
Learning Low Dimensional Predictive Representations

Matthew Rosencrantz MROSEN@CS.CMU.EDU

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Geoff Gordon GGORDON@CS.CMU.EDU

CALD, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Sebastian Thrun THRUN@STANFORD.EDU

Stanford AI Laboratory, Stanford University, 353 Serra Mall, Stanford, CA 94305-9010, USA

Abstract
Predictive state representations (PSRs) have re-
cently been proposed as an alternative to par-
tially observable Markov decision processes
(POMDPs) for representing the state of a dynam-
ical system (Littman et al., 2001). We present
a learning algorithm that learns a PSR from ob-
servational data. Our algorithm produces a vari-
ant of PSRs called transformed predictive state
representations (TPSRs). We provide an efficient
principal-components-based algorithm for learn-
ing a TPSR, and show that TPSRs can perform
well in comparison to Hidden Markov Models
learned with Baum-Welch in a real world robot
tracking task for low dimensional representations
and long prediction horizons.

1. Introduction
Predictive state representations (PSRs) have recently
emerged as an alternative to partially observable Markov
decision processes (POMDPs) for representing dynami-
cal systems. Since they were first described by Littman
et al. (2001), PSRs have attracted interest because they
have been shown to have the same representational power
as POMDPs, but are potentially more compact. POMDPs
have been studied extensively in the literature (Cassan-
dra et al., 1994; Cassandra et al., 1997) but planning in
POMDPs poses difficulties since the algorithms are gener-
ally exponential in the state space of the model. PSRs have
not yet been fully examined, and it is hoped that the po-
tential compactness of the representation will lead to easier
planning problems and more easily learned models. In this

Appearing in Proceedings of the 21
st International Conference

on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

work we restrict ourselves to linear PSRs. The vast ma-
jority of the literature on PSRs relates to linear PSRs. (In
fact we only know of a single paper that addresses non-
linear PSRs, and then only for a specific deterministic case
(Rudary & Singh, 2003).)

PSRs seek to represent a dynamical system by fixing a
set of tests or queries about the world that could be ex-
ecuted and maintaining probability distributions over the
success or failure of those tests. This is in contrast to
POMDPs, which attempt to keep probability distributions
directly over all world states. In Section 2 we will review
the technical details of PSRs, but even from the above brief
description the three main problems related to PSRs are
apparent. First, there are an infinite number of possible
queries in any realistic environment so it is infeasible to
maintain probability distributions over all of them. There-
fore, we must find a small set of queries that forms a suffi-
cient statistic for the dynamical system. Singh et al. (2003)
have called this the discovery problem. Second, once we
have a small sufficient set of tests, we need to learn how to
maintain a probability distribution over the success of these
tests as the dynamical system progresses. We will refer to
this second task as the learning problem. A third obvious
problem is the planning problem, that is, given a distribu-
tion over the success of tests, decide what action we should
take to maximize some notion of future reward. In this
paper we address only the first two of these fundamental
problems.

We propose a variant of PSRs called transformed predic-
tive state representations or TPSRs. Instead of maintaining
probability distributions over the outcomes of a set of tests,
we will maintain linear combinations of these probabili-
ties. We present a new and efficient PCA-based algorithm
for learning the parameters of TPSRs and show how TP-
SRs help to alleviate the discovery problem. In addition,
we present experimental results where we learn a TPSR to
predict the outcome of a fixed policy in a real-world robot

navigation task. To our knowledge this is the first attempt to
build a predictive state representation from real robot data.
We compare TPSRs operating with fixed policies to Hid-
den Markov Models (HMMs) on our data (POMDPs with
fixed policies are equivalent to HMMs). Through this com-
parison we demonstrate that TPSRs have important advan-
tages over HMMs, and perform competitively with HMMs
learned via the Baum-Welch algorithm. We show that TP-
SRs perform particularly well when the dimensionality of
their model is restricted.

