Cranfield University
School of Engineering

Applied Mathematics & Computing Group

PhD Thesis
Academic Year 2003-2004
P. A. Sherar

Variational Based Analysis and Modelling using
B-splines

Supervisor: Professor Chris Thompson

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

CRANFIELD UNIVERSITY

School of Engineering

P. A. Sherar

Variational Based Analysis and Modelling using
B-splines

PhD Thesis

Abstract

The use of energy methods and variational principles is widespread in many fields of engi-
neering of which structural mechanics and curve and surface design are two prominent examples.
In principle many different types of function can be used as possible trial solutions to a given
variational problem but where piecewise polynomial behaviour and user controlled cross segment
continuity is either required or desirable, B-splines serve as a natural choice. Although there
are many examples of the use of B-splines in such situations there is no common thread running
through existing formulations that generalises from the one dimensional case through to two and
three dimensions.

We develop a unified approach to the representation of the minimisation equations for B-
spline based functionals in tensor product form and apply these results to solving specific prob-
lems in geometric smoothing and finite element analysis using the Rayleigh-Ritz method. We
focus on the development of algorithms for the exact computation of the minimisation matrices
generated by finding stationary values of functionals involving integrals of squares and products
of derivatives, and then use these to seek new variational based solutions to problems in the
above fields. By using tensor notation we are able to generalise the methods and the algorithms
from curves through to surfaces and volumes.

The algorithms developed can be applied to other fields where a variational form of the
problem exists and where such tensor product B-spline functions can be specified as potential

solutions.

1

Contents

1__Introductionl 1
(L1 _Preliminaries] e 1
(1.2 Layout of the thesis|. 2

2 B-spline Curve, Surface and Volume Algorithms| 5
2.1 Introductionl 5
[2.2 Background on Tensors|. oL 6

[2.2.1 Operations on tensors| 7
2.3 B-spline Curves| 16
2.3.1 Evaluationl. 17
2.3.2 Derivatives 19
[2.3.3 Integration| 26
2.3.4 Knot insertion and removallo 27
.35 Productl 29
2.4 B-spline Surfaces| 31
241 Evaluationl. 33
242 Derivatives 33
[2.4.3 Integration| 34
2.4.4 Knot insertion and removall 35
245 Productl 36
[2.5 B-spline Volumes| 37
2.5.1 Ewvaluationl. 37
252 Derivatives 38
[2.5.3 Integrall 40
254 Knot insertion and removallo 40
.55 Productl 41

11

2.6 Summary| 42
[3 Functional Minimisation Formulae & Algorithms| 43
[3.1 Introduction and Background00 43
[3.2 Functionals and Differential Equations| 44
[3.2.1 Functionals dependent on functions of one variable| 44
[3.2.2 Functionals dependent on functions of several variables 47

3.3 Curve Functional Minimisation| oL 50
[3.3.1 Minimisation of the zeroth derivativel00 50
[3.3.2 Minimisation of higher derivatives|. 51

3.4 Surface Functional Minimisationl oL 55
(3.4.1 Minimisation of the zeroth derivativel 55
[3.4.2 Minimisation of higher derivatives|. 56
3.4.3 Products of derivatives oo 57

3.5 Volume Functional Minimisationl. 58
[3.5.1 Minimisation of the zeroth derivativel 58
[3.5.2 Minimisation of higher derivatives|. 59
[3.5.3 Products of derivatives oo 61

[3.6 Boundary Conditions and Constraint Handling. 62
[3.6.1 The reduced transformation technique] 64

[3.7 Source and Boundary Term Integration| 66
[3.7.1 Curve product|. 66
[3.7.2 Surface product| 67
[3.7.3 Volume product|. 68

[3.8 Summary| 69
[4 Applications to Geometric Smoothing| 71
[4.1 Introduction and Background 71
[4.2 Curve Smoothing| 73
[4.2.1 Smoothing combined with least squares data fitting| 7
[4.2.2 Smoothing an existing B-spline curvel00 79

[4.3 Examples| 79
[4.3.1 Example 1) 80
[4.3.2 Example 2.o 83
[4.3.3 Example 3. 84

v

[4.4 Surface Smoothing| 87
[4.4.1 Smoothing combined with least squares data fitting| 90
[4.4.2 Smoothing an existing B-spline surface| 91
[4.4.3 Examples| 93
[4.4.4 Local smoothing| 104
[4.4.5 Alternative computational method| 109

[4.5 Volume Modelling|. 115
[4.5.1 Volume smoothing combined with least squares data fitting{. 117
[4.5.2 Smoothing an existing B-spline volume| 118

[4.6 Volume Smoothing Examples: functional casel 120
[4.6.1 Example 1) 120

[4.7 Volume Smoothing Examples: parametriccasel 132

[4.8 Summary| 143

[> Applications to Finite Element Problems| 144

.1 Introductionl 144
[>.1.1 The Raleigh-Ritz Method| 145

[5.2 B-splines and Finite Elements| 00000 146
[5.2.1 Accuracy] 147

(5.3 1D Energy Minimisation Problems| 149
[5.3.1 Deflection of an elastic string| 149
[5.3.2 'The loaded beam problem| 150
[5.3.3 Examples| 151

(5.4 2D Energy Minimisation Problems| 160
Hh.4.1 Membrane deflection| oL 160
[5.4.2 'The loaded plate problem| 161
[.4.3 Boundary conditions| 163

[5.5 Surface FEA Examples|o 166
[5.5.1 Example 1: Uniformly loaded and simply supported rectangular plate| . . 167
[5.5.2 Example 2: Point loaded, simply supported rectangular plate]. 172
[b.5.3 Example 3: Simply supported and partially loaded square plate] 174
[5.5.4 Example 4: Uniformly loaded, two simple edges, two clamped| 176

[5.6 3D Energy Minimisation Problems| 179
[5.6.1 Deformation of isotropic elastic solids| 179

5.7 Example: The 3D Laplace equation for heat flow through a cubel. 186

[5.7.1 Analytical solution for case 1|

[>.7.2 Analytical solution forcase 2|o

[>.8 Summary|

6 Conclusions|

A Numerical Results for Surface FEA Examples|

[A.1 Uniformly loaded and simply supported rectangular plate|

[A.2 Simply supported and centrally point loaded rectangular plate]

[A.3 Simply supported and partially loaded square plate|

[A.4 Uniformly loaded, two simple edges, two edges clamped|

[A.5 Uniformly loaded, two simple edges, one free, fourth clamped|.

[A.6 Uniformly loaded, three edges simple, fourth edge free/.

[A.7 Uniformly loaded rectangular plate with all edges clamped,

B Class Definitions

[C Inheritance Structure Diagrams|

(D_Kronecker Product and Related Functions|

[E B-spline Derivative and Knot Insertion Formulae)

vi

194

197
198
205
208
218
221
225
229

232

261

265

274
274
275
276
277
277

282

vii

List of Tables

[4.1 Curve tunctional measures betore and after smoothing|. 81
[4.2 Curve tunctional measures betore and after smoothing, example 2 84
[4.3 Curve functional measures before and after smoothing, example 3| 86
[4.4 Surface functional measures before and after smoothing| 98
[4.5 Surface tunctional measures before and after smoothing, local case 104
4.6 Smoothing measures before/after, torus section, alternative method| 111
[4.7 Smoothing measures, alternative method, local casel 113
4.8 Smoothing measures before/after for functional volume, sm =0.1f 125
4.9 Smoothing measures before/after for functional volume, sm =0.2[. 125
{4.10 Smoothing measures before/after for functional volume, sm =0.5(. 126
{4.11 Smoothing measures before/after for functional volume, sm =1.0f 126
{4.12 Smoothing measures before/after for functional volume, sm = 10.0[. 127
[4.13 Smoothing measures, sm = 0.1, parametric case] 134
[4.14 Smoothing measures, sm = 0.2, parametric case] 135
[4.15 Smoothing measures, sm = 0.5, parametric case] 135
[4.16 Smoothing measures, sm = 1.0, parametric case] 136
[4.17 Smoothing measures, sm = 10.0, parametric case| 136
[A.1 Numerical results for simply supported rectangular plate, uniform load| 198
[A.2 Numerical results for simply supported rectangular plate, point load 205
[A.3 Numerical results for simply supported partially loaded square plate| 208
[A.4 Numerical results for rectangular plate, two simple edges, two clamped| 218
[A.5 Numerical results for rectangular plate, two simple edges, one free, one clamped| 221
[A.6 Numerical results for rectangular plate, three simple edges, one free| 225
[A.7 Numerical results for rectangular plate, all edges clamped|. 229

viil

List of Figures

2.1 Tensorsof rank 1,2and 3
[2.2 Tensor multiplication|o
2.3 DO Pl. . e
4 D Al
[2.5 Algorithm 2.1: Computation of B-spline evaluation coefficients|
[2.6 Algorithm 2.2: Computation of the rth derivative knot set|
(2.7 Algorithm 2.3: Computation of first derivative matrix Dy
[2.8 Algorithm 2.4: Computation of the rth derivative matrix Dj}
[2.9 Algorithm 2.5: Computation of the rth derivative in terms of the d;f
[2.10 Algorithm 2.6: Computation of the rth derivative as a B-spline curve|
[2.11 Algorithm 2.7: Computation of the product B-spline,
[2.12 B-spline surface boundary derivatives| L.
[2.13 B-spline definite integral summation|
[2.14 B-spline volume derivatives| L
[2.15 B-spline volume definite integral summation|
[3.1 Algorithm 3.1: Computation of the the matrix A,|
[3.2 Algorithm 3.2: Computation of the minimisation matrix M,
[3.3" Algorithm 3.3: Computation of the matrix A%
[3.4 Algorithm 3.4: Computation of the non-symmetrical minimisation matrix M
[3.5 Algorithm 3.5: Integral of a product B-spline|.
[3.6 Algorithm 3.6: Integral of a surface B-spline product|
[3.7 Algorithm 3.7: Integration of a B-spline product volume|
[4.1 Smoothing with least squares|
[4.2 Smoothing existing curves|
[4.3 Algorithm 4.1: Least squares fitting combined with smoothing|

X

[4.4 Algorithm 4.2: Smoothing an existing B-spline curve| 80
[4.5 Smoothing using functionals Jy,....J5o 00000 81
[4.6 Curvature plots, original and perturbed curves| 82
[4.7 Curvature plots using Jy, Jo tunctionals| 82
[4.8 Curvature plots using Js, Jy, Js functionals| 83
[4.9 Perturbed curve with curvature map, smoothing example 2| 83
[4.10 Smoothed curve using J; functionall 84
[4.11 Curvature maps original and perturbed, example 3| 85
{4.12 Perturbed curve curvature graph (example 3)| 00 85
[4.13 Smoothed curves, tunctionals Jy,...,J5, example 3| 85
[4.14 Curvature plots, methods J3, Jy, J5, example 3| 86
[4.15 Surface smoothing with least squares approximation|. 87
[4.16 Smoothing an existing surface| L 90
[4.17 Algorithm 4.3: Least squares fitting combined with smoothing| 92
[4.18 Algorithm 4.4: Smoothing an existing B-spline surtacel 93
[4.19 Deviation of perturbed B-spline surtace from originall 94
[4.20 Original and perturbed surface, torus section example| 95
[4.21 Environment maps, original and perturbed00 95
[4.22 (Gaussian curvature of original and perturbed surfaces| 96
[4.23 Gaussian and mean curvature map of original surface| 98
[4.24 Smoothed surfaces using tunctionals Jsand Jy 99
[4.25 Environment maps for J; and J, smoothed surfaces| 99
[4.26 Smoothed surfaces using tunctionals J; and Jg 100
[4.27 Environment maps for J; and Jg smoothed surtaces| 100
|4.28 (Gaussian curvature of J; and J; smoothed surtaces| 101
[4.29 Gaussian curvature of J; and Jg smoothed surfaces| 101
[4.30 Gaussian and mean curvature map of J3 smoothed surtacel 102
[4.31 Gaussian and mean curvature map of J4 smoothed surface| 102
[4.32 Gaussian and mean curvature map of J; smoothed surfacel 103
[4.33 Gaussian and mean curvature map of Js smoothed surface| 103
[4.34 Deviation and environment mapped views, perturbed surface| 105
[4.35 Smoothed surface using Js, Jy, local casef 105
[4.36 Smoothed surface using J7, Jg, local case| 106
[4.37 Environment maps, J3, Jy4, local case|o 00000 106

[4.38 Environment maps, J7, Jg, local case| 000000 107
[4.39 Gaussian and mean curvature map, J3, local casel 107
[4.40 Gaussian and mean curvature map, J4, local casel 108
[4.41 Gaussian and mean curvature map, Jz, local casel o0 108
[4.42 Algorithm 4.5: Smoothing an existing surface, alternative method| 110
[4.43 Smoothed surfaces using tunctionals Js and Jyo 110
[4.44 Smoothed surfaces using tunctionals J; and Jg 111
[4.45 Gaussian curvature of Js; and Jy surfaces| 112
[4.46 Gaussian curvature of J; and Jg surfaces| 112
{4.47 Smoothed surface using .Js, J; functionals (alg. 4.5)] 113
{4.48 Smoothed surfaces using J; and Jg functionals (alg. 4.5) 114
[4.49 Gaussian curvature of J3 and J; smoothed surfaces (alg. 4.5). 114
[4.50 Smoothing with least squares data fitting| 117
[4.51 Algorithm 4.6: Volume least squares fitting combined with smoothing| 119
[4.52 Smoothing an existing volume| 0oL 120
[4.53 Algorithm 4.7: Smoothing an existing B-spline volume| 121
[4.54 Pascal tetrahedron coefficients for orders 0 through to 4. 122
[4.55 Sectional Gaussian curvature map, functional volume|{ 123
[4.56 Sectional mean curvature map, functional volume] 124
[4.57 Sectional environment map, functional volumel 00000 124
14.58 Sectional Gaussian curvature map, JZ . functional casel. 127
4.59 Sectional mean curvature map, JZ . functional case[. 128
(.60 Sectional Gaussian curvature map, J,,,, functional case| 128
{.61 Sectional mean curvature map, J;,, functional case| 129
14.62 Sectional Gaussian curvature map, J , functional case/. 129
14.63 Sectional mean curvature map, J>, . functional case[. 130
{4.64 Sectional Gaussian curvature map, J,, ., functional case[. 130
[4.65 Sectional mean curvature map, J,,,, functional case| 131
[4.66 Sectional Gaussian curvature map, sm = 10.0, functional case] 131
[4.67 Sectional mean curvature map, sm = 10.0, functional case| 132
[4.68 Original and perturbed cube, Gaussian map, parametric case[. 133
[4.69 Original and perturbed cube, mean map, parametric casel 134
[4.70 Original and perturbed cube, environment map, parametric casel 134
4.71 Smoothed cube, functional J2 = Guassian curvature map|. 137

el

4.72 Smoothed cube, functional JZ, mean curvature map|. 137
4.73 Smoothed cube, functional JZ . environment map|. 138
(.74 Smoothed cube, functional J7 ., Gaussian curvature map| 138
(.75 Smoothed cube, functional J;, ., mean curvature map| 139
(.76 Smoothed cube, functional J; ., environment map| 139
4.77 Smoothed cube, functional J2 = Gaussian curvature map|. 140
14.78 Smoothed cube, functional J? ~ mean curvature map|. 140
4.79 Smoothed cube, functional J? = environment map|. 141
(.80 Smoothed cube, functional J;, ., Gaussian curvature map| 141
(.81 Smoothed cube, functional .J;, ., mean curvature map| 142
(.82 Smoothed cube, functional J;, ., environment map|, 142
[>.1 Algorithm 5.1: B-spline solution to 1D beam bending problem| 152
(5.2 Simply supported beam under a point load| 155
(5.3 Simply supported uniformly loaded beam| 155
[>.4 Overhanging simply supported uniformly loaded beam| 156
[5.5 Simply supported beam under ramp load|o 156
[5.6 Simply supported beam under triangular distributed load| 157
(5.7 Multiple simply supported beam, point and distributed loads|. 157
[>.8 Multiple simply supported beam, point and distributed loads|. 158
[5.9 Bending moment and reactive force curves|00 158
[>.10 Cantilever beam under point load| 159
[>.11 Cantilever beam under partial distributed load|. 159
[5.12 Algorithm 5.2: B-spline solution to 2D plate bending problem| 165
[5.13 Region and boundary conditions for Poisson problem| 166
[5.14 Plate with isoparametric lines and load /boundary conditions| 167
[5.15 Deflection error, simply supported plate, uniform load|. 169
[5.16 Bending moment error in u, simply supported plate, unitorm load| 170
[>.17 Shearing force error in u, simply supported plate, uniform load|. 170
[5.18 Reactive force error in u, simply supported plate, uniform load| 171
[5.19 Log-log plot, error vs max shearing forceinw| 171
[5.20 Simply supported centrally point loaded rectangular plate] 172
[5.21 Deflection error, simply supported rectangular plate (1,2)| 173
[5.22 Log-log plot, deflection error, simply supported rectangular plate (1,2)[. 173
[5.23 Simply supported partially loaded square plate]. 174

xii

[5.24 Bending moment error in u, simply supported plate, load over (0.1,0.1)] 175

[5.25 Bending moment error in u, simply supported plate, load over (0.2,0.2)] 175
[5.26 Bending moment error in u, simply supported plate, load over (0.5,0.5)] 176
[5.27 Uniformly loaded plate, two simple edges and two edges clamped|. 177
[5.28 Deflection error, mixed boundary, uniform load 177
[5.29 Bending moment error in u, mixed boundary, unitorm load| 178
[5.30 Bending moment error in v, mixed boundary, uniform load| 178
[>.31 Log-log bending moment error in v, mixed boundary, uniform load|. 179
[5.32 Algorithm 5.3: B-spline solution to elastic solid deformation| 186
[5.33 Algorithm 5.4: B-spline solution to elastic solid deformation, version 2. 187
[5.34 Volume model showing isoparametric faces| 188
[5.35 Boundary conditions for heat flow through a cubel 188
[>.36 Percentage error in heat flow through bottom side of cubel 190
[5.37 Maximum percentage error in solution for varying segment numbers| 190
[5.38 Log-log plot, max error in heat flow vs segment number{. 191
[5.39 Percentage error in heat flow through bottom side of cubel 191
[5.40 Maximum percentage error in solution over a sampled grid| 192
[5.41 Log-log plot, max error in heat flow vs segment number|{. 192
[A.1 Simply supported rectangular plate with uniform load|. 198
[A.2 Simply supported centrally point loaded rectangular plate, 205
[A.3 Simply supported partially loaded square plate]. 208
[A.4 Uniformly loaded plate, two simple edges, two edges clamped|. 218
[A.5 Uniformly loaded plate, two simple edges, one free and the fourth clamped| . . . 221
[A.6 Uniformly loaded plate, three simple edges, fourth edge free| 225
[A.7 Uniformly loaded rectangular plate with all edges clamped 229
[C.1 Inheritance structure for Curve/Surf/Vol classes| 262
[C.2_Inheritance structure for curve entitied 262
[C.3 Inheritance structure for surface entities 263
[C.4 Inheritance structure for volume entities) 263
[C.5 Inheritance structure for vector/matrix/matrix3D| 264
[C.6 Ancillary classes|. 264

xiil

Chapter 1

Introduction

1.1 Preliminaries

The use of B-splines is very well established in the field of geometric modelling as testified by
their mainstream integration in the majority of CAD/CAM packages. Since the early days of
curve and surface design with the work of Bézier and de Casteljau, their flexibility and convenient
mathematical and computational properties have been put to constant use in the design and
development of products for which external shape is a critical factor. In addition to shape
definition and spurred on by the ever increasing amount of computing power and resources
available to the developer, there have been significant advances more recently in the use of B-
splines for modelling and analysis of more complex phenomena such as human organs in medical
imaging, [3], [r1], [72], [74], image processing, [16], [45], and the physical behaviour of
objects under external forces, [69], [81], [82]. Some of these developments have begun to
employ B-spline volumes for their description.

An important tool in the repertoire of techniques for describing these systems is that of
the principle of minimum total potential energy®l and the associated use of variational methods
to determine approximate solutions to the underlying displacement function. Here one seeks a
stationary value of a functional with respect to a set of undetermined parameters representing
a solution, where the functional may represent the total energy of the system or an integral
representation of governing equations.

