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Abstract

In recent years, the recognition of handwritten mathematical expressions has re-
cieved an increasing amount of attention in pattern recognition research. The di-
versity of approaches to the problem and the lack of a commercially viable system,
however, indicate that there is still much research to be done in this area. In this
thesis, I will describe an on-line approach for converting a handwritten mathemat-
ical expression into an equivalent expression in a typesetting command language
such as TEX or MathML, as well as a feedback-oriented user interface which can
make errors more tolerable to the end user since they can be quickly corrected.

The three primary components of this system are a method for classifying iso-
lated handwritten symbols, an algorithm for partitioning an expression into sym-
bols, and an algorithm for converting a two-dimensional arrangements of symbols
into a typeset expression. For symbol classification, a Gaussian classifier is used to
rank order the interpretations of a set of strokes as a single symbol. To partition
an expression, the values generated by the symbol classifier are used to perform a
constrained search of possible partitions for the one with the minimum summed
cost. Finally, the expression is parsed using a simple geometric grammar.

Thesis Supervisor: Paul A. Viola
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

The problem of machine recognition of handwritten expressions has long been a

focus of study in the field of pattern recognition. Research in this area has been

driven by a desire to combine the natural advantages of handwritten input, in-

cluding a simple interface and a well-established stylistic vocabulary, with the data

processing capabilities of computers. Recently, the problem has been approached

with increased vigor with the advent of palmtop computers with pen interfaces,

which possess enough processing resources to handle the demands of machine

recognition. As a result, a number of commercially successful products are avail-

able which recognize a user’s natural handwriting and use this ability to perform

simple tasks such as scheduling appointments and writing memos.

Most scientists and engineers, however, are unable to take advantage of these

computers for their technical work due to the lack of effective algorithms for in-

terpreting more complex handwritten expressions, particularly diagrams, graphs,

equations, and other mathematical forms. While computers can store these forms

as “digital ink,” the inability to work with the expressions in a meaningful way

after they have been entered has prevented these systems from replacing pencil

and paper. Compared to the effort put into the recognition of printed and cursive

prose the recognition of more complex forms has received only minor attention in
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pattern recognition research. In addition, the diversity of approaches to the prob-

lem and the lack of a commercially viable system indicate that there is still much

research to be done in this area.

As more powerful computers with better displays and input devices become

available, demand will increase substantially for software systems which can work

with the type of handwritten data that one would find in a research notebook or

technical document. Mathematical expressions are a natural place to begin such

research as they are critical to virtually all technical writing and there already ex-

ists a wide body of literature on recognizing handwritten letters and words, major

subcomponents of these expressions. Combining mathematical expression recog-

nition capabilities with existing algebra solving software, graphing programs, and

simulation systems would be a first step towards a superior user interface for do-

ing technical work with a computer.

1.2 System Overview

In this thesis, I describe an on-line approach for converting a handwritten math-

ematical expression into an equivalent expression in a typesetting command lan-

guage such as TEX or MathML. In addition, I describe a feedback-oriented user

interface which renders errors in a recognition system more tolerable to the end

user since they can be quickly detected and corrected. Figure 1-1 provides a screen

image of the system.

The problem of interpreting an expression can be divided into three modular

subproblems called isolated symbol classification, expression partitioning and parsing.

This division has the advantage that each subproblem can be solved and its per-

formance evaluated essentially independent of the others, so that improvements

can be made in each area while still maintaining the integrity of the entire system.

In processing an expression, it is first partitioned into symbols in a process

called expression partitioning. The symbol classifier is used in this process to eval-

uate the likelihood that particular strokes should be combined into symbols. The
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Figure 1-1: Screen image of the recognition system

resulting set of symbols is then parsed by assigning characters to the symbols and

determining a structure for the expression, resulting in an interpretation of the ex-

pression as a typesetting command.

1.2.1 Isolated Symbol Classification

One of the basic problems in handwriting recognition is determining, out of con-

text, which symbol is best represented by a set of strokes. For this task I created

Gaussian models of a set of common symbols from examples of my handwriting.

At run time these models were used to rank possible interpretations of a new set

of strokes.

1.2.2 Expression Partitioning

Handwritten expressions typically contain more than a single symbol, so the capa-

bilities of the symbol classifier need to be used within a larger framework to deter-

mine the quantity, location, and identity of the symbols in an expression. There-

fore, the expression partitioning algorithm attempts to find an optimal partitioning
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of an expression’s strokes into a set of symbols.

The correct partitioning of an expression is not always obvious, even to a hu-

man reader. Consider the example given in figure 1-2. This diagram shows how

the strokes in an ambigious expression may be partitioned into two different sets

of symbols, which are indicated by the placement of a grey bounding box around

the symbols. Depending on the partitioning of strokes, this particular expression

could be interpreted as either 1 < x or kx. A good partitioning algorithm needs to

be able to consider both of these possibilities and determine which one is prefer-

able according to some cost function.

Ambiguous Expression

Possible Partitions

Multiple Interpretations

1< x kx

Figure 1-2: The effect of partitioning on interpretation

An additive cost model is used to partition an expression, where the cost for

considering that a particular set of strokes belongs to the same symbol comes from

the values assigned those strokes by the symbol classifier. The cost of a partition

of a set of strokes, then, is the sum of the costs of the symbols in the partition.
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Figure 1-3: An expression correctly partitioned into symbols

In addition, a minimum spanning tree based in interstroke distances is used to

constrain the set of partitions searched to a reasonable size.

1.2.3 Parsing

Once the expression has been correctly partitioned into symbols, as in figure 1-3,

there still remains the problem of determining which characters the symbols rep-

resent and deciding on the structure of the resulting typeset expression. This can

be done using a geometric grammar whose elements are inspired by the atomic

elements of TEX’s typesetting engine. In this grammar, each character belongs to

a single grammar type and combines with other characters in well defined ways

based on simple relationships between their bounding boxes. In addition, sim-

ple characters also have a baseline which aids in determining when a character is

superscripted.

1.2.4 User Interface

An accurate recognition algorithm still needs a good user interface if it is to be a

viable alternative to pen and paper. An interface needs to be simple, since it may

be used on a computer with only a stylus and touch screen for input. In addition, it

should allow the user to quickly correct errors, because some expressions are am-

biguous and people often make mistakes while writing long expressions. Finally,

it is important for the interface to be able to provide immediate feedback to the

user so that errors can be quickly detected.
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The program’s user interface provides a number of features which allow the

user to immediately detect and correct errors. One way of detecting potential

errors is to set a recognition threshold for symbols, and change the color of any

strokes that can not be assigned to a symbol with a cost below the threshold as

they are written. Another way of detecting errors is to draw faint boxes around

the partitioned symbols, so that the user immediately knows that a two or three

stroke symbol has been recognized.

The system also provides two ways of correcting errors. The simplest is the

ability to erase a set of strokes simply by scribbling over them with the stylus.

A small part of an expression can then be changed without effecting the rest of

the expression. Another feature for error correction is a pop-up correction menu,

which allow the user to change the character assigned to a symbol by specifying

an alternative from a list of options. Using these features, expressions with minor

interpretation errors can be quickly corrected.