2. Predictive Representations
In this section we briefly review predictive state represen-
tations as described by Littman et al. (2001). A predic-
tive state representation (PSR) is a compact and complete
description of a dynamical system. PSRs represent their
belief about the state of the world as a set of probability
distributions over tests. Tests are a sequence of actions
and observations that can be executed at a given time. A
test is executed if we execute each of its specified actions
in order; a test succeeds if it is executed and the observa-
tions produced by the dynamical system match those spec-
ified in the test. For example, if a dynamical system has
actions {1, 2, 3} and observations {a, b, c}, then a run of
the system might produce the action-observation sequence
1b2a1c1c3a3b3c starting at time 0. Given this sequence we
could say that the test 2a1c1c was executed successfully at
time 1, the test 1c1b3a was executed unsuccessfully at time
2, and that the test 3a2a was never executed. The idea be-
hind a PSR is that, if we knew the expected outcomes of ex-
ecuting all possible tests, we would know everything there
is to know about the state of the dynamical system. That is,
PSR test probabilities form a statistic about the state of the
dynamical system equivalent to a POMDP belief state.

2.1. Representation

Formally a PSR consists of five elements {A,O,Q, s0, F}.
A is the set of actions that can be executed at each time-step
and O is the set of possible observations. Q is a set of tests
that constitute a sufficient statistic of the dynamical system.
A sufficient set Q has the property that, for any test q, there
exists some function fq such that p (q | h) = fq (p (Q | h))
for all histories h. Here

p (Q | h) = [p (q1 | h) , . . . , p (qK | h)]

is the row vector which contains the probabilities of suc-
cess of the tests in Q, and K = |Q|. Note that p (q | h) is
the probability of q succeeding if we execute it, that is, it is
conditioned on actually carrying out the actions specified
in q. So long as we know the probabilities for the tests in Q

we can compute the probabilities for all other tests; so, by
analogy with POMDPs, we call the vector of probabilities

P (Q | h) a belief state or a belief. The vector s0 is the
initial belief over the outcomes of the tests in Q; if φ is the
empty history then s0 = p (Q | φ). Finally, F is a particu-
lar set of functions fq that we will need to know in order to
update our state when we take actions and receive new ob-
servations; the exact contents of this set will be described
in Section 2.2.

As mentioned above, a probability distribution over the out-
comes of all possible tests completely describes our belief
about the state of the dynamical system, and since the set
Q forms a sufficient statistic for the system, we need only
maintain a distribution over the outcomes of the tests in
Q. An important property of PSRs is that they are at least
as compact as POMDPs: the number of test in a minimal
PSR is less than or equal to the number of states in mini-
mal POMDP. This inequality may be strict: Jaeger (2000)
presents a “probability clock” example that linear PSRs can
model infinitely more compactly than HMMs. To date no
learning procedure for finding very compact PSR models
has been proposed, and this work is an effort to address
that problem.

2.2. State Update

In order to maintain a distribution over the tests in Q we
need to compute the distribution over the test outcomes
given a new extended history p (Q | hao) from the current
distribution p (Q | h). (Here hao is the history h extended
by the action a and the observation o.) Using Bayes’ Rule:

p (qi | hao) =
p (aoqi | h)

p (ao | h)
=

faoqi
(p (Q | h))

fao (p (Q | h))

The functions faoqi
and fao are precisely the functions that

we need in the set F mentioned in Section 2.1. These func-
tions produce predictions for the one step extensions to the
tests in Q.