Variational principles are also used heavily in curve and surface design. Here the fundamental

idea is the use of modelling tools which minimise a certain functional that can be interpreted in

'If a system is in equilibrium then its total potential energy is a minimum

2 Variational Based Modelling and Analysis using B-splines

terms of physics or geometry. For example, the process of removing unwanted imperfections, so-
called fairing or smoothing, is an important aspect of free-form geometric modellers. Historically,
thin elastic strips of wood were used for designing ship hulls and airplanes. Since elastic strips
tend to minimise their bending energy and curves of least energy are considered fair, energy based
functionals are used to improve shape quality. Such functionals can also be used as free-form
design tools as demonstrated in, for example, [6], [14], [91] and [92].

In structural analysis the principle of minimum energy is used to obtain approximate solu-
tions to mechanical models for deflections of objects under external loads. Using the equivalence
between the differential equation and the variational form of the problem, a solution can be
found by minimising a functional representing the total potential energy of the system subject
to boundary conditions.

In this work we propose to develop a unified approach to the use of tensor product B-
splines in curve, surface and volume form, in solving variational type problems based on the
exact? computation of the minimisation matrices of functionals involving squares and products
of derivatives, and to apply the results and associated algorithms to the specific fields of geometric

smoothing and structural analysis.

1.2 Layout of the thesis

The outline of this document is as follows.

In Chapter 2 we begin by reviewing tensor notation and the associated contraction and
product operators. The definition and principle algorithms for B-spline curves are covered and
their tensor product extensions to surfaces and volumes. Whilst most of this material serves to
introduce notation and basic properties of B-splines that are used in the rest of the document
some new notation and algorithms are presented. In particular, the matrix system for expressing
derivative control points in terms of the original and an explicit representation of a derivative
of a B-spline curve as a B-spline curve. These results are generalised to the surface and volume
forms.

Chapter 3 focuses on the derivation of the linear matrix systems for minimisation of B-spline
functionals based on squares and products of derivatives. After reviewing the connection be-
tween the differential equation and variational formulations of a given continuum problem the
matrix form of the derivative from Chapter 2 is used along with the tensor notation to produce

minimisation matrices and formulae for the curve, surface and volume cases. Algorithms for the

?by ‘exact’ we mean within the limits of roundoff error, numerical approximations are not used

Introduction 3

exact computation of these matrices are presented. The chapter proceeds with a review of the
reduced transformation technique which is employed in this thesis for handling the boundary
conditions in the variational formulation. The chapter concludes with algorithms for comput-
ing exactly the integral of a product B-spline for dealing with the source and boundary term
integration.

The application of the functional minimisation formulae in Chapter 3 to B-spline curve, sur-
face and volume smoothing is covered in Chapter 4. After reviewing the background to energy
based minimisation methods for improving shape quality the principle techniques and contribu-
tions to the field are surveyed. There are two general types of algorithm used for smoothing,
the first based on iterative local modification of control points and/or knots to reduce unwanted
curvature variation and, secondly, those that use global methods based on minimising an energy
based or similar functional. The contribution made here is to the latter group of techniques. We
begin by presenting two curve algorithms, one which can be applied in conjunction with data
fitting and the other for post construction smoothing, and give examples based on artificially
perturbed curves. The technique is generalised to the surface case and examples presented which
illustrate graphically and numerically the effectiveness of the algorithms. The chapter concludes
with a section on volume methods. A survey of the use of volumetric models is presented and
then, using the Kronecker product, the smoothing method for curves and surfaces is generalised
to the volume case with functional and parametric examples provided.

Chapter 5 covers applications to the solution of certain types of finite element problem based
on rectangular domains. We review briefly the use of B-splines in finite elements, convergence
criteria and some relevant papers in the literature that are based on using the minimum energy
principle. We then proceed to use this principle with the Rayleigh-Ritz method and the min-
imisation formulae from Chapter 3 to derive algorithms for constructing B-spline solutions to
some problems in beam and plate bending and the deformation of isotropic solids. In each case
the reduced transformation technique is used to deal with the geometric boundary conditions.
The algorithms presented return exact polynomial solutions where they exist and approxima-
tions otherwise. A number of plate bending examples are tested and comparisons made with
theoretical results based on trigonometric series solutions from Timoshenko, [85]. Within the
limits of the comparison data, convergence trends for increasing segment number and order are
shown. For the plate bending examples the developments here serve as a generalisation of the
results presented in Antes, [2]. The chapter finishes with an application of the volume based
algorithm to the solution of Laplace’s equation for heat flow through a cube.

Finally, Chapter 6 draws some conclusions of the work and highlights some areas for further

4 Variational Based Modelling and Analysis using B-splines

development.

In Appendix A we present the full numerical results for the plate bending examples presented
in Chapter 5. Some additional examples with varying boundary conditions are also given.

Appendix B provides definitions of the principle C++ classes used in the construction of the
software that wraps the algorithms covered in the four chapters.

In Appendix C we present UML type diagrams illustrating the inheritance structure of the
classes listed in Appendix B.

Appendix D presents implementations of the basic Kronecker product operations used in the
surface and volume algorithms of Chapters 4 and 5.

In Appendix E we give details of the steps to derive the basic B-spline point and derivative
evaluation formulae referred to in Chapter 2.

Finally, in Appendix F we provide the main formulae for the curvature properties of curves,

surfaces and volumes used as smoothing criteria in Chapter 4.

Chapter 2

B-spline Curve, Surface and Volume

Algorithms

2.1 Introduction

B-splines in curve and surface form have enjoyed great popularity in the broad field of geometric
modelling over the past 30 years or so. This is principally due to their attractive mathematical
properties, convenient notation, and the very well established and computationally efficient
algorithms that have been developed for their manipulation. From the early work of de Casteljau
and Bézier in the automobile industry on what today are known as Bézier curves and surfaces,
through to the more recent development of dynamic models for free-form deformation and physics
based manipulation of surfaces and solids, the B-spline form has remained a powerful standard
for the representation of shape where complex data and physical properties have to be modelled.

In this chapter we focus on B-spline properties and associated algorithms. After reviewing
tensor notation which we use to provide a common notational framework for curves, surface and
volumes, we concentrate on the fundamental B-spline curve algorithms of evaluation, derivative,
knot insertion/removal, product and integration and their tensor product generalisations which
are used extensively in the minimisation algorithms to follow. In doing so we introduce some
new notation and algorithms for explicit representation of the derivative of B-spline curves which

we also generalise to surfaces and volumes.

6 Variational Based Modelling and Analysis using B-splines

2.2 Background on Tensors

A tensor of rank n is an array of 3" quantities which obey certain rules of transformation
when the coordinate axes are rotated. We are concerned here not with the details of these
transformation laws but rather on the operations that can be defined on tensors. The main
reason for using tensor notation in this and in subsequent chapters is that it enables us to
unify the notation for the treatment of B-spline curve, surface and volume entities with respect
to evaluation of derivatives and the formulation of the matrix equations resulting from the
minimisation of certain functionals. We concentrate on tensors of rank 0 to 3, which correspond
to scalars, vectors, matrices, and the three dimensional matrix analogue, as well as the basic
allowable operations on these entities. In particular, we are concerned with how the familiar
form of these operations for the rank 0 to 2 cases is extended using the tensor notation to the
three dimensional case.

For the purposes of this thesis a tensor of rank 0 is a scalar quantity, a tensor of rank 1 is a
vector and that of rank 2 a matrix. A tensor of rank 3 is a three dimensional matrix with rows,
columns and what we shall call ‘layers’. We refer to such an entity as a matriz3D. Since we are
concerned primarily with the use of the notation we don’t restrict ourselves to the operations
being performed only on entities of size 3". We allow the vectors, matrices and matrix3D entities
to be of any size subject to the compatibility restrictions on the numbers of rows, columns and
layers that are necessary for the operations to be carried out. We also make use of the Einstein
summation convention when appropriate which states that whenever two indices on a tensor are
identified the implication is that the corresponding components of the tensor are summed over
the range of the index in question (this is the contraction operation described later). Figure 2.1
illustrates the three basic entities we are dealing with. To demonstrate the allowable operations

between these entities we will use the following notation for specific tensors of rank 1, 2 and 3

respectively:
m n p
Rank 1: P = <p1> , Q= <q1> , R = (rl)
=1 =1 =1
m,m n,n b,p
Rank 2: A= (aij>) B = (bz’j>) C= (Cij)]
ij=1 i,j=1 ij=1
m,n,p m,n,p
Rank 3: D= <duk> s E= (eijk> .
i,5,k=1 i,5,k=1

We use T to denote the result of an allowable operation.

B-spline Curve, Surface and Volume Algorithms 7

Py By S

Pm

Figure 2.1: Tensors of rank 1, 2 and 3

2.2.1 Operations on tensors
Addition and Subtraction

Two tensors of the same rank can be added assuming that they have the same number of rows,
rows and columns, or rows, columns and layers respectively. The sum is a tensor of the same
order whose components are the sums of the corresponding components of the two tensors. This
corresponds to familiar vector and matrix addition and its logical extension to the matrix3D

case. We use the symbol & for this operation and & for subtraction.

Multiplication

We can multiply any two of the rank 1,2 or 3 tensors together using a product operation. The
product is defined to be a tensor whose rank is the sum of the ranks of the two tensors and
whose components are products of a component of one tensor with any component of the other

tensor. This operation is denoted by the symbol ®. The cases of interest are listed below:

e vector ® vector: For P and Q two tensors of rank 1 (vectors) their tensor product

P ® Q is the matrix of quantities obtained by multiplying each component of P with each

Variational Based Modelling and Analysis using B-splines

B Pl_ _311 alm_ Pk - Co el

. dlmin

P:u.t L= [=—

Figure 2.2: Tensor multiplication

component of Q:
D1 il iy ... Pign
Pm dn Pm41 .- Pmln

Using index notation we may also write this more simply as

T =Ti; = pigj.

vector ® matrix: For P a tensor of rank 1 and A a tensor of rank 2, their tensor product
T = P ® A is the matrix3D of quantities obtained by multiplying each component of P

with each component of Q, see figure 2.2l Using index notation we can write
T = Tk = piaj.

matrix ® vector: For A a tensor of rank 2 and P a tensor of rank 1, their tensor product
T = A ® P is the matrix3D of quantities obtained by multiplying each component of A
with each component of P:

T = Tj1 = aijps.

B-spline Curve, Surface and Volume Algorithms 9

e matrix ® matrix: The Kronecker Product For A and B both tensors of rank 2, their
tensor product T = A ® B is the matrix of matrices (that is a matriz4D) of quantities

obtained by multiplying each component of A with each component of B:

T = Ejkl = aijbkl. (21)

Although this takes us outside the rank 1-3 tensors we are principally interested in, the product
defined here has a particular significance when it comes to solving certain systems of linear
equations that appear in later chapters and is called the Kronecker product. This product has
many attractive algebraic properties and forms the basis of a wide variety of algorithms in
scientific computing, see for example Graham 1981, [25], Henderson et al, [35].

It is always possible to represent a higher order tensor like .1l by a matrix in which each
row and/or column is indexed by one of the set of of component indices and letting these sets

be arranged in some systematic manner. For example, if
a a bir b2 b1z
1 a2
A= () , B=| by by by |,
bs1 bz2 bs3

we can write

a11b11 ai1b12 (l11b13 a12b11 ai2b12 a12b13
a11b91 1109 a11623 a12b91 @129 a12523

a11bsy ai1bsy annbss| aiabsi aigbse aigbss
A®B=

(2.2)
a21011 aoibia agibiz| agebir agsbiz assbis

a21021 a21baa ag1bas | agebar agabar azbos

a21031 ag1bsa agibss | agebsi agbse agabss

Here the rows and columns of the above matrix are indexed by the pair (i, 7), with the pair (j, k)
arranged in the normal manner. In general, if A and B are matrices of size m; X n; and mqy X ng
respectively, then we interpret A ® B an my by n; block matrix whose (4, 7) block is the my by
ny matrix b;;C.

When working with Kronecker products, matrix and matrix3D entities are sometimes re-
garded as vectors and vectors are sometimes made into matrices and matrix3D entities. In
particular, if A is an m X n matrix we can convert it into a vector by stacking the columns. We
can perform a similar operation on matrix3D entities by treating the level matrices making up

the 3D entity and stacking their columns layer by layer. We denote this generic operation of

10 Variational Based Modelling and Analysis using B-splines

converting higher order entities to vector form by the notation vec(A) (for some background to
this operator see Henderson & Searle [30]). The significance of this operation becomes apparent
when considering the matrix equation, CXBT = Y, where C,X, B are compatible matrices

such that the product is defined. In this case we have the following equivalence
CXBT =Y = (B® C)vec(X) = vec(Y). (2.3)

We use this result and the conversion operation in chapters 4 and 5. Appendix D gives code for

the Kronecker product and the vector/matrix and vector/matrix3D conversion operations.

Contraction

A contraction of one tensor with another is the result of setting two component indices equal
to each other and summing over the values of those indices. This operation can only be per-
formed if the number of rows, columns and/or layers corresponding to the repeated indices are
the same in the two tensors. A contraction operation can be applied more than one time. Each
contraction produces a tensor whose rank is the sum of the ranks of the two tensors minus two.
We use the symbol ® for this operation. To distinguish the various indices we can sum over we
use an index on this symbol in the form ©;, where [can be any one of the r indices available for

a tensor of rank r. For tensors of rank > 2 the generic operation can be described as follows:

For T =T, ®; Ty we fix an index different from [in T1 and then multiply what we can call sub-
tensors (for a matriz this will be a vector and for a matriz3D a matriz) in that chosen direction

by Ty putting the results into T again in the chosen direction.

For completeness we list the cases of interest below:

e vector ® vector: Although there is only one index to sum over for a vector we will
introduce two equivalent forms for the operation which will enable us to match with the
rank 2 tensor contractions. Assuming that m = n for the vectors P and Q, the contraction

T =P ©; Q is the following tensor of rank 0 (i.e. a scalar):

b1
Pm
In more familiar terms this is just the scalar product written as QT P. Using index notation

we can write it as
T=T=piq.

B-spline Curve, Surface and Volume Algorithms 11

We also identify the same product with T =P ©; Q:

q1
T:P@jQ:(pl pm> =p1q1 + - - + DmGm,
dm

which is just the scalar product written as P7Q.

e matrix © vector: There are two possible contractions of a matrix with a vector, both

producing a vector and corresponding to familiar matrix-vector and vector-matrix multi-

plication:
aip ... Qaim h XZ: D1
Am1 -+ Amm Pm Z AmiPi
aiyr ... Qum
T:AG)Z-P:<p1 pm> : : :(Zailpi Z%m?i),
Qm1 --- Amm

In more familiar terms these are simply AP and PTA. In index form they appear respec-
tively as:

T; = ai;p; T; = piai;.

e matrix ® matrix: There are two contractions of two tensors of rank 2 both producing
a tensor of rank 2, and they correspond to familiar matrix-matrix multiplication schemes.

Assuming that m = n, we have for A ©, B:

m m
al»b-l .. al»b
aipy ... Qum bll s bln Z:Z]_ o z:Zl o
T = -)
b b 3 S
Aml - Qo nl --- Onn ST amibin o D mibin
i=1 i=1

or, in index notation, T}; = a;,bx;. This is equivalent to the normal matrix multiplication
AB. For A ®; B the scheme is

12 Variational Based Modelling and Analysis using B-splines

m m
ai1bin ... @imbit
bll e bnl aii oo Qm 1:231 7;
T = = ’
b b S 3
in --- nn am1 -+ Omm Z ailbm s Z aimbm
i=1 i=1

or in index notation 7j; = a;;b;. This corresponds to the multiplication scheme BT A. For

tensors of rank 2 we also have the relationship

Ao, B=B"0,A. (2.4)

e matrix3D ©® vector: The contraction of a tensor of rank 3 with a tensor of rank 1 is a
tensor of rank 2. There are three possible indices we can sum over giving three possible

contractions, which we denote by ®; where [denotes an index, [€ {i, 7, k}:

T=Do;,P=T; =D, QiPi:[dij z} ;
Ik 7k ; jkD ik

T=D0;Q=Tk =Dy ©; Q; = [Z d"j"‘qj]m’
j=1

p

T=D0O,R =T = D Or R, = [Z dijkaLj'

k=1

In effect to obtain the contraction of a rank 3 tensor by a vector with respect to an index [,
we fix an index in {4, j, k} different from [and multiply all level matrices in the matrix3D
in that direction by the vector. This produces new vectors which are inserted in as the
columns of the resultant matrix. Hence for each one of these three possible contractions
there are two possible and equivalent multiplication methods. For the ®; contraction they

are:

1. Fix j, and using the notation D7 to indicate a level matrix in the j direction, we have

T=Do,P=|D'P| = [[Z dijk:pi} k] - [Z dijkpi] ,
j =1 j i=1 jk
2. Fix k, we have
T=Do;P= |DP| = [[Z dijkpi}] [Z dijkpi] :
i=1 J i=1 j

k k i= ik

B-spline Curve, Surface and Volume Algorithms

Matrix M3DV1(Matrix3D D, Vector P)

{
double sum=0.0;

Matrix M3DV2(Matrix3D D, Vector P)

{
double sum=0.0;

int m = D.GetNumRows(); int m = D.GetNumRows() ;
int n = D.GetNumCols(); int n = D.GetNumCols();
int p = D.GetNumLaysQ); int p = D.GetNumLays() ;

Matrix T(n,p);

for (k=0; k<p; k++)
for (j=0; j<mn; j++) {
for (i=0; i<m; i++)
sum+=D [k] [i] [j1*P[i];
TL[j] [k]l=sum;
sum=0.0

¥

return T;

Matrix T(n,p);

for (j=0; j<n; j++)
for (k=0; k<p; k++) {
for (i=0; i<m; i++)
sum+=D [k] [i] [jI*P[i];
T[j] [kl=sum;
sum=0.0;

¥

return T;

13

Figure 2.3: Two versions of D ®; P

The treatment of ©; and ©, follows similarly. Figure presents a C++-style pseudocode

function for the implementation of the two equivalent forms for ©;.

e matrix3D ® matrix: The contraction of a tensor of rank 3 with a tensor of rank 2 is
another tensor of rank 3. Again there are three possible indices we can sum over giving
three possible contractions:

m
T=D®; A="Tyj= Dy © Ay = [21: dijkail} "

1=

T=D®;B="Ty,=D;j;®; Bj = [Zl dijkq]'l]ilka
]:
p
T =D o, C=Ti = Dijr, O Cpy = [Z dz’jkrkl} -
k=1 “

To obtain the multiplication of a rank 3 tensor by a matrix with respect to an index [, we
fix an index in {4, j, k} different from [and multiply all level matrices in the matrix3D in
that direction by the matrix in question. This produces new matrices which are inserted
in as the level matrices in the chosen direction forming the resultant matrix3D. The two

possible and equivalent multiplication methods for ®; are:

14 Variational Based Modelling and Analysis using B-splines

Matrix3D M3DM1(Matrix3D D, Matrix A) Matrix3D M3DM2(Matrix3D D, Matrix A)
{ {
double sum=0.0; double sum=0.0;
int m = D.GetNumRows () ; int m = D.GetNumRows() ;
int n = D.GetNumCols(); int n = D.GetNumCols(Q);
int p = D.GetNumLays(); int p = D.GetNumLays() ;
int ¢ = A.GetNumCols(); int ¢ = A.GetNumCols();
Matrix3D T(c,n,p); Matrix3D T(c,n,p);
for (k=0; k<p; k++) for (j=0; j<mn; j++)
for (1=0; 1l<c; 1++) for (1=0; 1<c; 1++)
for (j=0; j<m; j++) { for (k=0; k<p; k++) {
for (i=0; i<m; i++) for (i=0; di<m; i++)
sum+=D [k] [i] [j1*A[i] [1]; sum+=D [k] [i] [j1*A[i] [1];
T[k][1] [jl=sum; T[k] [1] [j]l=sum;
sum=0.0; sum=0.0;
} }
return T; return T;
¥ ¥

Figure 2.4: Two versions of D ®; A

1. Fix j, and using the notation D7 to indicate a level matrix in the j direction, we have

T=Do;A=|D'A| = [Z dijkail] = Z dijraq
L 4 L =1 kl_ j 1=1 115k
2. Fix k, we have
T=Do;A= |D"A| = [Z dz‘jkail] o= Z dijr i
L dk L =1 jl_ k Li=1 15k

Again the other two cases follow similarly. Figure 2.4 presents a C++-style pseudocode function
for the implementation of the two equivalent forms for ®; for the the matrix3D © matrix cases.

