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Introduction.

The National Agricultural Statistics Service (NASS) assembled an electronic list called  the Agricultural Census Mail List

(CML) of approximately 2.8 million potential farm operators for the 2002 Census of Agriculture in the United States.  Although

much effort has been expended on making this list as complete as possible, the coverage of farms is not complete.  In addition,

though strong efforts are made to insure that no farm is represented more than once on the  list, farm duplication does occur

resulting in a certain amount of overcoverage of certain farms.  NASS is primarily interested in producing Agricultural Census

estimates that are fully adjusted for list undercoverage problems at the county level as undercoverage is considered the more

severe problem then overcoverage.  To  this end, explicit estimates of the CM L undercoverage for a specified set of demographic

variables, called calibration variables, will be computed from an area frame sample.  These estimates, when combined  with the

CML estimates for the same items will result in  target values.  After initial weights are assigned to CML respondents to account

for nonresponse, these weights will be further adjusted in an attempt to reproduce the target values for each of the calibration

variables.   Compensation  for the state-level CML undercoverage for each of the  calibration variables can be accomplished in

this fashion.  Since each farm with Census data will be given a fully-adjusted weight by this process, it becomes a simple matter

to estimate county-level totals for every Census variable, not just the calibration variables.  

In addition to correcting for undercoverage, NASS wants to adjust Census-based estimates for measurement errors (duplication,

erroneous collections, biased  imputations, etc.) by not allowing major commodity totals to vary too far from established

benchmarks.  This prompts the use of a second set of calibration variables with targeted totals based on these established

benchmarks rather than the simple sums of census list and undercoverage estimates used for the first set.   For convenience,  we

call the calibration process involving both sets of variables  “coverage adjustment.” 

Most calibration targets will be determined  at the state level.  Some small states will be combined  into  “calibration regions”.

The calibration multi-state regions are likely to be: AZ/NM, UT/NV, DE/MD, and CT/M E/MA/NH/RI/VT .  These groupings

are based on 1997 data and will be grouped together to increase the precision of the undercoverage estimates.  In what follows,

a “state” refers to a calibration region where appropriate. 

The methodology  for undercoverage adjustment for the 2002 Agricultural Census was developed by  working with the 1997

Agricultural Census data.  The remainder of this paper will describe the methodology as applied to the 1997 data.   Its

application to the 2002 Agricultural Census data should be very similar.

Working with 1997 Data--Determining Targets to Correct for Undercoverage.

Computing targets for the variables used to correct for Census undercoverage involved a number of steps.  First, estimates of

the CML undercoverage had to be made using an area frame sample.     The 1997 June Agricultural Survey (an area frame

sample composed of  10,821 land segments) was used for this purpose.  Each sampled land segment contained a number of farm

tracts (the number could be zero ).  A tract is that part of a farm operation wholly within the land segment.  NASS checked

whether the farm associated with each tract on a sampled land segment  could be linked to a CM L operation.   The tracts with

no link to the CML were deemed “not on the mail list ( NM L).”   Data values associated with NML tracts were used to estimate

the state level undercoverage of the CML for the  first set of calibration variables.  The state level totals for these variables were

then summed to yield national totals. 
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State level NML estimates for the number of farms in a state could be used directly in determining calibration targets (CML +

NM L).   The other calibration targets to be used for that purpose were the number of farms of a certain type (e.g., in a particular

sales class or with a primary operator of a particular race).  Most of these had unacceptably high state level standard errors.  As

a result, more reliable  national level NML estimates were used  to smooth state estimates.  The smoothed state  NM L estimate

was computed by  taking a weighted average of the actual state estimate and a prediction of the state total based on national and

state level numbers (e.g., the number of NML farms in the state, the fraction of farms with black owners on the state’s CML,

and the national relative difference between the fraction of black owners on the NML and CM L).   The weighting factor was

chosen to approximately minimize mean squared error under a random effects model. The smoothed NML estimates were then

added to corresponding CML estimates to obtain coverage adjusted state level totals, which served as calibration targets. 

Details for the smoothing procedure can be found in Kott 2002 [3].

The decision on which demographic items to select as calibration variables was largely based  on the size of the differential

between the estimated proportion of farms having a particular characteristic on the CML and the same estimate for the NML.

Characteristics for which this differential was large would be good candidates for inclusion on the list of calibration   variables.

Commodity items were selected based on cash receipts at the U.S. level, and their relative importance at the state level (see

table1).

Table 1.