As noted in the introduction, we restrict ourselves to linear
PSRs. In linear PSRs the functions fx are required to be
linear in the belief vector P (Q | h), so we have

fx(P (Q | h)) = P (Q | h)lx

for some vector lx. In this case the update equation can be
rewritten:

p (qi | hao) =
p (aoqi | h)

p (ao | h)
=

p (Q | h) laoqi

p (Q | h) lao

(1)

To express this update rule in matrix form we write rt for
the current belief vector p (Q | h) and rt+1 for the succeed-
ing belief vector p (Q | hao). We also write Lao for the
K × K matrix whose columns are laoqi

for qi ∈ Q. With
this notation the update becomes:

rt+1 =
rtLao

rtlao

(2)

Learning linear PSRs involves learning the rational func-
tion in equation 2, and specifically the matrices Lao and the
vectors lao. Choosing a sufficient set of tests Q is called
the discovery problem. In this work we present an algo-
rithm which learns PSR parameters, and which partially
addresses the discovery problem by requiring only that we
specify a large set of tests that contains a sufficient subset.

3. Transformed Predictive Representations
Transformed predictive state representations (TPSRs) are
a variant of PSRs. TPSRs are capable of tuning the com-
plexity of their representation to match the specific prob-
lem being addressed. Instead of maintaining probability
distributions over the outcomes of a small set of tests, TP-
SRs maintain a small number of linear combinations of the
probabilities of a larger number of tests. TPSRs include
PSRs as a special case, since we can always pick a linear
combination which only includes a single test. But, intro-
ducing this extra generality allows us to use a singular value
decomposition (SVD) to tune the complexity of our repre-
sentation, as described in Section 3.2. If we write xt for the
row vector which contains the values of the linear combi-
nations at time t, then the update rule for a TPSR is similar
to equation 2:

xt+1 =
xtMao

xtmao

(3)

We will call Mao the transition matrix and mao the normal-
ization vector. It is important to note that the parameters
learned for this model will, in general, not be the same as
those learned in the PSR model. We can no longer interpret
the elements of xt as probabilities; they may be negative or
larger than 1. In TPSRs we seek to find a low dimensional
state representation xt that we can relate to the original
PSR state rt via a transformation matrix R, in particular
xt = rtR. The transformation matrix allows us the added
flexibility needed to tune the dimensionality of TPSRs.

3.1. Learning

Our learning algorithm begins with a set of action-
observation histories B and a set of tests Q to examine. We
make no assumption about the histories or tests except that
they are numerous enough and different enough to exhibit
the types of behaviors we wish to model. Write p(q | bao)
for the probability of success if we start from a fixed initial
state, execute history b, take action a, receive observation
o, and then run test q.

For each history b ∈ B, each action a ∈ A, each observa-
tion o ∈ O, and each test q ∈ Q, we estimate the probabili-
ties p(ao | b), p(q | b), and p(q | bao) by repeatedly setting
the system up in a fixed initial state, executing the history
b and running the tests ao, q, and aoq. This description
implies that our system has a reset so that we can repeat-

edly put the system at the fixed initial state; in Section 4.2
we describe how we avoid this limitation in practice. Af-
ter running the test we collect the probabilities p(ao | b)
into vectors Cao, each with one element for every b ∈ B.
We collect p(q | b) into a matrix T0 with one row for each
b ∈ B and one column for each q ∈ Q. And, we collect
p(q | bao) into a matrix Tao with one row for each b ∈ B

and one column for each q ∈ Q. Finally, write T for the
matrix obtained by stacking T0 and Tao for all a and o.

3.2. Learning the Transformation Matrix

Our learning algorithm for TPSRs proceeds in three steps:
first we learn the transformation matrix R, then we learn the
normalization vectors mao, and finally we learn the transi-
tion matrices Mao.

Learning a transformation matrix R is equivalent to finding
a low-dimensional representation of the belief states that
result from executing each of the histories in B. We want
a representation which has as few dimensions as possible,
but which still allows us to predict the outcome of each test
q ∈ Q using linear weights mq . We could use the rows of
T to represent the belief states. This would trivially give
us the ability to predict test outcomes (since the elements
of T are already our predicted test outcomes). But, this is
too rich a representation: Q may contain many irrelevant
tests since we did not require the user to specify a mini-
mal set of tests. So, in order to reduce the complexity of
our representation to the inherent complexity of the prob-
lem, we employ singular value decomposition to find a low-
dimensional representation that allows us to reconstruct T

using linear weights: write

T = USV ′

Now we can construct a transformation matrix R by select-
ing the first K columns of V :

