
A Case Study in Developing Web Services for Capital Markets

Fethi A. Rabhi, Feras T. Dabous, and Hairong Yu
School of Information Systems Technology and Management
University of New South Wales, Sydney NSW 2052 Australia

{f.rabhi,f.dabous,hairong.yu}@unsw.edu.au

Boualem Benatallah and Yun Ki Lee
School of Computer Science and Engineering

University of New South Wales, Sydney NSW 2052 Australia
{boualem,yunki}@cse.unsw.edu.au

1. Introduction

The area of finance has always evolved along side with
the development of new technology. Adopting a new tech-
nology is often used to gain competitive advantage which
is an important requirement for many financial institutions
in this industry. For instance, utilising new technologies in
capital markets trading automation is one of the major fac-
tors for the market efficiency and competitiveness as time
has a huge impact on the costs incurred by financial institu-
tions [1].

Systems used by financial institutions are often propri-
etary thus hindering interoperability between potential busi-
ness partners. While this was not a major problem for
decades, the recent widespread use and acceptance of the
Internet means that communication between geographically
dispersed entities should no longer be a challenge. Busi-
nesses can now share information in an established B2B
environment, take part in value chains and involve business
processes from other business entities. However, technolo-
gies that have been inherently in use cause the composi-
tion and execution of business processes to be largely ad-
hoc, time consuming and requiring enormous effort in low-
level programming and managing the communication envi-
ronment [3]. The emergence of Web services technologies
as a framework for developing interoperable e-services has
been endorsed by many development platforms that facili-
tate automated business processes composition. The lack of
realistic large-scale applications that utilise such emergent
technologies has motivated this project. Considering capi-
tal markets as our case study, this paper investigates the us-
ability of these technologies in implementing business pro-
cesses that span across a number of legacy applications.

This paper is organised as follows: section 2 describes
Web services as emerging technologies that facilitate the

composition and execution of distributed business pro-
cesses. Section 3 presents an overview of a service-oriented
architecture for capital market systems (CMSs). This archi-
tecture is meant to integrate existing legacy applications and
facilitate the automation of trading-related business pro-
cesses. Section 4 discusses a selected business process sce-
nario and presents it as a composite Web Service called the
broker service. Section 5 concludes this paper and presents
our ongoing and future work.

2. Web services technologies and applications

Distributed computing over the Internet has been encour-
aged since the introduction of distributed object technolo-
gies such as CORBA and Java RMI. Object technologies are
tightly coupled and support well interactions between re-
lated components or applications (i.e. within an enterprise).
In addition, integration over the Internet has gained momen-
tum since the introduction of the Web services concept. The
Web services architecture has been endorsed by both mid-
dleware technology vendors and distributed applications de-
velopment communities especially in the e-businesses do-
main for its simplicity in integrating arbitrary applications
within and across enterprises.

Benatallah [3] distinguishes three key issues when build-
ing and executing Web services: fast composition in the
rapid competitive market, scalable composition as the num-
ber of Web services is potentially increasing, and distributed
rather than centralised execution. There are a number of
platforms for Web services and business processes compo-
sition and execution. These platforms utilise the emerging
Web services technologies: WSDL, UDDI, and SOAP [7].
Emerging efforts in this area mainly by Microsoft and IBM
such as BPEL4WS [2] have the potential of promoting Web
Services as adequate integration platforms that will be able

Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’04)

0-7695-2073-1/04 $20.00 © 2004 IEEE

Real-Time
TDS (RT-TDS)

Surveillance
Service (SS)

Broker Service
(BS)

Analytics
Service (AS)

Exchange
Service (ES)

Trading Data
Service (TDS)

Issuer Data
Service (IDS)

Settlement
Service (TS)

Registry
Service (RS)

Communication / Middleware Infrastructure

Figure 1. Preliminary Software Architecture
for CMSs

to support complex interactions between applications.
Many studies have discussed the trade-offs involved

with the introduction of these new technologies and plat-
forms. For example, some studies have emphasised the
performance degradation of Web services which could sig-
nificantly affect response delays in real-time applications.
However, few of these studies have been realised in the con-
text of realistic applications. For instance, the throughput of
a Web service can be acceptable if every possible realistic
usage of the web service would still be within the required
throughput.

This paper is concerned with large-scale realistic appli-
cations of Web Services. It starts with the definition of a
service-oriented architecture that capture business-specific
functionalities in the form of services. By describing the
implementation of this architecture using Web service tech-
nologies, it gives useful insights into a number of develop-
ment issues such as service composition, performance and
security.

3. A service-oriented architecture for capital
markets

A preliminary service-based architecture for capital mar-
ket systems, which is presented in [6], is shown in figure
1. In this architecture, the authors distinguish two types of
services which are basic (or elementary) and integrated (or
composite). A basic service is entirely processed within one
architectural component. The component itself is not nec-
essarily a single application: it could be an entry point for
an enterprise workflow or ERP system, but from the archi-
tecture’s perspective it is viewed as a single component. A
basic service is typically implemented on top of a legacy
system by including a software wrapper that makes the cor-
respondence between system calls and service calls. An in-
tegrated service is a service offered by one component, but it
invokes several other components that provide “outsourced”
services.

