewed as the use of masks to group similar IP
addresses. Although the paper primarily deals with the case of packet forwarding by routers and switches, the
idea can possibly be extended to more general packet filtering scenarios such as firewalls.

5 Use of CAMs and Associated Problems

A number of devices known ascommunications processorsare in use in the networking community for classifying
network traffic and enforcing policy functions. The programmability of those relatively new pieces of hardware,
consisting of components such as CAMs and microprocessors, ranks them superior to more traditional implemen-
tations of traffic classification based on ASICs [Walsh, 1999]. Although use of such communication processors to
build a firewall seems attractive, their use in building low cost devices such as network card with built in firewall,
seems unlikely due to the complexity and cost.

Another possibility for building a packet filter is to make use of CAMs. Memory applications involving searching,
have previously been implemented in programmable logic devices (PLDs) using random access memories (RAM).
Searching for an item in RAM can take many clock cycles depending on the depth of the RAM block. Unlike
RAM-based table-lookup implementations, CAMs can perform table lookups at much higher speed, as many as 66
million searches per second [Paul, 2000]. Ternary CAMs are typically used in data communications applications
such as carrier class edge and enterprise routers, core Internet Gigabit and Terabit routers, SONET systems, and
ATM switching equipments. A packet filtering firewall typically has to perform a large number of table lookups
for matching the rules. So, we can expect that these CAM devices will find extensive use in building firewalls.
Considering the transformation of CAM technology from binary CAMs to ternary CAMs and now ternary DRAM
CAMs, we can predict that these are going to be powerful tools for the search oriented applications. Kawasaki
LSI has listed “Classification CAMs”, “Longest Match Engines”, “Gigabit CAMs”, and other variations, in their
product catalogue (http://www.klsi.com/products/CAM.htm). Although, some of these are general purpose CAMs,
others are specialized for more specific tasks such as longest prefix matching. It should only be a matter of
time before some specialized CAMs appear in the market which can perform multidimensional pattern matching
with some support for arithmetic comparison (as required by range matching). In the present state, however, the
use of CAMs requires extra hardware and logic. Specifically, the following issues need to be addressed when
implementing a packet filtering firewall using currently available CAMs:

• Currently available ternary CAMs can only perform pattern based comparison, with the support for arbitrary
bit-masking. As they lack the numerical comparison, the range matching required by some of the packet header
fields (such as port numbers) can not be performed directly. As mentioned in section 1.2, there is no one to

8



Hardware Assisted Packet Filtering Firewall

one mapping of ranges to masks. This leads to the situation where all the rules have to be pattern based.
Conversion from range based rules to pattern based rules can significantly increase the number of entries in the
table, leading to higher memory requirements, and adds conversion overhead.

• Another problem that requires attention is that the CAMs can not perform any logical operations when matching
a pattern. i.e. when multiple fields of a packet header are to be matched, one CAM can only find a match for
one field, which means different fields have to be matched using different CAMs and combined in a separate
step. The combination stage can be tricky, because these partial matches should be further checked to make
sure that only the ones that are part of the same rule are combined.

• A rule may require positive matching or negative matching. i.e. a rule may specify that a particular header filed
should not match a given value, rather than saying that it should match that value. In this case, the header field
needs to be checked against the complement of the value. While finding the complement value of a range can be
relatively easy, it can be complicated for the case of IP addresses. For instance, if the destination address should
not match128.245.65.* , there is no easy way to specify one or two IP addresses that would be complement
of this. It is certainly possible to negate the CAM match flag if the CAM contains all negative matching fields.
However, that doubles the number of required CAMs, since now we have to take care of negative as well as
positive matching.

• A functional firewall should not have to reload the complete set of rules merely to adjust to some transient
requirements, such as adding a rule or removing a rule from the filter table, as that would make it very inefficient.
Addition of a rule to the table is straightforward process, since it can be added to the next available location,
however, deletion can be a problem. Since the rules have different priorities depending on which location they
are, reordering of rules is not allowed. This means deleting a rule would require either shifting up all the rules
below the deleted rule, or tagging the deleted rule as deleted and leaving it there. While the first approach is
unacceptable due to the large overhead, the second approach leads to inefficient memory use.

6 Conclusion and Future Work

This paper presented an overview of various packet classification schemes and their use in building packet filtering
firewalls. Our main goal was to explore the possibilities of implementing packet filtering firewall using hardware
devices. However, without enough knowledge about the existing software based techniques, it would be imprac-
tical to dive into hardware solutions. Therefore, software based techniques and hardware based techniques are
intermingled almost throughout this paper. We have identified some of the problems associated with the attempt
of building firewalls using CAM memory devices. Some of those issues might be resolved by more advanced
and flexible CAMs that might be available in future, while others require further investigation to determine their
severity and solutions.

A natural extension to this paper can be an in-depth exploration of the possibility of the use of CAMs in building
packet filters and their effect on the performance, cost, and flexibility. We plan to find systematic resolutions to the
issues pointed out in the previous section. The CAMs can be simulated by softwares and the effectiveness of var-
ious architectures and algorithms can be studied. After a reasonable architecture and methodology is developed,
a real hardware prototype can be built and experiments can be performed.

References

[Bailey et al., 1994] Bailey, M. L., Gopal, B., Pagels, M. A., Peterson, L. L., & Sarkar, P. (1994). PATHFINDER: A pattern-
based packet classifier. InProceedings of the First USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI).

[Begel et al., 1999] Begel, A., McCanne, S., & Graham, S. L. (1999). BPF+: Exploiting global data-flow optimization in a
generalized packet filter architecture. InProceedings of ACM SIGCOMM’99.

