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Abstract— In this paper, we consider a backbone network
which allocates bandwidth to service classes with varied surviv-
ability requirement. Such guaranteed services may be offered
along side best-effort services in the same network. Due to
different (potentially conflicting) objectives for guaranteed and
best-effort services, attempts to optimize them together requires
solving a multi-criteria decision problem. Here, we present an in-
tegrated optimization formulation where we unify these different
objectives into a single objective function while considering varied
survivability requirement for different service classes. We enforce
explicit routes (single path allocation) for survivable service class,
and at the same time, ensure that the best-effort services are not
drastically effected. We provide two heuristic approaches towards
solving this formulation. We present experimental results to show
that the heuristics perform well; and more importantly, the
optimization model effectively captures the different objectives.
We also observed that the availability of capacity and tunnels
play equally important role in ensuring the optimal utilization
of network resources.

Index Terms— Survivable services, Optimization formulation,
Algorithm.

I. I NTRODUCTION

In this paper, we consider a mixed network services environ-
ment where along with best-effort services such as email, ftp,
web (as in the current Internet), there is also a class of book
ahead guaranteed survivable (BAGS) service classes which
have a requested degree of survivability (in essence, we use the
term “survivable” to indicate that the allocation is done ahead
of time, rather than provide the capability through network
restorationafter a failure). The goal is to compute off-line and
allocate bandwidth for different service classes ahead of time
so that certain network (traffic) engineering objectives can be
met along with any other restrictions from the network.

For example, multi-protocol label switching (MPLS) tech-
nology [1], provides the ability to set up bandwidth for
different service classes through label-switched paths, but
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however may require certain restrictions due to to tunneling
limitations. An important feature of MPLS is its capability
to set up multiple label switched paths (LSP) for different
services. However, each LSP setup requires a label on each
intermediate node which is used for switching the input traffic
to the destined output port. Hence setting up each new LSP
introduces additional labels to each intermediate node. To
route each packet, a label switched router (LSR) would need to
search through the Label Swapping table to find the matching
label and the port to get the output label and the port. It then
appends the output label to the packet and sends the packet to
the output port. Hence each activated LSP leads to more labels
at the LSR, thereby requiring more processing to forward of
each packet.

For a highly connected heterogeneous network running
on a sparse fiber-optic network, setting up enough LSPs to
yield the benefits of traffic engineering can become an issue.
Most traffic engineering formulations in the literature fail to
account for the processing restrictions on the routers and hence
choose tunnels based on link speeds only. Due to heterogeneity
of LSRs, processing speed at certain LSRs can become a
bottleneck. Such a traffic engineering formulation is presented
in [3]. The approach makes sure that on engineering the
network, certain routers will not get overloaded. In this paper,
we extend the approach to networks where BAGS services are
provided along with best-effort service.

Depending on the requirement of the user (here, the term
“user” is used in a generic sense to mean access customers
rather than each individual ‘human user’), several different
levels of BAGS services can be envisioned: (i) guarantee the
service only under normal network operating conditions, (ii)
full guarantee of bandwidth under normal situations plus a
reduced level of service in the event of a major link failure,
and (iii) finally, fully guaranteed bandwidth both under normal
as well as under a major link failure situation. For the sake
of simplicity, we will refer to these three service levels as
zero, fractional, andfull BAGS services. Note that zero BAGS
services do not provide any survivability. The specifics of



using protocols such as RSVP or CR-LDP to invoke MPLS
traffic engineering is outside the scope of the present paper;
the interested reader is directed to [1]. We also point out that
although we use LSPs and MPLS to explain and present our
framework, it is indeed applicable to the class of networks that
have bounded tunneling functionality.

The focus of this paper is to consider a traffic (network)
engineering problem where we have BAGS and best-effort
service classes sharing a network. The BAGS service classes
are to be supported using LSPs such that the number of
LSPs active on a link is bounded. Traffic engineering such
a network faces multiple (and possibly conflicting) objectives.
Hence, we also present several possible objective functions
and demonstrate the interplay between them while providing
BAGS services.

While, over the years, network survivability has been ad-
dressed for circuit-switched, ATM and fiber networks (see,
for example, [4]–[13] for a sampling of work), MPLS allows
the capability to address traffic engineering along with sur-
vivability for a new class of problems. For example, Wang
and Wang [14] have addressed the explicit routing models for
MPLS traffic engineering. The work that is closest to ours is by
Kodialam and Lakshman [15] where they present optimization
models and algorithms for guaranteed tunnels with restoration.
However, there are several differences. In our problem, we
focus more on survivability (rather than restoration), address
book-ahead guaranteed survivable services (with different sur-
vivability requirements); further, these aspects are considered
in the presence of conflicting objectives. To our knowledge,
this traffic engineering problem has not been addressed so
far. Further, we provide a novel modeling approach where
we show how to capture different BAGS services within a
single modeling framework. The reader may want to note that
this approach is for off-line traffic engineering determination
where the network provider/operator would like to perform
such updates once a day [16].

The rest of the paper is organized as follows. In section II,
we provide a generic IP optimization formulation of the
BAGS traffic engineering problem with tunneling constraints.
In section III, we present multiple objective functions which
can be used along with the generic formulation. In section IV,
we present an efficient heuristic based algorithm to solve the IP
problem using a series of continuous problems followed by a
reduced IP problem. In section V, we present numerical results
for small and large networks (experimental and randomly
generated).

II. GENERIC FORMULATION

We consider an aggregated-flow based network, where data
arriving to a source for a specific destination needs to be
sent over one of the active LSPs between the source and
the destination. The data belongs to one of the BAGS service
classes and hence can only be sent on the LSPs with required
survivability. Each service class maintains its own set of LSPs
between source and destinations. The total LSPs chosen to be
activated across the network are such that the total number of
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Fig. 1. Illustration of Cycles

LSPs flowing through each link are restricted. The formulation
restricts that the active LSP constraint and Link Capacity
constraint are honored on every link.

Consider a BAGS service request for demandk and service
classs that requires a bandwidth demand volume ofds

k units
between the ingress nodeik and the egress nodeek for either
full, fractional or zero BAGS services. We assume that all
nodes (or routers) in the network are capable of providing this
functionality. For example, in an MPLS-capable routers, this
demand may be set up on any possible LSPs in the network
such that the active LSP constraint is not violated on any of
the traversed links. In our scenario, if this demand request
is at the zero-BAGS level, then only a path with bandwidth
ds

k needs to be set up ahead of time (or allocated ahead of
time); on the other hand, if the request is for a full-BAGS
service, a back-up path (to address for a failure situation/state,
i.e., situation-disjoint) needs to be available and bandwidthds

k

needs to be reserved also on the backup path. It is important to
note that this also imposes the connectivity requirement on the
network to be two-edge connected (in other words, we assume
that the network design process addresses the topological need
for survivability requirement). While in the case of fractional-
BAGS services, the back-up path needs to be allocated the
bandwidth sufficient to carry a fraction ofds

k in order to
address partial survivability.