14



Chapter 2

Problem Overview

2.1 Terminology

Research in handwriting recognition has produced a rich glossary of terms pertain-

ing to every aspect of handwriting, with different approaches often necessitating

the use of different terminology. Generally, recognition systems can be classified

as either on-line or off-line systems. In on-line systems [4], the writing is captured

by the computer as the user writes on a pen tablet or other similar input device.

Pen data is typically collected as a series of strokes, data structures which store the

trajectory of a pen between the time it touches down on the writing surface and

the time it lifts off, expressed as a series of location and time coordinates (x, y, t).

A handwritten expression, then, consists of a time-ordered set of strokes in the same

coordinate frame. In contrast, the input data to an off-line system is an expression

that has already been written on paper, typically acquired as an image using an

optical scanner. This data contains no timing data so that recognition systems of

this type work by analyzing the pixels of the image.

It is common in handwriting recognition literature to refer to characters as the

items being recognized. However in this thesis the word character is used in a

slightly more precise manner than usual to denote the characters in a typesetting

language. In this sense, a character is not only specified by its appearance but

also by a well defined set of allowable geometric relations with other characters.
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For example, consider the capital Greek sigma character and the summation sign

character. Though they may be drawn in precisely the same manner with a pen,

as in figure 2-1, they are actually two distinct characters. As a summation sign

the symbol is used as a group operator which may have other symbols appearing

above and below it as bounds on the summation. As the letter sigma such bounds

are not permitted while exponential relations are. Characters in this thesis will be

written in quotation marks, as in the character “π”.

Figure 2-1: Two characters represented by the same symbol

Since distinct characters may be drawn in the same way, the term symbol will

be used to describe the items which are actually drawn. It is important to note

that not only may a single symbol represent distinct characters, but distinct sym-

bols may represent the same character, as in figure 2-2. Thus, the mapping from

symbols to characters is generally many to many, though often a single character is

represented by a single symbol. Symbols in this thesis will be written in brackets,

as in the symbol [π].

Figure 2-2: Two symbols representing the same character

2.2 Qualities of the Problem

Any approach to machine recognition of handwriting must address certain prop-

erties inherent to the problem. Perhaps the most daunting is the size of the space
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of possible interpretations; for a given set of strokes, there are a super-exponential

number of possible expressions that they might represent 1. Therefore, to correctly

interpret a set of strokes a system needs not only to be able to rank the likelihood of

particular interpretations, but it also needs to effectively prune its search space to

a reasonable size, perhaps before even computing the likelihood of any particular

interpretation fully.

Fortunately, the search space is not without structure. Handwritten expressions

are, in some sense, decomposable. That is, small sets of strokes can be interpreted

in isolation and then combined with other stroke sets to form larger expressions.

It is this property which makes a dynamic programming approach feasible, which

then allows for the dynamic reinterpretation of expressions as the user continues

to write.

The method suggested in this thesis takes advantage of this decomposability

in two ways. First, symbol recognition is done in isolation; the likelihood that a

particular set of strokes form a symbol is estimated only from the appearance of

those strokes and not from that of the surrounding strokes. Though it is clear that

the surrounding strokes might provide information about what symbol a partic-

ular set of strokes represents, recognizing the symbols in isolation considerably

reduces the complexity of the symbol models. Furthermore, it allows the results

of symbol recognition to be reused as more strokes are added to the expression,

speeding up recognition considerably.

Decomposablility is also utilized in expression partitioning, where the cost of

a partition of a subset of the strokes does not depend on the surrounding strokes.

While this may not always be a valid assumption, it is sufficient to find a good

partition in most cases and allows the use of dynamic programming to produce a

solution with relatively little computation.

It is important to note that expressions are not completely decomposable. The

1Given a set of symbols on a page, the number of possible assignments of characters is expo-
nential in the number of symbols. However, for mathematical expressions there is the additional
factor of structure, so that 234

, 234 , and 234 are distinct from one another, adding to the size of the
search space.
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best interpretation of the whole expression cannot simply be constructed from the

best interpretation of its subexpressions, and it is certainly possible that an inter-

pretation of a particular set of strokes may change dramatically as other strokes are

added. For this reason, when dynamically reinterpreting an expression the parti-

tioning and parsing steps are redone every time new strokes are added or deleted

to allow the user the flexibility to change the meaning of any particular stroke.

Still, the results of previous computation are reused when possible.

In addition to these more general qualities of handwriting recognition, the

problem of recognizing mathematical expressions has a number of properties that

distinguish it from the problem of recognizing printed text. The most obvious of

these is its two dimensional structure; whereas prose is written linearly, mathe-

matical symbols can be written above, below, and inside one another, and these

spatial relationships are crucial to the interpretation of the expression. This means

that even if all the characters are correctly recognized, there is still the possibility

that the structure may be interpreted incorrectly.

Another aspect of the problem is that the symbols in handwritten mathemat-

ical expressions are almost always printed rather than written in a cursive script.

That is, each symbol is written separately from every other so that each stroke in

an expression belongs to one and only one symbol. This is advantageous from

the standpoint of machine recognition, since segmentation of strokes into symbols

is much easier when each stroke only belongs to a single symbol. Therefore, the

partitioning algorithm suggested in this thesis assumes this to be the case. Thus, it

requires that words that appear in mathematical expressions, such as the abbrevi-

ations for the trigonometric functions (e.g. sin, tan), also be printed.

2.3 Previous Work

Many previous attempts at equation recognition [9, 7, 14] aimed at only interpret-

ing expressions that were valid mathematical expressions according to some gram-

mar. These grammars enforced a number of reasonable constraints, requiring that
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parentheses match, binary operators have valid operands, and integrals have dif-

ferentials, among other things. Initially this seems like a strong set of constraints

on the space of possible interpretations, since of the set of expressions that can be

typeset, such as 4=sξ
≤+r− , only a very small number actually mean anything, and of

those an even smaller fraction are likely to ever occur in a handwritten expression.

The problem with this type of approach is that it greatly reduces the decom-

posability of the problem. In a valid mathematical expression, there can be a large

number of long distance dependencies at work. For example, in an integral ex-

pression, the integral and its differential may be separated by great distances, so

that the likelihood of a symbol on the left hand side of an expression being an inte-

gral sign depends on whether there are symbols on the right hand side which can

represent good differentials. These sorts of dependencies are extremely difficult to

model accurately and evaluate quickly. Since the proposed system does not model

these types of dependencies, it has the potential to produce syntactically invalid

interpretations. One solution to this problem is to find a preliminary interpreta-

tion first, and then to correct the expression syntactically using a narrow range of

options. This approach has been tried before [16], and syntax-checking would be

a straightforward extension to the system proposed in this thesis.
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Chapter 3

Isolated Symbol Classification

3.1 Problem Description and Assumptions

Isolated symbol classification is the problem of providing a ranked list of inter-

pretations of a set of strokes as a single symbol. It is the problem with the most

previous work among those discussed in this thesis, since it lies at the core of al-

most all handwriting recognition applications. See [4] for a survey of common

techniques.