In summary we have the results:

e vector ® vector = scalar

vector ©; vector T = p;q;

vector ®; vector T = q;p;

e matrix ® vector = vector,

matrix @; vector T = a;;p;

matrix @; vector T = p;a;;

B-spline Curve, Surface and Volume Algorithms

e matrix ® matrix = matrix,

matrix ©; matrix

matrix ©; matrix

e matrix3D ® vector = matrix,

matrix3D ®; vector
matrix3D ©; vector

matrix3D & vector

e matrix3D ©® matrix = matrix3D,

matrix3D ©®; matrix
matrix3D ©; matrix

matrix3D &y matrix

15

Tij = aib;

Tkj = aijbik:
T, = dijkpi
T = dijrq;
T = dijire

Tiji = dijraq
Tk = dijrqji

Tijl = dijld"kl

Under the condition that the tensors are of compatible size for the multiplications and

additions to occur, the contraction operator ®; for rank 3 with rank 2 tensors satisfies the

following properties, where [, m € {i, j,k} (D and E are matrix3Ds, A, B are matrices and c is

a constant).

Do,cA=cD o A (2

Do, (A9B)= (Do A)@ (2
(DeE) o, A=(Do,A)e (EeA) (2.
DoA)G,B=(D06,,B)o, A (2

For P and Q vectors of compatible size we have:

(D ®; B)

Do cP=cDe, P (2.9)

Do PeQ)=[Do,P)e (Do Q) (2.10)
(Da&E)o,P=Do,P)& (E Q) (2.11)
DoP)©,Q=(DonP)®Q (2.12)

Finally, for tensors Ty, Ty, T3 of rank 1,2 or 3 the following result holds:

Ty & (T2 @ T3) = (Ty @ T5) @ T, (2.13)

16 Variational Based Modelling and Analysis using B-splines

2.3 B-spline Curves

A B-spline curve is a piecewise polynomial function expressed with respect to a set of B-spline
basis functions which have local support and built-in cross-segment continuity defined by a knot
set. The maximum allowable cross-segment continuity is equal to the order of the B-spline minus
two (C? in the case of cubic B-splines) and the minimum is C'~!, which implies that the two
adjacent segments are in fact disjoint. The basis functions are chosen so has to have the minimal
possible support subject to their piecewise polynomial nature and the specified cross-segment
continuity. The formula for a B-spline curve of order k is
n
f(t) = diNyi(t), on the knot set (t;)7}", (2.14)
i=1
where the N, ;(t) are the B-spline basis functions defined over an associated knot set (t)"tF. We

can write this in tensor form as follows:

N:No(t):(NLk(t) e Nya(t))T, clz(d1 dn),

then
f(t) =d®; N. (2.15)

Each basis function N; 4 (t) of order k is itself a functional B-spline curve and defined locally over
k + 1 knots, in the range [t;, t;1x]. A given knot multiplicity equal to r in one one of the knots
implies a cross segment continuity of order C*~"*+! at that knot. The basis functions satisfy the

following Cox de-Boor recursive formula, [10], (derivation also given in Appendix E):

It <t<tip

Nia(t) = .
0 otherwise
t—t fiw —1
Nig(t) = ﬁNi,k—l(t) + %Niﬂ,ml(t% k> 2. (2.16)
i+k—1 i itk i+1

The knot set itself can either be represented in vector form as one sequential list, or as
two lists, the first giving the distinct knots (dts) and the second the multiplicities (mult). In
the algorithms that follow we assume the coalesced form for the knot extension, that is if nseg

represents the number of segments of the B-spline then

mult[1]=mult[nseg-1]=k.

B-spline Curve, Surface and Volume Algorithms 17

In the following sections of this chapter we review briefly the important B-spline algorithms
for curves, surfaces and volumes that are used extensively in the later chapters. Further details of
B-spline theory are provided in, for example, [10], [II], [40]. We concentrate here on evaluation,
derivative, integration, knot insertion/removal and product which have particular significance
for this work. In doing so we introduce some new notation for expressing the derivative of a
B-spline and derive an explicit method for expressing the control points of the derivative curve
in terms of control points of the original.

Note on notation: The normal method of distinction between the functional and para-
metric forms is to use bold notation for the parametric case. In this thesis we use bold where the
B-spline is explicitly taken to be parametric as in the geometric smoothing covered in Chapter

4, otherwise the control points are written without bold typeface.

2.3.1 Evaluation

The local non-zero nature of the B-spline basis functions means that to evaluate the B-spline

function

F(t) =D diNju(t)
J
at a point ¢ € [t;,t;11), it is only necessary to calculate the k non-zero numbers
Nix(t), j=i—k+1,...,i

then f(t) is given by
Ft) =Y diN(t).
j=i—k+1
The calculation of this reduced sum is carried out efficiently by using the recursive nature of the

N ,(t), 216, which allows us to write f(t) in terms of B-spline basis functions of one order less:
F&) = Ny (t),

where

t—t; tivp—1 —t
dl(t) = di+ L.
Livk—1—t; Livk—1 —

Applying this result recursively we obtain

f(t) = Zdﬁ (t) Nig—i (), (2.17)

18 Variational Based Modelling and Analysis using B-splines

where
dZ(t) - t—t; j—1 tivp—j—t 15—1 j (2'18)
ti-&-k—jl—ti dl (t) + tith—j—ti di—l (t> , 7>0
or equivalently
dl =M™+ (11— N, (2.19)

where A = (t — t;)/(tizk—; — t;). Now f(t) is written in terms of normalized B-splines of lower

order. Since N;;(t) =1 for t; <t < t;41 and zero otherwise, it follows that
ft)=d=lt), t; <t <ty

Hence if t € [t;,tiy1), f(t) can be found from d;_j41,...,d; by forming conver combinations
according to [2.J91 The convexity of the calculation assures the numerical stability of the
process. Utilising the above formula I for f(¢) in terms of the d/ we need first to find i
such that t; <t < t;;1. Having found the correct ¢ we generate all the entries in the following

triangular table:

()
di_pio(t) di_i5(t)

QL0 da® .. A
dO(t) dl(t) d2(t) d(t)

Table 2.1: Triangular table for recursive evaluation of a B-spline function

The table is evaluated column by column with each entry a convex combination of the two
adjacent elements in the preceding column. The right most entry in this table, df‘l(t), is the
desired f(t).

This algorithm can be used to compute the vector of coefficients expressing the value of a
B-spline function f(¢) in terms of the original control points. We seek coefficients (o), such
that

i=1

The following algorithm computes the cofficients «;:

B-spline Curve, Surface and Volume Algorithms 19

n
1=

Algorithm 2.1: To compute vector (ozi) , such that
n

ft*) = > aud; for tp <t <tppa
i=1

1. create storage matriz mat(k,k) and vectors dp(k), dm(k),
create vector res for storage of «y
2. find index ind such that ting < t* < tinat1
3. initialise mat[0] [0]=1.0
4. for j=0 to k-2
4.1 dpljl=t[ind+j+1]-t*
4.2 dm[jl=t*-t[ind-j]
4.3 for i=0 to j
4.8.1 temp=mat[i] [j1/(dpl[il+dm[j-i])
4.3.2 mat[i] [j+1]+=dp[i]*temp
4.3.3 mat[i+1] [j+1]=dm[j-i]*temp
5. for i=0 to k-1
5.1 res[i+ind-k+1]=mat[i] [k-1]

Figure 2.5: Algorithm 2.1: Computation of B-spline evaluation coefficients

2.3.2 Derivatives

It can be shown that (for derivation see appendix E) that the following result holds for the

derivative of a B-spline curve f(t):
F(t) = diNiy(t) = (k=1) Y Nipa (1), (2.20)
where
AV = (d; — di_1)/(tisn1 — t2). (2.21)
Generally, with d§0) =d;, and

d = (@7 = d0) (s — 1), G0, (222)

(3

we have

O =k =1).. (k=) dP Ny s(8). (2.23)

20 Variational Based Modelling and Analysis using B-splines

It is possible to calculate fU)(¢) by noting that the (k — j)th column of the B-spline evaluation,
table 2.1, contains the numbers needed for the derivative evaluation. The coefficients dl(]) can

likewise be arranged in a convenient triangular table as follows:

)
dz&o_fc“ (1)

di—k+2 di—k—i—Q

0 1 k—2

A R
a0 4V dF gy

Table 2.2: Triangular table for recursive evaluation of a B-spline derivative function

We use this result to develop an algorithm for expressing the rth derivative of a B-spline function
as a B-spline function and for expressing the control points of the derivative B-spline as a linear
combination of the control points of the undifferentiated curve. From we can write the
derivative of a B-spline basis function, NV; ;(¢), as a linear combination of B-spline basis functions

of one order less:

n—1
£ty =>"dVN o (t),
=1

where (here dEO) =d;),

d) =Y "al’d”, i=1,...n-1,
j=1

and the coefficients «;; are such that

1

tivk—1—1 J =t
o -1 R
ij tivk—1—1 J=1 1
0 jAii— 1.

By defining an n — 1 by n matrix D} as (logically D§ = I, the identity matrix):

D} = (al)r " (2.24)

ij Ji,9=1"

B-spline Curve, Surface and Volume Algorithms 21

we can then express the control points of the derivative curve in terms of the original:

dtV dy
=D ;|- (2.25)
1
d, d,
For the second derivative we have
n—2 n—1
@) =S dIN . o(t), dP=N"a2dV. i=1,....n—2
1) (2 () J
i=1 j=1

and we define the n — 2 by n — 1 matrix D?:

D% — (012 1)n—2,n—1

ij Jig=1
so that - @
dy dy
. | =Di
2 1
a2y dy),
More generally we have for » > 0
D =S dN, @), dV =S "oV, i=1,. . n—r
i) i iJ j
i=1 j=1

and we define the matrix

Dy, = (ag i (2.26)
so that
dgr) dgr—l)
=D; :
50, ri)

If we define forr > s> 0
D" = (arr—s)nfr,nfs

s %] ij=1 >
then
FO0 = S Nan), = S
i=1 =

and we have result

22 Variational Based Modelling and Analysis using B-splines

r—s—1

D; =D;_,D;5;...D;" = [] Dioi
i=0
from which ,
D;=D; ,D;7}..Dy=][][Di7 .. (2.27)
i=0
Using the following notation
T
N=N(t) = ((Nit) - Nailt)) . (2.28)
T
N = N'(f) = (Nigor(t) -~ Noorio(t) , (2.29)
T
NO = NO@) = (N . N) (2.30)
we have
@) = (N d = (N")" Dy,
and hence
N® = (Dy)'N". (2.31)
In tensor notation we can write
fy=do; N, fOf)=deo;N” =do, (D) N, (2.32)

Algorithm for Derivative Evaluation

On the face of it the matrix D} can be easily calculated using and this will furnish the
derivative control points. However, in order to generate the derivative curve we also need to
consider the knot set. The derivative knot set will be of one order less and contain the same knots
as the original curve whilst maintaining their multiplicity. For example, a cubic B-spline on the
knot set (0,0,0,0,1,2,2,2,3,3,3,3) will have a derivative set equal to (0,0,0,1,2,2,2,3,3,3).
Here the original knot set implies basis function continuity equal to C? at 1 and C? at 2 whilst
the derivative knot set, being one degree less, is such that the continuity is C* at 1 and C™!
at 2. Differentiate again and we hit a problem since it is impossible for a degree 1 curve to
have a triple knot (we can’t have a continuity level less than C™') and indeed the recursive
algorithm upon which B-splines are based will fail. In practice a suitable knot set in
this case is (0,0,1,2,2,3,3). Hence in order to cope with the most general case we need to

revert to differentiating the curve segment by segment and then eliminate any redundancy in

B-spline Curve, Surface and Volume Algorithms 23

the resulting derivative expression. To illustrate this we look at expressing the second derivative

of the following B-spline function as a B-spline
12
F(t) = diNia(t), on the knot set (t;);% = (0,0,0,0,1,1,2,2,2,3,4,4,5,5,5,5).
i=1

The second derivative of this function is given by an expression of the form
FA) =3 dPNio ().

To determine a suitable knot set and the associated control points we proceed as follows:

Step 1: Compute the control points, d§2), corresponding to the second derivative for each
segment of the B-spline using table 2.2. In this example we have five segments, and the five
triangular arrays (corresponding to the indices 4, 6, 9, 10, 12) gives us the following control
points

(d,d7 &7, dg? &7, d? g di, Y).

We need to delete any repetitions in the control point list. This can be conveniently done by
forming what we call an overlap list, specifying the overlap of control points from one segment
to the next. For the original function this list is (2,1,3,2) and for the rth derivative function
it will be (2 —r,1 —r,3 —r,2 —r). For r = 2 this gives (0,-1,1,0) which indicates an overlap
of one control point from the 3rd to the 4th segment (i.e dg)), and hence this one can be left
out on computing the control points for the 4th segment (numbers less than equal to 0 indicate
no overlap meaning that the two consecutive segments have become disjoint in the derivative
curve).

Step 2: From the list of control points in Step 1 with indices (3,4,5,6,8,9,10,11,12), we form
the knot set by selecting the knots with these indices from the original set. In addition we take

the r knots following the last one selected. This gives us the list

(ts,ta, 5, te, ts, to, tio, ti1, ta, tis, t1a) = (0,0,1,1,2,2,3,4,4,5,5).

We now have the control points (d!*)?_, and knot set (¢2)11, for the B-spline representation for

7o |
9
FO) = dPN;a(t).

We summarise this section on derivatives with a set of five algorithms leading to the computation

of the derivative of a B-spline curve f(¢) as a B-spline curve:

24

Variational Based Modelling and Analysis using B-splines

. Computation of the rth derivative knot set
. Computation of D
. Computation of Dy, using [2.27]

. For a given point t*, expressing the value of f"(¢*) in terms of original control points

using D{ and algorithm 2.1

. Computation of f((t) as a B-spline

Algorithm 2.2: To compute rth derivative knot set
Original knot set has distinct knot vector dts and multiplicities vector mult

Derivative knot set has distinct knot vector rdts and multiplicities vector rmult

1. initialise an overlap vector, overlap, size nseg with overlap[il=k-mult[i]-r
2. set the end knot multiplicities to k-r
3. for each distinct internal knot in dts
3.1 if overlap[i]<=0
8.1.1 rmult[il=k-r
3.2 else rmult[i]l=k-r-overlap[il
3.8 rdtsl[il=dts[i]

Figure 2.6: Algorithm 2.2: Computation of the rth derivative knot set

B-spline Curve, Surface and Volume Algorithms

Algorithm 2.3: To compute matriz D}

Gr A Lo M~

. initialise an overlap vector, overlap , size nseg with overlap[i]l=k-mult[i]-1
. create the first derivative knot set kset

. create a matrix mat size (n-1)*n to store the result

. initialise an index counter for the rows of mat, row_ind=1

. for each distinct knot dts[i]

5.1 find index ind such that ting <=dts[il< tingt1
5.2 determine offset for row of mat from overlap vector
if (overlap[i] > 0) row.ind -=overlapl[i]
5.8 compute coefficients for row row_ind of mat according to equation
multiply by the degree: mat=(k-1)*mat

Figure 2.7: Algorithm 2.3: Computation of first derivative matrix D}

Algorithm 2.4: To compute matrixz Dy

1. compute matriz for first derivative D}
2. create knot set, kset, initialised with current knot set
3. for i=1 to r
3.1 update kset with the first derivative knot set
3.2 create D} from kset
3.8 update matriz from 1 by multiplying on left by matriz from 3.2

Figure 2.8: Algorithm 2.4: Computation of the rth derivative matrix D

25

26 Variational Based Modelling and Analysis using B-splines

Algorithm 2.5: To compute vector (ﬂ,»)?zl such that
FO) =3 Bidi for ti S <tpi
i=1

1. compute matriz for rth derivative D{
2. create rth derivative knot set, kset

3. from kset create vector «; wusing algorithm 2.1
4. then (B1)i—y = (a1)i=] = Dg

Figure 2.9: Algorithm 2.5: Computation of the rth derivative in terms of the d;

Algorithm 2.6: To compute f")(t) as a B-spline

compute matrix for rth derivative, DJ
create rth derivative knot set from the original, rkset
create new control points as D{d

e o~

build new B-spline or order k —r from 2 and 3

Figure 2.10: Algorithm 2.6: Computation of the rth derivative as a B-spline curve

2.3.3 Integration

The indefinite integral of a B-spline function f(t)
ft) = Z diN; x(t)
i=1

on the knot set (¢;)"7F, is given by the B-spline function g(t) where (see de Boor, [10])

t .
g(t) = / 3 diN; g (u)du = Z(% Zdj)Ni,kH(t) b << b (2.33)
poi=l j=1

n
=1

B-spline Curve, Surface and Volume Algorithms 27

Hence the integral of a B-spline is represented as:

n+1

o) = [flujdu =3 eiign(t),

where

ti — 4\ :
€1 = O, €it1 = <+k+> Zdj, 1 S] S n. (234)
j=1

The knot set for g(¢) matches that of the original curve except for one extra knot at either end

due to the increased degree. For a definite integral of a B-spline we have:
/f(t)dt _ /f(t)dt - /f(t)dt ~glms) — g(x1), b <anas <tusr. (2.35)
1 t1 t1

2.3.4 Knot insertion and removal

The knot insertion process is well documented, see for example, [10], [11], [40]. It permits
the addition of knots to an existing B-spline curve in such a way that the resulting function
is geometrically identical to the original. There are numerous applications of this process in

the area of Computer Aided Design, ranging from evaluation and refinement to subdivision and

intersection testing. For a B-spline curve f(t) on the knot set (¢;)77}, the basic procedure can
be described as follows.

After adding a knot t say, coinciding with the knot tp+1 which already has multiplicity s say
(if the knot does not already occur in the sequence then we take s = 0) we obtain a new knot

set which we denote by (¢}), such that

l; 1<p
th=qQi=1tyy i=p+1.
i1 1 >2p+2

If we denote the set of basis functions on this new knot set as (N}, (t)) we can express f(t) in

the form

f(t) = Z dz'lNil,k(t>7

28 Variational Based Modelling and Analysis using B-splines

for some coefficients d}. These coefficients can be found by using the following expression for

N i(t) written as a linear combination of N}, () and N}, ,(t) (for derivation see Appendix E):

Nik(t) i<Sp—k+s
i—t! =t ,
Nik(t) = t}%—lt} Nil,k(t) + —t21+:j:r_ltll+1Ni1—&-1,k<t)u p—k+s+1<:<p. (2.36)
N¢1+1,k(t) t>p+1

Summing d; N; x(t) over the range p—k+s+1 < i < p using the above expression, and changing
the variable of summation (i — i — 1) for the terms involving N}, ,(t), we obtain (noting that

d AR f—tl th, —1i
o diNut)= > (tl—_’dﬂr”—d- 1)Ni{k(t). (2.37)

. th tr —
i=p—k+s+1 i=p—k+4s+1 N itk itk T

Hence, by the uniqueness of the representation of f(¢) with respect to a given B-spline basis we
have, by comparing [2.36] with 2.37 the result

dll = aidi + (1 — ai)di—b (238)
where
1 1<p—k+s+1
ap = (E—17)/(thy, —t)) = —t:;)/(tize—1 —t;) p—k+s+2<i<p
0 1>p+ 1.

Equation 238 has the simple interpretation of d} dividing the line joining d;_; and d; in the
ratio a; : 1 — «;, a convex combination of control points. Multiple knot insertions are achieved

by using the above process iteratively.

Knot Removal

Knot removal is essentially the reverse process of knot insertion. However, whereas knot insertion
is theoretically exact in that it produces a geometrically identical curve, knot removal will only
reproduce the original when the knot being removed does not change the continuity level of
the curve at that join. This is the case, for example, when converting a piecewise composite
Bézier curve of order k with internal knots of multiplicity equal to £ — 1, to its minimal B-spline
representation. This occurs in one version of the B-spline product algorithm described below

and indeed the main interest here in this algorithm relates to this situation. In general, if there

B-spline Curve, Surface and Volume Algorithms 29

is a continuity change then knot removal will produce a curve that approximates the original. To
check whether a knot is removable or not it is necessary to check to see whether two computed
control points are within a given tolerance of each other. This tolerance can be used to control
the maximum deviation of the knot reduced curve from the original. More details are provided
in Tiller, [84].

2.3.5 Product

The product of two B-splines can be expressed as a B-spline by using parameter normalisation,
knot insertion and a specific multiplication method. Given two B-spline curves of possibly

differing orders
ni

fl(t) Zlellﬂ(Zlek2

and on differing knot sets (t})M7% | (£2)r2 k2

f(t) as a B-spline:

, we seek a representation of the product function

n2

10 = A0 = (3080 0) (3 # Vi) = st

i=1

on the knot set (¢;)™) where k = ky + ky — 1. There are two well known algorithms in the
literature for finding the control points (d;)?_, and the corresponding knot set (#;)7**. Morken,
[60], derives an involved but explicit formula for the new control points after forming the product
knot set (t;)74F. The distinct knots in the product are formed from the union of the two knot sets

(t1) and (t9) after deleting repetitions. Each knot ¢; in the product knot set has a multiplicity

m, where
(max(kl — 1+m2,k2—1+m1) my > O,mg >0
ki —14+ms my=0,m9 >0
m =
ko —1+my my>0,my =20
\O mlz(),mgz(),

Here m, and my are the multiplicities of the knots in (¢;)™7* and (t,)"27" respectively.