R = V

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0

K

|Q| − K

To learn an exact TPSR, we should pick K to be the number
of non-zero singular values in S. In high-dimensional real-
world systems, however, we may wish to pick a smaller
K; doing so will produce a smaller TPSR at the cost of a
possible loss of prediction quality (and in the worst case
possible instability of long-term predictions). If we have
too little training data, our most accurate predictions may
come from reduced-size TPSRs, so we recommend cross-
validation to choose the best size: we can learn a TPSR for

each value of K, test its predictions on held-out data, and
choose the size which produces the best predictions.

With this choice of R, our low-dimensional state represen-
tation X = TR is equal to the first K columns of US. We
can also write X0 = T0R and Xao = TaoR.

3.3. Learning the Normalization Parameters

Now that we have a low-dimensional representation X , we
can learn the parameters in our state-update equation (3).
Recall that the denominator in (3), xmao, represents the
probability of observing o if we perform action a in state x.
We want to find the parameters mao which give the most
accurate predictions of these probabilities. Our training
data allows us to learn these parameters by a simple linear
regression: with infinite training data, we would be able to
predict the elements of Cao perfectly from the elements of
X0 for each a and o. With finite training data there will be
errors in learning X0 and residual variance in Cao, so we
will pick mao to minimize squared error:

mao = argmin
m

‖X0m − Cao‖
2
2 (4)

3.4. Learning the Transition Parameters

Given the mao parameters learned in the previous section,
the state update function (3) is linear in the remaining Mao

parameters. These, too, can be learned via linear regres-
sion. Write dao = Xmao for the vector of (now-constant)
denominators in (3). Write Dao for the matrix with dao on
its diagonal. With this notation, we can write one copy of
equation (3) for each b ∈ B:

Xao = D−1
ao X0Mao (5)

This equation will hold exactly only if we have infinite
training data (so that our estimates of R and mao are per-
fect). With finite training data it will not generally be pos-
sible to select Mao to achieve equality in (5), so we choose
Mao by minimizing squared error:

Mao = argmin
M

‖DaoXao − X0M‖2
F (6)

Here ‖·‖2
F is the sum of squared elements of a matrix. Note

that we have premultiplied both sides of (5) by Dao so that
small errors in estimating Dao don’t result in large changes
in the regression problem.

Note that each of the three steps of this algorithm produces
a single well defined answer so our algorithm has no trou-
ble with local minima. Also note that our algorithm does
not take the structure of the TPSR parameters into account.
It could learn parameters that do not produce valid prob-
abilities. In practice, however, simply renormalizing pro-
duces excellent results. See Section 5 for further discussion
of both of these details.

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

Meters

M
et

er
s

Figure 1. An overhead 2D map of the corridor where the robot
was run. The triangular path of dots in the center shows the
progress of the robot around one cycle.

4. Experimental Results
The main purpose of our experimental evaluation was to
investigate the soundness of our learning technique and the
performance of the TPSRs it produces. To this end, we per-
formed a series of experiments on a robotic prediction task
with a fixed policy and compared our learning algorithm
for TPSRs to EM for learning POMDPs. (Because of the
fixed policy, learning a POMDP in this case is equivalent to
learning an HMM, and the EM algorithm is Baum-Welch.)
As will be discussed below, we find that in many cases
our TPSRs outperform HMMs learned by Baum-Welch for
prediction. We also find that our learning algorithm pro-
duces good predictive models even when we restrict the
dimensionality of its TPSRs to be much lower than the true
dimensionality of the dynamical system. Unfortunately,
Baum-Welch is not always the best algorithm for learning
HMMs; we chose it because it is a standard approach with
good freely available implementations. Because Baum-
Welch is not the best known algorithm the scope in which
our results can be interpreted is limited. In particular we
cannot determine whether low dimensional HMMs are not
as good for modeling our data as low dimensional TPSRs,
or if we are just not learning the best HMM. In Section 6
we will outline a set of future experiments that would help
separate these two concerns. Despite this important caveat,
we believe that our results show that TPSRs perform well
in comparison to standard methods and can be efficiently
employed on real-world data.