Calibration Variables

Total Value of

Production (Dollars)

Operator  Age Gender Operator Race All Farms Commodity 

Presence

0 <25 Male Black All Cattle

1-999 25-34 Female AI/ASN/Other Dairy

1K-2.5K 35-44 Sheep/Goats

2.5K-5K 45-54 Poultry

5K-25K 55 + Hogs

25K-100K Fruit/Nut/Berry

100K-500K Vegetables

500K+ Nursery/Hort

Extreme Ops (EO) Tobacco

Commodity Inv/Prod Horse/Mules

Corn Acres HV Sugarbeets Acres HV Broiler Production Cropland

Soybean Acres HV Tomatoes Acres HV Turkey Production CRP

Wheat Acres HV Hay Acres HV Cattle Inventory

Cotton Bales Apple Acres HV Dairy Cow Inventory

Potato Acres HV Orange Acres HV Hog Inventory

Sugarcane Acres HV Grape Acres HV Layer Inventory

Tobacco Acres HV Lettuce Acres HV Rice Acres HV

Commodities varied by state.   HV=harvested,  AI =American Indian,  ASN=Asian

Page 50



          

                 

The Calibration Procedure.

One approach to weight calibration is to  compute an adjusted weight, wk, for each of the k farms,  k=1,..., n,  that minimizes the

sum of the relative squared d ifferences from the original weights, dk, subject to the following set of constraints:   

A: The P target values tp,  p=1,...,P  are achieved  using the new weights.

B: The new weights lie within some range of values that are deemed acceptab le.  For the Agricultural Census this interval would

be [1 ,6] for the final calibrated weights, wk.

Problem 1.

In mathematical notation this can be restated  as:

Minimize:  , 1<= dk <=2

subject to:

A ) ,  p=1,2,..., P  ,   ykp >= 0

B)  

Note that the initial weights for all farms are in the interval [1,2] and that all calibration variables are zero or positive for each

farm.  

A problem of this type can be solved using non-linear programming algorithms that are availab le in software packages such as

SAS– if a solution exists.   In our early work using the program CALJACK (Crouse 1999) ,  it was apparent that in many cases,

any set of weights that could be found that was consistent with the first set of constraints (A) ended up violating the second set

of constraints (B).  This resulted in a failure to produce a useful set of weights and left us with the time consuming problem of

determining which constraints needed to be relaxed so that a solution could be found.   What we needed was a computer program

that would determine which constraints to drop, drop them,  and then produce the best set of weights that it could find while

guaranteeing that all weights would be in the desired interval .  It was decided that we would write a program in SAS that would

accomplish this.  What we next needed to determine was the priority of the constraints.

It was decided that the calibrated weights would not be allowed to stray from the original interval constraint of [1,6].  This bound

on the resultant weights would be the highest priority.  Any set of weights obtained from the program would be required to

reflect this constraint.   It was also decided that it was not actually necessary to hit all the target values exactly.   Calibrated

weights that produced values that were within a tolerable range about the targets would be considered satisfactory.   In fact,

because the target values were in many cases estimates themselves, subject to uncertainty and error, this approach seemed

natural.    Hitting the target value exactly was then given the lowest priority and would be the first constraint to be relaxed.  Only

if a value within the tolerance interval for a calibration variable could not be achieved  would  that variable be removed from the

calibration altogether and thus in effect, force the  relaxation of the  tolerance constraint for the target.        

Problem 2.

Expressed mathematically we would :

Minimize :

Subject to:

A) , q=1,2,...,Q ,   ykq >=0.

B) .

resulting in

C)   ,  r=Q+1,....,R    , ar, br >0 , ykr.>=0

D) or ,  p=R+1,......, P,   ykp>=0.

The major difference between Problem 1 and Problem 2 is that the set of active calibration variables whose target values are
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attained in A is unknown in Problem 2.   The Q  targets that are attained in A, the P-R  target constraints dropped in D , and the

values of Q and R  themselves, would need to be determined by the program.   The calibrated weights produced by the program

would always be the result of solving Problem 2 for the set of Q  active calibration variables.   The initial targets would be

specified by the user, along with the endpoints of the tolerance  interval given by [tj -aj , tj +bj] .  The targets would not be

required to be centered in the  interval.  As will be explained below, in certain situations,  the target could  switch to an end point

of the interval.  

The R-Q  calibration variables in C, for which an acceptable value within the tolerance interval is attained without being in the

active set of calibration variables (referred to henceforth as “floaters”)  is in part a function of their relationship to those

calibration variables in the ac tive set.

More on Tolerance Ranges.

One of the problems with this approach is the somewhat subjective determination of what the values a j and b j should  be.  In fact,

choosing these values did cause some difficulty and consternation.  The number of farms target (All Farms)  had no tolerance

range beyond the estimated state level total (CML +   NML) as well as the extreme operations (EO) for which the NML estimate

was zero.   The  tolerance range for all other demographic variables was the estimated state total for the variable (CML +

smoothed NM L)  plus or minus one-half of one estimated standard error.  This choice limited the cumulative deviation from

the estimated total for a variable when state-leve l totals were combined to create a US-level total.  The state level tolerance

ranges for commodity targets were provided by NASS commodity specialists.

Calibration Program Overview .

The program we developed was written in SAS and will be referred to here as CalBuilder.   CalBuilder’s approach to solving

Problem 2 is to solve Problem 1 recursively, adding to the set of active calibration variables one variable at a time.  The basic

algorithm used by the program is described by Singh and Mohl (1996) where it is referred to as the Linear Truncated Method.