Piegl and Tiller, [66], take another approach. They normalise the knot sets (t1), (t2) through
knot insertion so that finally both curves have the same breakpoints and number of segments.
The resulting curves are then converted to piecewise Bézier format again using knot insertion.

Multiplication of the functions can then be carried out segment by segment using the following

30 Variational Based Modelling and Analysis using B-splines

Algorithm 2.7: To compute the product B-spline f(t) = fi(t)f2(t)

~

. test to see whether knot sets for fi,f are identical or not

NS}

. if not identical, make the two knot sets break compatible using process
of knot normalisation and knot insertion
. convert both curves to composite Bezier format
. multiply them segment by segment using Bezier product formula
. create the minimal product knot set using Morken’s algorithm
form a difference knot set between the product set and the composite Bezier form

use knot removal to remove knots given by difference knot set to convert

NS w A

to the final B-spline form

Figure 2.11: Algorithm 2.7: Computation of the product B-spline

result for the multiplication of two Bézier curves. For f(t), g(t) two Bézier curves:

0= n, o0 = wee. s0- ()= () -5

]

then

b — o0 — S e SY OGN,
= f(t)g(t) =Y _b;BIUL), b= Y G0 biv2, i=0,....p+q (2.39)
i=0 l=max(0,i—q) i

After segment by segment multiplication a B-spline is recovered by removing the knots (using the
knot removal algorithm) formed by the difference of the piecewise Bézier knot set and the product
knot set as given in the Morken algorithm. Due to its superior computational performance we
use Piegl and Tiller’s version of the product algorithm in this thesis. The steps involved are
given in algorithm 2.7 (figure R2TT]).

B-spline Curve, Surface and Volume Algorithms 31

2.4 B-spline Surfaces

A B-spline surface is formed from the tensor product of the curve representation. In particular,

if we take two B-spline curve schemes

7=1

P
= Zd%Nz‘,k(U), knot set (u;)™", Zd (v), knot set (vj)‘?fl

and write them in the following tensor form
flu) =d1 ©; Ny, g(v) =d2 ®; N,,
their tensor product is given by

f®g= (dl OF Nu> ® <d2 ©; N'u> =N, ©®; (di ®ds) ©; N, = d; ©; (N“ ®NUT> ©; dz

= ZZdlcFNzk N;i(v), knot set (u;)"*F x (v);ill

i=1 j=1
This is a B-spline surface whose basis functions are products of the curve basis functions. By

allowing the control points to take arbitrary values we obtain the general formula for a B-spline

surface: b
=> Y dijNix(u)Nju(v) = Ny dN, =d &; N, ©; N,, (2.40)
i=1 j=1
where
T T
Nu = ((Mia(w) o Npxw)) o No=(Ny@w) . N(o))

and d is a matrix of control points

dll . dlq

d= : oo
dpi ... dpy

The B-spline basis functions, NV; ;(u)N;,(v), are themselves functional B-spline surfaces defined
locally over the kI knots with domain [u;, wiyx] X [vj, V4]

Since a B-spline surface is formed from a tensor product of the curve scheme it is not surpris-
ing that the isoparametric curves making up a B-spline surface have a B-spline representation.

For example, letting u = u(say, we obtain the v curve at g :

ZZd”NZk Uo][Z(Zdz]leu0> ij]l

=1 j=1

32 Variational Based Modelling and Analysis using B-splines
¥ @
F 3

(B¢ Bp,15=3 (das-di1e) (B Ay 1y=3(dsg-dag)

XD dyg - X» dsg

LTI

(8073, 17=3dys-dp 57 (B 1y=3(dsg-ds50

d22 d42
dn I dsy D

Figure 2.12: B-spline surface boundary derivatives for bi-cubic example over [0, 1] x [0, 1]

q

defined by the control polygon (w) j=1, where

p
Wj = Z dijNi,k:(uO)-
i=1

An important consequence of this is that the boundary control points actually define the bound-
ary curves for the surface. In addition the derivatives of a B-spline surface along the boundaries
can be conveniently computed using the first two rows or columns of control points making up
the control net. We illustrate this important fact for a bi-cubic example in the schematic figure
2121

A significant property of higher dimensional entities derived from the tensor product of lower
dimensional ones is that the evaluation, manipulation and creation methods (such as interpo-
lation, approximation etc) generalise very conveniently. In each case the higher dimensional
method involves repetition of the same 1-dimensional version in each coordinate direction. As
well as having useful theoretical consequences this also leads to important benefits computation-
ally. In the following sections, we review briefly the extensions of the curve algorithms considered
in section 2.3 to the surface case and derive tensor forms for the surface derivatives.

Note: In all the following tensor product extensions of the curve algorithms one must decide

on a direction to process first. Whereas there can be some small computational advantage of one

B-spline Curve, Surface and Volume Algorithms 33

selection over another depending on the dimensions of the B-spline in the different directions,

the end result is the same.

2.4.1 Evaluation

The evaluation of a point on a B-spline surface z(u,v) at a parameter pair (ug,vg) is achieved

via the following two step process:

1. Apply the curve evaluation algorithm to the each of the columns of control points
(dij)’_,,7 = 1,...,q using the u knot set (u;)’*F and the u evaluation point u. This
results in ¢ points, one for each column, corresponding to the apex of the appropriate

triangular array table 2.1 generated by the curve algorithm.

2. Apply the curve algorithm once more to the ¢ points generated from step 1, using the v
knot set (v);1+1 and the v evaluation point vy. The resulting point is the value of z(u,v)
at (ug, v).

2.4.2 Derivatives

Explicit derivative evaluation follows the two step point evaluation process above using the curve
derivative evaluation in both steps. In terms of tensor notation formulae for the derivatives we

have the following:

First Derivative

a_ ZdloNzk 1][('U)
1 j=1

=
where
17
(di")7;=1 = Dyd,
and where D} is the first derivative matrix with respect to the u knot set (more correctly using

224 we should write D}, but for clarity we omit the 0). Then we can write

ox

NHYT DN,
5, = (N)T D dN,,

where T
N’}L = (Nl,k‘—l(u) ce Np—l,k—l(u) > :

34 Variational Based Modelling and Analysis using B-splines

In tensor form this becomes
dor ((D})N}) ©; N
Similarly for the v partial derivative we have

or .7 NT nL ‘ , VAR
%_Nud<Dv> 1V’U_C]'E>z NU®] ((Dv) Nv)?

where T
N! = (Nig—1(v) ... Ny1-1(v)) :

Higher Derivatives

Using tensor notation we have, for example:

2
8?;; — (N’ DLd(D})" N, =de; ((D})"N.) o, ((D)'N),
0z INT 12 T nr2 T
2
% =(N,)"d(D?)"N2=d®; N, ©; ((Dg)TN3>
For the general case with a = a; 4+ ay we have
0% "
W = (Nul)T D¢ d (DUZ)TNU2 =d @, <(Du1)TNul> ®; <(Dv2)T sz)' (241)

Finally, the extension of algorithm 2.6 to computing the (ai,az)th derivative surface as a B-
spline surface is achieved via the tensor product generalisation of the curve algorithm. After
computing the (aq, ag)th derivative knot sets using algorithm 2.2 we process the rows of control
points as B-spline curves defined over the v knot set, computing the asth derivative for each
row. We then process the control points from these derivative curves columnwise as B-spline
curves defined over the u knot set computing the a;th derivative for each column. The resulting

control points together with the new knot sets form the derivative surface.

2.4.3 Integration

The integration formula extends directly to surfaces through the tensor product construction.
For

p(u,0) =Y Y diNig(u) Ny (v),

i=1 j=1

B-spline Curve, Surface and Volume Algorithms 35

ty

Y

51 52

Figure 2.13: B-spline definite integral summation

on the knot set (ul)f:f X (vj)g:ll, we can compute the integral B-spline surface in u or v by

integrating over the columns or rows of control points respectively. The indefinite integral of the

y(u,v) :/u/vyc(s,lt)dsolzf7

up vi

surface x(u,v),

is another B-spline surface (up to an additive constant), formed by composing the integration in
u with that in v in the tensor product fashion. The new knot sets in u and v are derived from
the original ones by augmenting one knot at either end to tie in with the increased order. For
the definite integral we have, by adding and subtracting appropriate areas (see figure 2.13)), the

result
So t2

r(u,v)dudv = y(sz,t2) — y(s2,t1) — y(s1,t2) +y(s1,t1). (2.42)

s1 t1

2.4.4 Knot insertion and removal

Knot insertion for B-spline surfaces is the tensor product generalizations of the curve algorithm.

By writing the B-spline surface z(u,v) as

z(u,v) = i(i dijNi,k(u)>Nj,l(v)a

j=1 i=1

36 Variational Based Modelling and Analysis using B-splines

we see that a knot u say, can be inserted into the u knotline by treating each column of control
points (d;;)t_, ,j = 1,...,q as defining a B-spline curve in v and applying the curve knot insertion
algorithm ¢ times, using the u knot set. This results in one extra control point for each column,

and new surface
p+1 ¢

=3 > diNix(u)Nj(v)

i=1 j=1

p+k+1

say, where the u knot set (u;)?-;"" now includes @. In an analogous fashion and by writing the

surface as b 4
2(u,v) = Z(Z diij,l(v)>Ni,k(u),
i=1 j=1
we can insert a knot into the v knotline by processing the rows of control points (dij)gzl L=
1,...p, using the v knot set. Multiple knot insertions are achieved by applying the above process

iteratively. The surface knot removal algorithm follows an analogous approach.

2.4.5 Product

The product algorithm extends to B-spline surfaces. Both versions described in section 2.3.5
have natural tensor product generalisations. After normalisation of the v and v knot sets of the
two surfaces, the Bézier based algorithm relies on the corresponding formula for the product of

two Bézier surfaces. For f and g two Bézier surfaces of orders (p1,¢q1) and (pa, ¢2):

pzlqzlbl Bpl Bq1) pZQqZQbZ sz qu)
i=0 j=0 =0 j=0

the product h is a Bézier surface of order (p; + p2, ¢1 + ¢2) such that

p1+p2 q1+4q2

b= fg _ Z Z bijBilerpZ (S)B?lJqu (t) ,

i=0 j=0

where

min(p1,3) min(q1,5) (pl) (}72) (Q1) (q2)
k/J \i—k
by= D) EBRIGR) Dbt
i J

(2.43)

k=max(0,i—p2) I=max(0,j—q2)
Using the product surface knot set from Morken’s algorithm, [60], knot removal in u and v
is applied to recreate the minimal B-spline representation for the product surface from the

piecewise Bézier representation.

B-spline Curve, Surface and Volume Algorithms 37

2.5 B-spline Volumes

A B-spline volume (or solid) of order (I,m,n) is a tensor product generalisation of three curve

schemes of orders [, m,n. The formula is

2(u,v,w) = Y > Y digeNiy(u) Ny (0) Ny (), (2.44)

i=1 j=1 k=1

with associated knot vectors in u, v, w:

l
(wtZy, ()i (w)ith.

Here (dij1.); -, is a Matrix3D control points. The basis functions, N;(u)Njm(v)Nkn(w), are
themselves functional B-spline volumes defined locally over the domain [u;, wiyi] X [V, Vjm] X

[wk‘7 wk—l—n] .

We can write formula [2.44] in tensor form as follows:
z(u,v,w) =d®; N, ®; N, ©; N,,, d= (dijk)f”;.{gzl.

This is effectively a triple contraction of the third rank tensor d with the basis function vectors
N.,N,,N,. The first tensor contraction produces a matrix, the second a vector and the third
a scalar equal to the triple sum [2.44] In an analogous fashion to the lower dimensional B-
spline entities, the isoparametric surfaces making up a B-spline volume have a B-spline surface
representation and the boundary control points of the volume define the boundary surfaces. In
addition the boundary derivatives of a B-spline volume can be conveniently calculated using the
boundary surface control points and the next layer of control points into the volume in the three
directions. Figure [2.14] gives a schematic representation of the six isoparametric faces making
up the volume and the boundary derivative property for the bottom face w = 0.

The principal algorithms for B-spline volumes derive their form from the tensor product gen-
eralisation of the corresponding curve and surface algorithms. We review these in the following

sections and extend the tensor form of the derivative expressions to the volume case.

2.5.1 Evaluation

The evaluation of a point on a B-spline volume z(u, v, w) at a parameter triple (ug, v, wg) can

be achieved via the following two step process:

1. apply the surface evaluation algorithm to the each of the layers of control points

p+l (Uj)qum

(dij)ij=1 k= 1,...,7 using the uv knot sets (u;);Z;, (v;)jZ;" and the uv parameter pair

(uo,vp). This results in r points, one for each layer.

38 Variational Based Modelling and Analysis using B-splines

w 2
Iy A
Iuvatw=1) 6 (v at =0
4wt v=0) (813)p1m= 3digr-dia)
S |
Y ‘_\ dn2e I IC. diaz
2 (uwatv=1) du I o1 4 = - VV)
- da1z o I [}
Ll '] iz (018),1,m= 3daa-dag)
T dayy i
I X
5 (vwatu=1) J
u L (et w=0) (/& 0= 30y da)

Figure 2.14: B-spline volume isoparametric faces and boundary derivative property

2. apply the curve algorithm to the r points generated from step 1, using the w knot set

(wy)7 7 and the w evaluation point wg. The resulting point is the value of x at (ug, v, wo).

2.5.2 Derivatives

Explicit derivative evaluation is achieved by using the above method with the curve and surface
derivative algorithms in place of point evaluation. For the tensor form of the derivative B-spline

volume of order (I, m,n) we can express the first derivatives in u, v, w as follows:

ZZZ%MINwmm»

i=1 j=1 k=1
where (dzljﬂ,?)p ;1;%1 =d ®; D.. In tensor notation this becomes

do; (<Di)T Ni) ©®; Ny, @ Ny,
Similarly

p q—1 r

ngjllgNzl jm l()Nk,n<w)a

i=1 j=1 k=1

B-spline Curve, Surface and Volume Algorithms

1r
where (d%l,g)p " =d®; DI, in tensor form this becomes

do; N, ((DT Ni) ©r N
Finally

domsz Gm (V) N1 (w),

where (d?f,i)pj}: 11 =d ®; DL. In tensor form this appears as

ox
Go=do; N, 0; N, & ((D}U)TN}U)

The mixed partial in u, v, w is:

—83;1: 1\T nJl T INT ot
Judvow d o <(D.) Nu> ©j ((Dqu) Ni) Ok <(Dw) Nw>,
where

(dzljlkl)zg,;t’:q;u_l =d®; D,®; D, © D,

More generally for a; 4+ as + az = a we have

p—ai1 gqg—a2 r—as

S = D 9 S O Nt (0N (0) Ny 0),

=1 j=1 k=1
where
aijazaz\p—ai,q—a2,r—a3 . al . as as
(d),],k 1 d®2 Du ®.7 Dv Ok Dw’

ijk

and in tensor form this becomes

do, (D) N o (D) Nez) @ (D) N2).

39

(2.45)

The extension of algorithm 2.6 to computing the (ay, as, az)th derivative as a B-spline volume

is analogous to the surface case. After computing the (a1, as,az)th derivative knot sets we

process the w direction layers of control points as B-spline surfaces defined over the u, v knot

sets, computing the (a1, az)th derivative for each layer. We then process the control points from

these derivative surfaces columnwise as B-spline curves defined over the w knot set computing

the asth derivative for each column. The resulting control points together with the new knot

sets form the derivative B-spline volume.

40 Variational Based Modelling and Analysis using B-splines

2.5.3 Integral

The integral of a tensor product B-spline volume of order (I,m,n)

x(u, v, w) Z Z Z dijiNii(4) Njim (V) Ni o (W)

i=1 j=1 k=1

on the knot set (u;)?* x (Uj)?:;n X (wg)pt?, can be formed by composing three separate in-

tegrations in the w,v and w directions. The indefinite integral of the volume z(u,v,w) given

by
y(u,v,w):///a:(s,t,r)dsdtdr,

up V1 wi
and is a B-spline volume of one higher order in u,v and w. The definite integral is obtained by
adding and subtracting appropriate volumes (see figure 2I5]) with the following result:

s3 t2 T2

x(u, v, w)dudv dw = y(sa,ta,72) — Y(S2,t2,71) — Yy(S2,t1,72) + y(S2, t1,71)

s1 t1m

+y(s1,t2,71) + y(s1,t1,72) — y(s1,t1,71). (2.46)

2.5.4 Knot insertion and removal

Knot insertion for B-spline volumes follows the tensor product generalization of the curve algo-

rithm. By writing the B-spline volume z(u, v, w) as

0, 0) = 3 5 (3 N (10)) N) N0,

=1 j=1 k=1

we see that a knot w say, can be inserted into the w knotline by treating each line of control
points in the w direction (dij)i7=,,k = 1,...,r as defining a B-spline curve in w and applying
the curve knot insertion algorithm p * ¢ times, using the w knot set. This results in one extra

control point for each line, and new volume

B-spline Curve, Surface and Volume Algorithms 41

i volume of interest

5T S U U U AR

5

Figure 2.15: B-spline volume definite integral summation

n+r+1
1

say, where the w knot set (wg);2]"" now includes . In an analogous fashion and by writing

the volume as

and

we can insert knots into the u and v knotlines respectively. Multiple knot insertions are achieved
by applying the above process iteratively. The knot removal algorithm follows this procedure in

an analogous fashion.

2.5.5 Product

The product algorithm extends in a natural way to B-spline volumes. After normalisation of
the u,v and w knot sets of the two entities, the Bézier based algorithm uses the corresponding

formula for the product of two Bézier volumes. For f and g two Bézier volumes of orders

42 Variational Based Modelling and Analysis using B-splines

(p1,q1, 1) and (pa, g2, 72):

f(u,v,w) = . A bl Bfl(u)le(v)B};l(w)?

g(u,v,w) = bszfg(u)B;D(v)BE(w),

)

the product h of order (p; + p2, g1 + g2, 71 + 72) is such that

p1+p2 q1+q2 r1+1r2

h=fg= > D> buBl " (w)BI" () B (w),

i=0 j=0 k=0

where

() ()() 6)

= bynb2 (2.47)
l=max(0,i—p2) m=max(0,j—g2) n=max(0,k—r2) (pl—;-p2) (ql—}-qz) (l—’: 2> l

bijk = i—l,j—m,k—n"
Finally, using the product knot sets in u, v, w from Morken’s algorithm, knot removal in u, v, w is
used to recreate the minimal B-spline representation for the product volume from the piecewise

Bézier representation.

2.6 Summary

In this chapter we have introduced and reviewed tensor notation which allows us to deal with the
basic operations of product and contraction on vector, matrix and matrix3D entities. Starting
from the basic B-spline curve point and derivative evaluation formulae we have developed a
matrix form and a notation for representing the derivative B-spline which allows us to express
the control points of the derivative curve in terms of the original set. As a by product we have
presented an algorithm to compute the derivative of a general B-spline curve as a new B-spline
curve. We have taken these results together with some additional important algorithms for curve
entities and, using tensor notation, reviewed their extensions and generalisations to the surface
and volume forms. In the next chapter we use the notation and results presented here to derive
explicit formulae and algorithms for computing the minimisation of certain types of B-spline

functionals which will form the basis for the applications presented in Chapters 4 and 5.

Chapter 3

Functional Minimisation Formulae &

Algorithms

3.1 Introduction and Background

There is a rich branch of mathematics that concerns itself with problems in which it is necessary
to determine the maximum and minimum values of functions. A related subject to this and one
which is often encountered in problems that have a physical basis is that where one seeks to find
the maximum and minimum values of so called functionals.

Functionals are variable quantities whose values are determined by the choice of one or
several functions. For example the arc length [of a plane or space curve connecting two points
a and b is a functional as is the area of a surface since they are both determined by a choice
of a curve or surface. Moments of inertia, static moments, the coordinates of the center of
gravity of a curve or surface are also functionals in the same way. In all these examples we
have a relationship that is characteristic of functionals: to a function there corresponds a real
value. The order of the functional is the order of the highest partial derivative that enters the
functional and a functional is said to be linear, quadratic, cubic etc if the highest powers of the
derivatives occurring in the integral are those of order one, two, three etc.

Numerous laws of mechanics and physics reduce to the statement that a certain functional
in a given process has to reach a minimum or maximum. Such principles are called variational
principles of mechanics or physics and the subject of the calculus of variations investigates
methods that permit finding the maximum or minimum values of functionals.