4.1. Experimental Setup

We employed a Pioneer-class robot (see Figure 2) equipped
with a laser range finder to collect data in an indoor envi-
ronment. A 2D overhead map of the space is shown in Fig-
ure 1. We moved the robot repeatedly counter-clockwise
in a triangular trajectory around the space (see the triangu-
lar path in the middle of the figure) and recorded its range

Figure 2. The pioneer robot used to collect the data.

−20 0 20 40 60 80 100 120 140
−950

−900

−850

−800

−750

−700

−650

−600

−550

−500

−450

Steps Ahead to Predict

Lo
g

Li
ke

lih
oo

d

HMM
TPSR

Figure 3. This graph shows the performance of HMMs trained by
Baum-Welch and TPSRs as they are asked to predict further into
the future. TPSRs give superior performance under most horizon
lengths.

measurements. Each scan from the laser range finder con-
sists of 180 range measurements along bearings spaced ap-
proximately 1 degree apart so that the scan covers 180 de-
grees in front of the robot. The robot collects scans several
times a second and there were approximately 62 scans in
the time it took to move around a single triangular cycle.
In order to simplify our sensor model somewhat and pro-
duce a discrete set of possible observations we selected a
subset of 124 scans at random from the collected data to
serve as canonical scans. We then labeled each scan from
the full data set with a number corresponding to which of
the canonical scans it was closest to (in L1 distance). This
resulted in a discrete observation space where each obser-
vation is a number between 1 and 124.

4.2. Training and Testing Procedure

After preparing the data we split it into training and test sets
and used the former to learn TPSR and HMM models. For
HMMs, we randomly initialized the model parameters and
ran Baum-Welch until it converged to a local minimum.

For TPSRs we needed to specify a set of action-observation
histories B and a set of tests Q so that we could construct
the training data matrices T0, Tao, and Cao. For the tests
Q, we included tests similar to the e-tests introduced by
Rudary and Singh (2003). Our tests were all of the form
“take N steps then test whether we observe Y ,” and to
be sure we had an approximately-sufficient statistic we in-
cluded all such tests for N up to 124 and all possible ob-
servations Y (a total of 15,376 tests in all). It is interest-
ing that, although there are more than 15,000 tests in our
set Q, we are able to achieve accurate predictions with 20-
dimensional TPSRs and reasonable predictions with as few
as six dimensions.

We included in B one history for each time step in our
training data. This choice of B means that we have at most
one chance to observe any given test or transition from each
belief b, so our training data matrices contain only zeros
and ones.1 We chose this training procedure for two rea-
sons: first, it avoids the necessity to reset the robot’s state
manually (which would have made the collection of train-
ing data slower). And second, we were curious whether
our learning algorithm would still work with very noisy es-
timates of T0, Tao, and Cao.

After training the models, we started each one in a random
valid initial belief state and replayed observations from the
test set, using the proper tracking equations for each model
type to maintain belief states. We then asked each model
to simulate forward and predict the distribution of obser-
vations some number of steps in the future. We explored
the result of varying both the dimensionality (the number
of states in the HMM and the number of linear combina-
tions of tests in the TPSR) and the prediction horizon (how
many steps ahead we asked the models to predict).

4.3. Results

In our first experiment we held the dimensionality of both
models fixed at 20 and varied the predictive horizon from
0 (predict the next observation) to 60 (predict the observa-
tion we will receive 60 steps in the future). We performed
10-fold cross validation and measured the log likelihood of
the true test set observations according to the model pre-
dictions. The results are shown in Figure 3; the error bars
represent one standard deviation of the ten runs. For very
short horizons the Baum-Welch trained HMM performed at
least as well as the TPSR and for very long horizons both
models tend toward uniform prediction. For much of the
intermediate range the TPSR performs better.