To solve this problem I used a statistical approach, creating a single Gaussian

model for each symbol class based on examples of my own handwriting. The ex-

ample symbols were preprocessed and then used to estimate the model parameters

in a training phase. At run time potential symbols were similarly processed and

compared to the models for classification.

Since the models are estimated from a single user’s handwriting, performance

with other users’ writing is sporadic, performing well only when there is a great

deal of similarity between that user’s handwriting and the training examples. Ad-

justing this technique to the problems of a multiuser system would introduce many

issues which are peripheral to the problem of mathematical expression recognition

and so it was decided that initially the system would be tuned to a particular user.

In principle, however, only the symbol classifier would need to be modified to

make the system work with multiple users.
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3.2 Data Collection

The data for a symbol model were collected in a set of 500 or more examples,

called a training set, in a single sitting using a Wacom digitizing tablet and a custom

collection program written in Java. An image of the collection program is shown in

figure 3-1. Precise timing data was disregarded, so that the order in which the pen

touched various points was maintained, but the actual time difference between

samples was lost. Therefore, the resulting data for a particular stroke consisted of

an ordered set of (x, y) pairs, with the first pair corresponding to the touchdown

point of the pen, and successive pairs added as the pen moved from one sampling

point to the next, ending with the lift-off point. Symbols were treated as time

ordered sets of strokes, and a training set consisted of a set of symbols each drawn

using the same number of strokes in the same direction and order.

Figure 3-1: The Data Collection Program

3.3 Preprocessing

The purpose of preprocessing is to convert raw stroke data into a uniform format

so that training data can be used to create symbol models. In addition, it is often
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desireable to simplify the models by removing information from the stroke data

during preprocessing which will not be useful for classification. One example of

extraneous information is the scale of the symbols, since the identity of a symbol

is largely independent of its scale.

Preprocessing must necessarily be done without regard to the symbol class that

is being modelled, so that both training examples and new symbols are prepro-

cessed in the exact same manner. The preprocessing used in this method converts

a set of strokes in the form of ordered (x, y) coordinates into a single vector in a 74

dimensional space. In this way, any set of strokes can be compared against every

model to determine which symbol they best represent.

3.3.1 Stroke Direction and Order Invariance

One of the pitfalls of on-line approaches to handwriting recognition is that there

is a much greater variation in the manner in which a writer might have drawn a

particular symbol than with its actual appearance on the page. For example, one

may choose to pick up the pen at an arbitrary point and then continue the previous

motion with a new stroke, or one might retrace a portion of an already written

stroke. Both actions are nearly impossible to detect by looking at the resulting

image, but have the potential to affect on-line recognition performance adversely.

Some of the most common variations occur in the direction that simple strokes

are drawn and in the order that strokes in multi-stroke symbols are drawn. For

example, the symbol [+] is typically drawn with two strokes. The horizontal stroke

can be drawn in two directions, with the pen moving either from left to right or

right to left. The vertical stroke can likewise be drawn both from top to bottom or

from bottom to top. Furthermore, either the horizontal stroke or the vertical stroke

may be drawn first. Unfortunately, allowing the user to enter this symbol in any

of these ways without preprocessing would result in a multi-modal distribution

which would be poorly modeled by a Gaussian distribution.

One way of combating this problem is to treat each way of drawing a symbol
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to be an entirely different symbol and create a separate model for each one. While

this is the most reliable method, it is computationally expensive, since the num-

ber of models for single stroke symbols would double, multiplied by a factor of

eight for two stroke symbols, and every three stroke symbol, such as [π], would be

represented by forty-eight separate models.

An alternative is to take each example symbol in the data set and try to assign a

canonical direction for each of its strokes and a canonical ordering of strokes before

building symbol models. Then, redirect and reorder strokes in the same manner

before comparing them to the models. Finding qualities of a stroke that are con-

sistent for the “same” stroke in a symbol can be difficult. Still, there are some reg-

ularities in handwritten strokes that may be taken advantage of through heuristic

techniques that can make symbol recognition fairly robust to such variations.

Stroke Reversal

To attempt to put a stroke in a canonical direction, the first point (xf , yf ) and the

last point (xl, yl) of the stroke were used to determine two ratios,

Rx =
|xf − xl|

D
, Ry =

|yf − yl|
D

where D is the length of the diagonal of the bounding box of the stroke. These

ratios are a weighted measure of the change in the x and y coordinates between the

beginning and the end of these strokes. Then, using a threshold value, δ ∈ [0, 1],

these ratios are used to classify a stroke as being one of four general types: closed,

horizontal, vertical, or diagonal. A stroke is closed if Rx < δ and Ry < δ, horizontal

if Rx ≥ δ and Ry < δ, vertical if Rx < δ and Ry ≥ δ, and diagonal if Rx ≥ δ and

Ry ≥ δ. Horizontal strokes were then reversed if xf < xl, vertical and diagonal

strokes were reversed if yf < yl, and closed strokes were never reversed. Because

closed strokes are not reversed, this resulting models will still be sensitive to the

initial starting place on a closed stroke, such as that of the symbol [∞].
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Figure 3-2: The Angles Used to Find a Canonical Stroke Ordering

Stroke Ordering

After being properly directed, the strokes in a multi-stroke symbol are put into a

canonical ordering. Strokes are first assigned a value according to the magnitude

of the interior angle between the upper edge of the symbol’s bounding box and the

line segment between the the upper left corner of the bounding box and the last

point in the stroke. They are then sorted in ascending order based on this value.

Figure 3-2 illustrates this angle on the strokes in the symbol [π] and indicates the

resulting ordering.

Types of Errors

Used heedlessly, these heuristics are liable to produce just the types of effects that

they are intended to eliminate – variation in the directions and order of drawn

strokes. However, their effectiveness can be tested using a collection of data with

the strokes drawn in the same order and direction.

There are two types of errors that can occur when trying to assign a canonical

direction to a stroke. The first is simply to not assign the same direction to a par-

ticular stroke and its reverse. This only happens when a stroke is determined to
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be closed, since neither a closed stroke nor its reverse will be reversed. Obviously,

this problem can be avoided simply by lowering the threshold value δ so that no

stroke is determined to be closed. Lowering this value, however, causes errors of

a more significant type.

The second type of error is to reverse some of the strokes in a set of example

symbols, but not their corresponding strokes in other examples. This is the more

severe of the two types of errors because it can take a set of consistently directed

examples and reverse some of them, resulting in precisely the type of multi-modal

distribution this heuristic seeks to avoid. Errors of this type can be prevented sim-

ply by raising the threshold value δ so that all strokes are determined to be closed

and not flipped. If this value is raised too high errors of the first type will result.

The proper setting for the threshold value is the one which most accurately

identifies closed strokes as being closed. I found that δ = 0.37 performed well at

this task. In a trial of 20,500 strokes belonging to 41 types of symbol, I found errors

of type 1 occurred on 15% of the strokes. Errors of this type on all but 1% of the

strokes belonged to symbols which were either closed, such as [8], [0], [o], [∞],

or symbols which are very unlikely to be drawn “backwards” such as [d], [p], [β].

With this same threshold value, I found that less than 1% of the strokes had errors

of type two, and most of those were concentrated in the symbol [δ].