We first discuss how to model the three different BAGS
service classes. For the zero BAGS service class, a path needs
to be selected. This path maynot be the shortest (e.g. hop)
path since depending on the traffic engineering goal. Thus, we
can consider a set of candidate paths for the flowds

k of BAGS
service classs of demand pairk. On the other hand, for fully-
survivable BAG service class, flowing the demandds

k requires
both a primary path and a secondary path which are situation-
disjoint. While such paths can be independently modeled, we
use a pairing idea, i.e., consider a pair of paths consisting of
primary and secondary paths that are situation-disjoint. For
simplicity, we refer to a pair of such paths as acycle or, a
cycle path(note that this cycle path idea has been used earlier
for fiber network survivability in [17]). An illustration of three
candidate cycles for demand with end nodes 1 and 2 (for a
four-node network) is shown in Figure 1.

Similar to the case of zero-survivable services, the selection
of the shortestcycle for a demandds

k may not be in the
best interest of the traffic engineering objective. Thus, we can
consider a candidate set of cycles for a flow demandds

k, for



full survivability.
The fraction BAGS service class also requires a pair of

disjoint paths as in the case of full BAGS service class. The
difference is that, on the back-up path, only a fraction of the
demand is required to be reserved. If we denote the fraction by
αs

k (where0 ≤ αs
k ≤ 1), then the primary path would reserve

ds
k while the back-up path would reserveαs

kds
k. Combining the

above three cases, we can see that it is actually not necessary
to model each BAGS service class independently if the idea
of cycle along with the fractional parameter (α) is used. In
other words, a set of candidate cycles can be considered for all
BAGS classes. If it is for a full BAGS class, thenαs

k is set to 1,
and for fraction BAGS, this parameter is set to a value between
0 and 1 (as requested by the user through a service-level
agreement) while for zero-survivable, this parameter takes the
value zero. Thus, an unified view can be considered which is
part of goal in the problem formulation.

We first describe the notation:

N : Set of Nodes in the Network
L : Set of links in the network
K : Set of demand pairs generating traffic in the net-

work
R : Set of failure situations
Lσ : Set of link(s) that fail in failure situationσ ∈ R
Sk : Set of BAGS service classes for demandk of the

network
ξs

k : Revenue from carrying service classs ∈ Sk of k ∈
K

ds
k : Volume of traffic generated by service classs ∈ Sk

of k ∈ K
αs

k : Survivability requirement of service classs ∈ Sk

of k ∈ K
Tl : Maximum number of tunnels allowed on linkl ∈ L
Cl : Capacity of linkl ∈ L (in BBU)

Let |P s
k | be the number of candidate cycles generated for

service classs ∈ Sk of demandk ∈ K. We now introduce the
decision variablexs

km associated with the cyclem for service
classs ∈ Sk of requestk ∈ K which takes the value 1 if
this cycle is selected (by the design); otherwise, it takes the
value 0. As discussed earlier, due to capacity limitation, it is
quite possible that a demand may not be routed (while proper
network design would try to avoid such situations by over-
engineering; from a traffic engineering modeling standpoint, it
is necessary to incorporate this variable to avoid infeasibility
of the problem). To consider this aspect, we also introduce
an artificial variablews

k with each service classs ∈ Sk of
demand requestk ∈ K; this takes the value 1 if the demand is
NOT accommodated and 0, otherwise. Thus, to consider the
scenario of either choosing a cycle from a set of candidate
cycles or not selecting at all for each of the demand requests,
we have the following constraints

ws
k +

∑

m∈Ps
k

xs
km = 1.0 s ∈ Sk, k ∈ K (1a)

xs
km, ws

k ∈ {0, 1} m ∈ Ps
k , s ∈ Sk, k ∈ K. (1b)

Now, for each cycle (because of the way each of them are
generated) we have a ‘main’ path and the backup situation
disjoint path. For notational clarity, the main path will be
superscripted withp (for ‘primary’), and the backup path bys
(for ‘secondary’). To address for flowing the demand on each
link (for each path), we now introduce the indicator notation
to map between the demand, the cycle and the link, as they
relate to primary or the back-up (secondary) path, as follows:

δs`
km: 1, if candidate cyclem ∈ Ps

k for service classs ∈
Sk of requestk ∈ K uses link` ∈ L in its primary
path
0, Otherwise

βs`
km: 1, if candidate cyclem ∈ Ps

k for service classs ∈
Sk of requestk ∈ K uses link` ∈ L in its back-
up/secondary path
0, Otherwise

Note that, by definition, for a specific link and a cycle,
both indicators can not be one (since the path pairs are link-
disjoint). As discussed earlier, all the three types of classes
(full, fractional and zero BAGS) can be modeled in our case
by the parameterαs

k. Thus, the bandwidth needed on any link
` (denoted byF`) to carry both for primary path routing and
for back-up path routing for different BAG demand request
can now be captured by the amount

F` =
∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

xs
km[δs`

km + βs`
kmαs

k]ds
k.

Note the inclusion of parameterαs
k with the second term which

is dictated by the level of survivability. Since each link` has
capacityC`, we thus have the following constraints for each
link ` ∈ L:

∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

xs
km[δs`

km + βs`
kmαs

k]ds
k ≤ C` ` ∈ L. (2)

Next, we consider the number of active LSPs sharing a link.
Since we want that the number of active tunnels on any link`
should be less thatT`. Since, for zero BAGS services back-up
path is not allocated, no additional tunnels are created. While
for the fractional and full BAGS the backup path needs to
be created and hence it contributes to the number of active
LSPs. We capture the variation by using an indicator function
1{αs

k>0}, which is 1 whenαs
k > 0 and 0 otherwise. Hence,

we have following constraint to account for tunnel constraint.
∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

[δs`
km + 1{αs

k>0}βs`
km] xs

km ≤ T` ` ∈ L. (3)

We now assimilate all the previously discussed constraints and
present the generic formulation. The objective functions to be
used will be discussed later in section III. The formulation
minimizes the objective function in the space of the presented
constraints. The problem (P) can be formulated as:

F ∗ = min
{x,w}

f(x, w) (4)



Subject to:

ws
k +

∑

m∈Ps
k

xs
km = 1.0 s ∈ Sk, k ∈ K (5a)

∑

k∈K

∑

s∈Sk

ds
k

∑

m∈Ps
k

[δs`
km + αs

kβs`
km] xs

km ≤ C` ` ∈ L (5b)

∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

[δs`
km + 1{αs

k>0}βs`
km] xs

km ≤ T` ` ∈ L (5c)

xs
km, ws

k ∈ {0, 1} m ∈ Ps
k , s ∈ Sk, k ∈ K (5d)

In the next section, we present various objective functions
which need to be minimized to ensure good performance in
one aspect or the other. These objective could be conflicting
with each other and hence provides fertile environment to
observe and establish their interplay.

III. O BJECTIVE FUNCTIONS

Our goal is to account for several possible objectives in a
unified formulation. These objectives capture various conflict-
ing requirements which are relevant to a network engineer.
First consideration is that although best effort services are
offered no guarantee of Quality of Service (QoS) in terms
of bandwidth resources, it is desirable to improve the QoS of
the best effort services without effecting the performance of
BAGS service classes. Such an objective can be achieved by
maximizing the residual capacities of all links in the network.
Another possible objective is to minimize the total demand
routing cost for BAGS services. Such a reservation attempts
to derive shortest-path type allocations. However, this will not
be the case in a capacitated network, especially in the presence
of survivability requirements. Still, another objective is to
minimize the penalty if a demand can not be accommodated
due to, say, capacity limitation. Contrary to the minimization
of penalty objective, another goal can be the maximization of
revenue (especially if capacity limitation imposes the decision
on demand selection to maximize the revenue). Thus, the
problem has several objectives while some of them may be
contradictory to others.