1In fact, because we are executing a fixed policy, we observe
each test exactly once. But, we only observe the transition from xt

to xt+1 for the observation ot which actually occurred. The miss-
ing observations mean that, when learning Mao in equation (6),
we leave out time steps where o was not observed.

0 10 20 30 40 50 60 70
−1600

−1500

−1400

−1300

−1200

−1100

−1000

−900

−800

States

Lo
g

Li
ke

lih
oo

d
HMM
TPSR

0 10 20 30 40 50 60 70
−1300

−1200

−1100

−1000

−900

−800

−700

−600

States

Lo
g

Li
ke

lih
oo

d

HMM
TPSR

(a) (b)

Figure 4. This graph shows the performance of HMMs and TPSRs as the dimensionality of each representation grows. (a) Shows the
results for a fixed prediction horizon of31; TPSRs perform better than Baum-Welch trained HMMs for low dimensional representations.
Panel (b) gives results for a fixed prediction horizon of 0, in this case the Baum-Welch trained HMMs perform at least as well as TPSRs
regardless of dimension, and much better in most cases.

In a second experiment we held the predictive horizon fixed
at 31 steps and varied the dimensionality of both mod-
els from 3 to 62. Again we performed cross validation
and measured the log likelihood of the true observations
under the models’ predictions. The results (Figure 4(a))
show that TPSRs outperform Baum-Welch trained HMMs
for very low dimensionality and reasonably long predic-
tion horizons. From that figure it seems that high dimen-
sional HMMs produce better predictions than the best TP-
SRs even with a prediction horizon of 31. However, as
illustrated in the next section, we have found that the dif-
ference in likelihood between the best TPSRs and the best
HMMs does not translate into a practical performance dif-
ference. Specifically, the TPSR with 20 dimensions gives
qualitatively similar predictions to the HMM with 62 di-
mensions, but the HMM with 20 dimensions is qualita-
tively much worse than the TPSR with 20 dimensions. For
completeness we have included Figure 4(b) which shows
that for very short prediction horizons TPSRs are at a sig-
nificant disadvantage when compared with HMMs.

4.4. Qualitative Comparison

Figure 5 shows several maps reconstructed from the pre-
dictions of our Baum-Welch trained HMMs and TPSRs. In
order to generate the maps we first localized the robot man-
ually so we could attach a true position to each time step in
a range of test data. Then we used the output of our trained
models to predict the most likely observation for each step
and look up the canonical scans associated with those ob-
servations. We then plotted these scans as if they had been
taken at the true positions of the robot. If the model pre-
dictions are good, then the plotted scans should line up to
produce a map which is fairly clear and recognizable. Note,

however, that this procedure is not capable of producing a
perfect map: a perfect map would require that our set of
canonical scans contained a scan from each true position
of the robot, and since the canonical scans were selected at
random from the training data and the robot moves noisily,
this will not happen.

The first column in Figure 5 shows the performance of the
Baum-Welch trained HMM and TPSR with 62 dimensions
trying to predict the immediate observation on each time
step. The second column shows the performance of the
two models with 20 dimensions, but still predicting im-
mediate observations; the third column shows the two 20-
dimensional models trying to predict 31 steps in the future.
These plots generally reinforce the results shown in Fig-
ures 3 and 4: the TPSR does particularly well with fewer
dimensions and looking farther into the future. As men-
tioned above, though, one area of disagreement is appar-
ent: Figure 4 showed a high dimensional HMM perform-
ing better than the best TPSR. From the maps of Figure 5
it is clear that the difference in prediction quality between
the best TPSR and the best HMM we found is barely dis-
cernible. However, the difference between the low dimen-
sional TPSR and the low dimensional HMM is substantial.