3.3.2 Scaling, Shifting, and Resampling

After the strokes are rearranged, they are further preprocessed to ensure scale and

translation invariance and then resampled to ensure that all symbols can be ana-

lyzed in the same vector space. First, every point in each stroke is shifted so that

the origin is the upper left corner of the symbol’s bounding box. Then, all of the

points are scaled so that the symbol fits inside a unit square, preserving aspect

ratio. Next, each stroke was resampled at equidistant points along its arc length

using linear interpolation between points. The number of the sample points for a

stroke was 36
N

, where N is the number of strokes in a character. Finally, the (x, y)
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coordinates for each character were assembled into a single 72 dimensional col-

umn vector with the x coordinates occupying rows 1 − 36, and the y coordinates

occupying rows 37 − 72. The points of multiple strokes characters were added in

their canonical order.

3.3.3 Derivative Terms

In addition to the 72 stroke dimensions, the symbol vector has two more dimen-

sions containing the summed squared second derivative of the x and y coordinates

with respect to the arc length. These components measure the amount of curva-

ture in a stroke in both the x and y directions. For multi-stroke symbols, these

dimensions contain the sum of these values over all strokes. These features were

added to aid the classifier in detecting the difference between consistent curves

in strokes, important for classification, from variable curves due to writer noise.

These dimensions were scaled to make their variance comparable to that of the

stroke dimensions.

3.3.4 Principal Component Analysis

The final stage of preprocessing a set of strokes is projecting the symbol vector

into the vector space spanned by the first 15 principal components of the entire

training data set. These components are the eigenvectors of maximal variance of

the covariance matrix of the entire pool of training data. This subspace contains

the components of symbol vectors which are the most variable across all symbols.

The technique used to compute the projection matrix is a modification of standard

principal component analysis where each class of symbol contributes equally to

the choice of components, regardless of the number of examples in that class. This

multi-class PCA algorithm is useful in that it allows the projection matrix for a

large data set to be recomputed quickly when a new class is added.

This dimensionality reduction is justified by the rapid fall-off of the eigenvalues

associated with the principal components, plotted in figure 3-3, since presumably

26



0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Eigenvectors

E
ig

en
va

lu
es

Figure 3-3: Eigenvalues Associated with the Principal Components

components which are essentially constant across all symbols will not be useful

in distinguishing between them. Further justification comes from the reasonable

appearance of reconstructed characters, produced by projecting the data into the

subspace and then back to the full space, shown in figure 3-4.

3.4 Gaussian Density Estimation

In the training phase, the projected data points of each class are used to estimate a

mean (µ) and covariance matrix (Σ) for a Gaussian density in the PCA space. At

run time, an unknown symbol vector is compared to the models by computing the

density of the vector under each model producing a real number for each of the

possible symbols.

dj(z) =
1

(2π)
D
2 |Σj|

1
2

exp

(
−

(x− µj)
T Σ−1

j (x− µj)

2

)
(3.1)

The density of unknown symbol z under model j

These values are then used by both the expression partitioning and expression

parsing algorithms to determine a final interpretation for the stroke set.
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Original Characters

Reconst. Characters

Figure 3-4: Examples of Reconstructed Characters

3.5 Performance

3.5.1 Confusion Matrix

One standard measure of classifier performance is the rate at which it misinter-

prets one symbol as another. This can be estimated by first training a classifier on a

body of data, and then testing it using a different data set to determine the misclas-

sification rate for each type of symbol. These values can be depicted graphically

in a confusion matrix of the classifier, as shown in figure 3-5. The rows in this ma-

trix represent the actual classes of the test symbols, and the columns indicate the

classes which those symbols were assigned by the classifier. A particular element

(i, j) has a magnitude proportional to the number of times a character of type i

was classified as type j. Thus, the confusion matrix of the perfect classifier has

nonzero entries only along the diagonal. In figure 3-5, larger values are denoted

by darker cells, indicating that the classifier generally performed well, classifying

most classes with over 99% accuracy.

Notice that there are two areas where there is significant confusion, however.

Class one is often confused with class forty-three, and class two is often confused

with class forty. In these experiments, classes one and forty-three were the classes

for symbols [0] and [o] respectively, and classes two and forty were the classes for
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Figure 3-5: Gaussian Classifier Confusion Matrix

symbols [1] and [l].

This example illustrates one of the finer points of making a distinction between

symbols and characters. As seen in figure 3-6, it is debatable whether these are

actually separate symbols at all. Generally, it is reasonable to have the same symbol

represent multiple characters only when a human observer would always require

context to determine the intended character. However, if the distinction between

two symbols is subtle enough not to be modeled by the classifier, it may be more

simple to treat them as if they were the same. Since the symbol classifier was able

to perform significantly better than chance at classifying the types of symbols in

3-6, it was decided that they were distinct symbols, though ones which would be

often confused.

Letter oDigit 0 Digit 1 Letter l

Figure 3-6: Symbols Commonly Confused by a Gaussian Classifier

Determining which symbols to use would be even more problematic in a multi-
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user system, where users may not always write the same characters with the same

symbols. The character “5”, for example, is sometimes written with a single stroke

symbol, and sometimes with a two stroke symbol, as in figure 3-7. Though they

look very similar, the points in single and double stroke symbols are treated dif-

ferently by this classifier, and so to accurately recognize both styles of “5”, models

would need to be made of each symbol.

Figure 3-7: Two styles of writing the digit “5”

3.5.2 Generalization Ability

A second measure of performance seeks to answer a more subtle question, that

of the classifier’s ability to generalize from the training data. It is undesirable to

request that a user enter hundreds of examples of each of the symbols that they

wanted to classify. Therefore, a classifier should be able to perform well when

trained with only a few training examples. Figure 3-8 shows performance statis-

tics on a test set for classifiers trained on 50, 100, 150, and 200 training examples

from each class. Error rates are plotted as a function of training set size for the

best and worst performance on the test classes as well as for the average across

all classes. Even with only 50 training examples, performance was fairly good

for most classes, and even 100% correct for some. More training examples did

not affect the performance of these models. However, it did help improve the

performance obtained on the commonly confused classes previously mentioned,

therefore raising the average performance slightly.
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Chapter 4

Partitioning an Expression

4.1 Problem Description and Assumptions

The symbol classifier described in the previous chapter classifies symbols in isola-

tion; given a set of strokes, it can determine the symbol they best represent. How-

ever, there is no way of knowing a priori which strokes in an expression should be

combined together into symbols or even how many symbols are present. There-

fore, the capabilities of the symbol classifier need to be used within a larger frame-

work to determine the quantity and locations of the symbols present in an expres-

sion. Solving this problem for printed text is equivalent to finding the best group-

ing of a set of strokes into a set of symbols, called a partition of an expression.

4.1.1 The Existence of a Partition

The most fundamental assumption of the proposed solution is that such a parti-

tion even exists. As discussed in section 2.2, handwritten mathematics is typically

printed, so that each stroke belongs to a single symbol. Without this property, it

would still be possible to assign strokes to symbols, but the nature of the solution

would be very different, since a single stroke may then belong to multiple sym-

bols. The consequence of this assumption is that there is no straightforward way

to extend this solution to the types of script forms that sometimes appear in hand-
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written mathematics, such as those in figure 4-1. In this example, the characters

“c”, “o”, and “s” are all written with a single stroke. To recognize such a form in

this framework they would need to be considered as a one stroke symbol, [cos], as

would every other script combination.