We first maximize the residual capacity in the network so
as to achieve better QoS for the best-effort services. This can
be written as:

F ∗ = max
{x,w}

∑

`∈L
[C` − r`] (6)

wherer` is the capacity consumed on link` by different BAGS
service requests. It is easy to see that the maximization is
equivalent to minimizing the sum of link flowr`’s. Hence,
this objective can be rewritten as

F ∗ = min
{x,w}

∑

`∈L
r`. (7)

There are two ways of computing ther` in the context of the
first objective (7). In the first case,r` is computed assuming
that both primary and backup paths are allocated bandwidth

where as in the second case only primary path is assumed to
be allocated capacity. These two requirements are referred to
as hard and soft requirements, respectively.

A. Hard Requirement

When we want to make sure that the backup paths are
reservedapriori to the failures, we use hard requirements.
Here, r` is the capacity consumed by both the primary and
the backup path. It refers to the situation where the capacity
required by both the primary and the backup paths is explicitly
allocated at the time of service request reservation. For such
a requirement, load on the network can be computed as

fc =
∑

`∈L

∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

xs
km[δs`

kmds
k + βs`

kmαs
kds

k] (8)

Next, we need to capture the routing cost of the flows in the
formulation. Ifcsp

km is the routing cost on the primary path, and
csb
km is the routing cost on the back-up path of the candidate

cycle m ∈ Ps
k of service classs ∈ Sk and k ∈ K. Then the

objective function in order to minimize the total routing cost
is

fr =
∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

xs
km[csp

km + γcsb
km] (9)

where γ is a cost proportional constant. As we are hav-
ing hard survivability requirement, we already have backup
paths signalled and provisioned across the network. Since
the primary path requires more sophisticated handling (it is
carrying packets) than the backup path, we incorporate such an
asymmetry by weighing the backup path cost withγ. On one
hand, ifγ is set 1.0, it would mean that backup paths require
same routing cost as the primary path. On the other hand, if
γ = 0.0, then backup paths do not incur any routing cost, they
are allocated and just kept alive. Having intermediate values of
γ would mean that some fraction (possibly important sections)
of the traffic is still sent over the backup paths even when the
primary path is working. This would ensure that in the event
of a failure and possible disruption of primary path, important
sections of the traffic are still delivered to the destination.

It may, however, be noted that if we consider the opti-
mization problem ofjust minimizing (9) with the constraint
set being (5) when the routing cost componentscsp

km and
csb
km are positive, the optimal solution to the optimization

problem is the solution of selecting the artificial variablews
k

(i.e. NOT routing any demand) for all the demand requests!
(essentially, there is no cost if nothing is routed.) Thus,
we need to introduce the penalty cost,ηs

k, of choosing the
artificial variable, and this cost component to the objective
function; this, then, also addresses the third objective. Thus,
the objective that incorporates the penalty cost also (for the
third objective) can be re-written as

fr =
∑

k∈K

∑

s∈Sk





∑

m∈Ps
k

xs
km[csp

km + γcsb
km] + ηs

kws
k



 (10)



The two objective functionsfc and fr constructed so far
minimize the used capacity and the routing cost in the net-
work. Since, both the objectives are relevant in engineering a
network, it is desirable to combine the two objective functions
and construct a unified function which should be minimized.
This can be accomplished by weighing one of the functions by
a weight factor and take the sum with the other function and
then minimizing the combined cost. If we use the normalized
weight for objective functionfr, then the weight factorθ
(specifically,θs

k for eachs ∈ Sk andk ∈ K) is needed only for
objective functionfc. Thus, we have the following combined
objective function.

fcr =
∑

k∈K

∑

s∈Sk





∑

m∈Ps
k

[
xs

km(csp
km + γcsb

km)
]
+ ηs

kws
k





+
∑

k∈K

∑

s∈Sk

θs
k





∑

`∈L

∑

m∈Ps
k

xs
km[δs`

kmds
k + βs`

kmαs
kds

k]



 (11)

Note that in the general case, the cost of routing a path
(primary or backup) may depend on many considerations.
One of the most important consideration would be whether
the path is allocated or not but upon allocation many other
restrictions may apply. For example, it may depend on the
memory size and processing power of the nodes through which
the path traverses in which case cost of maintaining the path
could be the sum of costs of traversing those routers. A more
sophisticated way of capturing the routing cost is to consider
the amount of forwarding of packets required for maintaining
the path. Such a criteria would be additive in the demand that
needs to flow on each link of the path, it can be captured as

csp
km =

∑

`∈L
δs`
kmds

k (12a)

csb
km =

∑

`∈L
βs`

kmαs
kds

k (12b)

Substituting the values ofcsp
km and csb

km into the functionfcr

and rearranging, we get:

∑

k∈K

∑

s∈Sk



ηs

kws
k +

∑

m∈Ps
k

xs
km[(1 + θs

k)csp
km + (γ + θs

k)csb
km]





For simplicity, we’ll use the following notation

ξs
km = (1 + θs

k)csp
km + (γ + θs

k)csb
km

Therefore, after the change of variables the functionfcr takes
the form

fcr =
∑

k∈K

∑

s∈Sk

[ηs
kws

k +
∑

m∈Ps
k

ξs
kmxs

km] (13)

Observe thatξs
km is the cost of accepting the demand request

from node pairk and service classs. The cost only takes
into account the cost associated with the resources requested
by the request. Such a scenario is impractical since their is

a cost with accepting the flow but no gains corresponding to
the flow. Hence, in the next step we incorporate revenue for
accepting a demand; this will be reflected in the form of a
utilization parameter. The utility varies from one request to
the other. A request may have to be allocated a cycle even
at higher costs (that is, it consumes more bandwidth), if the
utility of that request is higher. A request which has not been
allocated any cycle path will generate no utility. We need to
select an optimal set of cycles for the given set of requests
at minimal possible costs while generating maximum possible
revenue. Letus

k be the (normalized) utility of service class
s ∈ Sk of requestk ∈ K with um varying between 0.0 and
1.0. Incorporating such a utility in the functionfcr leads us
to

fh =
∑

k∈K

∑

s∈Sk

[ηs
kws

k +
∑

m∈Ps
k

(ξs
km − us

kR)xs
km]. (14)

where R is utility weighing factor. The value of the utility
weighing factor R dictates the importance of utilities of
requests over the costs. When we minimize the functionfh

as the objective function constrained by (5), we refer to the
problem as (Ph).

B. Soft Requirement

When we wish that only the backup paths are known before
hand but not reserved, i.e. the capacity on the backup path is
“allowed” for use by best-effort servicesas long asthere is
no failure; backup paths are immediately allocated to BAGS
service class as soon as a failure occurs through a signalling
message (thus, bumping out best-effort services). Although
such a benefit comes at the cost of increase in time required
to survive a failure. Since, the backup paths are not allocated
capacity until the failure happens, it takes additional time
in clearing the best-effort traffic and providing the required
bandwidth to the BAGS service class. For such a scenario,
the total load on the network due to the primary path can be
captured as

fc =
∑

`∈L

∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

xs
kmδs`

kmds
k (15)

The routing cost for the primary path will be

fr =
∑

k∈K

∑

s∈Sk





∑

m∈Ps
k

xs
kmcsp

km + ηs
kws

k



 (16)

Similar to the hard requirement scenario, we construct the
combined used capacity and routing cost functionfcr as

∑

k∈K

∑

s∈Sk



ηs

kws
k +

∑

m∈Ps
k

[
xs

kmcsp
km + θs

k

∑

`∈L
xs

kmδs`
kmds

k

]



Incorporating the routing cost in the same fashion as in (12a),
then rearranging the terms we get

fcr =
∑

k∈K

∑

s∈Sk



ηs

kws
k +

∑

m∈Ps
k

xs
km(1 + θs

k)csp
km







Using the same notation for simplicity as in the case of hard
requirement, we have

ξs
km = (1 + θs

k)csp
km

Incorporating the utility for the carried demands, we get the
final objective function as

fs =
∑

k∈K

∑

s∈Sk

[ηs
kws

k +
∑

m∈Ps
k

(ξs
km − us

kR)xs
km]. (17)

when we minimize the functionfs as the objective function
constrained by (5), it is referred to as problem (Ps).