[Chapman, 1992] Chapman, D. B. (1992). Network (in)security through IP packet filtering. InProceedings of the Third
USENIX UNIX Security Symposium.

9



Shubhash Wasti

[Clément et al., 1999] Clément, J., Flajolet, P., & Vallée, B. (1999). Dynamical sources in information theory : A general
analysis of trie structures. Tech. rep., INRIA - Institut National de Recherche en Informatique et en Automatique.

[Corbridge et al., 1991] Corbridge, B., Henig, R., & Slater, C. (1991). Packet filtering in an IP router. InProceedings of the
fifth Large Installation Systems Administration Conference, San Diego, California, USA.

[Engler & Kaashoek, 1996] Engler, D. & Kaashoek, M. F. (1996). DPF: Fast, flexible message demultiplexing using dynamic
code generation. InProceedings of the ACM SIGCOMM’96.

[Feldmann & Muthukrishnam, 2000] Feldmann, A. & Muthukrishnam, S. (2000). Tradeoffs for packet classification. In
Proceedings of IEEE INFOCOMM 2000.

[Filippi et al., 1999] Filippi, E., Innocenti, V., & Vercellone, V. (1999). Address lookup solutions for gigabit switch/router.
CSELT Technical Reports, 27 (3).

[Gupta et al., 1998] Gupta, P., Lin, S., & McKeown, N. (1998). Routing lookups in hardware at memory access speeds. In
Proceedings of the IEEE INFOCOMM’98.

[Gupta & McKeown, 1999] Gupta, P. & McKeown, N. (1999). Packet classification on mutiple fields. InProceedings of ACM
SIGCOMM’99.

[Harbaum et al., 1998] Harbaum, T., Meier, D., Zitterbart, M., & Brøkelmann, D. (1998). Hardware assist for IPv6 routing
table lookup. InInternational Symposium on Broadband European Networks (SYBEN).

[Hari et al., 2000] Hari, A., Suri, S., & Parulkar, G. (2000). Detecting and resolving packet filter conflicts. InProceedings of
IEEE INFOCOMM 2000.

[Jayaram & Cytron, 1995] Jayaram, M. & Cytron, R. K. (1995). Efficient demultiplexing of network packets by automatic
parsing. Tech. Rep. WUCS-95-21, Washington University, Department of Computer Science, One Brookings Drive, St.
Louise, MO.

[Lakshman & Stiliadis, 1998] Lakshman, T. & Stiliadis, D. (1998). High-speed policy-based packet forwarding using efficient
multi-dimensional range matching. InProceedings of ACM SIGCOMM’98.

[McAuley & Francis, 1993] McAuley, A. J. & Francis, P. (1993). Fast routing table lookup using CAMs. InProceedings of
the 12th Annual Joint Conference of the IEEE Computer and Communications Societies on Networking.

[McCanne & Jacobson, 1993] McCanne, S. & Jacobson, V. (1993). The BSD packet filter: A new architecture for user-level
packet capture. InProceedings of the Winter 1993 USENIX Conference.

[Mogul et al., 1987] Mogul, J. C., Rashid, R. F., & Accetta, M. J. (1987). The packet filter: An efficient mechanism for
user-level network code. Tech. rep., DEC Western Research Laboratory, Palo Alto, CA.

[Molitor, 1995] Molitor, A. (1995). An architecture for advanced packet filtering. InProceedings of the fifth USENIX UNIX
Security Symposium.

[Morrison, 1968] Morrison, D. R. (1968). PATRICIA - Practical Algorithm to Retrieve Information Coded in Alphanumeric.
Journal of the Association of Computing Machinary, 15 (4):514–534.

[Paul, 2000] Paul, D. (2000). Ternary DRAM CAM: Now and the future. ElectronicNews Online. (URL checked: march 30,
2001).
URL http://www.electronicnews.com/enews/Issue/RegisteredIssues/2000/05012000/
z26f-2.asp

[Srinivasan et al., 1998] Srinivasan, V., Varghese, G., Suri, S., & Waldvoge, M. (1998). Fast and scalable layer four switching.
In Proceedings of ACM SIGCOMM’98.

[Waldvogel et al., 1997] Waldvogel, M., Varghese, G., Turner, J., & Plattner, B. (1997). Scalable high speed IP routing
lookups. InProceedings of ACM SIGCOMM’97.

[Walsh, 1999] Walsh, P. (1999). Communication processors: A buyer’s guide. (URL checked: march 30, 2001).
URL http://www.csdmag.com/main/1999/09/9909feat4.htm

[Woo, 2000] Woo, T. Y. C. (2000). A modular approach to packet classification: Algorithms and results. InProceedings of
IEEE INFOCOMM 2000.

[Yuhara et al., 1994] Yuhara, M., Maeda, C., Bershad, B. N., & Moss, J. E. B. (1994). Efficient packet demultiplexing for
multiple endpoints and large messages. InProceedings of the Winter 1994 USENIX Conference.

[Ziemba et al., 1995] Ziemba, G., Reed, D., & Traina, P. (1995). Security considerations for IP fragment filtering. Request
for Comments, RFC-1858.
URL ftp://ftp.isi.edu/in-notes/rfc1858.txt

[Zwicky et al., 2000] Zwicky, E. D., Cooper, S., & Chapman, D. B. (2000).Building Internet Firewalls. O’Reilly & Asso-
ciates, Sebastopol, CA, USA, 2nd edn.

10