Figure 4-1: An Expression with Script Characters

4.1.2 Optimal Substructure

A second crucial assumption of this solution is that optimal partitions have optimal

substructure or obey what Bellman called the principle of optimality. For this prob-

lem, this means that an optimal partition of a large expression can be found by

combining optimal partitions of smaller expressions.

Figure 4-2: An Expression Correctly Partitioned into Symbols

This property is best illustrated by an example. Figure 4-2 shows a set of strokes

correctly partitioned into symbols, where the strokes in each identified symbol

have been boxed. Some symbols in the expression, such as the [3] and [2], are one

stroke symbols, while others, such as the [4] and [=], are two stroke symbols. If this

partition exhibits optimal substructure, the strokes in any subset of the symbols

are also optimally partitioned. If they were not, then the principle of optimality

dictates that the partition of the complete expression would be suboptimal, since it
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could be improved by improving the partition of that subset. For a more complete

discussion of why this might be so and other properties of problems with optimal

substructure, see [6] and [3].

4.1.3 Additive Cost Function

Any stroke set partitioning solution must have a means of measuring the quality

of a particular partition. For a solution to assume optimal substructure, then, is

equivalent to its measure of quality exhibiting this structure. In this case, the cost

of a partition is the sum of costs of the symbols identified by that partition. The

cost of a single symbol is the log likelihood of the best interpretation of that stroke

set given by the symbol classifier. This measure has an additive cost structure typ-

ical of such optimization problems and therefore can take advantage of dynamic

programming techniques.

In order to make this measure viable, though, an additional factor is necessary.

If the summed cost of the symbols in a partition were the only measure of optimal-

ity, there would be a natural tendency to prefer partitions with fewer symbols to

those with more symbols, even if the average cost of the symbols in the latter ex-

pression was lower. For example, if a three stroke expression was partitioned into a

single symbol, the cost of the partition would only be the cost of interpreting those

strokes as one symbol. On the other hand, if the same expression was partitioned

into three separate symbols, the cost would be the sum of the cost of all of them.

Thus, such a measure would tend to combine strokes into multi-stroke symbols

when it was unwarranted. To counteract this tendency, a term called the combi-

nation weighting is added to the cost of multiple stroke symbols to equalize their

weight with those of single stroke symbols. The combination weighting term is

multiplied by the number of strokes in the potential symbol, less one, so that single

stroke symbols are not weighted, double stroke symbols have a single additional

weight, and triple stroke symbols are incremented by two times the combination

weighting.
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4.2 Orders of Growth

Within this framework, the only way to guarantee that the best partition is found is

to evaluate the cost of every possible partition and choose that with the lowest cost.

A quick analysis of the size of this search space reveals that, even using dynamic

programming, an exhaustive search is not practical for this problem and so search

constraints are necessary to find a good partition in a reasonable amount of time.

The order of growth of the search space can be analyzed with respect to two in-

teresting quantities. The first quantity, F (N), is the number of stroke sets that are

examined as possible symbols, as a function of the number of strokes, N . Since this

operation involves processing the strokes and then making a comparison with ev-

ery symbol model, it is a fairly time intensive operation that should be performed

rarely, if possible. If a symbol is allowed to have an arbitrary number of strokes,

F (N) grows with the size of the power set of the set of strokes in an expression,

since each possible subset of that set will need to be separately compared to the

symbol models. The power set is exponential in size.

F (N) = 2N = Θ(2N)

In practice, however, the number of strokes that can be considered as a symbol

is limited to the number of strokes of the largest symbol model, some small value k,

typically less than 5. In this case, we find that the the number of possible symbols

examined in an exhaustive search grows polynomially with the number of strokes

in an expression.

F (N) =
k∑

i=1

(
N

k

)
= Θ(Nk)

There is another important quantity which affects the order of growth of this

problem, though, which is the number of actual sub-partitions considered in a

search, G(N). Using dynamic programming, the optimal partition is found by first

finding the optimal sub-partitions and then combining these together to produce
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a solution for the entire expression. Again, this is possible because of the optimal

substructure of an additive cost function.

In a completely general search, every possible sub-partition needs to be exam-

ined at least once. As with F (N), G(N) grows with the size of the power set of

N ,

G(N) = 2N = Θ(2N)

Even if the number of strokes allowed in a single symbol is bounded as before,

this quantity remains the same, since there is no reason not to consider a partition

based only on its size. Therefore, additional constraints will be necessary to keep

the search space to a manageable size.

4.3 Constraints

4.3.1 Time Ordering

One simple constraint is to consider only strokes written consecutively in time

as potentially belonging to the same symbol. With this restriction, a user would

need to write an expression one symbol at a time, completing the strokes in each

symbol before moving on to the next. This constraint, used by [10], creates a chain

structure, where each stroke can only be combined with the strokes that occurred

before or after it in time. In this case, the sub-partitions that need to be explored

are simply sets of strokes who form a complete sub-chain, significantly reduces the

search space of the problem such that,

F (N) = Θ(kN)

Since for each additional stroke, st, added to the expression at time t, only k
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possible stroke sets need be considered as symbols:

{st}, {st, st−1}, . . . , {st . . . st−k+1}

Additionally, G(N) =
(

N+1
2

)
= Θ(N2), since choosing a sub-chain is equivalent

to choosing an beginning an end to the chain from N + 1 possible choices. Taking

advantage of the chain structure, G(N) can be reduced further to Θ(kN), since the

optimal partitioning after stroke st can be determined using only the k possible

symbols st may belong to and the results of previous partitions.

4.3.2 The Minimum Spanning Tree Constraint

While the time ordering constraint is a good first step to reducing this problem

to a manageable size, it is overly restrictive. Writers often want to change their

previously written expressions by augmenting a symbol, e.g. converting a [<] to

a [≤]. It is especially common for writers to cross a [t] or dot an [i] after other

symbols are written. To deal appropriately with these issues, a constraint based on

a common structure known as a minimum spanning tree (MST) may be used.

A spanning tree of a connected, undirected graph is a set of edges which con-

nect all of the vertices of the graph with no cycles so that a path exists between any

two vertices. To define a minimum spanning tree, the graph edges also need to be

weighted, in which case an MST is a spanning tree of a graph whose summed edge

weight is less than or equal to that of all other spanning trees of that graph. Mini-

mum spanning trees can be efficiently computed using the algorithms of Kruskal

and Prim [6].

A minimum spanning tree can also be defined for a set of points in a metric

space. Here, the points represent the vertices of a fully connected graph and the

weight of the edge between two vertices is the distance between their associated

points. The MST for this graph can then be computed as before. Similarly, one

can define an MST for a set of strokes by choosing a distance metric between the

strokes. For simplicity, I chose to define the distance between any two strokes to
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be the Euclidean distance between the centroids of their bounding boxes1. Figure

4-3 shows a minimum spanning tree of the strokes in a typical expression.