To recap, we have presented above an integrated optimiza-
tion model for traffic engineering a network supporting BAGS
services along side best-effort traffic were modeled along
with differing objective criteria. We presented the problem in
two variations, namely hard and soft requirement. A salient
feature of this model is the use of the cycle path idea which
integrates primary and disjoint back-up paths needed for fully
and fractional BAGS services in the same framework.

IV. SOLUTION APPROACH

It should first be noted that since book-ahead traffic engi-
neering design is to meet survivable BAG demand ahead of
time, a real-time/on-line algorithm is not required; at the same
time, an efficient algorithm is required so that the solution
can be loaded to the network. This is further complicated
by the fact that the optimization model (P) is an integer
linear programming (ILP) problem. Typically, generic ILPs are
solved using the branch-and-bound algorithm and/or Gomory’s
cutting plan method. But such approaches are not quite prac-
tical for problems of large size. The formulation (P) presented
grows with the size of the network, number of service classes
and with the number of path couples considered. Therefore,
using direct methods will restrict the applicability of the
approach to smaller networks. In order to make the approach
suitable for large networks, we present two heuristicsgIP ()
andgSA() which provide a feasible solution (not necessarily
optimal) within a reasonable amount of time.

A. Heuristic I (gIP )

We now present algorithmic details and implementation
of Heuristic I. It is based on successive approximations by
continuous relaxations of the problem. Such an approach is
guided by following observations about the structure of the
problem. Notice that the size of the problem grows as the
number of demand and service class increases (and also the
number of candidate cycles increases). Further, the linear
programming relaxation is much easier to solve; this requires
relaxing the zero/one requirement (1b) on the cycle path
decision variables. Also, the LP relaxation provides a lower
bound to the solution. Thus, we have developed a simple
heuristic (Algorithm 1) based on solving the LP relaxations.

When solving (P) using heuristicgIP (), we define setsXf

andXv containing the variablesx which have been fixed (their
value is already decided) and the ones that are still variables,

Algorithm 1 Successive Approximation Approach

gIP ()set Xv = {xs
km,m ∈ Ps

k , s ∈ Sk, k ∈ K} set
Xv = Xv ∪ {ws

k, s ∈ Sk, k ∈ K} setXf = {φ} done←
0 change← 1 while done = 0 AND change = 1do

x ← solveRelaxed gIP (Xv)
done← 1
change← 0
for all X ∈ Xv do

if x ≤ η then
x = 0
Xf = Xf ∪ {x}
Xv = Xv\{x}
change = 1

else if x ≥ 1.0− η then
x = 1
Xf = Xf ∪ {x}
Xv = Xv\{x}
change = 1

else
done = 0

end if
end for

end while
if done = 0 OR change = 1then

x ← solveInteger gIP (Xv)
end if
returnx

respectively. Initially,Xf is empty andXv contains all thex
variables.

Using the value of Xv, we solve the problem
Relaxed gIP (Xv), which is the relaxed version of problem
gIP () with the members of the setXv as continuous variables
and elements ofXf as fixed to the already decided values.
Relaxed gIP (Xv) is a continuous linear programming
problem which can be solved effectively by Simplex method
even for fairly large number of variables and constraints.
Upon obtaining the solution, we first inspect the solution for
the values of variablexs

km ∈ Xv. The values obtained could
be (a)xs

km ≥ 1.0− η, (b) xs
km ≤ η, (c) η < xs

km < 1.0− η,
whereη is error margin (we assumed 0.05).

The values ofxs
km’s of type (a) are set to 1, type (b). are set

to 0 and setsXv andXf are updated as,Xv ← Xv\{xs
km},

Xf ← Xf ∪ {xs
km}. The variables of type (c) are left as

variables. We, then delete capacities and tunnels on each link
based on the values ofxs

km which are inXf . We then solve the
reduced problemRelaxed gIP (Xv). We repeat the procedure
till we find variables of types (a) and (b) i.e. problem size
reduction is achieved.

Finally, when we are unable to get any more reduction in
the size of the problem, we go for solving the IP problem
using direct branch-and-bound methods inInteger gIP (Xv).
During experiments it was observed that the size of such a
reduced problem is fairly small and hence does not prove to



be a limitation. Hence, we have an acceptable quality solution
with x∈ {0, 1}.
B. Heuristic II (gSA)

In this subsection, we discuss the construction and imple-
mentation of Heuristic II. We observe that the problem (P) is a
multicommodity integral flow problem. We base the heuristic
II on simulated allocationapproach [18], [19]. The idea of SA
has its source in discrete event simulation of the performance
of alternative call routing in circuit switched telecommuni-
cation networks. The approach has been effectively used in
reconfiguration and design of transmission networks such as
SDH and ATM.

We describe the implementation of the algorithm based on
simulated allocation for generic formulation of the problem
(P). The algorithm is a minor variant in the sense that
allocation never violates the constraints and is inspired by [20].
The algorithmgSA() minimizes the functionf(x,w) while
honoring constraints (5). ThegSA() algorithm works with
partial allocation sequencesx = (xs

km, m ∈ Ps
k , s ∈ Sk, k ∈

K). We choose the values ofw in such a way that the
constraint (5a) is always satisfied, i.e., if

∑

m∈Ps
k

xs
km = 0 ⇒ ws

k = 1 (18)

elsews
k = 0; for all s ∈ Sk, k ∈ K. Additionally we define,

c(x, `) =
∑

k∈K

∑

s∈Sk

ds
k

∑

m∈Ps
k

[δs`
km + αs

kβs`
km] xs

km (19a)

and

t(x, `) =
∑

k∈K

∑

s∈Sk

∑

m∈Ps
k

[δs`
km + 1{αs

k>0}βs`
km] xs

km. (19b)

Observe thatc(x, `) andt(x, `) determine the present state of
the constrained resources (allocated capacities and tunnels on
link `) for a given allocation sequencex. A path m′ of set
Ps

k is said to be anaccessible pathfrom present allocation
sequencex if

c(x, `) + [δs`
km′ + αs

kβs`
km′ ]ds

k ≤ C` ` ∈ Ps
k (20a)

and

t(x, `) + [δs`
km′ + 1{αs

k>0}βs`
km′ ] ≤ T` ` ∈ Ps

k . (20b)

Hence setting the chosenxs
km′ = 1 does not violate con-

straints (5b) and (5c). We define a setM as the set of
maximum allocation sequence, such thatx ∈ M means
that for an allocationx their exists no unallocated demand
(ws′

k′ = 1) with an accessible pathm′.
The algorithm starts withx = 0 andw = 1. At each step,

we either choose toallocate(w) or to deallocate(w) based
on the current state of allocation (x). For x /∈M, we execute
allocate(x) subroutine, otherwisedeallocate(x). The routine
allocate(x) collects all the unallocated demands (ws

k = 1)
and amongst them randomly chooses as ∈ Sk of k ∈ K. All
the paths in the set of candidate pathsPs

k are chosen in the
order of increasing cost (ξs

km) and checked for accessibility.