Minimising a functional is equivalent to requiring that the first variation of that functional

is zero which gives rise to the Fuler differential equation. This is Euler’s theorem of variational

43

44 Variational Based Modelling and Analysis using B-splines

calculus: a solution that satisfies the essential boundary conditions and renders the functional
stationary also satisfies the Euler differential equation.
The variational formulation of a continuum problem has the following advantages over the

differential equation formulation:

e the functional I usually possess a clear physical meaning,

e the functional I contains lower order derivatives of the field variable compared to the

governing differential equation making it easier to find approximate solutions,

e the variational formulation enables us to treat complicated boundary conditions as natural
boundary conditions which are implicitly imposed by the variational statement of the

problem and hence only geometric boundary conditions need be imposed.

In this chapter we review the functional/differential equation connection in more detail
from both directions and then using the variational form and the results from Chapter 2 derive
formulae and corresponding algorithms for the minimisation of various B-spline curve, surface
and volume functionals, involving integral expressions of squares and products of derivatives.
These developments form the basis for specific algorithms for solving B-spline based variational
problems in geometric smoothing and finite elements presented in chapters 4 and 5. We also
look at a method called ‘the reduced transformation technique’ that is employed for dealing
with geometric constraints. Finally, we present algorithms for computing the exact product of
two B-spline functions in curve surface and volume form enabling us to treat the source terms

appearing in the variational form of a given problem.

3.2 Functionals and Differential Equations

3.2.1 Functionals dependent on functions of one variable

The basic relationship between differential equations and functionals dependent on functions of
one variable can be seen by considering the differential equation in linear differential operator
form. For such an operator L and associated linear equation L¢ = f, where ¢ = ¢(t) and there

are given boundary conditions at a and b, we consider the following functional

b

16) = [(Lot oyt -2 [rolt)ar

a

Functional Minimisation Formulae & Algorithms 45

F' is minimised at a particular function ¢ = 1 only if its derivative vanishes there and the
condition for this can be shown to be the equation L¢ = f, called, in this respect, the Euler

equation of the functional. An example of this is the following differential equation

¢
—_— t=0 0<t<1
o tott=0, 0<t<1,

with boundary conditions ¢(0) = ¢(1) = 0. In this case L = (d?/dt* + 1) and f = —t. Using
integration by parts and the given boundary conditions we have

16) = [(@0 +o0)orat + 2 [tolt)at

1

—(@ 0+ 620+ H00(0)]) +2 [[1o(0

0

VRS

O\H O\H

(=@ ®)* + 6(1) + 2t0(t)) dt. (3.1)

By minimising the first order, quadratic functional [B.1] subject to the boundary conditions we
effectively solve the original differential equation.

Looking at the problem from the other way round, that is starting from the definition of
a functional, the task is to find a function x(¢) that makes the following integral I(z) take a

minimum value
b

I(z) = /F(t,x,x')dt,

a

where boundary conditions on the unknown function are prescribed
z(a) = xg, x(b) = x.
We find a solution z(t) by constructing comparison or trial solutions
r = x(t) + an(t).

such that when a = 0, # becomes the solution, and we require that n(a) = n(b) = 0 so that
x still satisfies all the boundary conditions. Considering the minimisation of I as a function of

a, an alternative way of saying that at a minimum of a function, f(¢), the derivative vanishes

46 Variational Based Modelling and Analysis using B-splines

is to say that the variation 0 f = f;dt vanishes. If we consider an increment of the introduced

parameter «, then we have

b b
5[[:B]:I[:B+5:v]—1[x]:/F(t,z+5m,z'+5$')dt—/F(t,$,x')dt

b
= /(Fxéx + F02")dt.

Hence we have an expression for the variation 61 with x. Using integration by parts as necessary

all derivatives of y can be eliminated from under the integral sign, giving

b
MMzﬂ@—@MMﬁ

For I to be a minimum this variation must be zero for any dx. This can only be guaranteed if

the expression in the brackets is zero. Hence the differential equation for the solution x(t) is the

(second order) Euler equation:

F, — (Fy) = 0.

The integral curves of Euler’s equation, x = z(t,C}, Cy), are called extremals. It is only on the
extremals that the functional

t1

fmm:/ﬁ@amfww

to

can be extremised.
More generally it can be shown that (see for example Esgolts, [I8]) the function z(t) that
extremises the value of the functional

t1

Iz(t)] = /F(t, z(t),2'(t),..., 2™ (t))dt,

to

where the boundary conditions are of the form

olto) = w0, /(1) = s - 2" D(tg) = 2,

a(t) =z, 2 (t) =2y, ..., 2"V() =2,

Functional Minimisation Formulae & Algorithms 47

is a solution to the equation

d d? d"
F, — F + —Fp+ ...+ (-1)"

"

Applying this to the example above we see that minimisation of the functional

/ 24 2(t) + 2t¢(t))dt

with its boundary conditions gives rise to the original differential equation

&P

Smte+t=0, 0<t<1

3.2.2 Functionals dependent on functions of several variables

Starting from a functional dependent on functions of several independent variables a similar

differential equation can be found. For example, the following functional

Iz (u,v)] = /F(u v, T, gx gi)dudv

D

where the values of z(u,v) are given on the boundary C' of the domain D, is such that z(u,v)

is a solution of the equation

0 0
F, — %Fp — %Fq =0,
where
ox ox

p= o’ q= B
This second order pde must be satisfied by the extremising function x(u,v). Some specific

instances of this are:

1.
0x\ 2 Ox\2
D
where the corresponding pde is of the form
Pr 02
2 _
v ou? Ov? 0

This is the familiar Laplace equation.

48 Variational Based Modelling and Analysis using B-splines

I[x(u,v)] = /[(%)2 + (%)2 — 2z f(u,v)|dudv,

D
where the function z is given on the boundary of D. Here the Euler pde equation is of the

form

’r 0%z

2 —_ R
Vx_@?ﬂ 0v?

= f(u7v)>

which is Poisson’s equation.

tetwo = [(G)+ (5 +2(g3) Jauee

D

which leads to the so called biharmonic equation

0? 0?)2 B 0z O o'z

_ N2, _ (T — —
0=~A%= <8u2 + ov? out + 28u281)2 + ovt’

Minimising I subject to interpolatory constraints gives the so called ‘thin plate splines’,
the 2D analog of the the 1D cubic spline.

=[G+ (52 2) 2o

D

where the extremising function x = f(u,v) must satisfy the equation

Nz = f(u,v).

Starting from the differential equation side, a general linear second order elliptic pde in two
independent variables is given by
0%x 0%x 0%x

a(u,v)T + G(u, v)(?uav + v(u, v)w +6(u,v)r = f(u,v),

where «, 3,7, may be functions of u and v, and 3% — 4oy is satisfied throughout the domain

D of solution. The corresponding first order, quadratic functional is

I(z(u,v)) = 5/[a<%>2 + ﬁ(%) <%> + 7(%)2 — f(u,v)z(u,v)|dudv.

D

Functional Minimisation Formulae & Algorithms 49

A more general linear second order pde with respect to three independent variables (u, v, w)

is given by

a a%—l—a 82x—|—a Pu +a —8% +a Pz +a O + bx = f(u,v,w)
1 ou2 2902 33 w2 2 9udv B oudw 3 vow N e

with corresponding variational functional

1= [(57))+ on(2) om0 () + o052 ()

\%4

a3 <%> (g—i) — f(u,v,w)x(u,v,w)] du dv dw. (3.2)

A special case of this is Laplace’s equation in 3D

0%z N 0%z N 0%z
ou? Ov? Ow?

=0,

which has corresponding variational functional

I(z(u,v,w)) = %/[(%)2 + (%)2 + (3—5)2] dudv dw. (3.3)

v

In each of these cases we have to find a solution, continuous in D or V, of the equation that
takes on specified values on the boundary of D. This is called the Dirichlet problem and we look
in more detail at specific B-spline solutions to this problem using the variational form in chapter
5.

In order to use the above variational forms derived either explicitly from a differential equa-
tion or from more general considerations, to solve constrained problems in geometric modelling
and finite element analysis using B-splines, we need to look in more detail at the explicit min-
imisation of B-spline functionals involving squares and products of derivatives. In the following
sections we present this analysis looking first at the single variable curve case. We use tensor
notation and the results given by 2.5, 2.8 29 and to find expressions for the
minimisation of the square of the various derivatives. We also use the notation 9/9d to indicate
the collective differentiation of all the d;, that is

%:(8% o)

Finally, for ease of notation we omit the limits on the integrals.

50 Variational Based Modelling and Analysis using B-splines

3.3 Curve Functional Minimisation

3.3.1 Minimisation of the zeroth derivative

For f(t) a B-spline curve of order k on the knot set (¢;)"* we wish to compute the minimisation of
B-spline functionals involving squares of derivative terms. To begin with we look at minimisation
of the Oth derivative i.e. the integral of the function squared itself (in finite element terminology
this corresponds to the mass matrix term):

Note: The linear systems for the control points that we derive in the following sections have
as a solution the trivial one d = 0. In practice we are interested in the matrices that appear in
these systems knowing that in applications to functional minimisation they are always combined

with suitable constraints to ensure a non-zero solution.

2 Jora= g, [(Saso)a
We have
a?zl- /(f(t))th: a% (d o N)2dt:/é%(d ©; N)’dt
:2/(d®iN) ®th:2/N®(d@iN)dt:2/N®(NT®jd)dt
:2/(N®NT) ®jddt:2</N®NTdt> ©; d.
Writing
[NNy (t)dt [Ni(t)N,(t)dt
Aoz/(N@NT)dt: o ,
le(t)Nn(t)dt an(t).Nn(t)dt

and equating the result to zero we have the following n by n system of equations for the control

points d:

Functional Minimisation Formulae & Algorithms o1

3.3.2 Minimisation of higher derivatives

For the higher derivative case we seek the system of equations generated by the minimisation
of the integral of the rth derivative squared. In finite element terminology for the cases r = 1
and r = 2 we are dealing with the stiffness and bending matrix components of the problem
respectively. Using [2.32] we have

% / (F (1)) 2dt = 5% / (e (Dg)TNT>2dt: / %(d o (DS)TNT>2dt.

The integrand is equal to

(d ®; (DS)TN’”> ® ((DS)TN’“) (3.5)
= (p)"'N) @ (ac; (Df)" N
= (Dp)" N)e((N)' D @, d)

= (op)" (NT ® (NT)T>D5 ©; d.

Hence we have the equation

(Dp)" (/ (N @ (n)") dt) D; ©;d = 0.
Whiting
A, = /(N ® (NT)T> dt

S Nijpor (@) Ny (B)dt oo oo [Nijor(8) Ny o (8)dt

J No—pgomr (O Ny ()t o0 oo [Ny () Ny e () d

we obtain the following matrix equation for the vector of control points d = (d;)?":

(D;)" A, Dyd = 0. (3.6)

52 Variational Based Modelling and Analysis using B-splines

Writing Dy = (a;;)” "™ the product (D’") A, D, which we call the minimisation matrix and

denote M,., multiplies out to give us the following matrix:

2 zlagn f Niak—T(t)Nj7k—7”(t)dt

||M\

zla§1 f Ni,k—r (t)Nch—r (t)dt e e 2

||M\

HM|

E: a5, 05y [Nigr(O)Njr—p(t)dt 37 37 ag,af, [Nigp(t)Njpr(t)dt
=1 i=1 j=1

We present an algorithm to compute exactly the symmetric banded matrix A, for 0 <r < k—1,
where the integration extends over the limits [t1,t5]. After finding the rth derivative knot set
from algorithm 2.2, we find the first and last basis functions that will contribute within the limits
for the integration. Consecutive basis functions are then tested for possible intersection with
each other and the segment overlap determined. B-spline representations for the intersecting
parts of the basis functions are determined and they are then multiplied together using algorithm
2.7. Finally the product B-spline function is integrated over the limits using [2.35l Since the
matrix A, is symmetric we only need test approximately half the basis functions. To aid in
the intersection testing we use a mathematical set representation for the knot set making up a
particular basis function. Algorithm 3.1 performs this calculation and algorithm 3.2 computes
the minimisation matrix M,.

With a few modifications to the above algorithm we can also treat the non-symmetrical case

which is required for the surface product derivative minimisation. We define

Al = / (N o (N)")

J Nijor () Nypos ()t o oo [Ny (8) Nypes s () dt

[No—rgomr (O N1 s ()t oo oo [Ny (8) Ny s () di
and
M; = (Dy)" A;Dj.

Algorithms 3.3 and 3.4 perform the exact computation of A? and M respectively:

Functional Minimisation Formulae & Algorithms

Algorithm 3.1: Computation of A,

. find the rth derivative knot set with nr elements, (t;)™,

. create a square matrix, mat, of size (nr-k-r, nr-k-r)

. create a basis function set (Nix—r(t))i=* ", from the knot set in 1

. find index indl of first basis function for which the last distinct knot
is greater than t1

5. find index ind2 of first basis function for which the last distinct knot

is less than t2
6. for (i=indl; i<=ind2-1; i++)
6.1 for (j=indl; j<=i; j++)

] WL O~

6.1.1 create two sets s1,s2 representing basis function knots from 3,
6.1.2 test for a possible intersection between s1 and s2
6.1.3 if there is an intersection
6.1.3.1 form the intersection as a set, s3
6.1.3.2 if the size of s3 > 1
6.1.3.2.1 create the i and j basis functions as B-spline curves
6.1.3.2.2 form two composite Bezier curves from the overlapping segments
6.1.3.2.8 multiply the composite Bezier curves together
6.1.8.2.4 convert the result to a B-spline curve and integrate over (tl1,t2)
6.1.3.2.5 store result in matriz mat from 2
7. fill in other half of matrix from symmetry

Figure 3.1: Algorithm 3.1: Computation of the the matrix A,

Algorithm 3.2: Computation of M,

1. create the matrix A,
2. create the rth derwative matriz, Dy, alg 2.4
3. form M, = (DS)TAI Dj

Figure 3.2: Algorithm 3.2: Computation of the minimisation matrix M,

23

o4

Variational Based Modelling and Analysis using B-splines

Algorithm 3.3: Computation of A’

nr
i=1

. create the rth derivative knot set, size nr, (t})

. create the sth derivative knot set, size ns, (t?)35,

. form a matriz, mat, of size (nr-k-r, ns-k-s)
nr—k—r
i=1
nr—k—s
i=1

. find index indl of first basis function for which the last distinct knot in 4
is greater than t1
7. find index ind2 of first basis function for which the last distinct knot in 4
is less than t2
8. find index ind3 of first basis function for which the last distinct knot in 5
is greater than t1
9. find index ind4 of first basis function for which the last distinct knot in 5
is less than t2

. create a basis function set (Njx_r(t)) , Jfrom knot set in 1

. create a basis function set (Njx_s(t)) , from knot set in 2

(S VR SN

10. sort the indices
if (indl < ind3) il = indl, else il
if (ind2 > ind4) i2 = ind2, else i2
11. for (i=il; i<=i2-1; i++)
11.1 for (j=i1l; j<=i2-1; j++)

11.1.1 create two sets s1,82 representing basis function knots from 4,5

ind3
ind4

11.1.2 test for a possible intersection between sl and s2
11.1.8 if there is an intersection
11.1.8.1 form the intersection set, s3
11.1.8.2 if size of s3>1
11.1.8.2.1 create the i and j basis functions as B-spline curves
11.1.8.2.2 form two composite Bezier curves from the overlapping segments
11.1.8.2.83 multiply the composite Bezier curves together
11.1.8.2.4 convert the result to a B-spline curve and integrate over (t1,t2)

11.1.8.2.5 store result in matriz mat from 3

Figure 3.3: Algorithm 3.3: Computation of the matrix A’

Functional Minimisation Formulae & Algorithms 55

Algorithm 3.4: Computation of M;

. create the matriz A from algorithm 3.3
. create the rth derivative matriz Dy from the original knot set, alg 2.4
. create the sth derivative matriz D¢ from the original knot set, alg 2.4

. form the minimisation matriz Mi=(D6)TA;ﬁ Dj

] L O~

Figure 3.4: Algorithm 3.4: Computation of the non-symmetrical minimisation matrix M?

3.4 Surface Functional Minimisation

3.4.1 Minimisation of the zeroth derivative

For z(u,v) a B-spline surface of order k by [on the knot set (u;)""F x (vj)?ill and using 0/0d

to represent the collective differentiation of all the d;:

o) 0
6d1 1 8d1
9 : .
8d . ’
a 2]
ddp1 ddpq

we have

%//(m(u,v))2dudv:%//(NdevdedU://%(d ©i Ny ©; Nv)2'

The integrand is equal to (ignoring the factor 2)

(d®: N, ©; N,) @ (N, ® NT)
=N, ® (d©; N, 0; N,) @ Ny
=N, ® (N, ©;do; N,) @ Ny

= (N, ®N})®;do; (N, ®N/).

56 Variational Based Modelling and Analysis using B-splines

Hence we have the equation

/(Nu ® N)du®; d O, /(NU ® NI)dv = 0.

Writing
[Ni(u Nl(Ydu [Ni(u)Ny(u)du
Ag:/(NueaNg)du: o ,
[Ni(u)Np(u)du [Ny(u)N,(u)du
[Ni(v)Ni(v)dv [Ni(v)Ny(v)dv
Ap= [(N oNT)do = f o | ’
[Ni(v)Ny(v)dv [Ny(v)N,(v)dv

we have the following n by n system of equations for matrix of control points d = (d;;)}_;:

AUdAY = 0.

3.4.2 Minimisation of higher derivatives

For the general derivative case with a = a; + as we have:

0 0%x a1 a1 4 az a2
%/<8ua13va2 dudv——// N D (D) N > dudy

0 ey Tnray e\ T nras)2
N //%(d ©i (Du)TNu ©j (Dv)TNU) du dv.

Functional Minimisation Formulae & Algorithms 57

The integrand is equal to

(de: (Dy)"Nye, (D) "N) @ (D) "Ny) @ (V)" D)
= (D)) o (o, (D) "Nz o, (D)) = (840))
_ <(D31)TN21> 2 <(N31)TDZ1) ©®; d O, ((DZQ)TNZ2> ® ((NgQ)TD32>

= (D) (Nw @ (N2)") D2 0 d o, (D) (N2 @ (N22) ") Dz,
Hence we have the equation
Da1 /N N”‘1 du> D' ®; d ©, (D“2 /Na2 N“Q) dv) D! = 0.

Writing

Al = / (N; ® (N;;)T> du, A’= / (Ng ® (Nj)T)dv, (3.7)
we have the following matrix form for the control points d = (d;;); ’](-1:1:
((D3)" AZ D) d (D)7 AZ,D?) = 0. (3.8)

Finally, if we write
M) = (D;)" A'D;, M= (D;)"AD;,
the matrix equation becomes
My dM;, = 0. (3.9)
3.4.3 Products of derivatives

For the minimisation of an expression involving the product of a u with a v derivative we have,

for ai,as > 0:

0 o"x 0%x 0 a\T 1ay T ao\ T nras
8_d//8ua1 o dudv://a—d<(Nu) Dy dN,) ((N,)"d (Dg2) N2z dudo

://%(d@i(Dzl)TNzl ©; N,) (d @ Ny @, (D22) 'Ni2) dud.