Figure 4-3: A typical minimum spanning tree

Once a minimum spanning tree is found for a set of strokes, the search for

an optimal partition can be constrained by considering only partitions that form

connected subtrees in the MST. Consider the example in figure 4-4. The stroke

set represents eight symbols, including three double stroke symbols: [x], [+], and

[y]. If the correct partition is to be found, then the system needs to consider the

possibility that the strokes in these symbols belong to the same symbol. If the

tree did not contain an edge between these strokes, then the possibility that they

belong to the same symbol is not explored and they will either be partitioned into

their own symbol or combined with other strokes. For example, this MST prevents

the strokes in the [2] and [α] from ever being considered as a single symbol since

there is no direct path between them. This is an effective use of the constraint

since these two strokes do not belong to the same symbol. There is an edge in the

tree between the strokes in every two stroke symbol, however, meaning the correct

partition was covered by the MST search.

Practical Running Time Analysis

As with any constrained search, the partition resulting from an MST search may

be suboptimal; This is the price paid for not examining all possible partitions. In

practice, though, the MST method is very good at covering the correct partition in

a wide range of expressions. This is because multiple stroke handwritten symbols

1The intersection of the diagonals of the smallest box containing all the points of the stroke.
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Figure 4-4: Using a Minimum Spanning Tree to Partition

almost always have strokes which are written closer together than strokes of dif-

ferent symbols. The MST constraint is also a fast way of solving a difficult problem

both because computing the tree can be done quickly and because the tree struc-

ture is easy to search recursively, much like the chain structure discussed earlier.

To repeat the growth analysis for searches constrained by minimum spanning

trees, it is necessary to consider both a best and worst case formation for the tree.

In the best case, the tree forms a chain, as shown in figure 4-5. Here, each stroke

is only connected to two others, resulting in a structure identical to that produced

by the time ordering constraint. Therefore, F (N) = Θ(kN) and G(N) = Θ(kN) as

before.
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In the worst case, the tree forms a star, as shown in figure 4-6. In this case, the

number of symbols explored, F (N), grows polynomially with N , since any two of

the outer strokes have a path connecting them through the center stroke.

F (N) =
k∑

i=1

(
N − 1

k − 1

)
= Θ(Nk−1)

The number of partitions necessary to consider in a star formation is equal to

the power set of N-1, so that,

F (N) = 2N−1 = Θ(2N)

While in the worst case the problem is still exponential, minimum spanning

trees for mathematical expressions are typically long chains punctuated with small

star formations. Quite often making the actual running time close to the theoretical

best case, resulting in a very efficient algorithm in practice.

Figure 4-5: The chain formation of a minimum spanning tree

Figure 4-6: The star formation of a minimum spanning tree
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Chapter 5

Parsing

5.1 Problem Description and Assumptions

After an expression has been partitioned into symbols, the most difficult part of

the work is done. However, there still remains the problem of parsing the expres-

sion. That is, determining which characters those symbols represent, deciding on

the structure of the expression, and finally generating an interpretation of the ex-

pression as a command in a typesetting language.

Under the umbrella of mathematical notation there exists a wide range of dis-

tinct notations, including those for simple algebra, calculus, matrices, theorems

and proofs, and others. As a result, any “mathematical expression recognition sys-

tem” will most likely be unable to deal with every notational form ever devised.

For this reason, the parsing framework described in this chapter aims not only to

recognize a number of common notations, but also to provide a general foundation

for expression parsing which is expandable to other notational forms.

The current system is able to recognize common forms including fractions, rad-

icals, summations, accents, and superscripts. It is still very limited in the input it

can accept, however. In particular, it assumes that the expression to be parsed is a

single mathematical statement. So, if the user decides to draw two lines of math-

ematics, let alone a diagram or graph, the system will attempt to find a single line

of mathematics that best fits the input, however meaningless it may be.
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5.2 The Structure of Mathematical Expressions

Up until this point, the fact that the expression being recognized is mathemati-

cal has not been used in any significant capacity to aid in its recognition. Indeed,

the symbol recognition and expression partitioning algorithms would probably

work well for any handwritten notation with printed symbols, whether it is text,

mathematics, or even musical notation. However, if the symbols are to be given

syntactic or semantic meaning, then some knowledge of the structure of mathe-

matics will need to be incorporated into the recognition algorithm. Inspiration for

this task may be drawn from typesetting languages, since they were designed with

the specific intent of formalizing the relationships that appear on the printed page.

Additionally, having a structure based on a typesetting language makes it easier to

generate output for existing typesetters.

5.2.1 Basic Mathematical Typesetting

The structure of mathematics is sufficiently different from that of handwritten

prose that typesetting languages often have a set of commands devoted entirely

to mathematics. To handle the tree-like structure of mathematics, languages such

as TEX use a recursive command structure to describe the layout of characters on a

page.

The most basic a mathematical expressions in TEX are merely lists of characters

to appear on a page from left to right. For example the command,

\alpha+\beta=\gamma

tells TEX to create the expression,

α + β = γ
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More complex characters require special constructs, however. For example,

a “fraction bar” requires a numerator and denominator as arguments, as in the

following command,

\frac{1+3}{x}

which tells TEX to create the expression,

1 + 3

x

For most characters in mathematics, the appearance of the symbol which rep-

resents them on the page is defined entirely by their size and the location relative

to the baseline. Digits and letters, such as the “1”, “+”, “3”, and “x” in the ex-

pression above fall into this category. The appearance of other types of characters,

however, depends on the characters which form their arguments. In the example

above, the “fraction bar” has a numerator and denominator which determine its

length. Another type of non-simple character is an accent, whose location depends

on the character it is accenting, as with the character “hat” in t̂ vs. â.

Some characters also have the ability to have nested arguments, whereby an

arbitrary expression can appear as an argument for a character. In the following

example, the expression
√

22 appears as arguments for a “fraction bar”, “radical”,

and “summation sign”. Note that an expression does not need to be valid mathe-

matics to be typeset.

√
22√
22

√√
22

√
22∑

√
22

5.3 Box Relationships and the Geometric Grammar

TEX typesets an expression by using the command codes to arrange boxes on a page.

Boxes are items which represent a region of the page and its associated image. One

of the most common types of boxes is that which contains a single symbol from a
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typeface. Boxes can also contain other boxes, though, and TEX uses a sophisti-

cated set of rules to convert the structure inherent in the command language into

an arrangement of boxes. The problem of parsing a set of symbols can be par-

tially solved by reversing this process. Unfortunately, the process is not entirely

reversible since multiple characters may map to the same symbol.

Much of the ambiguity can be avoided by ensuring that the parse is valid under

a geometric grammar. In this grammar, every character belongs to a grammar type

according to its usage in mathematics. Most characters are categorized as simple,

meaning they take no arguments, but accents, delimiters, grouping operators, fractions

and radicals are each represented by different grammar types.

These grammar types can be combined with one another using a well defined

set of geometric relationships. The relationship between any two boxes is classi-

fied as one of 6 fundamental types, in/out, up/down, left/right, upper left/lower

right, upper right/lower left, or identical. Examples of some of these relationships

are shown in figure 5-1.