In this study, three basic services have been imple-
mented. These services are:

• the Exchange Service (ES): allows traders to place,
cancel and amend their orders on the market. The Ex-
change Service has been built on top of a fully-fledged
commercial financial market trading system called X-
Stream[9] which has been developed over many years
[12]. All configuration information is held in a rela-
tional database so that the system can be configured to
work with different market structures.

• the Trading Data service (TDS): allows subscribers to
access historic financial trade data. TDS unifies access
to data from heterogeneous sources through a Web in-
terface that processes user queries. TDS contains also
metadata that provide information to users about data
availability and the kind of queries that can be formed
[5].

• the Surveillance Service (SS) which receives real-time
transactions (orders and trades) and check s against
them illegal trading behaviour rules, then issues and
disseminates alerts (if any) to market analysts. Our im-
plementation is based on a commercial system called
SMARTS [11]. SMARTS employs a special purpose
built-in alerting and analysing language called ALICE
and therefore can adapt itself to new market rules and
regulations by simply updating the corresponding AL-
ICE program.

These services will be used in a number of business pro-
cess scenarios one of which will be discussed in the next
section.

4. Towards Integrating Business Processes as
Composite Services

The main advantage of providing basic services inte-
grated with realistic applications is to enable composite ser-
vices to be defined.

4.1. Examples of composite services

Here are two examples of composite services:

• Analytics service: before submitting orders to the
market, brokers must pay attention to the size of the
order. Since large orders impact the market, they are
typically broken into smaller orders (called a trading
plan) to place on the exchange. In our case, the Analyt-
ics Service is responsible for generating trading plans
for large block orders so that they can be placed on the
exchange without substantial market impact. Given a
security code and an order size, an invocation of this
service returns a list of order sizes that can be placed
onto the exchange at regular intervals. Analytics is a

Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’04)

0-7695-2073-1/04 $20.00 © 2004 IEEE

composite service because it requires access to histori-
cal trade data information through Trade Data Service
(TDS).

• Broker service : its role is to take a large order and
execute it as a series of smaller orders submitted to the
Exchange Service (ES). It is a composite service that
invokes the operations of Analytics (another composite
service) and Exchange services.

4.2. Example usage scenario

As typical usage scenario for a composite Web service,
consider the following example. Bill works for an invest-
ment bank and has been told to sell 10 million BHP shares.
However, once this order is submitted to the trading engine,
it could have an impact on the market price for BHP. Tra-
ditionally, Bill would have had to decide by himself how to
split this order into smaller ones and when to place these
orders in the market.

With all financial services exposed as Web services, Bill
can place his order by contacting a Broker Web service stat-
ing that he wishes to sell 10 million BHP shares. The fol-
lowing list shows the interactions occuring between differ-
ent Web services in order to perform the broker scenario
described earlier.

1. Bill contacts the Broker composite service intending to
sell 10 million BHP shares.

2. The Analytics service is invoked with these parame-
ters.

3. The Analytics service itself is a composite service. It
requires trend information regarding BHP and con-
tacts a Trading Data service.

4. The trend information is calculated and a trading plan
is generated and returned to Bill for confirmation.

5. Bill checks the plan and approves it.

6. The Broker service submits orders according to the
plan to the Exchange service.

7. Each order that is placed on the Exchange service suc-
cessfully generates a receipt which is returned to Bill.

8. The Surveillance service monitors each order and the
generated trades. It detects possible illegal actions
such as trading based on insider information.

4.3. Tool support for developing composite services

Some development platforms are emerging from leading
vendors such as IBM and Microsoft. IBM WEBSHPERE stu-
dio provides a single consistent programming environment

Analytics
Service

Exchange
Service

Surveillance
Service

Broker Service

Trading
Plans

Trading
Data

Service

Analytics Service

Counter ++

[Counter < n.size]

Figure 2. Statechart for the broker composite
service

based on open standards. WEBSHPERE Business Integra-
tion (WBI) Modeller, Server, and Monitor support a unique
visual environment for defining, analysing, simulating, de-
ploying, and monitoring of business processes. Microsoft
.NET also supports a very similar platform for business pro-
cess integration through the provision of a number of asso-
ciated tools. These competing tools still in their infancy in
supporting business process integration requirements.

We selected an experimental platform called SELF-SERV

for service composition because it supports a clear distinc-
tion between basic and composite services [4]. SELF-SERV

has a visual it Composer for composite services that uses
the concept of statechart. Figure 2 depicts the statechart for
the Broker composite service that shows the interactions de-
scribed earlier. It clearly shows that after the invocation of
the Analytics service, the Exchange and Surveillance ser-
vices will be executed in parallel. Each order on the list
returned by the Analytics service is submitted to the Ex-
change and Surveillance services.