The first accessible pathm′ is allocated capacity and tunnels
and corresponding variablexs

km′ is set to 1.
The deallocate(w), chooses to call subroutine

deallocate 1(w) with probability q(x) otherwise it calls
deallocate 2(w). Thedeallocate 1(w) subroutine, randomly
chooses as ∈ Sk of k ∈ K with ws

k = 0 and sets it
to 1 and finds the pathm′ with xs

km′ = 1 and frees the
resources (capacity and tunnels) used by the path and sets
the xs

km′ to 0. While deallocate 2(w) evaluates the current
value of c(x, `) and t(x, `) and locates the critically loaded
links. These links (̀′ ∈ L) are either critically loaded in
capacity (i.e.c(x, `′) = C`′) or in tunnel requirement (i.e.
t(x, `′) = T`′). Next, it locates as ∈ Sk and k ∈ K with a
path m′ such thatδs`′

km′xs
km′ = 1 or (1αs

k>0)βs`′
km′xs

km′ = 1.
For the chosen pathm′ of service classs ∈ Sk and demand
k ∈ K, it relinquishes the capacity and tunnels used byxs

km′

and setsws
k = 1 andxs

km′ = 0.

Algorithm 2 Simulated Allocation Approach

gSA()step← 0 count← 0 F ∗ ← ∞ (x,w) ← (0,1)
while (step< stepmax AND F ∗ > F ∗min) do

step = step + 1
if x ∈M then

allocate(w)
else

if random≤ q(x) then
deallocate 1(w)

else
deallocate 2(w)

end if
if f(x,w) < F ∗ then

F ∗ = f(x,w)
(x,w)min ← (x,w)

end if
end if

end while
return (x,w)min

The value ofq(x) plays an important role in the convergence
and solution quality of the algorithm. We know thatq(x)
should depend upon the value of the objective function as
compared to theF ∗min and for our implementation we compute

X(x) =
f(x,w)− F ∗min

F ∗min

.

We choose the value ofq(x) using a fairly simple technique.
We derive a reasonable value for thresholdX∗ based on our
anticipated proximity ofF ∗ to F ∗min. If we set X∗ to 0.1
then we expect to find solutions with in 10% ofF ∗min. It
depends upon what can be considered as acceptable solution.
It also depends upon the way in whichF ∗min was computed.
Then, we setq(x) = q1 if X(x) < X∗ and q(x) = q2

otherwise. For our case,F ∗min was computed as the solution
obtained by relaxing the integrality constraint of the problem
(P). Since, we can not be sure that an integral solution exists



in the proximity of F ∗min, we useX∗ = 0.1. When in the
acceptable solution region, whether the algorithm allocates
randomly chosen demand or de-allocates randomly chosen
demand depends on the value ofq, we useq1 = 0.95 and
q2 = 0.8.

The values ofF ∗min needs to be determined to ensure
acceptable quality results within reasonable amount of time.
As already discussed , we useF ∗min as the solution obtained by
relaxing the integrality constraint of the problem (P). The set
M contains the pairs (x,w) which are maximal allocations,
hence given the present partial allocation sequence, no more
flows can be accepted without violating the constraints (5b)
and (5c). We set the stepmax = 10000. During the experiments
conducted, it was found that the algorithm performs fairly
well and leads to improvements in the results obtained by
the Algorithm 1 (gIP()).

A component that feeds into the model (of both the heuris-
tics) is the generation of candidate cycle paths. It may be
noted that Suurballe and Tarjan have developed an algorithm
for generating shortest pair of disjoint paths [21], [22]; this,
however, helps in generating only the shortest cycle, not a set
of candidate cycles. In our case, we have implemented a simple
procedure by extending the K-shortest path algorithm where
the K paths generated by the K-shortest path algorithm are
compared to each other to filter out common links to generate
a set of candidate cycles containing only disjoint pair paths.
Note that the candidate set isonly a feeder to the optimization
model, and certainly, the eventual solution can depend on how
many are included in the initial cycle (this is discussed later).
Note that this candidate list needs to be generated only once.
For the set of examples tested (discussed below), we have
found this procedure to be very efficient (only takes a couple
of seconds of computing time).

V. RESULTS AND DISCUSSION

We have implemented our Successive Approximation Algo-
rithm (gIP ()) in C++ using CPLEX callable libraries [23] to
solve the lp relaxations. We have also implemented Simulated
Allocation Algorithm (gSA()) using C++. The goal of this
section is to understand the effectiveness of the problem
formulation in solving the survivable BAG traffic engineering
design problem. We want to evaluate both the variations (Ph)
and (Ps) of the basic problem. Specifically, we are interested
in understanding the effect of the utility function, the benefit
of soft vs. hard survivable strategies, and whether the unified
functions fh and fs are effective in capturing the multiple
objective criteria.

Consider experimental networks shown in Figures 2− 5.
These networks are taken from already published litera-
ture [24], [2]. For these experimental networks we provide
detailed results and help user derive insights into the behavior.
EN I has 12 nodes, 18 edges and average nodal degree (ratio
of number of edges to number of nodes) of 1.5. EN II has 6
nodes, 12 links and an average nodal degree of 2.0. EN III
has 12 nodes, 25 links and an average nodal degree of 2.08.
EN IV has 10 nodes, 26 links and an average nodal degree of
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Fig. 5. Experimental Network IV

2.6. Observe that EN IV is the most well connected network
where as EN I is the least.

For the given experimental networks, we consider capacity
of 622 Mbps for each link (referred to as baseline capacity).
We assume that three service classes are present in the
network. We also assume that there are demands between
all pairs of nodes of value100 Mbps for each of the three
considered service classes. These service classes have varied
survivability requirements and corresponding utility to the
service provider. We assume that the demands with higher
survivability requirement have higher utility. We assume that
service class 1(s = 1) is survivable critical in nature and
hence for allk ∈ K, α1

k are chosen to be1.0 and u1
k is

chosen as5.0. We assume that service class 2(s = 2) also
has a survivability requirement, although not as stringent as
service class 1. Hence, we chooseαk

2 for all k ∈ K as0.5 and
u2

k to be3.0. Service class 3 does not have any survivability
requirement and we choose for allk ∈ K, α3

k = 0 andu1
k to

be1.0. The penalty cost for each demand and service classηs
k

is computed asη∗(1+α)ds
k, whereη∗ is a weighing constant.