58 Variational Based Modelling and Analysis using B-splines

Using the product rule for integration the integrand is equal to
(d@i N, @; (D2)'N#) @ (D) 'Ne @ NT)

+ (o (D)'NZ @ N,) @ (Na o (N2) ' D)

= (D2)' N2 @ (Nf ©; d ©; (D?)TNZQ) @N,
FNue (N9) Dy 0 d oy N @ (i) Dy

= (D) (N2 @ NT) @; d o, (D2)" (N2 @ NY)

v

+ (Nu ® (Ngl)T) DY &, d (Nv ® (Ng2)T> Doz,

Writing
A = /(N; @ (N)") du, AV = /(N @ (N,)")dv,

and using .7 we obtain the following matrix form for the control points d = (dy;)7";:

(D) Agrd (D) Ay + (Ag)" Dy d (Ag))" Dy = 0. (3.10)
Writing further
MY = (DAY, MY = (DAY,

we have the matrix equation

Mo dM; + (M) (M2)" =o. (3.1

3.5 Volume Functional Minimisation

3.5.1 Minimisation of the zeroth derivative
For z(u,v,w) a B-spline volume of order I, m,n on the knot set (u;)"f} x (vj)j-’;n X (wi)p !} we

have (using 0/0d for the collective differentiation of all the d;j),

i///Jv(u v w)Qdudvdwzg///<NTdN N)Qdudvdw:O
od T od veone '

Functional Minimisation Formulae & Algorithms 59

Using tensor notation this is equal to

8d N N N 2aldd

:2///<d®iNu ©; Ny & Ny) @ (N, @ N7 @ N) dudv du

The integrand is equal to

N, @ (do; N, ©; N, N,) @ (NI @ NI

=N, ® (Nf ©:d®; N, O Nw) ® (Nf ® NZ)

= <Nu ®NZ) ©id©; Ny Or Ny @ (Nf ®N5>

= (Nu ® NZ) ©;dOp Ny ©; Ny @ (Nf ® NZ)

_ (Nu ®N§) ©;d O N, O (Nv ®NJ) @ Ny,

— (Nu ® Nf) ®;d ©; (NU ® NUT) Ok (Nw ® Ni)-

AV = /(Nw ® Ng) dw,

Al ©;d @ A} Op AV =0,

Writing

we have the equation

3.5.2 Minimisation of higher derivatives

For the derivative case, letting a = a1 + a9 + a3, we look at the system generated by the following

ad /// oust 8va28wa3> dudvdw =0

equation:

60 Variational Based Modelling and Analysis using B-splines

Using tensor notation the left hand side is equal to
2
///% (a@: (D) "Nz ©; (D) 'Ne @ (D) 'N&) dudo du.
The integrand is equal to
a1\ T nga ax\ T nja az\ T nya ai\Tnya a2\T Tya
(Ao (D) N o (D) N o (D) 'Nat) @ (D) N2) @ (N2) ' D2)

(N3)" Dy

()

= ((D)"Ng) @ (d @0 (D) "N ©; (D) 'Ng 0 (D) 'Niz) @ (Ng2) D2)
(Ng)" Dy

()

— (Dy)"Nz @ ((N2)' Dy @ d @ (D) 'Ni2 o, (D3)'N2z) @ (Ne)" D)@

(o) D)

= ((Dz)"Ne @ (N2)" D)) 0, d @ (D) N2) @, ((Di2)'Ne2) @ ((Ne2)" D)

® (N2)" D)

= (Dg)" (N3 @ (Ng)") Dy @ d @, (D) (N3 @ (N32)") Di? & (D) (N3 @ (N32)") Dy
(3.12)

Hence we have the following equation for the control points:

(DZ1)T/<N31 ® (NZ1)T) du DZ1 ®; d ®j (D?]Q)T\/(NZQ ® (NZQ)T)CZ’U Dgz

o (D) [(N @ (Ng)")dw D =0
or
M; ©; do; My, & My, =0. (3.13)

Functional Minimisation Formulae & Algorithms 61

3.5.3 Products of derivatives

For aq, as, a3 > 0, and by analogy with the surface case, we look to minimise expressions involving

products of derivatives in pairs. For the uv product:
0 0Mx 0%x
— du dvd
od / / uor gz Y

:///%((Nzl)TDzldeNw) (V)" d (D) ' NEN,,) dudvduw

0
- /// = (de: (D) 'NE ©; N, 0 N,) (d @i N, ©; (D) 'Ni2 04 Ny,) dudv du.
Using the product rule the integrand is equal to
(40N 0; (D) N 0N) © (D) N2 @ N @)

n (d ®: (D™)'N* o, N, & Nu,> ® <Nu ® (N2) D g Nw>

— (D) 'Ne @ (NT 0 d ©; (D) N2 0N,) @ NI @ N,

+N, @ (N9) D 0 d 0N, &, N,) @ (N22) ' DI @ N,,

= (D3)" (N3 @ N7) @ d o, (D?)" (N2 © NT) o (N, @ NJ))
+ (Nu ® (Ngl)T> D ©; d O, (NU ® (Ng2)T> D% &y, (Nw 2 Nﬁ)
This gives the following matrix3D equation for the control points d = (dj;x)}}}—1:

MY @ d ©; M 0 My + (M!)" 0 d @ (Mg)" o My = 0. (3.14)

For the vw derivative product we proceed similarly by expanding
0 0"x 0%
= du dv dw.
ad///avazawas Hava

a a2 ao a a
///a_d (d ©; Nu ®j (Dv)TNU Ok Nw) (d ®; Nu ®j Nv Ok (DwS)Tng) du dv dw,

This is equal to

62 Variational Based Modelling and Analysis using B-splines

which, by defining,

A = / (N, @ (N)")dw, MP” = DL A,

gives us the following matrix3D equation
My ©; d ©; MY o MY+ Mg ©; d ©; (M¥)" @ (M) =0. (3.15)

Finally, for uw derivative product we have
0 M 0%
— du dv d
6d///8u“18w“3 Hanee

:///%(d@i(DZI)TNZI ©; Ny @ Ny,) (@ N, ©; N, 0 (D2) N2) dudv dw,

which, in an analogous fashion, produces the equation
MY ©; d ©; Mj 0 MY + (MIM)" ©; d ©; My 0 (MJY)" = 0. (3.16)

Having obtained explicit expressions for the minimisation of these quadratic B-spline func-
tionals there remains two other important aspects of a given variational problem that need to
dealt with. The first concerns the geometric boundary conditions which must be translated into
constraint equations involving the control points. These equations can then be used to produce
a minimal set of independent variables from the linear system generated by the minimisation of
the functional in question prior to solving. The second concerns the computation of the source

terms which involve the integral of a product function.

3.6 Boundary Conditions and Constraint Handling

When solving either the differential equation or minimising the corresponding functional, bound-
ary conditions have to be taken into account. There are three basic types that are commonly
dealt with

e geometric boundary conditions (also called essential or forced)

e free or natural boundary conditions

Functional Minimisation Formulae & Algorithms 63

e mixed geometric and free conditions

The first two are called Dirichlet and Neumann conditions respectively. The Dirichlet conditions
require that the solution match a given function on part or all of the boundary of the domain
under consideration. In the variational form of the problem these conditions are constraints
that have to be satisfied when constructing a solution. The Neumann conditions require that
the directional derivative along the outward normal to the boundary match a given function on
all or part of the boundary. For the variational form of the problem the Neumann conditions are
satisfied automatically. The mixed case specifies that some linear combination of the solution
and its normal derivative match a given function on all or part of the boundary. In general only
one of the three types of condition will be specified on a given portion of the boundary.

There are a number of techniques that can be used to handle the geometric boundary con-
ditions on a given variational problem. General geometric constraints can be imposed by aug-
menting the original functional with Lagrange multipliers. This method changes a constrained
minimisation problem into an unconstrained one such that the solution to the new problem is
also a solution to the original one. For each constraint a number, called a Lagrange multiplier, is
associated with the constraint. The mth Lagrange multiplier in a system is the correction needed
to satisfy the mth constraint. To solve for the multipliers, the original equation is transformed
into a new form called the Lagrangian. Minimising this new function gives the multipliers as a
set of linear equations. These are substituted back into the Lagrangian to obtain the solution
vector to the original problem. Although this general technique is often employed, its drawbacks
are that the resulting equations often lose the linearity and complicate the problem.

The Penalty method also eliminates most or all of the original constraints. Here a quadratic
energy term is added to the original equation and acts as the penalty. When a particular
constraint is violated, the method penalises the violation by adding energy into the system and
guiding it back to a valid state. The severity of the penalty is controlled by a parameter whose
magnitude determines how much of this energy is added by the penalty term. As the severity of
the penalty increases the accuracy of the method improves. However, although this is a simple
and generally fast approach to dealing with the constraints, such methods are not as accurate
as other techniques for solving constrained minimisation problems.

If we restrict the class of constraints by considering only those composed of linear combina-
tions of the degrees of freedom, it is possible to find a solution by using the so-called reduced
transformation technique. This is a technique used to enforce linear equality constraints when
solving general quadratic minimisation problems and in view of the convenient property of B-

spline boundary point and derivative interpolation (see figures 212/ and [2.14) this is the solution

64 Variational Based Modelling and Analysis using B-splines
adopted here and in the following chapters. The details are summarised in the following section.

3.6.1 The reduced transformation technique

We assume that we have a linear system resulting from the functional minimisation and consisting
of a vector d containing n variables. We assume also that the geometric equality constraints are

expressed in the form
hi(d)=0.0, k=1,...,m,

where the h; consist of linear combinations of the variables. These can be written in matrix form
as Ad = b for some matrix m xn matrix A and vector b of size m. Each linear constraint reduces
the problem dimension by one. We select the independent variables and represent the dependent
variables by the selected independent variables. By premultiplying a permutation matrix we
rearrange d so that the dependent and independent variables are separate. To illustrate this
we take the example of a system consisting of five degree of freedom (z;...z5) subject to the

following two constraints:

(E1—|—2$2—l’4:3
$3+2$4:5,
which can be written as Ad = B:
1 2 -1
A = 0 0 , b= 3 .
001 2 0 5

Taking the dependent variables as z1, x3 we construct a permutation matrix P such that Pd =
T
[dindep | ddep} :

01 000 Ty To
0 0010 Ty T4
0 00O01 r3 | =1 x5 |,
1 00 0O Ty T
00100 Ts T3

and

Aldindep + AQddep = b7

where A is a matrix of size m by n — m and matrix Ay m by m:

Gl G E)-6)

Functional Minimisation Formulae & Algorithms 65

Here dingep is the reduced column vector containing the n — m independent variables and dgep
is a column vector of dimension m containing the dependent variables. We can express the

dependent variables by the independent variables as:

ddep = A2_1b - A2—1A1dindep = DO + Dldindepa
-2 1
DO = ;) Dl = 0 s

5 0O -2 0

T3
T 1 0 3 -2 1 0

= + I4

Ts

where

and

We also have

d =P [dinaep | daep]” = P—1<[I | Dy] dinaep + [Z | DO]T) = Dydingep + D, (3.17)
where I is the identity matrix of size n — m and Z is the null vector of size n — m. Then
X1 00010 1 0 0 00010 0
T 10000 0 1 0 X9 100 00 0
x3 |=100 0 0 1 0 0 1 xy |+]1 00 0 0 1 01,
T4 01 00O -2 1 0 x5 01000 3
x5 00100 0 -2 0 00100 5
and hence
-2 1 0 3
10 0 0
D; = 0 -2 0 Dy=| 5
0 1 0 0
0 0 1 0

In general by substituting equation B.I7 into a standard quadratic minimisation problem of the
form I = 1d"Kd — F”d we obtain
1
3 (Dsdinaep + D2)TK (D3dindep + D2) — F7 (D3dinaep + Da)
1
= 5 ((Dsdinaer) "KDydiniep + (Dadinaey) KD + DK (Dsdinap) + DIKD:)

— F'D3dingep — F ' Ds. (3.18)

66 Variational Based Modelling and Analysis using B-splines

Using the fact that (9/0d)(d”Kd) = 2Kd we have

0
adindep

Hence, equating to zero we get

1 1
I = DIKDsdjpgep + 5D§KD2 + §D2T KD;—F"D; = (D;KD})diyaep + D5 KD, — DS F.

(D;KD3)dingep = D KD, — DJF. (3.19)

This automatically satisfies the linear constraints while the solution is found that minimises the
quadratic function. Having found the vector dingep, We use the elimination information to find

the vector dgep and hence build the complete solution.

3.7 Source and Boundary Term Integration

To cope with the source and boundary integration terms we make two simplifying assumptions
about the geometric shape of the domain and the form of the source term. Firstly we restrict
ourselves to dealing with rectangular domains and secondly we assume that the source term is in
B-spline form or can be converted to such a form either exactly (i.e. if it polynomial in nature)
or approximately (if it is some other non-polynomial function). Under these assumptions we
can compute exact results using the product rule for integration in its various forms for one,
two and three dimensional domains. A comparison of techniques for performing this calculation
numerically is given in [86]. Without loss of generality in the following algorithms we restrict
ourselves to dealing with the basis function terms for the B-splines appearing in the product

formulae.

3.7.1 Curve product

Using the explicit formula for the integral of a B-spline in equation [2.34] the one dimensional
integration by parts formula for a product of a B-spline function of order k representing our

solution

f=Y diN;s(t), knot set (t;)itF
=1

and a multiplying B-spline function g of order k; say, becomes, (focusing in on a single basis
function of f),
2

72 N0t = [o(0) [5u)]” = [(50) [Nowto))

tl

Functional Minimisation Formulae & Algorithms 67

By applying this result iteratively k1 — 1 times so reducing the degree of g down to 1 we obtain
the following algorithm for the exact integral of the product.

Algorithm 3.5: To integrate a curve product B-spline:

tszi’k(t)g(t)dt

1. Create a vector vec of size n to store the result
2. for (i=0; i<n; i++)
2.1 for (j=1; j<=ky; j++)

2.1.1 create B-spline representation cl1 of ith basis function of £
2.1.2 integrate cl to the level j as a B-spline curve c2 ([2.57)
2.1.3 determine limits (x1,x2) of c2
2.1.4 form the (j-1)th derivative c3 of the curve g (alg 2.6)
2.1.5 compute vec[i] += (—1)371 % c2(x2) x c3(x2) - c2(x1) x c3(x1)

Figure 3.5: Algorithm 3.5: Integral of a product B-spline

3.7.2 Surface product

For the surface case the corresponding formula for integrating a product is Green’s formula:

//Dw%dxdyz—//[)g—iqﬁdxdy—l—?wé}:dy (3.20)

By using this formula and the explicit formula for the integral of a B-spline, [2.42] the two

dimensional integration by parts algorithm for a product of a function representing our solution

F=>0 diNie(u)Nju(v), (P2 x (v;)1,

i=1 j=1

and a multiplying B-spline function g of order (ky, ;) becomes:

68 Variational Based Modelling and Analysis using B-splines

Algorithm 3.6: To integrate a surface product B-spline:
u2 v2
I Nik(w)Nji(v)g(u, v)du dv

ul vl

1. Create matrix mat of size p,q to store the result
2. for (i=0; i<p; i++)
2.1 for (j=0; j<q; j++)
2.1.1 for (r=1; r<=ky; r++)

2.1.1.1 create B-spline surface representation sl of (i,j)th basis function
2.1.1.2 integrate sl in u to the level 1 as a B-spline surface, s2
2.1.1.3 determine limits (ul,u2,v1,v2) of s2
2.1.1.4 form the (r — 1)th deriwative of g, s3
2.1.1.5 subdivide s3 over the limits (ul,u2,v1,v2), s4
2.1.1.6 create the u isoparametric curve cl from s2 at ul
2.1.1.7 create the u isoparametric curve c2 from s4 at ul
2.1.1.8 create the u isoparametric curve c3 from s2 at u2
2.1.1.9 create the u isoparametric curve c4 from s4 at u2
2.1.1.10 form the product curves, pl=prod(cl,c2), p2=prod(c3,c4), p3=p2—pl
2.1.1.11 compute mat[i][j] += (—1)""'x integral of p3 over (vi,v2)

Figure 3.6: Algorithm 3.6: Integral of a surface B-spline product

3.7.3 Volume product

Finally for the volume case the corresponding product formula is

02w dydz = — O s o dy dz + vo| "y dz.
v O v Oz z

Using the explicit formula for the integral of a B-spline volume, equation [2.46] the three di-
mensional integration by parts algorithm for a product of a B-spline function of order (I, m,n)
representing our solution

T

F =300 3 digpNia(w) N (0) N), ()47 (o) 557 % (w2

i=1 j=1 k=1

and a multiplying B-spline function g of order (I, my,n;) becomes

Functional Minimisation Formulae & Algorithms 69

Algorithm 3.7: To integrate a volume product B-spline:
u2v2 w2
I [[Nig(w)Nj o (v) Ny o (w)g(u, v, w)du dv dw

ul vl wl

1. Create matriz3D mat of size p,q,r to store the result
2. for (k=0; k<r; k++)
2.1 for (i=0; i<p; i++)
2.1.1 for (j=0; j<q; j++)

2.1.1.1 for (s=1; s< 1y; 1++)
2.1.1.1.1 create B-spline volume representation V1 of (i,j,k) basis function
2.1.1.1.2 integrate V1 in u to the level k as a B-spline volume, V2
2.1.1.1.8 determine limits (ul,u2,v1,v2,wl, w2) of v2
2.1.1.1.4 form the (s — 1)th derivative of g, wvolume V3
2.1.1.1.5 subdivide v3 over the limits (ul,u2,v1,v2,wl,w2) volume V4
2.1.1.1.6 create the u isoparametric surface sl from V2 at ul
2.1.1.1.7 create the u isoparametric surface s2 from V4 at ul
2.1.1.1.8 create the u isoparametric surface s3 from V2 at u2
2.1.1.1.9 create the u isoparametric surface s4 from V4 at u2
2.1.1.1.10 form the product surfaces, pl=prod(sl,s2), p2=prod(s3,s4), p3=p2-pl
2.1.1.1.12 compute mat[k|[i][j] += (—1)5 'xintegral of p3 over (v1,v2,wl, w2)

Figure 3.7: Algorithm 3.7: Integration of a B-spline product volume

3.8 Summary

The equivalence between the statement of a continuum problem in terms of a differential equa-
tion and its corresponding variational form allows us to concentrate on solving a given problem
by minimising a certain functional subject to specified geometric and/or natural boundary con-
ditions. By seeking a solution in B-spline form and using tensor notation we have developed
explicit formulae and corresponding algorithms for the exact minimisation of general quadratic
functionals in curve, surface and volume form. The convenient point and derivative boundary
properties of B-spline entities allows us to treat the restricted class of geometric boundary con-
ditions involving linear point and derivative expressions in a relatively simple manner. By using

the reduced transformation technique we are able to take the constraint equations involving the

70 Variational Based Modelling and Analysis using B-splines

control points and generate a minimal linearly independent set of free variables prior to solving.
These are then used to build the solution. By assuming the source terms are in B-spline form and
the domain is rectangular we have also presented algorithms for computing exactly the product
integral terms appearing in the variational form. In the following chapter we put these elements

to use in producing B-spline solutions to some problems in the field of geometric smoothing.

Chapter 4

Applications to (Geometric Smoothing

4.1 Introduction and Background

One of the principal motivations for studying smoothness and looking for algorithms that can
compute faill curves and surfaces originates from the fact that even when very efficient schemes
based on splines are used for construction the resulting curve or surface is often not fair enough
and has extraneous bumps and wiggles. In this respect energy-based minimisation algorithms
have been used by researchers to incrementally improve the fairness of a shape by tuning pa-
rameters of the model. The motivation for this approach to solving the problem comes from the
following.

In the design of free-form plane curves, the quantity

E—/ﬁ@ (4.1)

where £ is the curvaturé? as a function of arc length s, is often invoked as a measure of the fairness
of loci that satisfy given constraints. The theory of linear splines deals with loci interpolating
data points with a given order of continuity and minimising an approximation to £. Under
appropriate conditions, F is proportional to the work done in bending a thin elastic beam so
as to assume the shape characterised by the curvature profile x(s). This integral represents the

bending energy of such a beam under the following conditions:

e the material is homogeneous and obey’s Hooke’s law, i.e a linear relation between stress

and strain at each point,

1'We use the terms smooth/fair and their derivatives synonymously in this chapter
2We use curvature terms in this chapter without giving formal definitions. Appendix F summarises the main

formulae for the curve, surface and volume cases

71

72 Variational Based Modelling and Analysis using B-splines

e the beam has a constant cross-sectional shape, with a symmetry axis that lies in the plane
of bending,

e transverse plane sections of the beam remain plane upon bending.

Under these conditions the bending moment due to internal stresses across each section is pro-
portional to x and E measures the strain energy stored in the bent beam. Determining the shape
of a bent beam subject to given constraints can thus be formulated as a variational problem in
terms of minimising a functional. Curves that realise global minima of F possibly under various
constraints, points/tangents, arc length are sought. In most fairing algorithms the integral in
4.1l which represent a geometric measure, is linearised by the assumption that the actual pa-
rameter ¢ of the spline curve f nearly represents the arc length, meaning that ||x'(¢)|| is nearly

constant. This gives the simpler but parameter dependent integral measure

b

[ar

a

Fairness then is a quantifiable property of the geometric quality in a curve or surface. It
can be described by a numerical fairness measure and the strain energy is an example of such a
criterion. To test the efficacy of a given smoothing algorithm one normally formulates a measure
of the ‘goodness’ at each curve/surface point and then integrates this measure over all or part of
the entity in question to get a single number which characterises the desirability of the surface
shape under that metric. Using a variational based energy minimisation algorithm or similar we
seek shapes that optimise this quantity. If geometric constraints such as interpolation need to
be satisfied then we have a case of constrained optimisation. A suitable smoothing algorithm
will minimise an energy functional subject to the constraints. Without constraints the curve or
surface will simply be smoothed.