At each iteration, a variable is added as a temporary member to the active calibration set and a search for a solution is made.

If the search is successful then that variable becomes a permanent member of the active calibration set and another variable is

introduced to the active set for the next iteration. If the search for a solution is not successful, that variable is removed from the

active set and another variable is entered  into the active set.   Variables that have been set aside on previous iterations are eligible

to be re-entered into the active set so that multiple attempts can be made to obtain an acceptable value for that variable.  At the

end of each iteration, the calibration variable for which the current value is furthest out of range (in relative terms) is brought

into the active  set of calibration variables.  Any variable for which the current value is within range is not eligible to be added

to the calibration system.  It is typical that for many calibration variables, acceptable values are obtained without becoming

members of the active calibration set.  

Program Details .

The program starts by calibrating weights so that the two most precise targets would be achieved– number of farms, and number

of extreme operator farms (EO) at the state level. Once a solution is obtained , these two variables become the first two

permanent members of the active calibration set.  Obtaining the exact target values for these two variables is considered

tantamount to any continuation of the calibration process.

    

CalBuilder makes up to two passes through the calibration variable list.  On the first pass, CalBuilder will attempt to hit the

central target value for each variable contained in the active calibration set.  If necessary, CalBuilder will make a second pass

through the list of calibration variables for which an acceptable value was not obtained on the first pass.  However, on the second

pass, CalBuilder will switch the target from the central value it used in the first pass to one of the end points of the tolerance

interval.

The first pass through the calibration variable list terminates when either acceptable values have been achieved for all calibration

variables, or target values can not be obtained for any calibration variable whose current value is outside of the tolerance range.

CalBuilder will then attempt to hit the endpoint nearest to the current value for all calibration variables whose value is still out

of range.  This second pass uses the same one variable at a time approach that was used in the first pass.  The second  pass

terminates when it can not achieve endpoint values for any calibration variables that were  out of range after the first pass.

The result of running CalBuilder is the attainment of a set of “fuzzily” calibrated weights which produces most of the target

Page 52



          

                 

values or range endpoints exactly,  produces values within the tolerance range for some variables without being entered into the

system, and produces a few “disappointing” values outside the tolerance range for some calibration variables.

Results.

A test run of CalBuilder was made on the 1997 Agricultural Census data. There were approximately 34 calibration variables

for every state.  Each state had the same set of approximately 29 demographic variables and about 5 or 6 commodity variables.

The commodity variables varied by state.  There were 40 states, about 34 variables per state, which gives about 1360 total

variables being calibrated over all.  The following table shows the results of running the CalBuilder program for all states.

1997 Test Calibration Variable Counts Summed to U.S. Level

Central Target Floaters End Point Target Out of Range

903 380 19 58

In only 8 of the 40 states did CalBuilder find acceptable values for all calibration variables.  The most variables that were out

of range for a state was 7 (one state).  The most floaters in a state was 13 (4 states).  The most variables that were successfully

calibrated to an end point in a state was 3  (1 state) .  Although only 13 states benefitted from the endpoint search, it actually

appears to have reduced the number of out of range variables by nearly 25%   (19/[19+58]). 

The graphs below show the distributions of the weights prior to calibration (K119) and after calibration (wfin) for a particular

state.  The calibrated weights in the graph on the right shows that many weights are being pushed to the lower boundary of 1

while greatly increasing the size of many of the weights as well.  Note that for this state, few, if any weights are close to the

upper boundary of 5 .

                     

 Because the method does not require the targets to be achieved exactly, a loss function that gives no loss for any value achieved

within tolerance seems reasonable.  It is difficult to say , however, if the solutions obtained are optimal in a mathematical sense.

 At the state level, the method did achieve acceptable values for most calibration variables (96%).  It should be kept in mind

that, especially for the demographic variab les, the targets and ranges are  merely estimates.  The inability for CalB uilder to  obtain

a value within the stated  range might actually result in a better indication in some cases.  Better results might be achievable,

particularly with the commodity variables, if calibrated weights were permitted to take on values less than 1. Commodity

variables with census indications above the upper endpoint of the tolerance interval were especially hard  to calibrate successfully

due to the lower bound of 1 imposed on the calibrated weights.

When aggregated to the U.S. level,  the calibrated demographic variables were well with in two estimated standard errors of the

target with one exception.  The aggregated results for the commodity  variables were good for many  items, but results were a

little more disappointing than the demographic items results. 

  

With respect to speed, computational time was reasonable.  The calibration was carried out one state at a  time.  Typically a  state

has between 20,000 and  75,000 weights, although some have nearly 100,000 or more, and will take from 15 minutes to several
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hours to complete.   Computation time is not only a function of the number of weights, but also a function of the relationship

of the data and the targets.  In all, nearly 1,700,000 weights were calibrated within a 24 hour period using one Pentium IV 2.0

Ghz processor with 512 M RAM and required no  user interaction other than executing the program itself.
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