A. Comparison ofgIP and gSA

We use the experimental networks for evaluating the solu-
tion quality of Heuristic I and II. The formulation (Ph) is used
for such a comparison. We assumeγ = 0.5 andθs

k = 0.5 for
all s ∈ Sk andk ∈ K. We choose the utility weighing factor
R = 100. The penalty cost weighing factorη∗ was chosen to
be 5. The number of allowed tunnels on each link are assumed
to be 50, 15, 25, 20 for EN I, II, III, IV, respectively. The
number of candidate cycles were chosen to be 5 for EN I and
15 for others. We start with these values of parameter and
experimental networks with baseline capacity and run both
gIP() (HI) and gSA() (HII). We also use a hybrid heuristic
(HIII) where we first derive results using HI. We then use the
final solution of H1 as initial solution for HII, which is further
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Fig. 6. Value offh for EN I with increasing capacity andT` = 50
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Fig. 7. Value offh for EN II with increasing capacity andT` = 15
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Fig. 8. Value offh for EN III with increasing capacity andT` = 25
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Fig. 9. Value offh for EN IV with increasing capacity andT` = 20

improved by the heuristic II. We also solve the continuous
relaxation of the IP variables in the (Ph) problem which serves
as a lower bound on the integer solution obtained.

We then increment the number of Tunnels by 10 and rerun
the problem. We run the experiments till allowed tunnels are
50. We then increase the capacity to 125% of the baseline
capacity and repeat the entire process. We continue till the
network reaches 400% of the baseline capacity. Such set of
experiments help us explore the solution quality under both
tunnel and capacity constrained (both are small), to one of
them being constrained and other relaxed, to both of them
being relaxed (both are high). We present results for the
experimental networks EN-I and EN-IV in plots presented
in figures 6 to 9. We also present results for the continuous
relaxation of the integer problem.

In figure 6, we present the value offh whenT` = 20. Re-
sults for other values ofT` showed similar behavior. Observe
that HI and HIII closely follow the LP solution. However, the
performance of HII is not quite as good. Similar behavior is
observed for EN III in figure 8. Based on these results, it
seems that Heuristic II is not very useful and that HII and
HIII hardly give better performance than HI.

However, for EN II with T` = 10, the results presented
in figure 7 draw our attention to the point that this may not
be true in general. Similar behavior was observed for EN IV
with T` = 20 which is presented in figure 9. Similar results
were obtained for other values ofT`. For these two cases, we
can observe that HII gives better results than HI. Interestingly,

HIII closely follows the minimal of the two heuristics (I and
II) and the continuous relaxation. Such an observation gives
strength to the performance of heuristic III for more general
scenarios. Hence, we use HIII to compute the best solution in
the remaining of the results in this paper.

The results also demonstrate that capacity and tunnels are
equally important while provisioning a network. Presence of
fewer number of tunnels nullifies the presence of abundant
capacity leading to under utilized links. More so, having
too many tunnels is only as much useful as the amount of
capacity available in the network. Hence, our first inference
is that accounting for both capacity and tunnels leads to
effective traffic engineering solutions. Both of them could
be viewed as resource which impact the amount of traffic
carried by a network. While engineering a network if we
consider capacity in isolation, the results can have a limited
utility in practical networks. More so, when used in real life
networks, the performance observed might be much inferior
to the expectations.

B. Effectiveness of the Formulation (PAh)

The optimization problemPh was formulated so as to
incorporate various conflicting objectives into an integrated
problem. Not only was it important to allocate the BAG
requests but also the residual capacity on the links which
was to be used by best effort traffic. Hence, the effectiveness
of the formulation can be studied in terms of the qualities
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Fig. 11. Value of MRC for experimental networks with increasing R

of the obtained solution. Though there are many possible
qualities that can be considered for this study, we choose four
parameters which areγ, R, θs

k andη∗. Observe that these four
parameters can be tuned by a service provider while traffic
engineering a network and it would certainly have effect on the
solution found. Based on the traffic engineering considerations,
values of these parameters can be chosen. We evaluate in
these set of experiments if the parameters influence the final
solution in the intended way i.e. provide anticipated effect on
a specific metric. We used the number of allowed tunnels as
T` = 15, 20, 50, 50, the # of candidate cycles as 5, 15, 15, 15
and the capacity of the links as 150%, 200%, 400%, 500%
of the baseline capacity for experimental networks I, II, III,
IV, respectively. The default values were chosen as:γ = 0.5,
R=100,θs

k = 0.5 andη∗ = 5.

1) Dependence onγ: We evaluate the role ofγ in the first
set of experiments. Observe thatγ is the cost proportional
constant for the routing cost of primary and backup paths. In
other words, it determines the routing cost of the backup path
as compared to the primary path. Whenγ is set to 0, their is
no routing cost for backup path where as when it is set to 1,
backup path has equal cost as the primary path. For experiment
with increasing value ofγ, we compute the average of the
ratio of the length of primary path to backup path (APR) for
all service classes and demands with survivability requirement
(α > 0). We present results in figure 10 for the experimental
networks.

Observe that with the increasing value ofγ, APR increases.
This can be attributed to the following reasons: firstly, the
routing cost on the primary (equation 12a) and backup paths
(equation 12b) are computed based on the hops and the
demand volume of a request. While computing the routing
cost of a couple, we multiply the cost of backup path withγ
and sum it to the routing cost of the primary path. Increasing
value of γ causes increase in the contribution of the backup
path towards the cost of a couple. Thus couples with longer
backup paths, will end up having higher cost (assuming that
other costs remain as before). Such a change forces the
optimization problem to choose path pairs with shorter backup
paths in terms of hops. Hence, the metric APR increases with
increasing value ofγ.

2) Dependence on R:We study the impact of the utility
weighing parameter R on the allocation of demands. Although
the individual relative utility (us

k) is mostly determined based
on many considerations like importance of the client request-
ing the services, characteristics of the incoming traffic, etc. but
the parameter R determines the overall utility as compared to
routing costs and bandwidth/tunnel requirement costs. Since,
we are also concerned about the residual bandwidth on the
links which carries the best-effort traffic, the parameter R has
deeper implication. Hence, we compare the load on the link
with Minimum Residual Capacity (MRC) for increasing values
of R. We present results in figure 11 for the experimental
networks.

The value of R changes the chosen solution in two ways.
Firstly, for some demands which were not allocated because
for themξs

km−us
kR > ηs

k for all accessible paths and hence the
formulation chooses to refuse them (although their is enough
capacity and tunnels in the network). By increasing the value
of R, one/many of the paths for some of these demands
become acceptable and given that the network has enough
bandwidth and tunnels, they are accepted. Hence, leading to
an increase in MRC. Secondly, increasingR also changes
the ordering of demands with respect to their overall costs
(ξs

km − us
kR). If we consider the overall cost of the least cost

acceptable path (m′) for a request (ds
k) as a function ofR,

we find thatξs
km′ is the intercept andus

k is the slope of the
overall cost. Hence, increasing value ofR changes the relative
profitability of demands with respect to each other. In our case,
this is more class based as the value ofus

k is determined based
on the class of the request.

The first behavior can be observed at higher value ofR,
since thats when it is large enough to make such impacts.
When it leads to acceptance of a demand, the value of MRC
obviously increases. However, for smaller value ofR, the
second observation plays the crucial role. Due to changes in
ordering of demands, MRC follows no specific pattern, rather
it sometimes increases and sometimes decreases depending
upon the links used by the minimal cost acceptable path (m′)
of the now more profitable demand.
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3) Dependence onθs
k: We experiment on the characteristic

of the final solution based on the chosen values ofθs
k ’s.

Observe thatθs
k controls the importance given to the allocation

cost of a request as compared to its normalized routing cost.
When set to 0, only routing cost is accounted for in the
optimization formulation. When set to 1, both have the same
weight and hence play equally important role. Due to its role
in determining the cost of a request, we evaluate it in terms
of fraction of accepted demands (FAD). We present results for
experimental networks in figure 12.