In this chapter we provide a review of the main contributions to the field of curve and surface
smoothing and the principles upon which they are based and present a number of new fairing
algorithms both integrated with and separate from data approximation using least squares. In
both cases, we employ the exact B-spline functional minimisation procedures from Chapter 3.
We use a number of integral measures to demonstrate the utility of these algorithms in removing
unwanted irregularities as well as curvature/environment maps for a visual representation of the
quality of the resulting curves and surfaces. We then look at the volume case and after present-
ing a brief review of the use of volumetric models derive a generalisation of the curve/surface

algorithms and the associated integral measures to the smoothing of a B-spline volume entity in

Applications to Geometric Smoothing 73

both functional and parametric form. In each of these cases we concentrate on the smoothing
algorithm itself and the quality of the results it generates rather than the imposition of con-
straints. However, in principle, and without significant complication, point/tangent and other
linear interpolatory constraints can be integrated with the algorithms developed here using the

reduced transformation technique of Chapter 3.

4.2 Curve Smoothing

In general to avoid unfair effects, which can originate from, for example, digitising errors, two
broad approaches are used in general. The first one consists of incorporating the fairness crite-
rion already into the interpolation or approximation process through the minimisation of energy
based functionals. The second consists of fitting first to a given precision using an interpola-
tion/approximation technique and then smoothing the resulting curve by some iterative fairing
process (which may again use functional minimisation).

Figure [.Ilillustrates the elements for the first technique. A given construction process, for
example least squares, is combined with a smoothing functional that represents an energy terms
in analogy with material mechanics. By minimising the combined expression we, in principle,
obtain curves that are both accurate in terms of closeness to the original data and smooth
in terms of curvature variation. In practice there is a fundamental contradiction between the
distance least squares error term and the smoothing functional. If the curve is too smooth it will
not meet the tight tolerances that will be required in areas where the data imply high curvature.
On the other hand if the fit is too accurate then the curve will follow unwanted undulations and
irregularities that may be inherent in the data. However, by carefully balancing these two terms
with the help of a smoothing factor that controls the relative importance of the two goals and
possibly by varying the terms in the functional, smooth and accurate curves can be obtained.

The integrated smoothness term is normally taken to be some linear combination of the

derivatives squared of the unknown curve:

/ (Z: o £ 0))t

a

As stated in the introduction the motivation for this comes from considering strain energy in
material mechanics. In particular the first two derivative terms in the smoothness functional

have the following physical interpretation:

74 Variational Based Modelling and Analysis using B-splines

. & @ L]
- " & 8 L
* 2 b m 2
. i
. (1 _Sm)ZWi fit)-%| + sm Z{ocj PO | dt |
., i a =
data points with irregularities
blend of least squares fit and a smoothing component
roinitnised to produce final curve, relative importance of
two terms determined by factor sm tune smootiing parameter sm,
factors oy, I halance with
i stooth curve? error cotnityg from the least
squares fit

Figure 4.1: Incorporating smoothing process with least squares construction

e first derivative: The integrand refers to the square of the norm of £ (¢) which is related
to the length of the curve. The squared first derivative term stands for the strain energy

due to stretching of a beam.

e second derivative: The integrand refers to the square of the norm of f®)(¢), which is
proportional to the curvature. The integrand corresponds to the work done by the bending
moment, and the integral criterion measures the total elastic energy accumulated in the

beam or curve segment.

A curve that minimises some combination of these two terms will naturally resist stretching and
bending. Some attention has also been focused on the use of higher order measures, m > 2.
The third derivative term (also called ‘jerk’ with reference to its interpretation as a rate of
change of acceleration) is a rough estimate of the rate of change of curvature, % and hence by
minimising this integral term, gradual changes in curvature are obtained. The interpretation here
is geometric rather than physical. Since the integral of the squared magnitude of the derivative
of curvature evaluates to zero for circular arcs and straight lines, while minimising the integral

of the squared magnitude of the first and second derivatives makes the curve stretch and bend

Applications to Geometric Smoothing 75

as little as possible, introducing the third derivative term enables the curve to form a circular
arc approximately assuming that constraints allow it.

Various authors have investigated energy based techniques for curve smoothing. In Nowacki
and Lu, [61], the curve is required to minimise a fairness functional which is based on a linear

combination of the second and the third derivative squared integrals of the curve

Jﬁ/’ Ct /‘

where (and « are constants and satisfy 0 < 3,7 < 1,3+~ = 1. They combine this with a least

d3f(t)
dt?

d*f(t)
dt?

7

squares criterion D and look for curves that minimise the functional J + D subject to an area

constraint which leads to a non linear system of equations. Meier and Nowacki, [57], consider

1
o= [I
0

and provide some motivation for considering the cases m = 2,3 and 4. The authors suggest the

norms of the form

use of a combination of the three fairness functionals Js, J3, J4 as a best approach in many cases.
In Pottmann, [68], the object is to pass a smooth and visually pleasing curve with tensions
parameters through a given finite set of data points. A smooth curve will not possess large
variations in derivative vectors and the author chooses minimisation of a functional based on
the first, second and third derivative terms. Fang and Gossard, [19], also use a functional based
on first, second and third derivatives.

In practice, in addition to the smoothing functional, parameterisation effects are important,
particularly where it is necessary to meet tight tolerances. A standard technique for improving
the parameterisation of a least squares type data fit is given in Hoschek, [38]. Wang et al, [86],
consider the relative effects of the parameterisation and various energy based functionals on the
smoothed curves and surfaces. Weiss et al, [90], consider carefully the interaction between the
smoothing factor and the tolerance and investigate procedures for automatic smoothing based
on an iterative process of reparameterisation and knot modification.

The second way to obtain smooth spline curves is to separate the construction and fairing
process, see figure [L.2 Here algorithms either work on the principles of iterative local control
point /knot vector modification to smooth out higher derivative discontinuities, or are based on
the application of global energy based functionals. Notable contributions to the former technique
are found in Farin et al, [20], Eck and Hadenfeld, [I17], Sapadis and Farin, [76]. They use an

automated knot removal and reinsertion process process by determining where a knot should be

76 Variational Based Modelling and Analysis using B-splines

v/ N

1) => dN, (®)

AN\ i
T

[bigtizniiy]

local modification of data pointsfcontrol points to smooth
curve in regions where curvature profile is poor it

iterate uptil desired profile found

B-spline curve with poor curvature profile

or

global smoothing of curve by minimisation of some energy '
functional with rmultiplying smoothing factor

VAN
O
NN

tune smgothing patrarmnet erfrarsy
functional
smooth curve?

curvare

Figure 4.2: Smoothing existing curves

removed and a new one inserted using the curvature plot as the fairness criteria. This provides
an approximation to the original curve. Other techniques dealing with this approach are found
in Kjellander, [47] and Poliakoff, [67].

Based on the developments in Chapter 2 and 3 we present two algorithms for providing
solutions to the two cases depicted in figures [4.1l 4.2 In the first case we combine the least
squares error minimisation with a linear system derived from the exact minimisation of a given
smoothness functional based on an integral of the squares of some linear combination of the
derivatives of the unknown curve. In the second we take an existing B-spline curve and solve a
system obtained by combining the smoothing functional term with evaluation of the curve at a
set of predefined points. Our focus here and in the rest of the chapter is on the effects of the
algorithms themselves rather than the process of integrating them into a larger iterative and

automated scheme.

Applications to Geometric Smoothing 7

4.2.1 Smoothing combined with least squares data fitting

Starting with a given set of data points (xi)?il, optional weights (w;)},, a smoothing factor sm
and a parameterisation, (7;)},, for the data points, we seek a solution to the combined least

squares/smoothing functional®:

I(f) = (1—sm) Zwi If () — Xi|]2—|—sm/ (Z a; Hf(j)(t)H2> dt = (1—sm)]jsq(£)+smlsmootn(f),

(4.2)

where f(t) is a parametric B-spline with a specified order k£ and dimension n:
£(t) =Y diNik(t), knot set (t;)75F.
i=1

The minimisation condition of the least squares error term

aIlsq
od

gives the following n by n system of equations, Ad =y, where

=0,

Z wiNl,k(Ti)Xi
d; :
" ds Z w; N i (7:)%;
A = (Z wiNij(Ti)Nl’k<Ti)>jl1’ d= : .y = Z | 7
=1) : :
dn Z wiNn,k(Ti)Xi

(A is of full rank if the Schoenberg-Whitney conditions are satisfied, see appendix E). We
minimise the smoothing part I,,,00tn in using algorithm 3.2, providing minimisation matrices
My, M, ..., M,, for the derivative terms included in the functional. Combining these with the

error term we obtain the following system of equations for the control points d:

((1 — sm)A + sm Z aiMi) d=y. (4.3)

i=1
This can be solved efficiently either by straightforward LU factorisation or, taking into account
the banded and symmetric positive definite nature of the matrices A and M;, by a banded

Choleski factorisation. Although the least squares part of is well conditioned, at least for

3In the following sections we use the symbols I and J to represent functionals

78 Variational Based Modelling and Analysis using B-splines

moderate degrees, [I0], it can become ill-conditioned in the case of uneven segment distribution
determined by the knot spacing relative to the parameterisation. However, in this respect,
the matrix representing the smoothing part in actually has a stabilising influence on the
system as as a whole, something which is demonstrated in regularization theory, see Tikhonov
& Aresnin, [83].

Based on 3] algorithm 4.1 presents the steps required to compute the B-spline solution
for this case.

Algorithm J.1: B-spline curve least squares fitting combined with smoothing

data set (Xi)ij\iv optional weights (w;)M,

b, m
smoothing functional, f(z o ||f(j)(t)H2>dt
a “j=1

i=1

Solution: £(t) = > d;N; ;(t) on knot set (t;)i1]
i=1

create a parameterisation (71)¥_, from the data points

given n create a suitable knot set (t;)L}

n

create the basis function set (Ni,k(t))i:1

M
create the B-spline least squares matriz, A= (aij)} ;1,213 = > WiNi x(72)N;x(71)
1=1

SN

create the right hand side vector, y = (yi)i—;, yi = > wiNix(7y)x;
j

S

create the minimisation matrices My, ..., M, from the basis function set

=

for a given smoothing factor sm, and coefficients (a;), form the matriz
B = (1—sm)A+sm) a;M;
J

8. solve the system Bd=y

9. construct the B-spline from the control points and knot set

Figure 4.3: Algorithm 4.1: Least squares fitting combined with smoothing

As illustrated in figure M.l the process to achieve a desired solution is normally iterative.
Whereas k is normally fixed, for a given n and 1,001, the smoothing factor sm needs to be chosen
carefully (see for example Weiss et al, [87]) to obtain the desired balance between accuracy as

measured by the least squares error and curvature properties of the resulting curve as measured

Applications to Geometric Smoothing 79

by numerical values of I,00tn. However, it is worth noting that for a given order £ and knot
set, which is typically independent from the parameterisation, the smoothing matrices making
up Ismootn are fixed and hence need be computed only once in an iterative scheme that seeks the
‘best’ solution.

4.2.2 Smoothing an existing B-spline curve

To smooth an existing B-spline curve we combine the matrices derived from the minimisation of
the smoothing functional with matrices derived from evaluating the basis functions and B-spline

curve, f(t), at the knot averages, (1;),, given by

n = m(ti+1 o i)

We compute the matrix of B-spline basis functions and the vector of curve evaluations at these
points,

Q= (N (U;))” 1 (f(n’L))’L 1

and then solve the following system for the new set of control points:
(sm Z a; M, + Q)d =
J

Algorithm 4.2 presents the steps.

4.3 Examples

To examine the effectiveness of algorithm 4.2 (and indirectly 4.1) in smoothing B-spline curves

we test it on some examples and compare the results based on the following five functionals:

b
f & &f &
/’dt? dt, Jy = /’dt3 L, /(025‘6#2 +075’d3 Jat.
d2f B / d2f &
Ji= /(05‘dt2 +05‘dt3 Jat, J5:/<075‘dt2 +025‘d3)t

To quantify the smoothing produced we calculate the following four global smoothing measures

N HT

as an indication of the effectiveness of the functional:

fen [l [l

d*f d*f

80 Variational Based Modelling and Analysis using B-splines

Algorithm 4.2: Smoothing an existing B-spline curve

£(t) = 3 d;N; i (t) on the knot set (t;)F

-

i=1

b
smoothing functional, f(i Q; Hf(j)(t)HQ>dt
a “j=1

n

1. create the basis function set (NLk(t))

2. using algorithm 3.2 create the minimisation matrices My, ..., My

i=1

3. create the matriz of the basis functions evaluated at the knot averages,
(i)’
4. create the vector of curve evaluations at knot averages, v =(f (771))?:1
5. for a given smoothing factor sm, and coefficients (o), form the matrix
B=Q+sm) ajM
j

6. solve the system Bd=v

7. build final smoothed B-spline curve from control points d from 6 and original knot set

Figure 4.4: Algorithm 4.2: Smoothing an existing B-spline curve

The fourth measure represents the length of the curve. In addition we compute an estimate of

the error between the original and the smoothed curve obtained by sampling.

4.3.1 Example 1

For the curve itself we construct an example with unwanted irregularities along the lines of Eck

and Hadenfeld, [I7]. We begin with the a B-spline curve containing 61 control points given by
d; = (w;,sin), o= =3+ 55, 0<i<60,

and defined over the knot vector (0,0,0,0,1,2,...,57,58,58,58,58). The internal control points
are then perturbed (keeping the end points fixed) using a random number generator in such
a way the maximal allowed disturbance of the control points is 0.02 in absolute value. The
curvature plot shows the large number of unwanted inflection points introduced into the

curve. The modified curve has significantly worse values for the smoothing measures compared

Applications to Geometric Smoothing 81

to the original. Table [Tl displays the results of the test using a smoothing factor of 0.1. The
results show good agreement with the original, with the blended second (energy) and third
derivative (jerk) based functionals producing slightly better results than the unblended ones.
Figure 0 displays the original (top), perturbed (bottom) and the five smoothed curves obtained
by minimising Ji, ..., Js (top to bottom). The curvature plots of the curves are shown in figures

A and A8

s

Figure 4.5: original (top), perturbed (bottom) and smoothed B-spline curves using functionals

Ji,...,Js top to bottom, smoothing factor=0.1

Table 4.1: Integral measures before and after smoothing a B-spline curve using five different

functionals

Ezxample 1: Smoothing functionals applied to perturbed B-spline curve
fbn‘gdt fb % dt f % dt fbH‘é—fH dt error
original 28.2504 | 0.003095 2.70562e-05 6.92835 0.0
perturbed 47.671 | 0.0310638 0.0542622 6.53564 0.03258
method 1, J; | 25.3826 | 0.002737 2.28735e-05 6.88206 0.14277
method 2, Jo | 24.8185 | 0.00418198 | 1.97002¢-05 7.12918 | 0.0567637
method 3, Js | 27.0858 | 0.00310781 | 2.32442e-05 | 7.000426 | 0.0952497
method 4, Jy | 26.8976 | 0.00310638 | 2.63855e-05 6.9527 0.114375
method 5, Js | 26.2211 | 0.00284096 | 2.056421e-05 | 6.91463 0.12951

kappa (curvature)

kappa (curvature)

Variational Based Modelling and Analysis using B-splines

Curvature of original B-spline curve Curvature of perturbed B-spline curve

1 5

038 4

06 3

04 % 2

21

0.2 g 0
0 3

P 1

02 8-2

-04 g,

-0.6 4

0.8 5

-1 -6

0 10 20 30 40 50 0 10 20 30 40 50
u u

Figure 4.6: Curvature plots of original and perturbed curves

Curvature of smoothed B-spline curve (method 1) Curvature of smoothed B-spline curve (method 2)
1 1
0.8 0.8
0.6 0.6
0.4 v 04
3
0.2 T 02
4
0 3 0
0.2 g.0.2
Q
-04 g 04
0.6 -0.6
038 -0.8
1 -1
0 10 20 30 40 50 0 10 20 30 40 50
u u

Figure 4.7: Curvature plots for methods 1 and 2, (\J;, Js)

Applications to Geometric Smoothing 83

Curvature of smoothed B-spline curve (method 3) Curvature of smoothed B-spline curve (method 4) Curvature of smoothed B-spline curve (method 5)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
v 04 v 04 v 04
3 3 3
T 02 T 02 g 02
2 2 2
3 0 3 0 3 0
802 802 8.0.2
Q Q Q
904 S04 g 04
0.6 -0.6 -0.6
08 -0.8 0.8
-1 -1 -1
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

u u u

Figure 4.8: Curvature plots for methods 3, 4 and 5: (Js, Jy, J5)

4.3.2 Example 2

In the second example we test the algorithm on a more extreme example of unwanted behavior,
again along the lines of Eck and Hadenfeld. We begin with the perturbed curve used in example

1 and then remove the following 26 internal knots:
(1,3,4,5,6,9,11,14,15,19, 20, 25, 26, 27, 28, 31, 33, 34, 37, 38, 45, 46, 51, 52, 55, 57).

This produces a curve with additional irregularities due to the uneven knot distribution. The

(bad) curvature plot of the curve is shown in figure (this time using porcupines).

Figure 4.9: Perturbed curve with curvature map, smoothing example 2

The curve is smoothed using the functionals from example 1. The presence of the third derivative
component in Js, ..., J5 actually produces significantly worse results for the resulting curve in
comparison to the second derivative functional J;. This is in line with the results obtained by

Eck and Hadenfeld and supports their conclusion that in such cases of poor knot distribution

84 Variational Based Modelling and Analysis using B-splines

- = /// \\\ \\\
s i e
~ — e ~
T~ /// . /// \\\ T
~ = - £
S \\\ /// /// /// \\\
= e e L T 2
= o -
\\ \\u// ///
s -
~ i
~ o
Sk
>
[

Figure 4.10: original (top), perturbed (bottom) and smoothed B-spline curve (middle) using

functional J;, smoothing factor=0.1

smoothing functionals involving the second derivative perform best. Figure K10 shows the
original and perturbed curves with the result obtained by using functional J;. Table gives

the numerical results.

Ezxample 2: Smoothing functionals applied to perturbed B-spline curve

[r2dt | [% dat | [‘3% dt | [4| dt error
original 28.2504 | 0.003095 | 2.70562e-05 | 6.92835 0.0
perturbed 54.9652 | 0.02129970 | 0.0255867 6.38524 | 0.105748

method 1, J; | 29.939 | 0.00288389 | 3.0269e-05 6.85471 | 0.131429

Table 4.2: Integral measures before and after smoothing a B-spline curve using J;

4.3.3 Example 3

In the final example we use the original curve from example 1 but this time perturb the control
points to a greater extent: the maximum absolute control point deviation is increased by a
factor 5 to 0.1. The smoothing factor is increased to 10. Figure [A.I1] displays the original
and perturbed curve with curvature values displayed and figure shows the curvature map
of the perturbed curve. Figure [A.I3]shows the original and the five curves resulting from the
smoothing with their curvature profiles. Table [L3] gives the numerical results and figure [£.14]
shows the curvature plots of some of the smoothed curves. The results demonstrate visually
and numerically a good reconstruction with significant reductions in the smoothing measures
compared to the perturbed curve whilst maintaining reasonable agreement with the original

length.

Applications to Geometric Smoothing

85

-

Figure 4.11: Original and perturbed curve with curvature displayed

Curvature of perturbed B-spline curve

kappa (curvature)

Figure 4.12: Perturbed curve curvature graph (example 3)

Figure 4.13: Original curve (bottom) and the five smoothed curves using functionals Ji, ..., Js,
top to bottom, with curvature porcupines, smoothing factor=10

86

Variational Based Modelling and Analysis using B-splines

Ezxample 3: Smoothing functionals applied to perturbed B-spline curve
[r2dt | [% a | [%gf da | [||%H dt error
original | 28.2504 | 0.003095 2.70562e-05 6.92835 0.0
perturbed | 85.6386 | 0.0989454 0.996293 7.02165 | 0.0157374
method 1 | 25.4188 | 0.00404659 | 5.63528e-05 7.12099 | 0.0653389
method 2 | 26.8356 | 0.00707109 | 0.000432305 | 7.11573 | 0.0378333
method 3 | 26.0398 | 0.00535781 | 7.01335e-05 7.13534 | 0.0503984
method 4 | 25.7832 | 0.00989454 | 2.56868e-05 7.13612 | 0.0573036
method 5 | 25.6389 | 0.00431652 | 2.45208e-05 7.13026 | 0.0619578

Table 4.3: Integral measures before and after smoothing a B-spline curve using five different

functionals

02

kappa (curvature)

06
08

Curvature of smoothed B-spline curve (method 3)

Curvature of smoothed B-spline curve (method 4)

Curvature of smoothed B-spline curve (method 5)

=3
-

kappa (curvature)

kappa (curvature)
o

u

0 10 20 Kl 4

50

10 20 30 4 50
U

Figure 4.14: Smoothed curve curvature plots, methods 3, 4 and 5, example 3

Applications to Geometric Smoothing 87

4.4 Surface Smoothing

Surface smoothing is based upon similar principles to curve smoothing. The basic idea is to
take a functional which is typically comprised of a part representing the integral of the square
of the surface’s curvature or its higher derivatives, and a part which represents how well the
surface approximates a specified data set. We then seek a surface that minimises this combined
measure. Often it can be likened to seeking the surface with the lowest elastic energy which
satisfies certain interpolation/approximation constraints.