In/Out RelationshipUp/Down Relationship

Left/Right Relationship Upper Right/Lower Left Relationship

Figure 5-1: Some bounding box relationships

The location of a symbol can then be used to determine which character it rep-

resents. For example, the characters “∼” and “tilde accent” both use the same

symbol. However, within the framework of this grammar a “tilde accent” needs
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to have a simple character below it while a “∼” may not. These two characters can

then be easily distinguished in an expression such as β ∼ α̃. Some characters can

be easily confused with others of their same grammar type, though, such as the

characters “b” and “6”. In this case, the grammar is unable to disambiguate the

interpretation since they are both simple characters.

5.4 The Parsing Algorithm

Given a set of symbols, the parsing algorithm begins by selecting one of the sym-

bols to be the key. Which symbol becomes the key is generally unimportant, as

long as the key lies at the root level of the expression. That is, the key must not be

a symbol in an expression which is an argument to another character. For example,

in the expression in figure 5-2, the symbols [4] and [3] should not be chosen as the

key because they are arguments to the “fraction bar”, nor can the symbol [2] be

chosen because it is an argument of the “radical”. There appears to be a dilemma

in choosing a key, however. In order to be absolutely sure to choose an appropri-

ate key, the structure of the expression needs to be known. But to determine the

structure, a key must first be chosen. This dilemma is avoided by simply picking

the widest symbol as the key, since it is almost invariably lies at the root level of

the expression. Special cases can then be checked for and the key reassigned if

necessary.

Figure 5-2: A Set of Partitioned Symbols

Once a key has been chosen, all the other symbols in the expression are grouped

according to their bounding box relationship to the key symbol. If there are sym-
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bols above, below, or inside the key, those symbols, along with the key, are as-

signed to the best characters whose grammar type compatible with the observed

relationship. For example, if one symbol is observed above the key and another

below, then the key may assigned to either a fraction bar or a grouping opera-

tor, since those types of characters are allowed to have other characters above and

below them. This assignment is accomplished by using the known mapping be-

tween symbols and characters and the rankings provided by the symbol classifier

to create an ordered list of possible characters for a set of symbols. This list is then

examined to find the best character with a specific grammar type.

If the key is determined to be a character which takes arguments, the arguments

are recursively parsed. Finally, all the characters to the right and left of the key

character are recursively parsed, and the subexpressions are linked together to

form a tree structure, which is traversed to generate the final typesetting command.

5.5 Superscripts

This parsing algorithm can also be extended to contain rudimentary support for

superscripted expressions, such as ex. Detecting a superscripted expression is a

more difficult task than detecting a grouping operator because whether or not one

symbol is a superscript of another depends on the baseline of those symbols.

An additional property of boxes not mentioned previously is that a baseline

can be defined for each box. The baseline of a character is not always the lowest

point in its bounding box because some characters descend below the baseline.

Likewise, the bounding box of some characters does not ascend to the full height

of the symbol since some characters such as [a], [e], and [o] are short. Determining

the baseline and size of the characters in an expression is necessary for detect-

ing superscripts since superscripted characters are typically written smaller than

characters on the baseline. Figure 5-3 gives some examples of characters which

all share the same baseline, even though their bounding boxes differ in size and

vertical position.
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Figure 5-3: Characters which share the same baseline

For this reason, the simple relationships defined in the geometric grammar,

such as up/down or right/left, are not fine enough to detect superscripted charac-

ters. So, each simple character is also assigned a baseline type such as descender(e.g.

“g”, “q”), ascender (e.g. “f”, “t”), or short (e.g. “a”, “c”). After an expression is

parsed it is searched for superscript relations by keeping track of the number of

levels that have been superscripted in a stack (abc is a two level deep superscripted

expression). A seperate stack is maintained for each subexpression in nested ex-

pressions, as well.

While this scheme is of some utility, it will eventually need to be replaced with

a more robust method of determining sub and superscripted expression. In par-

ticular, it is unable to handle complex exponentiations such as 2
3
4 or symbols with

both sub and superscripts, such as x2
i . Robust detection of baselines would also be

necessary to deal appropriately with multiple line expressions and complex matrix

forms such as the one in the following expression.


ı̂ ̂ k̂

α β γ

a b c


A matrix form unable to be handled appropriately by the current system
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Chapter 6

Demonstration Program Engineering

6.1 Overview

The demonstration program for this thesis was written in Java as an example of

how these techniques could be incorporated into a general purpose mathemati-

cal expression recognition engine. Utilizing object oriented design, the engine is a

software object with a well-defined application programming interface (API) that

client software can use to send basic stroke data to the engine and request ob-

jects representing interpreted expressions. In addition, the recognition engine has

methods for changing recognition parameters, such as the combination weight-

ing and rejection threshold, as well as for graphically displaying research-related

information, such as the minimum spanning tree and the optimal partition.

In the system, the client software is a simple Java application which first collects

the stroke data as mouse events, then sends the data to the recognition engine, and

finally displays the interpretation in three forms, as a image of the final typeset

expression, as a TEX string, and as a MathML expression. A screen image of the

client application can be seen in figure 6-1.

The demonstration software was largely written by myself, utilizing standard

Java utilities and the Java abstract windowing toolkit (AWT) for the graphical user

interface elements. As an object oriented program, most the elements in the recog-

nition process have associated Java objects. In addition to the class representing the
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Figure 6-1: Screen Image of the Client Application

recognition engine itself, there are classes representing bounding boxes, strokes,

symbol models, symbols, characters, expressions, as well as a number of utility

classes.

In addition to these classes, third party software is used for both numerical

analysis and displaying typeset expressions. Numerical analysis, including all

matrix operations, is done using the Java Matrix Package, a joint effort from The

MathWorks and the National Institute for Standards and Technologies. Typeset

expressions are displayed using WebEQ from Geometry Technologies.

6.2 User Interface

The user interface of the demonstration program was designed to explore some of

the concepts which would make a mathematical recognition system practical a vi-

able alternative to pen and paper. It is important for such an interface to be simple,

since it may be used on a computer with only a pen and touch screen for input.

In addition, it is also important that the interface be able to provide immediate

feedback to the user, so that errors can be quickly detected and corrected.
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6.2.1 Pen Interface

Modern graphical interfaces are geared towards providing the user with a multi-

tude of options at the click of a mouse button. Many systems have separate menus

of options for each of three buttons on the mouse, which can be further augmented

by combining keyboard strokes with button presses. Palmtop computers do not

have the space for a full-sized keyboard and mouse, relying instead on a stylus

and touchscreen for input.

Since complex sequences of menus are difficult to navigate with a pen, the sys-

tem must be more attuned to what the user is trying to do and present them with

a limited set of options at any time. Furthermore, they must be able to effectively

distinguish writing strokes from command strokes. Often, this is accomplished by

setting aside a special area of the screen for written input and using the rest of the

screen for command strokes. Instead, the demonstration interface uses the same

region for both written expression input and command strokes, such as deleting

and correction command. Additional functionality is provided through a row of

buttons along the top of the writing surface, visible in figure 6-1.

