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Abstract— This paper describes the techniques used to 

describe and synthesize FPGA circuits expressed in a data-

parallel domain specific language (DSL) called Accelerator. 

We identify the subset of data-parallel descriptions that are 

supported by our system and explain how we track memory 

access patterns which allow us to generate efficient FPGA 

circuits.  

I. INTRODUCTION 

For a significant class of users it is highly desirable to 
describe data-parallel programs using a regular programming 
language which also permits the possibility of automatically 
transforming these programs into FPGA circuits for use in 
FPGA-based co-processors. Two broad categories of users 
find such systems appealing. The first category is users that 
are not digital designers with a detailed knowledge of FPGA 
architecture but instead are software engineers or scientists 
(e.g. biologists and physicists) that have a secondary 
competency in programming and have computationally 
intensive problems to solve that can benefit from FPGA-
based co-processing. The second category is digital designers 
that need high level techniques to improve design 
productivity and examples of such users are DSP engineers 
that currently employ systems like MATLAB/Simulink as a 
design entry technique for hardware based synthesis flows. 

We argue that for certain kinds of data-parallel 
programming tasks it is possible to use an existing language 
like C++ and regular compilers like Visual Studio and GNU 
GCC to describe data-parallel computations and 
automatically generate VHDL circuit netlists and associated 
design flow files (e.g. to create instances of floating point 
cores)  without requiring a special compiler. Furthermore, 
because these data-parallel descriptions are regular C++ 
programs they can be executed, debugged and analyzed 
using regular tools found in modern IDEs. The users of such 
systems do not need to learn a new language or tool because 
they can reuse their existing knowledge of C++ and its 
associated compilers and tools. 

The data-parallel system that we use as the starting point 
for generating FPGA circuits was originally designed to 
target GPGPU programming and is based on a model that 
dynamically generates code by JIT-ing. This approach to 
GPU code generation is online because the user does not 
need to compile the data parallel kernels separately and then 
link them with the rest of the system.  This system was 
extended to generate SSE4 vector instructions to target X64 
multicore processors and this target is also based on online 
JIT-ing. The FPGA target that we describe in this paper does 

not JIT and is an offline system because it generates VHDL 
code and scripts for Xilinx’s Core Generator system which 
require further processing by vendor tools and incorporation 
into a complete co-processing system before the result of a 
computation can be obtained. This is unfortunately due to the 
very slow speed at which circuits are placed and routed 
which forces us to use an offline approach.  

One of our goals is to develop technology to allow us to 
design, model, implement and verify software and hardware 
for future heterogeneous manycore processors as suggested 
by Figure 1.  

 

 
Figure 1.  Heterogenous Manycore Processors 

A distinctive aspect of our system is that we can compile 
the same data parallel description to GPGPU code, SIMD 
SSE4 vector code running on multiple X64 processor cores 
and FPGA circuits as shown in Figure 2. The starting point 
for each of the compilation flows in this figure are fairly 
abstract data parallel descriptions expressed in terms of data-
parallel arrays and data-parallel operations over data-parallel 
arrays. Important information about memory access patterns 
is also expressed at a high level e.g. accessing memory in 
order, in reverse order, in a transposed order, with a stride, 
along columns, along rows etc. This information is exploited 
by each target to optimize the layout of data in physical 
memory and to also optimize the instructions and address 
generators to efficiently stream data without unnecessary re-
reading of data-values.  



 
Figure 2.  Single description, multiple targets 

 

II. OVERVIEW OF ACCELERATOR 

To help explain the programming model used in 
Accelerator we show a very simple program and identify key 
aspects of the Accelerator programming model. The program 
below is the complete source code in C++ for adding two 
arrays point-wise using a GPU rather than a regular 
processor. 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "accelerator.h" 
#include "DX9Target.h" 
 
#include <iostream> 
  
using namespace ParallelArrays; 
using namespace MicrosoftTargets; 
using namespace std; 
 
int main() 
{ 
  Target &tgtDX = CreateDX9Target(); 
 
  const int size = 5 ;  
  float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ; 
  float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ; 
 
  FPA x = FPA(f1, size) ;  
  FPA y = FPA(f2, size); 
 
  FPA z = x + y ; 
  
  float resultArray[size]; 
  tgtDX.ToArray(z, resultArray, size); 
 
  for (int i=0 ; i <size; i++) 
    cout << resultArray[i] << " " ; 
  cout << endl ; 
 
  return 0; 
} 

 
 
 
 

When executed this program writes out: 
 

1.1 2.2 3.3 4.4 5.5 

 
which is the expected result of adding point-wise the 

arrays x and y which are added to produce the data-parallel 
array z. This program imports the Accelerator system which 
is simply a library with the namespace import statement 
using namespace ParallelArrays. Data-parallel arrays have 
types which are distinct from regular arrays in C++ since 
these arrays represent data-values which can be subject to 
parallel operations and data-values which do not reside in the 
memory space of the host program but perhaps elsewhere 
e.g. on the memory of a GPU card or the BRAMs of an 
FPGA or DDR2 memory on an FPGA board. 