5. Related Work
PSRs were first introduced by Littman et al. (2001). In that
paper they described PSRs and showed how to generate lin-
ear PSRs from POMDP models. They also demonstrated
that nonlinear PSRs have the potential to be exponentially
more compact than POMDPs. This work was followed up
by Singh et al. (2003) who gave a gradient decent algorithm
for learning the parameters of a linear PSR online. In con-

62 dim, 0 horizon 20 dim, 0 horizon 20 dim, 31 horizon

TPSR

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

HMM

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

−8 −6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Meters

M
et

er
s

Figure 5. We have trained a variety of TPSR and HMM models and used their maximum likelihood predictions to plot maps. The top
row of maps were produced by TPSRs and the bottom by HMMs. The first columns allows each model 62 dimensions and asks them to
predict the next observation they will see. The second column is the same except only 20 dimensions are allowed. In the third column
20 dimensions are allowed and the models are asked to predict 31 steps into the future.

trast to that work, our approach provides a batch algorithm
for learning PSR parameters, and provides a mechanism
for tuning the dimensionality of the representation given a
large set of tests. Previous dimensionality-selection results
have used techniques such as forward selection to identify
such a set.

One of the main reasons that PSRs have attracted interest,
and one of the motivations behind this work, is their poten-
tial for being more compact than POMDPs. Though there
have been examples of linear PSRs that are more compact
than POMDPs in the literature(Jaeger, 2000), there are no
published learning procedures for finding them from data.
Rudary and Singh (2003) developed an algorithm for learn-
ing a certain class of non-linear PSRs, and in the noise free
case learned a non-linear PSR that was more compact than
the minimal POMDP model. Our work is limited to linear
PSRs, but we provide a way to tune the dimensionality of
the representation, even to values too low to represent the
dynamical system exactly. We have shown that, even when
our representation is far too small, we can predict well.

One of the motivations for finding compact representations
is the hope that they will result in easier planning problems.
Planning in POMDPs has proven difficult because planning
is usually exponential in the representation size. In the lit-
erature to date only a single planning algorithm has been
published for PSRs (Izadi & Precup, 2003) so there is a
great need for exploration in this area.

PSRs are related to other models of dynamical systems
such as HMMs. There are several important differences

between TPSRs and HMMs. One important difference,
noted previously by Littman et al. (2001), is that PSRs
learn based only on observable quantities, namely the out-
comes of tests. HMMs on the other hand must learn based
on hidden quantities: for example, they must estimate state
transitions even though they cannot observe the states.

Learning a POMDP or HMM from observations of a phys-
ical process is difficult because of the problem of local
minima. For example, one popular algorithm for learning
these models is expectation-maximization or EM (known
as Baum-Welch in the case of HMMs). In EM, we alter-
nate between two steps: first we fix the parameters of our
model and estimate the expected sequence of states that ex-
plains our training data, and then we fix the expected state
sequence and optimize our model parameters. It is easily
possible for EM to get stuck at a local minimum where the
state sequence and model parameters are consistent with
each other but not optimal.

In sharp contrast, our TPSR learning procedure has no local
minima: each of its three steps has a single, well-defined
answer (after normalizing the representation of the SVD
for sign changes and order of the singular values). And (af-
ter normalizing), the output of each step is continuous in
its input2; so, as the amount of training data increases, the
true dimensionality of the TPSR becomes apparent and the
learned parameters smoothly approach their optimal val-
ues.

2This is not precisely true if there are repeated singular values
in the SVD, but a similar statement still holds in that case.

The disadvantage of our learning procedure is that it pays
no attention to the structure of TPSR parameters. Not ev-
ery set of parameters Mao and mao corresponds to a valid
TPSR; for example, poorly-chosen parameters can cause
the update equation (3) to lose the normalization of our
state vector x so that predicted observation probabilities
xmao become negative or don’t sum to 1. In practice this
disadvantage means that, because of small errors in esti-
mating T and Cao, the TPSR learned by our algorithm will
only produce approximately-normalized probability pre-
dictions. Interestingly, even when we observe unnormal-
ized or negative probability predictions in our experiments,
simply renormalizing produces excellent results.