The parameter impacts the solution in a very direct way.
As we increase the value ofθ, the overall cost (ξs

km) goes on
increasing. Due to this increase, for some demands the penalty
cost is less than the minimum cost accessible cycle. Such a
scenario forces the formulation to reject the demand. Such a
behavior is evident in the figure, where FAD for each network
decrease with increasing value ofθ. More so, the cycles with
higher number of hops pay heavier penalty.

Since the impact of increasingθ is only realized when
the overall cost of the minimal cost accessible path increases
above the penalty cost for rejecting the demand (ηs

k). Hence,
we find regions in values ofθ such that FAD is unaltered.

4) Dependence onη∗: In the next study, we estimate the
role of the parameterη∗ which attributes a penalty with
the refusal to carry a specific demand request. The value of
this parameter depends upon the importance given towards
carrying a demand vis-a-vis the cost of carrying the demand.
For a sufficiently high value ofη∗, the network would accept
all the demands that it can carry, leaving minimal or no
bandwidth for best-effort traffic. However, if we choose very
low value forη∗, most or all of the demands will be rejected
and network would be largely under utilized. Hence, we
compare the value of Minimum of the Residual Capacity on
the links to the chosen value ofη∗. We present results for
experimental networks in figure 13. Alongside, we also present
corresponding values of MRC for increasing value of fraction
of accepted demands (FAD) obtained by changing the values
of η∗ in figure 14.

Observe that the penalty cost for refusing a demand (ηs
k) is

based on the demand volume, demand survivability require-
ment and the parameterη∗. When deciding whether to allocate
a demand or not, the formulation compares the minimum value
of the overall cost (ξs

km−us
kR) for all the accessible candidate

cycles with the value ofηs
k. The demand is only allocated if the

latter is more. When increasing the value ofη∗, we certainly
make some demands more likely to be allocated under the
assumption that enough capacity and tunnels are available.
Hence, it is natural to expect that FAD increases withη∗ as
observed in 13. Observe that it does not ensure that the demand
is allocated, rather it ensures that the formulation attempts to
allocate it. However, the allocation (FAD) only goes as far as
permitted by the amount of capacity and tunnels available in
the network.

Interestingly, the value of MRC does not increase linearly or
consistently with the increase in FAD as shown in 14. More
so, the value of MRC shows varied behavior. For example,
in EN II, to increase FAD from 0.75 to 0.95 requires almost
doubling of MRC that is to say that at least half of the best-
effort traffic on the most congested link needs to be thrown
away. However, for EN III, to increase FAD from 0.5 to 0.95,
MRC only requires to be changed from 0.18 to 0.22 which is
hardly a performance loss for best-effort traffic. Moreover, for
EN I, for some values of FAD, MRC decreases for increase
in FAD, which is counter-intuitive. We would like to assert
that the actual trade-off between FAD and MRC is dependent
on many factors including network topology, traffic pattern,
service classes, capacity availability and the tunnels.

The variations and trade-off’s depicted in this subsection
go on to show that the formulation effectively captures the
role of various parameters and responds positively to the
corresponding changes in the parameters. A network operator
can choose appropriate values of these parameters based
on his/her experience and requirements from the network.
The derived solution depends upon the values chosen and
adequately accommodates the intention of the service provider.

C. Choice of # of Candidate Cycles

A candidate cycle is a pair of node/link disjoint path
between ingress and egress nodes of the BAG request. Of the
two paths in the cycle, the path with lower number of hops is
chosen as the ‘primary’ path. The number of possible candi-
date cycles varies from one request to the other depending on
the ingress-egress nodes of the request and the topology of the
network. Recall that the size of the optimization problem (Ph)
depends not only on the number of BAG service requests but
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Fig. 15. Results for EN I withT` = 25 with increasing # of candidate cycles
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Fig. 16. Results for EN II withT` = 10 with increasing # of candidate cycles
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Fig. 17. Results for EN III withT` = 25 with increasing # of candidate cycles
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Fig. 18. Results for EN IV withT` = 20 with increasing # of candidate cycles

also on the number of candidate cycles considered for each
request. On one hand, to make the size of the optimization
problem manageable, we have to limit the number of candidate
cycles for each request. On the other hand, setting a low limit
on the number of candidate cycles can result in higher cost
of the final solution in terms of the value of the objective
function. In figures 15- 18, we present the value of Minimum
Residual Capacity (MRC) of links and Total Residual Capacity
(TRC) in the network and FAD for each service class for
increasing # of candidate cycles.

Observe that FAD does not necessarily increase with in-
creasing # of candidate cycles. This can be attributed to the
fact that the candidate cycles are increasing in length in terms
of number of hops. That is to say that(n+1)th cycle has either
the same number of hops or more than thenth cycle. Due to
overall cost considerations, when the formulation chooses to
allocate a demand on its longer path (which was previously
not present), it takes away the resources which could have
been allocated to many other demands. Such a choice leads
to a decrease in the value of FAD. At other times, presence
of more candidate paths makes it possible for a demand to
be routed over under utilized links (in terms of capacity and
tunnels) and consequently leads to an increase in FAD.

Note that the metric MRC is affected by # of candidate
cycles in an indirect way. Due to increase in the value of FAD,
MRC is consequently increased. Such a behavior has also been
observed in figure 14 and is quite natural to expect. However,
when considering the increase in options (of choosing a path)

while maintaining the same value of FAD, the impact on
MRC is interesting. Observe that the formulation does not
have any cost or penalty towards increased link utilization
and hence when considering the paths for possible allocation,
the presence of required resources is the only consideration.
Consider the figure 17, observe that for K = 9, 11 and 13,
the value of each FAD is same. However at K=11, the value
of MRC is less which can be attributed to the allocation of a
demand to a path which passes over under utilized links. But
when K=13, the value of MRC again increases. Hence, the
increase in MRC is not accounted for by the formulation but
it does effect the final solution in many cases.

The metric total residual capacity is captured by the objec-
tive function fh and hence is minimized by the formulation.
Observe that the costscsp

km and csb
km are in terms of the used

capacity by the primary and backup paths. Hence, barring the
effect of parameters likeθ andγ, the overall cost of a cycle
ξs
km is proportional to the capacity used by the cycle. The

TRC stays at minimal unless the cycles provided are too few.

D. Impact of # of Tunnels

In this subsection, we study the impact of number of tunnels
on each link on the solution of the optimization problem. For
this study we use the formulation (Ph). We observe the value
of Minimum of residual capacities of links (MRC) and the
fraction of accepted demands (FAD) for increasing network
capacity. We observe the results for increasing number of
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Fig. 19. MRC and FAD for EN I with increasing capacity
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Fig. 20. MRC and FAD for EN II with increasing capacity
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Fig. 21. MRC and FAD for EN III with increasing capacity
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Fig. 22. MRC and FAD for EN IV with increasing capacity

tunnels and present the representative scenarios for experi-
mental networks in figures 19- 22. We have used the value of
parameters asR = 100, η∗ = 10, θ = 0.5 and γ = 0.5. We
obtained results forT` = 10, 15, 20, 25, 50, only.

