
FPGA Circuit Synthesis of Accelerator Data-Parallel Programs

Barry Bond, Kerry Hammil, Lubomir Litchev

Microsoft

1 Microsoft Way,

Redmond, Washington 98052, USA

{barrybo, khammil, lubol}@microsoft.com

Satnam Singh

Microsoft

7 JJ Thomson Avenue

Cambridge CB3 0FB, United Kingdom

satnams@microsoft.com

Abstract— This paper describes the techniques used to

describe and synthesize FPGA circuits expressed in a data-

parallel domain specific language (DSL) called Accelerator.

We identify the subset of data-parallel descriptions that are

supported by our system and explain how we track memory

access patterns which allow us to generate efficient FPGA

circuits.

I. INTRODUCTION

For a significant class of users it is highly desirable to
describe data-parallel programs using a regular programming
language which also permits the possibility of automatically
transforming these programs into FPGA circuits for use in
FPGA-based co-processors. Two broad categories of users
find such systems appealing. The first category is users that
are not digital designers with a detailed knowledge of FPGA
architecture but instead are software engineers or scientists
(e.g. biologists and physicists) that have a secondary
competency in programming and have computationally
intensive problems to solve that can benefit from FPGA-
based co-processing. The second category is digital designers
that need high level techniques to improve design
productivity and examples of such users are DSP engineers
that currently employ systems like MATLAB/Simulink as a
design entry technique for hardware based synthesis flows.

We argue that for certain kinds of data-parallel
programming tasks it is possible to use an existing language
like C++ and regular compilers like Visual Studio and GNU
GCC to describe data-parallel computations and
automatically generate VHDL circuit netlists and associated
design flow files (e.g. to create instances of floating point
cores) without requiring a special compiler. Furthermore,
because these data-parallel descriptions are regular C++
programs they can be executed, debugged and analyzed
using regular tools found in modern IDEs. The users of such
systems do not need to learn a new language or tool because
they can reuse their existing knowledge of C++ and its
associated compilers and tools.

The data-parallel system that we use as the starting point
for generating FPGA circuits was originally designed to
target GPGPU programming and is based on a model that
dynamically generates code by JIT-ing. This approach to
GPU code generation is online because the user does not
need to compile the data parallel kernels separately and then
link them with the rest of the system. This system was
extended to generate SSE4 vector instructions to target X64
multicore processors and this target is also based on online
JIT-ing. The FPGA target that we describe in this paper does

not JIT and is an offline system because it generates VHDL
code and scripts for Xilinx’s Core Generator system which
require further processing by vendor tools and incorporation
into a complete co-processing system before the result of a
computation can be obtained. This is unfortunately due to the
very slow speed at which circuits are placed and routed
which forces us to use an offline approach.

One of our goals is to develop technology to allow us to
design, model, implement and verify software and hardware
for future heterogeneous manycore processors as suggested
by Figure 1.

Figure 1. Heterogenous Manycore Processors

A distinctive aspect of our system is that we can compile
the same data parallel description to GPGPU code, SIMD
SSE4 vector code running on multiple X64 processor cores
and FPGA circuits as shown in Figure 2. The starting point
for each of the compilation flows in this figure are fairly
abstract data parallel descriptions expressed in terms of data-
parallel arrays and data-parallel operations over data-parallel
arrays. Important information about memory access patterns
is also expressed at a high level e.g. accessing memory in
order, in reverse order, in a transposed order, with a stride,
along columns, along rows etc. This information is exploited
by each target to optimize the layout of data in physical
memory and to also optimize the instructions and address
generators to efficiently stream data without unnecessary re-
reading of data-values.

Figure 2. Single description, multiple targets

II. OVERVIEW OF ACCELERATOR

To help explain the programming model used in
Accelerator we show a very simple program and identify key
aspects of the Accelerator programming model. The program
below is the complete source code in C++ for adding two
arrays point-wise using a GPU rather than a regular
processor.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "accelerator.h"
#include "DX9Target.h"

#include <iostream>

using namespace ParallelArrays;
using namespace MicrosoftTargets;
using namespace std;

int main()
{
 Target &tgtDX = CreateDX9Target();

 const int size = 5 ;
 float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ;
 float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ;

 FPA x = FPA(f1, size) ;
 FPA y = FPA(f2, size);

 FPA z = x + y ;

 float resultArray[size];
 tgtDX.ToArray(z, resultArray, size);

 for (int i=0 ; i <size; i++)
 cout << resultArray[i] << " " ;
 cout << endl ;

 return 0;
}

When executed this program writes out:

1.1 2.2 3.3 4.4 5.5

which is the expected result of adding point-wise the

arrays x and y which are added to produce the data-parallel
array z. This program imports the Accelerator system which
is simply a library with the namespace import statement
using namespace ParallelArrays. Data-parallel arrays have
types which are distinct from regular arrays in C++ since
these arrays represent data-values which can be subject to
parallel operations and data-values which do not reside in the
memory space of the host program but perhaps elsewhere
e.g. on the memory of a GPU card or the BRAMs of an
FPGA or DDR2 memory on an FPGA board.