Another important difference between HMMs and PSRs is
that HMMs rely strongly on the Markov assumption. That
is, they assume that the current state of the HMM com-
pletely specifies the state of the underlying system. This
assumption makes HMMs very sensitive to modeling error:
if the state doesn’t fully capture the dynamical system then
they can quickly become overconfident and make bad pre-
dictions. In contrast, PSRs directly attempt to predict the
outcome of long-term tests and so seem to be less reliant
on short-term independence assumptions.

6. Conclusion and Future Work
We have developed a new PCA-based algorithm for learn-
ing TPSR parameters from data. Our algorithm also par-
tially addresses the problem of discovery by allowing users
to provide only a large sufficient set of tests which is then
reduced to a smaller set via SVD. We have shown that our
algorithm can successfully learn TPSRs from data in real
world domains. Further we have shown that under a range
of circumstances TPSRs can outperform HMMs trained by
Baum-Welch, especially in cases where model dimension-
ality is limited or the prediction horizon is long.

An important line of future research will involve determin-
ing whether PSRs, and specifically TPSRs, work better for
prediction in long horizon and restricted dimensionality sit-
uations than HMMs in general, or if our Baum-Welch train-
ing method was simply inadequate to find a good HMM
model. In order to separate these two concerns a series
of experiments should be performed that compare TPSRs
against more modern methods such as the U-Tree algo-
rithm (McCallum, 2000) or Bayesian model merging (Stol-
cke & Omohundro, 1994). An even more convincing ex-
periment would pit our learning algorithm against an opti-
mal low-dimensional HMM if a simple example could be
found where the optimal HMM was easy to produce.

Another important extension to our experimental work
would be to measure performance in predicting off-policy
test outcomes. With off-policy predictions, we could ex-

plore planning algorithms to try to take advantage of the
good predictive ability we have seen in low dimensional
TPSRs. Another important direction is to alter our training
procedure so that it can guarantee that its learned TPSRs
will always produce normalized probability predictions.

There are many future directions left to be explored, but the
present paper shows, possibly for the first time, that pre-
dictive representations are promising in real-world robotics
tasks. We find this result remarkable given that recent work
in robotics has predominantly relied on generative HMM-
style models. Despite the considerable remaining tasks, we
hope that this work establishes a new and effective learning
algorithm that makes predictive representations applicable
to real-world robotics problems.

References
Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). In-

cremental pruning: A simple, fast, exact algorithm for
partially observable Markov decision processes. Pro-
ceedings of the Thirteenth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI).

Cassandra, A. R., Kaelbling, L. P., & Littman, M. L.
(1994). Acting optimally in partially observable stochas-
tic domains. Proceedings of the Twelfth National Con-
ference on Artificial Intelligence (AAAI).

Izadi, M. T., & Precup, D. (2003). A planning algorithm
for predictive state representations. The Eighteenth In-
ternational Joint Conference on AI (IJCAI).

Jaeger, H. (2000). Observable operator models for discrete
stochastic time series. Neural Computation, 12, 1371–
1398.

Littman, M., Sutton, R., & Singh, S. (2001). Predictive
representations of state. Advances In Neural Information
Processing Systems (NIPS).

McCallum, A. K. (2000). Reinforcement learning with se-
lective perception and hidden state. Ph.d. thesis, Depart-
ment of Computer Science, University of Rochester.

Rudary, M., & Singh, S. (2003). A nonlinear predictive
state representation. Advances In Neural Information
Processing Systems (NIPS).

Singh, S., Littman, M. L., Jong, N. E., Pardoe, D., & Stone,
P. (2003). Learning predictive state representations. The
Twentieth International Conference on Machine Learn-
ing (ICML).

Stolcke, A., & Omohundro, S. M. (1994). Best-first model
merging for hidden Markov model induction (Technical
Report TR-94-003). 1947 Center Street, Berkeley, CA.