Some current experiences of using SELF-SERV are de-
scribed next:

• Web services can deployed within Web application
servers with a SOAP engine. Therefore there is
no need to have coordinating classes which must be
downloaded to be run as separate Java programs that
listen on their own port. Deploying such classes as

Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’04)

0-7695-2073-1/04 $20.00 © 2004 IEEE

part of the Web application allows these classes to be
protected by the same security policies as the Web con-
tainer. Another advantage is that no extra ports need to
be opened at the company firewall.

• Trivial condition classes that perform tasks such as
checking whether strings are equal or return values
are within some range need to implemented by Self-
serv’s Service Composer. These condition classes are
required by the statecharts to direct flow of control
between different states. While implementing these
classes are trivial and do not take substantial time, it
does not promote code reuse and extra code is being
produced.

• Currently SELF-SERV’s selection algorithms are un-
suitable for selecting between the two services when
requests arrive. Its current selection algorithms are
based on technical criteria such as response time and
availability. In the financial industry, the criteria for
placing orders is the price and quantity at the given
price. Therefore a new Web service that queries the
prices at each exchange in the service community
needs to be created.

5. Conclusion and Future Work

The paper is motivated by the lack of realistic large-scale
e-service applications reported in the litterature. Despite
their promises, new technologies such as Web services still
need to live up their claims as a powerful means of inte-
grating business processes that span across a number of
large distributed commercial applications. Our study is con-
cerned with financial applications especially those involved
in the activities surrounding capital markets trading.

We adopted a step-by-step approach based on sound soft-
ware engineering principles. First, we defined a service-
oriented architecture for capital market systems (CMSs).
Next, we presented three major services (i.e. Exchange,
Surveillance, and Trade Data) and reported our experiences
in implementing these services using Web service technolo-
gies. We provided feedback on a number of aspects includ-
ing functionality, development tools, performance and secu-
rity. Finally, we presented some business process scenarios
and discussed their implementation as compositions of ba-
sic services supported by software tools.

Future work will be conducted on several fronts. Firstly,
existing services need to be enhanced both functionally and
qualitatively. For example, the Trade Data Service needs to
get access to more data sources such as Reuters and at the
same time maintain an acceptable response time. Secondly,
the initial architecture needs to be extended with other im-
portant basic services that play an important role in capi-
tal markets trading such as those required for settlement (to

settle funds transfers) and registry (to keep track of the le-
gal ownership of securities). Finally, we need to develop
more complex business process scenarios and leverage the
existing services into composite services. Throughout these
activities, interoperability, performance and security will be
significant research focus points as they have been identified
as the major areas of concern by our industrial partners.

Acknowledgments

The authors would like to thank Capital Markets Coop-
erative Research Center (CMCRC) [8] for its support and
facilitating access to a number of commercial CMSs such as
SMARTS [11] , X-STREAM [9], and SIRCA [10] trading
data. The authors would also like to sincerely acknowledge
Sunny Wu, Anthony Cheung, Stanley Yip, Joshua Mok, Jo-
han Fischer and Anne-Laure Mazon for their contribution
in prototyping.

References

[1] M. Aitken, A. Frino, E. Jarnecic, M. McCorry, R. Segara,
and R. Winn. The microstructure of australian stock ex-
change: An introduction. Securities Industry Research Cen-
tre of Asia-Pacific (SIRCA), 1997.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Lui, D. R. D. Smith, S. Thatte, I. Trick-
ovic, and S. weerawarana. Business process execu-
tion language for web services (BPEL4WS) specification.
http://www.siebel.com/bpel, 2003.

[3] B. Benatallah, M. Dumas, and Q. Z. Sheng. Declarative
composition and peer-to-peer provisioning of dynamic web
services. In The 18th International Conference on Data En-
gineering, 2002.

[4] B. Bwnatallah, Q. Sheng, and M. Dumas. The self-serv en-
vironmet for web services composision. IEEE Internet Com-
puting, Jan/Feb 2003.

[5] T.-H. A. Cheung and S. Y.-H. Wu. Trade data service for
capital markets. Honors, school of Computer Science and
Engineering, UNSW, Nov 2003.

[6] F. A. Rabhi and B. Benatallah. An integrated service ar-
chitecture for managing capital market systems. IEEE Net-
works, 16:15–19, 2002.

[7] U. Wahli, M. Drobnic, C. Gerber, G. G. Ochoa, and
M. Schramm. WebSphere Version 5 Web Services Hand-
book. IBM Redbooks, 1st edition, March 2003.

[8] Capital market cooperative research centre (CMCRC).
http://www.cmcrc.com.

[9] Computershare X-STREAM system.
http://www.computershare.com.au.

[10] SIRCA research center. http://www.sirca.com.au.
[11] SMARTS surveillance system. http://www.smarts.com.au.
[12] Trading technology survey of exchange technologies.

http://www.tradingTechnology.com, 2003.

Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’04)

0-7695-2073-1/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