Observe that the value FAD increases with increasing
capacity until it stabilizes based on the allowed number of
tunnels on the links. There of excess amount of capacity is
of no consequence since the links are congested in terms
of number of tunnels. Increasing the number of tunnels on
each link affects the solution in two ways. One way is direct
increase in the value of FAD and a consequent increase in the
value of MRC. The acceptance of more demands makes links
more utilized and leave lesser bandwidth for best-effort traffic.
Second way is that it allows demands to use lesser hops paths
which had excess capacity but no extra tunnels. Due to lack of
tunnels on lesser hop paths, the demand had to previously take
a longer hop path and in the process lead to a solution with
higher value of MRC. With tunnels increasing on links, many
more shorter paths (mostly less in overall cost too) become
accessible.

So much so is the impact of tunnels on the solution that in
some cases we find that although the FAD is higher with more
tunnels, the value of MRC is still lower. This is attributed to
the above mentioned behavior. As demands begin to choose
cycles with fewer hops, more and more capacity gets freed
out in the network. This capacity is used by other demands in
a similar efficient way. Similar behavior on the part of all the
demands leads to solutions with smaller value of MRC.

The increase in capacity of links also shows similar behav-
ior. Starting with less capacity, as we increase it initially, the
value of MRC decrease very fast (assuming same FAD) since
some of the demands using the longer paths can now be moved
on to shorter paths which leads to significant decrease in the
value of MRC. However, once all the demands are moved to
minimum hop cycles, the subsequent decrease in the value of
MRC is only obtained by the increase in the capacity of each
link.

The behavior of EN II depicted in figure 20 is interesting.
Observe that the value of FAD reaches 1.0 at 150% of baseline
capacity at which value MRC is almost equal for both the cases
(T` = 10, 25). Now, when we increase the capacity to 200%,
the value of MRC forT` = 25 falls dramatically as compared
to T` = 10. This again is due to the freed up capacity in the
network due to demands shifting from longer to smallest hop
cycle. At 200% of the baseline capacity, all the demands have
got to smallest hop cycles and hence there of the decrease is
at the same rate asT` = 10.

E. Effectiveness of formulation (PAs)

In this subsection, we study the soft requirement formulation
on its capability to incorporate the various objectives in an
integrated fashion. Observe that soft requirement is based on
the circumstances that the backup paths are only foundapriori
but are not reserved, rather they are used by best-effort traffic.
In the event of failures, the effected demands are routed over



0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0 0.2 0.4 0.6 0.8 1

 V
al

ue
 o

f A
P

R
  -

--
--

--
--

>

Increasing value of γ  --------->

EN-I
EN-II

EN-III
EN-IV

Fig. 23. Value of APR for experimental networks with increasingγ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250

 V
al

ue
 o

f M
R

C
  -

--
--

--
--

>

Increasing value of R  --------->

EN-I
EN-II

EN-III
EN-IV

Fig. 24. Value of MRC for experimental networks with increasing R
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Fig. 26. Value of MRC for experimental networks with increasingη∗

the already chosen backup paths after cleaning them of the
best-effort traffic. Hence, their is no cost of reserving the
backup paths since the capacity is still used by best-effort
traffic. Such a difference fundamentally changes the way the
formulation (Ps) is affected by changes in the parameters.
In figures 23-26, we present results on impact of changes in
parametersγ, R, θ andη∗ upon the nature of the final solution.
We used the number of allowed tunnels asT` = 15, 20, 50, 50,
the # of candidate cycles as 5, 15, 15, 15 and the capacity
of the links as 150%, 200%, 400%, 500% of the baseline
capacity for experimental networks I, II, III, IV, respectively.
The default values were chosen as:γ = 0.5, R=100,θs

k = 0.5
andη∗ = 5.

Since, the formulation assumes no cost for the backup path,
the parameterγ has no role to play. Hence, we find that in
figure 23, in the chosen couple for allocation, the average ratio
of the primary path length to the backup path length (APR)
stays same for all the values ofγ. But when comparing the
plot with that of hard requirement in figure 10, we find that
the values are smaller even as compared toγ = 0.0. Such a
behavior can be attributed to the lack of cost from the backup
paths. Since, their is no additional cost for the backup path, the
formulation chooses the couple with least cost primary path
(cost is directly proportional to hops) and does not care about
the cost of the backup path. This leads to smaller values of
APR in the final solution.

The impact of increase in R on the minimum residual
capacity (MRC) is shown in figure 24. The behavior observed

is similar as the hard requirement formulation 11, although
their are minor differences. Here, we have smaller values of
ξs
km since they do not include the cost of backup path and

hence smaller values of R provide the same over all cost to
a demand. This leads to similar behavior of soft requirement
formulation at smaller values of R as that of hard requirement
formulation at higher values of R.

Similarly for increasing value ofθ, we observe that the
behavior shown in 25 is similar to that of hard requirement
formulation 12. On closer look, we observe that the impact of
θ has been diluted. The decrease in the value of FAD is much
less than the one observed for hard requirement. This can be
attributed to the absence of routing cost for the backup paths.
Observe thatθ determines the routing cost vis-a-vis allocation
cost of a cycle. Since for soft requirement, the cost of cycle is
reduced to that of the primary path, the impact ofθ towards
the overall cost is there of decreased.

The impact of increase inη∗ on the FAD is shown in fig-
ure 26. The performance is similar to that of hard requirement
scenario 13. Here also we observed that the minor differences
between them are due to the relative change of the value
of ξs

km. Now, they only have the cost of primary path (no
cost for backup path) and hence smaller values ofη∗ provide
same relative over all cost to a demand. This leads to similar
behavior of soft requirement formulation at smaller values of
η∗ as that of hard requirement formulation at higher values.

The soft requirement formulation (Ps)gives adequate impor-
tance to the parameters R,θ andη∗. We mostly observed the



dilution of impact of parameters on the solution as compared to
the hard parameter requirement (Ph). Since the soft require-
ment captures a subset of parameters as compared to hard
requirement, we expect that similar behavior will be observed
for various scenarios. Evaluating the impact of # of candidate
cycles, # of tunnels, etc. was deemed as unnecessary since we
expected the trend of dilution of impact to continue.

VI. SUMMARY

In this paper, we consider the problem of traffic engineer-
ing a heterogenous network supporting services with varied
survivability requirements. The heterogeneity aspect of the
network is accounted by considering a tunneling constraint on
the links. The varied survivability requirement is incorporated
in the model using a cycle path concept so that service classes
with different survivability needs can still be modeled in
the same framework. We also introduce different objectives,
with seemingly different goals, into a unified, single objective
function. The Objectives considered not only considered the
allocation of the service requests but also the bandwidth
available for the best-effort service class. Moreover, we have
also addressed the hard vs. soft survivability requirements.

We have presented two heuristics to sole the integrated
formulation which was an IP(integer program) in nature. First
heuristic is iterative in nature and uses continuous relaxations
of the problem to derive integer solutions. Second heuristic
is based on Simulated Allocation technique. We compare the
two heuristics and show that a hybrid approach combining
both the methods works quite well. We then proceed to show
the effect on various factors that are integral to the integrated
traffic engineering problem. We have presented extensive ex-
perimental results showing that solving the problem based on
the aggregated objective function can satisfy other objectives
and criteria in a satisfactory manner. We also discuss the
interplay between various parameters and resources and show
their relative impact on each other. Tradeoff between accepting
new requests of survivable classes and the residual bandwidth
for the best-effort services was also evaluated. The results
also showed that capacity and tunnels have an equal role in
ensuring effective traffic engineering of a network.
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