Floating point data-parallel arrays have the type FPA. 
The data-parallel floating point array x is of type FPA and it is 
initialized by instantiating the FPA class with a constructor 
which specifies the size of the data-parallel array to be 
created and an array of floating point values to be used to 
populate the data-parallel array x. 

The Accelerator system is capable of executing 
computations on a variety of computing resources which are 
called “targets”. In the program above a target that supports 
execution on GPUs via the DirectX9 stack. This program 
creates a GPGPU target by using an instance called tgtDX 
which is created with a call to CreateDX9Target(). 

A data-parallel computation is expressed in terms of 
overloaded data-parallel operations over expressions which 
have data parallel types like FPA. For example, the + operator 
is overloaded to operate on arrays of type FPA: 

 
FPA operator+(FPA a1, FPA a2); 

 
This operator is defined to build an expression tree node 

which has two sub-expressions of type FPA. An example of 
an expression tree is shown in Figure 3. Accelerator 
essentially provides a logical data-parallel language which is 
embedded in a concrete language e.g. C++. The Accelerator 
API provides methods which allow a programmer to specify 
a data-parallel computation in a convenient notation using 
overloaded operators and calls to static methods. At run-time 
these descriptions build up an expression tree which is then 
dynamically compiled into code for execution on a GPU or a 
x64 multicore processor or in the case of the FPGA target 
VHDL code is generated. 

Accelerator implements an on-line phased compilation 
system for a two level language. In the first phase the control 
constructs of the host concrete language are eliminated to 
result in a static graph which represents a data-parallel 
computation. This phasing restricts us to consider data-
parallel computations which do not contain data-dependent 
loops. This still leaves a very large class of data-parallel 
computations which can be expressed by our system 
including stencil-style computations [1][5]. 
 



 

Figure 3.  Expression trees using for JIT-ing 

 
The process of JIT-ing the code, sending the input data 

and generated code to the GPU card, initiating the execution 
of the GPU code and transferring the result of the 
computation on the GPU back to memory in the host 
program is initiated here by calling the ToArray method. This 
method specified the expression graph to be evaluated (here 
represented by z), the memory in host program to which the 
result data should be copied (here represented by the address 
of the floating point array resultArray ) and the size of the 
result data. 

The operations supported by the Accelerator system 
includes several types of data-parallel arrays (floating point, 
integer, Boolean and multi-dimensional arrays) and a rich 
collection of data-parallel operations including addition, 
subtraction, multiplication, division, min, max etc.  abs, 
ceiling, cosine, sine, square root, reciprocal etc., not, and, or, 
relational operators, sum, product, dimension changes,  
section, shift, stretch etc. and linear algebra operations e.g. 
inner and outer product. 

Essentially the same program shown above can be 
compiled to SSE4 vector code for execution on multiple x64 
processor cores: 

 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "accelerator.h" 
#include "X64MulticoreTarget.h" 
 
#include <iostream> 
  
using namespace ParallelArrays; 
using namespace MicrosoftTargets; 
using namespace std; 
 

int main() 
{ 
  Target &tgtMC = CreateX64MulticoreTarget(false); 
 
  const int size = 5 ;  
  float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ; 
  float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ; 
 
  FPA x = FPA(f1, size) ;  
  FPA y = FPA(f2, size); 
 
  FPA z = x + y ; 
  
  float resultArray[size]; 
  tgtMC.ToArray(z, resultArray, size); 
 
  for (int i=0 ; i <size; i++) 
    cout << resultArray[i] << " " ; 
  cout << endl ; 
 
  return 0; 
} 

 

III. AN FPGA TARGET 

A circuit which performs the point-wise addition of two 
streams of inputs can be written in Accelerator as follows: 

 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "accelerator.h" 
#include "FPGATarget.h" 
 