6.2.2 Error Detection

Since the system is not actually capable of knowing for certain that it has made an

error, the term potential error detection might be more appropriate. The user inter-

face uses two very different styles of error detection, stroke rejection and symbol

boxes. In stroke rejection it is the system which is detecting potential errors, while

symbol boxes are a feedback mechanism used by the user to detect errors.

Stroke Rejection

During the partitioning stage, the strokes of an expression are partitioned into

symbols. Each of those symbols has a cost which is the lowest cost assigned to

the symbol by any of the symbol models. Any particular stroke or set of strokes

may be far from every model, however. In this case, it is likely that the user entered
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an erroneous stroke, or that they drew a particularly poor example of the symbol

they were attempting to write. When this occurs it is often best to simply ignore

those strokes rather than pass them on to the parsing algorithm.

This can be accomplished by setting a rejection threshold, such that strokes that

cannot be assigned to symbols with costs less than that threshold are rejected.

These strokes can then be drawn in a different color on the screen to indicate to

the user that the stroke was determined to be unrecognizable. In practice such a

threshold works well, though many types of erroneous strokes are also good ex-

amples of simple symbols like [−], [1], or [∼], and so are not rejected.

Symbol Boxes

Another type of error rejection can be achieved by drawing faint boxes around the

partitioned symbols. The user can then immediately see when a multiple stroke

symbol has been partitioned improperly. While this form of error detection is done

by the user rather the system, it is a relatively nonintrusive way of giving the user

access to some of what the system has decided about the expression they are draw-

ing. If the boxes are too much of an annoyance, they may always be turned off us-

ing the system preferences. Figure 6-2 shows an example of both of these forms of

error detection working in parallel. In this example, the erroneous stroke through

the [y] has been faded and left unboxed, to indicate that it is unrecognizable.

6.2.3 Error Correction

The complement to error detection is error correction. If the user was required

to rewrite an expression from scratch every time an error was made, they would

quickly tire of using the system. For this reason, good error correction techniques

can greatly improve the usability of the system. Since error correction is another

form of input, it is important that it neither require a keyboard or nor involve user

interface elements more suited to a mouse than a pen, such as nested menus.
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Figure 6-2: An Example of Error Detection

Erasing

One of the simplest forms of error correction is to allow the user to erase a set of

erroneous strokes. Some digitizing tablets are able to distinguish the point from

the eraser end of the pen, and so allowing the user to erase strokes with the eraser

would be a guaranteed method of determining when the user wanted to erase

strokes. However, most handheld computers do not support this feature so an

alternative way to erase strokes is necessary.

One simple way of erasing strokes is giving the user the option to delete the

last stroke written. In the demostration program, this option is provided through

the use of a button above the writing region. Often, however, the user wants to

erase a stroke that was written long before the last stroke. To do this the system

introduces erasing gestures, whereby a user can erase a stroke or set of strokes by

moving the pen rapidly back and forth over the strokes. This is already a common

feature on many pen-based computers.
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Correction Menus

Another way of correcting errors is through the use of pop-up menus. After an

interpretation of a symbol has been made the user can tap the pen on the symbol

and be presented with a short list of possible characters the symbol may represent.

This list is generated by using the ranked list of interpretations generated by the

symbol classifier along with the character to symbol mappings. If the user specifies

a particular character for a symbol, then this interpretation is fixed and cannot

be changed unless the user recalls the menu and selects a different character. In

addition, the menus for multiple stroke symbols give the option of breaking the

symbols apart so that the strokes will not be considered as being part of the same

symbol in future interpretations.

6.2.4 Preferences

Finally, the demonstration program allows the user to set preferences for the re-

jection threshold and combination weighting, as well provides them with display

options for displaying the minimum spanning tree and symbol boxes as in figure

6-2. Furthermore, when these options are changed the current expression is reeval-

uated in light of the new parameters, so that the effect of different values on the

interpretation of the same expression can be readily observed.
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Chapter 7

Conclusions

The system described in this thesis has already performed well in a practical set-

ting, as it was used to efficiently typeset many of the mathematical expressions in

this thesis. Furthermore, recognition accuracy rates within its domain have been

very promising. However, it should be viewed as only a first step towards truly

robust recognition of handwritten mathematics. If these techniques are to be ex-

tended to a truly practical setting, a number of limitations will need to be over-

come. Some of these limitations constitute simple improvements to various parts

of the system, while other limitations arise at a more fundamental level.

The most immediate limitation of the current program is that it is still a single

user system, since the symbol recognition algorithm is naturally sensitive to vari-

ations in writing that were not present in the training data, such as that between

examples written by different writers. Modelling this variation is difficult, and still

an active area of research in handwriting recognition. One possible solution is a

user adaptive system, which uses erroneously classified symbols to adjust its symbol

models to a particular user. Another is to use a mixture model for each individual

symbol. No matter how it is approached, the problem of creating a truly user in-

dependent system lies largely in improving isolated symbol recognition, since the

other elements of the system are not nearly as sensitive to the variations in other

users’ writing.

Of the three main subproblems of this thesis, the stroke partitioning algorithm
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is perhaps the most robust. The system is currently able to correctly partition the

symbols in expressions which it is entirely unable to parse, indicating that this

portion of the research should scale very well to more complex expressions. There

still remains some work to be done on normalizing the costs of multiple stroke

symbols with those of single stroke symbols. I view this problem to actually be a

problem in the symbol recognition algorithm though, rather than a limitation of

the stroke partitioning algorithm.

In addition, the area where the most research still needs to be done is in cor-

rectly parsing complex expressions. In particular, for the system to iterpret more

than simple expressions it will be necessary to incorporate a more complete use of

symbol baselines into the parsing algorithm. The expressions in this thesis which

could not be typeset using the system typically had either complex superscript or

subscript forms or matrix notations. A better understanding of how the baseline

of symbols effects the structure of the expression will be necessary if this problem

is to be solved.

Finally, there is still much work to be done on the user interface. As more

complex functionality is added to the system, the limitations of a pen interface

will quickly become appearent. At the very least, a full functioned equation editor

will need to be incorporated within the system.
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Appendix A

Glossary

Bounding Box The smallest box which contains all of the points in a stroke or

symbol.

Centroid The intersection of the diagonals of a box.

Character A character is an element in a typesetting language.

Combination Weighting A parameter for determining how easily the system will

combine strokes into multiple stroke symbols. The lower the weighting, the

easier it is for strokes to be combined.

Expression A time-ordered set of strokes which are all written in the same coor-

dinate frame.

Parse A parse of a partitioned expression is both an assignment of characters to

symbols, and an interpretation of the structure of the expression.

Partition A partition of an expression, or set of strokes, is an assignment of strokes

to symbol such that no stroke belongs to more than one glyph.

Rejection Threshold A value for determining when a particular symbol is unrec-

ognizable. If a symbol is not able to be classified by one of the symbol models

to within that cost, then it is rejected.
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Stroke The trajectory of a pen, expressed as a series of (x, y, t) coordinates, be-

tween the time it touches down on the writing surface and the time it lifts

off.

Symbol A handwritten symbol that represents a character. This term is used for

both for a particular instance of a symbol and for an entire class of symbols.
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