Floating point data-parallel arrays have the type FPA.
The data-parallel floating point array x is of type FPA and it is
initialized by instantiating the FPA class with a constructor
which specifies the size of the data-parallel array to be
created and an array of floating point values to be used to
populate the data-parallel array x.

The Accelerator system is capable of executing
computations on a variety of computing resources which are
called “targets”. In the program above a target that supports
execution on GPUs via the DirectX9 stack. This program
creates a GPGPU target by using an instance called tgtDX
which is created with a call to CreateDX9Target().

A data-parallel computation is expressed in terms of
overloaded data-parallel operations over expressions which
have data parallel types like FPA. For example, the + operator
is overloaded to operate on arrays of type FPA:

FPA operator+(FPA a1, FPA a2);

This operator is defined to build an expression tree node

which has two sub-expressions of type FPA. An example of
an expression tree is shown in Figure 3. Accelerator
essentially provides a logical data-parallel language which is
embedded in a concrete language e.g. C++. The Accelerator
API provides methods which allow a programmer to specify
a data-parallel computation in a convenient notation using
overloaded operators and calls to static methods. At run-time
these descriptions build up an expression tree which is then
dynamically compiled into code for execution on a GPU or a
x64 multicore processor or in the case of the FPGA target
VHDL code is generated.

Accelerator implements an on-line phased compilation
system for a two level language. In the first phase the control
constructs of the host concrete language are eliminated to
result in a static graph which represents a data-parallel
computation. This phasing restricts us to consider data-
parallel computations which do not contain data-dependent
loops. This still leaves a very large class of data-parallel
computations which can be expressed by our system
including stencil-style computations [1][5].

Figure 3. Expression trees using for JIT-ing

The process of JIT-ing the code, sending the input data

and generated code to the GPU card, initiating the execution
of the GPU code and transferring the result of the
computation on the GPU back to memory in the host
program is initiated here by calling the ToArray method. This
method specified the expression graph to be evaluated (here
represented by z), the memory in host program to which the
result data should be copied (here represented by the address
of the floating point array resultArray) and the size of the
result data.

The operations supported by the Accelerator system
includes several types of data-parallel arrays (floating point,
integer, Boolean and multi-dimensional arrays) and a rich
collection of data-parallel operations including addition,
subtraction, multiplication, division, min, max etc. abs,
ceiling, cosine, sine, square root, reciprocal etc., not, and, or,
relational operators, sum, product, dimension changes,
section, shift, stretch etc. and linear algebra operations e.g.
inner and outer product.

Essentially the same program shown above can be
compiled to SSE4 vector code for execution on multiple x64
processor cores:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "accelerator.h"
#include "X64MulticoreTarget.h"

#include <iostream>

using namespace ParallelArrays;
using namespace MicrosoftTargets;
using namespace std;

int main()
{
 Target &tgtMC = CreateX64MulticoreTarget(false);

 const int size = 5 ;
 float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ;
 float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ;

 FPA x = FPA(f1, size) ;
 FPA y = FPA(f2, size);

 FPA z = x + y ;

 float resultArray[size];
 tgtMC.ToArray(z, resultArray, size);

 for (int i=0 ; i <size; i++)
 cout << resultArray[i] << " " ;
 cout << endl ;

 return 0;
}

III. AN FPGA TARGET

A circuit which performs the point-wise addition of two
streams of inputs can be written in Accelerator as follows:

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "accelerator.h"
#include "FPGATarget.h"

#include <iostream>

using namespace ParallelArrays;
using namespace MicrosoftTargets;
using namespace std;

int main()
{
 Target &tgtFPGA = CreateFPGATarget(“adder”, Virtex5);

 const int size = 5 ;
 float f1[size] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f} ;
 float f2[size] = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f} ;

 FPA x = FPA(f1, size) ;
 FPA y = FPA(f2, size);

 FPA z = x + y ;

 float resultArray[size];
 tgtFPGA.ToArray(z, resultArray, size);

 return 0;
}

This code is very similar to the code for the GPGPU DX9

target and the SSE4 x64 multicore target. However, the
FPGA target is off-line i.e. calling ToArray results in the
generation of VHDL source code files plus .XCO files for
Xilinx’s Core Generator system for the instantiation of
floating point cores. For this example each of the input
arrays is compiled into BlockRAMs that are initialized with

the corresponding binary IEEE floating point representation
of the input values. The generated circuit is simply an adder
floating point core which reads simultaneously from two
such BlockRAMs, performs a point-wise addition and stores
the results in an output BlockRAM.