#include <iostream> 
  
using namespace ParallelArrays; 
using namespace MicrosoftTargets; 
using namespace std; 
 
int main() 
{ 
  Target &tgtFPGA = CreateFPGATarget(“adder”, Virtex5); 
 
  const int size = 5 ;  
  float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ; 
  float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ; 
 
  FPA x = FPA(f1, size) ;  
  FPA y = FPA(f2, size); 
 
  FPA z = x + y ; 
  
  float resultArray[size]; 
  tgtFPGA.ToArray(z, resultArray, size); 
 
  return 0; 
} 

 
This code is very similar to the code for the GPGPU DX9 

target and the SSE4 x64 multicore target. However, the 
FPGA target is off-line i.e. calling ToArray results in the 
generation of VHDL source code files plus .XCO files for 
Xilinx’s Core Generator system for the instantiation of 
floating point cores. For this example each of the input 
arrays is compiled into BlockRAMs that are initialized with 



the corresponding binary IEEE floating point representation 
of the input values. The generated circuit is simply an adder 
floating point core which reads simultaneously from two 
such BlockRAMs, performs a point-wise addition and stores 
the results in an output BlockRAM. 

The main reason the FPGA target is off-line is due to the 
fact that vendor place and route tools take a very long time to 
execute making a JIT-ing model infeasible. Furthermore 
details of how data is transmitted from the host computer to 
the FPGA system (or card) and back are not dealt with by the 
generic FPGA target and currently need to be dealt with 
manually by the user. As standard APIs are developed for 
host to co-processor communication we expect to be able to 
further abstract FPGA co-processors to the same level at 
which we have abstracted communication with the GPU 
subsystem and SSE4 vector code. 

The reason we can generate efficient code for FPGA 
circuits is that we can exploit information in the expression 
graph about how data sources are access e.g. in order, in 
reverse, transposed, with a stride etc. Furthermore, 
operations describing data shifts allow us to retain previously 
read values for reuse later which avoids unnecessary reads. A 
combination of such optimizations allows us to build 
efficient address generation circuits for BlockRAMs or off-
chip memory which streams data quickly into our data-paths.  

The synthesized data-paths have an architecture and 
resource utilization which fairly directly maps to the 
operators used in the source program. We add pipelining 
registers to balance pipeline delays. A useful extension of 
our system would be the addition of programs to specify 
resource duplication or resource sharing. 

RELATED WORK 

There are several examples of embedded domain specific 
languages aimed at circuit synthesis or elaboration for 
implementation on FPGAs. One of the most notable 
examples is the JHDL system [2] which embeds a 
parameterized netlist language into Java. 

The CUDA system [6] provides an off-line approach for 
compiling data-parallel descriptions of kernels written in a 
special language which has to be compiled used a special 
compiler for NVidia. In contrast, our data-parallel 
descriptions can be written in any language that has interop 
with C and compiled with any C or C++ compiler. 
Furthermore, our model is on-line for the GPGPU and 
multicore targets whereas CUDA is always off-line. 

Another example of an embedded domain specific 
language for hardware design is Lava [3] which is designed 
to permit the parameterized structural description of circuits 
including detailed layout information without the explicit use 
of Cartesian coordinates. 

 
 
 

FUTURE WORK 

As future work we hope to add features to allow 
designers to specify resource usage and in particular to focus 
on resource sharing and resource duplication. One approach 
for specifying this information would involve the use of 
pragmas although this seems rather informal. Another 
approach would involve devising extra operators to explicitly 
specify resource usage. Resource usage specific makes to 
most sense for the FPGA target to guide the synthesis system 
to instantiate the required number and type of cores. It is less 
meaningful for the other targets which are more static i.e. 
they have their core count burned into their architecture. 

CONCLUSIONS 

For certain kinds of data-parallel descriptions it is 
possible to devise a logical language of parallel operations 
and embed this language into a concrete language like C++ 
and then use a JIT-ing model to dynamically generate code 
for GPGPU and multicore targets. The same descriptions can 
also be compiled to FPGA circuits although we have to use 
an off-line model because vendor place and route tools are 
too slow. 

It is possible to use languages other then C++ to host the 
logical Accelerator embedded domain specific language. We 
have successfully used C# and F# [4] and support for other 
languages is in progress. 

The ability to express a data-parallel computation once 
and then have it automatically compiled to three different 
targets is a very useful capability for the exploitation of 
manycore heterogeneous systems.  
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