The main reason the FPGA target is off-line is due to the
fact that vendor place and route tools take a very long time to
execute making a JIT-ing model infeasible. Furthermore
details of how data is transmitted from the host computer to
the FPGA system (or card) and back are not dealt with by the
generic FPGA target and currently need to be dealt with
manually by the user. As standard APIs are developed for
host to co-processor communication we expect to be able to
further abstract FPGA co-processors to the same level at
which we have abstracted communication with the GPU
subsystem and SSE4 vector code.

The reason we can generate efficient code for FPGA
circuits is that we can exploit information in the expression
graph about how data sources are access e.g. in order, in
reverse, transposed, with a stride etc. Furthermore,
operations describing data shifts allow us to retain previously
read values for reuse later which avoids unnecessary reads. A
combination of such optimizations allows us to build
efficient address generation circuits for BlockRAMs or off-
chip memory which streams data quickly into our data-paths.

The synthesized data-paths have an architecture and
resource utilization which fairly directly maps to the
operators used in the source program. We add pipelining
registers to balance pipeline delays. A useful extension of
our system would be the addition of programs to specify
resource duplication or resource sharing.

RELATED WORK

There are several examples of embedded domain specific
languages aimed at circuit synthesis or elaboration for
implementation on FPGAs. One of the most notable
examples is the JHDL system [2] which embeds a
parameterized netlist language into Java.

The CUDA system [6] provides an off-line approach for
compiling data-parallel descriptions of kernels written in a
special language which has to be compiled used a special
compiler for NVidia. In contrast, our data-parallel
descriptions can be written in any language that has interop
with C and compiled with any C or C++ compiler.
Furthermore, our model is on-line for the GPGPU and
multicore targets whereas CUDA is always off-line.

Another example of an embedded domain specific
language for hardware design is Lava [3] which is designed
to permit the parameterized structural description of circuits
including detailed layout information without the explicit use
of Cartesian coordinates.

FUTURE WORK

As future work we hope to add features to allow
designers to specify resource usage and in particular to focus
on resource sharing and resource duplication. One approach
for specifying this information would involve the use of
pragmas although this seems rather informal. Another
approach would involve devising extra operators to explicitly
specify resource usage. Resource usage specific makes to
most sense for the FPGA target to guide the synthesis system
to instantiate the required number and type of cores. It is less
meaningful for the other targets which are more static i.e.
they have their core count burned into their architecture.

CONCLUSIONS

For certain kinds of data-parallel descriptions it is
possible to devise a logical language of parallel operations
and embed this language into a concrete language like C++
and then use a JIT-ing model to dynamically generate code
for GPGPU and multicore targets. The same descriptions can
also be compiled to FPGA circuits although we have to use
an off-line model because vendor place and route tools are
too slow.

It is possible to use languages other then C++ to host the
logical Accelerator embedded domain specific language. We
have successfully used C# and F# [4] and support for other
languages is in progress.

The ability to express a data-parallel computation once
and then have it automatically compiled to three different
targets is a very useful capability for the exploitation of
manycore heterogeneous systems.

REFERENCES

[1] R. F. Barret, P. C. Roth, and S. W. Poole, “Finite difference stencils
implemented using Chapel.” Technical Report TM-2007/119, Caty
Inc., 2007.

[2] P. Bellows, B. Hutchings, “JHDL- an HDL for reconfigurable
systems.” IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM). April 1998.

[3] P. Bjesse, K. Claessen, M. Sheeran and S. Singh, “Lava – Hardware
Design in Haskell”. International Conference on Functional
Programming. ACM SIGPLAN, September 1998.

[4] The F# Programming Language Developer Center.
http://msdn.microsoft.com/en-gb/fsharp/default.aspx 2009.

[5] M. Lesniak, “PASTHA – Parallelizing Stencil Calculations in
Haskell”, Declarative Aspects of Muilticore Programming, Madrid,
January 2010.

[6] NVIDIA Corporation, “NVIDIA CUDA compute unified device
architecture programming guide,”
http://developer.nvidia.com/cuda, Jan. 2007.

[7] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Computer Graphics Forum, 26(1):80–113,
2007.

[8] D. Tarditi, S. Puri, J. Oglesby, “Accelerator: using data-parallelsim to
program GPUs for genral purpose uses,” ASPLOS 2006.

http://msdn.microsoft.com/en-gb/fsharp/default.aspx