Figure illustrates the basic process where least squares approximation is combined
with a smoothing functional that represents, again in analogy with material mechanics, an en-
ergy term. By minmising the combined expression we can obtain obtain surfaces that are both
accurate in terms of closeness to the original data and smooth in terms of curvature distribution.

In an analogous fashion to the curve case, the combined least squares and smoothing functional

b -d
2 m 2
+ =m Z o gy du dv
ki=0 B D
a’ ¢ H=m

blend of least sgquares fit and a smoothing component
- minitnised to produce final surface, relative importance of
two terms determined by factor sm

RO, V- X4

.o — (1‘5““)22“’5
. id

data points with irregularities l smooth surface? tune smoothifig parameter sm,

order m, factprs oy, in balance
with error coming from the
least squares| fit

Figure 4.15: Incorporating smoothing process with least squares construction

represents for the surface generation process a balance between between two competing influ-
ences: a tendency of the surface to pass close to the data points x;; and a tendency for curvature

variations in the surface to be reduced.

88 Variational Based Modelling and Analysis using B-splines

The functional to be minimised in .15 is given by

I(x) = (1 — sm)l5(x) + smIsmootn(X)

(1—8m)zizzX(Uz‘yvj)—xijQﬂLsm/b/d(Xm: Qg

1,7=0,i+j=m

omx
Ou®opd)

2
)du dv,

where the limits [a, b] X [c, d] lie within the parametric range of the surface. If the ratio #7 < 1,
then the surface closely approximates the data points at the expense perhaps of surface fairness.
If %%~ > 1 then the dominant influence in determining the shape of the surface will be the
requirement to minimise the integral of some energy term involving the integral of squared
derivatives. The first order derivative terms in I,,,n are called membrane terms, for they make
the surface resistant to stretching, much like an elastic string in one dimension, or a membrane in
two dimensions. The second order derivative terms make the model resistant to bending forces,
and hence can be interpreted as a rod in one dimension or a thin plate model in two dimensions.
The weighting terms «;; are used to control the elastic properties of the model. Increasing the
value of the first order derivative weighting terms make the model more resistant to stretching,
and likewise, increasing the second order terms make the model more resistant to bending.
Much of the published literature on energy minimisation for surfaces concentrates on func-
tional based upon the sum of squares of the principal curvatures (the generalisation of 1]
to surfaces) or suitable approximations thereof. Although this measure is insensitive to signed
curvature variations it is sensitive to the relative magnitudes of curvature and has a convenient

physical analogy. The strain energy of a thin rectangular elastic plate is given by

x 0%x\2 0%x ’x O0%x \2
I:CL[<@+@> _2<1_M><6u2 o 3u80>]dUdU’ (44)

where g is Poisson’s ratio, ¢ is a constant and R represents the domain of the plate. This

expression is minimised with respect to the free variables in the surface equation and in view of
any given constraints, which leads to a variational formulation of the surface fairing problem.
For practical purposes the expression is often replaced by simplified approximations. Neglecting

the Poisson ratio for example leads to:

= f [(%)Z (%)2”((%)1 i 5)

This is the small deflection equivalent (measuring the strain energy of flexure and torsion in a

thin rectangular elastic plate with small deflection, (discussed in more detail in chapter 5) of the

Applications to Geometric Smoothing 89

functional

= /R(k1 +2)dw, (4.6)

i.e. the integrated sum of the squares of the principal curvatures k, ks.

Normally a unique measure of some geometric property should be independent of the pa-
rameterisation of the surface. Examples of such measures are given by and the Gaussian
or mean curvature and their generalisations to higher order derivatives. Hence some authors,
notably Lott & Pullin, [53], Moretin & Sequin, [59]), have investigated using functionals based
directly on these geometric measures rather than their parametrisation dependent cousins as in
44 A5 The drawback however is that whilst these methods produce very good results, eval-
uation of parameter invariant measures is costly and time-consuming because of the non linear
relationship between defining coefficients (i.e control points) and surface derivatives. Hence they
are unattractive as fairness optimisation criteria. As a compromise between the two, Greiner
in [27], [28], [29], derives so-called data dependent functionals based on evaluating derivatives
from a reference surface. The process is iterative with the reference surface updated with each
iteration and is in fact independent of the surface parameterisation. Since it remains linear it
shares some of the advantageous computational properties of the parameter dependent cases.

In analogy with the curve case, variations in curvature can be considered too as in Hagen,
Santarelli, [32], and Hagen and Bonneau, [3I]. Here the construction algorithm combines a
least squares approximation with automatic surface smoothing. The smoothing criterion is the
approximate minimisation of curvature variation based on the integral of the sum of the third
order partial derivatives squared. More generally, an mth order functional can be created by

using the so called Frobenius norm of the mth derivative:

i m Omx
i Ou® Jy(m—1)

1=0

2

Figure 106l illustrates the case of smoothing an existing surface. Here the algorithms can

broadly be thought of as dividing into two cases,

1. locally based modifications where small step changes to groups of control points/data
points derived from derivative and curvature considerations are applied iteratively to obtain

a desired solution, as in for example, Kjellander [46], Poliakoff, [67], and,

2. global techniques where typically an energy based functional is applied to part of or the
whole surface, see for example, Nowacki et al, [62], Westgaard & Nowacki, [93].

90 Variational Based Modelling and Analysis using B-splines

local modification of data points/control points to smooth

surface in regions where curvature distribution 1s poor -
or iterate untll required curvature

— distribution is achieved

global smoothing of surface by minimization of energy -

functional with multiplying smeoothing factor

tune the smoothing parameter

B-spline surface with unwanted irregularities rodify the functional
leading to poor Guassian/Mean curvature map i smoath surface?

x(u,v) = Z Z AN DT (o)
1]

Figure 4.16: Smoothing an existing surface

We regard the parameterisation dependent measures as reasonable approximations to the
invariant ones for fairing purposes and in the following sections present algorithms based on the

second case for smoothing surfaces with or without data fitting. Examples are provided.

4.4.1 Smoothing combined with least squares data fitting

)

=1’

N

Starting with a given set of data points (XU)% i1

and wu,v parameterisations, (7;),, (u;)
respectively, we seek a B-spline solution

x(u,0) = > dyNig(u)Nja(v), (a2 x (v)%],

i=1 j=1

to the combined least squares/smoothing functional:

I(x) = (1 — sm)L5(x) + smlsmootn(X)

1 am) SO i) — +sm//

i=1 j=1 ,jOH—]m

om)x

ENGER) du dv.

Applications to Geometric Smoothing 91

The minimisation of the least squares error term, 0ljs,/0d = 0, gives the following matrix

equation
AdB = C,
where
M » N .
A= (Z Nr,k(ﬂ')NS,k(Ti))T _y B= (Z Nr,z(uj)Ns,z(Mj)) o
i=1 o =1 Tys=
M N iy
C= <Z > Nr,k(Tz‘)Ns,z(/vbj)Xz'j>r .
i=1 j=1 8=

From the minimisation of the smoothness term gives

aIsmom&h u v
0= =22 =D ayM{dM;.
.3
By combining with the error term we obtain the following system of equations for the control
point matrix d:
(1—sm)AdB + sm Y _a;M!dM! = C. (4.7)
.3
We solve this system using the generalisation of the Kronecker product equivalence given by

equation 2.3t
AXB, +...+A,XB,=C= ((Bl)T DAL+ ...+ (B,)T @ Ay)vee(X) = vec(C). (4.8)

Using this generalisation combined with a conventional LU factorisation, algorithm 4.3 presents

the steps required to compute the smoothed B-spline approximating surface.

4.4.2 Smoothing an existing B-spline surface

For smoothing an existing B-spline surface we combine the matrices derived from the minimisa-
tion of the smoothing functional with matrices derived from evaluating the basis functions and
B-spline surface at the knot averages, (1:)i—;, (¥;)j=,, where

1 1
i = k_1<ui+1+---+ui+k—l)> %:1——1

(Vj41 + o+ Vjp-1)-
The matrices in question

C = (Nix(n))); D = (Nii(¢;)); E = (x(n:,9;)); 7,

i,j=1’ i,j=1’

92 Variational Based Modelling and Analysis using B-splines

Algorithm 4.3: B-spline least squares surface fitting with smoothing

M,N
data set (xij)w.:l,
b d m (m) 2
smoothing functional, [[> Qij m‘ du dv

a c 1,j=0,i+j=m

p. 4
solution formed: x(u,v) = l; jgl di; N 1 (W)N; 1 (v), knot set (u;)P1F x (vj)gill

1. create u,v parameterisations (1:)4%_,, (us)'_y, from the data points
2. create suitable knot sets (u;)32y, (vy)3
3. create the basis function set (NLk(u)NLl(V))?’?:l
4. create the minimisation matrices My,..., Mz, M, ..., My from the basis function set
5. create the least squares matrices,
M N
A= (30 Nepo(7a)Nsk(73))2 81, B = (20 Nea(p5)Ne 1 (5)) 5 0y
i=1 j=1
MW
6. create the right hand side matriz, C= (3] > Nrx(73)Ns1(py)%15)5 04
i=1j=1

7. for a given factor sm form the Kronecker product matriz D = (1 — sm)(BT @ A)

8. for a given factor sm form the Kronecker product matriz E = sm} a;;((M})T @ M})
5

9. solve the system (D+E)vec(d)=vec(C)

10. reconstruct the B-spline control point matriz from the vector vec(d) and the B-spline surface

Figure 4.17: Algorithm 4.3: Least squares fitting combined with smoothing

are combined with the smoothing functional equation derived from minimising I,,o0n:

aIsmooth u v
a—d = lz]: Oéile- dMJ = 0,
to get the matrix equation
sm Yy o M!dMY + CdD = E. (4.9)
i,J

Again we solve this system by using the Kronecker product method and LU factorisation. Equa-

Applications to Geometric Smoothing

tion (.9 becomes
<sm (M) @ MY) 4 (D" ® C))vec(d) — vee(E).
ij

Algorithm 4.4 list the steps required to compute the smooth surface based on K.9t

93

(4.10)

Algorithm 4.4: Smoothing an existing B-spline surface

P q i bl
x(u,v) = >0 >0 dijNi p(u)Nj(v), knot set (ui)j—) X (v5)

A
i=1j=1 !
b d m Hm) 2
. . x
smoothing functional, ff Y am) SO BGY ’ du dv
a ¢ 1,j=0,i+j=m
)) 31
1. create the basis function set (Ni,k(u)Nj’l(v))LF1
2. create the minimisation matrices M{,... .My M ... MY from the basis function set

3. create matrices of u,v basis functions of x evaluated at knot averages
P q

C - (Ni,k(nj))i’jzlv D= (Ni,l(wj))i’jzl
p.q

4. create the matriz of surface evaluations at knot averages, E = (x(ni,zbj))ij:l

5. form the Kronecker product matriz A = D' ® C

6. for a given smoothing factor sm form the Kronecker product matriz B = sm} as;((M))" @ M})
i

7. solve the system (A+B)vec(d)=vec(E)

8. reconstruct the B-spline control point matriz from the vector vec(d), hence the surface

Figure 4.18: Algorithm 4.4: Smoothing an existing B-spline surface

4.4.3 Examples

To examine the effectiveness of algorithm 4.3/4.4 in smoothing existing surfaces we start with a

B-spline surface that is an approximation to a torus section. The surface is of order 5 by 5 with

5 segments in u and v and represents an approximation to a quarter torus with major radius 10

and minor radius 4 defined over the w, v limits [0, 7] x [0, 7]:

14 14

x(u,v) = Z Z d;;jN;5(u)N;5(v).

i=1 j=1

94 Variational Based Modelling and Analysis using B-splines

Deviation between original and perturbed surface

x(u,v)
2 r O N e
1.5 - ‘\\\“&4“&:\\“““““.‘—
. ———
1 - ———————
S S—————— %
e e oSS SOS S
0.5 | ool Se—w=———r e
. A=———— = S SO ONN
0 A= SN\ —==e
L NS el W aN\\
-0.5 o SO OUSSN T S
s N S Sn CKISRS
:“‘\‘“‘¢¢,o,;} X
-1.5 - S
B NSO S OS S SO
S S SS
eSS S

Figure 4.19: Deviation of perturbed B-spline surface from original

As in the curve smoothing examples, to produce a surface with unwanted undulations we perturb
the torus using a random number generator producing random numbers in the range 0 to 1. These
‘errors’ are successively added to and subtracted from the original control points to produce the
perturbed surface. Figure [LI9 shows the resulting deviation surface as a function of u and v
illustrating the irregularities introduced throughout the domain of the surface. Figures and
4. 2Tl illustrate the torus section before and after perturbing the control points in both wireframe
and environment mapped forms and displays the Gaussian curvature surfaces for the two
entities.

We use the following four smoothing functionals to reconstruct the surface:

J2 = / (x2, +x2)dudv, J2, = / (X + 2%, + %3,) du dv,

R R
Ty = [t b dude, Ty = [(ot 3 3, 43)dude, (11D
R R

where R is the relevant smoothing region of the u,v plane (in this example the whole domain of

the surface). To examine the effectiveness of the algorithm and the functionals we evaluate the

(14 * 14 control points)

Perturbed B-spline surface order 5 by 5
All control points from original surface displaced using random number generator

,
AT R Ry

" é—o%—o—%—o—————————————————————————————-h
N

TR

SIS TTERTHIITITNNN =]
TN
?——ﬂﬁ——‘—— SN
%———5————5——5——5@/,/
TN
it
TN
i

™

Applications to Geometric Smoothing

14 * 14 control points)

(

Original B-spline surface order 5 by 5
Approximation to a quarter torus section [0,pi]*[0,pi], major radius 10, minor radius 4

Original torus section and surface after perturbing the control points

Figure 4.20

Environments maps of the original and perturbed surfaces

Figure 4.21

96 Variational Based Modelling and Analysis using B-splines

Gaussian curvature of original B-spline surface Gaussian curvature of perturbed B-spline surface

Figure 4.22: Gaussian curvature of original and perturbed surfaces

following selection of global fairness measures for the resulting surface:

J2(x) = /qudu dv, JA(x) = /szdu dv,
R R
T2 (x) — / (2 + X2 dudv, Jo(x) = / (52, + 22, + X2,) du do,
R R
J3(x) = /xiwdu dv, J3(x) = /szdu dv,
R R
T = [(b dudv, T = [(b x4 3, o)dudo. (112
R R

For the purpose of the figures to follow we label these functional measures as Ji, ..., Js reading
left to right and top to bottom. As with the curve case, the smaller the value obtained for the
global smoothness measure the better the fairness of the surface. In addition, four parameter
independent measures based on the principal curvatures ki, ks are evaluated, Gaussian (K),
Mean (H), Absolute (A) and Total (T):

Applications to Geometric Smoothing 97

Jx =

(kerks)2du do, Ty = /(kl ‘g 5292 40 do,
R

Ja =

:o\ :g\

(ko + kall) dudo, Jr = /(kf T 12)du do.
R

Finally, we also compute the pointwise error between the original and the smoothed surfaces

obtained by sampling and the area,

Area = / ||xy X X,|| dudo,
R

as measures of the accuracy of the reconstruction.

The four smoothing functionals in [£.IT]are applied to the perturbed surface using a notional
smoothing factor, sm, of 0.1. The measures .Ji,..., Js are then evaluated to help determine the
quality of the reconstruction. Table [Z.4] gives the results of the tests for the smoothing of
the perturbed torus. Figures and show the resulting surfaces in wireframe form
and figures and the corresponding environment mapped images. From the figures
and tabular results the functionals J3; and J; appear to do better at reproducing the curvature
properties of the original surface for this example. This is backed by closer examination of the
Gaussian curvature surfaces displayed in figures [4.22] and and the Guassian and

mean curvature maps for the original and smoothed surfaces presented in figures 423 to £33l

98

Variational Based Modelling and Analysis using B-splines

Evaluation Optimisation Criteria Perturbed Original
Measure | min — JZ, | min — J2 | min — J3 | min — J7 Surface Surface
J? 1205.43 1226.63 5382.38 4684.04 4764.59 1590.56
J? 110.137 114.515 663.29 473.321 14679.5 166.585
JZ, 1802.39 1837.01 7712.14 6061.77 17505.6 2452.2
Jpgas 2113.36 2132.25 8140.91 6370.33 18553 2769.18
J3? 7848.46 7258.76 148658 114399 73210.1 1639.92
J? 831.981 811.836 25770.3 11758.9 747252 212.437
J3 8713.6 8092.25 201548 126797 758863 1851.88
Jfas 11030.9 10197 229550 124280 1.3747e+06 7741.65
JK 3.03332e-21 | 3.18595e-21 | 2.83922e-18 | 4.28346e-19 | 7.88762e-07 | 7.29018e-21
Ju 0.00301197 0.0031941 0.0844391 0.04071 74334.7 0.00562191
Ja 0.0481914 0.0511055 1.35103 0.65136 1.18935e4-06 | 0.0899506
Jr 0.000301968 | 0.000334955 1.65967 0.141795 2.50147e+12 | 0.00091451
Area 492.077 490.118 501.858 495.366 599.906 495.295
Maz dev 1.2695 1.26419 1.3438 1.33566 0.0 1.28526
perturbed
Maz dev 0.1764 0.158105 0.613125 0.46787 1.28526 0.0
Original

Table 4.4: Smoothing measures and values for totally perturbed torus section, sm = 0.1

Figure 4.23: Gaussian and mean curvature map of original surface

IGau.ssian -
I 0025813

0012306

-3.3%4e- M8

Auto Range I
Max Range |
Adust Mesh |

017076

|D.12517

Luto Range |
Max Rangs |
Adjust Mesh |

Close

99

Applications to Geometric Smoothing

14 * 14 control points)

(

Smoothed B-spline surface order 5 by 5

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)

Smoothing of perturbed surface done using measure J_{4}

Smoothing of perturbed surface done using measure J_{3}

Smoothing factor 0.1

Smoothing factor 0.1

SOy
AR TN
AT RN
TN
R TR
AT T
T AN
TR
AR W b
T
A AARRARRRRIR B
iy A
TTTTHTTHITT
A TRAATIRR
R T
%,_,.______======_==_____—_»

i
gty
A
T
gttt
oty
:..n..................- \
LT
S

018
3

9—52?1
RN

R
e NN
,%fﬁ————??ﬁﬁ%%

T
A
T
__,,,_____”________________
iy

R
=
St
et
SR

Smoothed surfaces using functionals J3 and Jy

Figure 4.24

Environment maps for .J3 and J; smoothed surfaces

Figure 4.25

mes

B-spl

1S using

Variational Based Modelling and Analys

100

14 * 14 control points)

(

Smoothed B-spline surface order 5 by 5

14 * 14 control points)

(

Smoothed B-spline surface order 5 by 5

Smoothing of perturbed surface done using measure J_{8}

Smoothing of perturbed surface done using measure J_{7}

Smoothing factor 0.1

Smoothing factor 0.1

018
3

AT
R
R
R,
—__—a__ﬂ—____———————ﬁ——————— IRRTATARAL
_____ﬁ___ [T
i

Niayyativamy,
T T TT

it
#....Iiﬂ#hﬂn 1]
R
N LI A,

1

S T RO R E Vo

?4????
IR
%%%%Mm%ﬁﬁﬁ?%ﬁ%
AR
%%%—%%?—?ﬁ?ﬁﬁ
\

W

T
a_————,———_——__————_—————_—————_———————————_—_—_———_

URIEAEARRRRANRANNARRANRARAR NN

Smoothed surfaces using functionals J; and Jg

Figure 4.26

Environment maps for .J; and Jg smoothed surfaces

Figure 4.27

Applications to Geometric Smoothing

Gaussian curvature of J_{3} smoothed B-spline surface

W
!
ol
hift

e
ol
i

=N\
R
N
\
N
‘\\\
S

=\

05
\\‘

o

R

=
e
N
)

o\
o
8!

<
=

N
N
N

-0. T
/////Z////{'I‘ﬂ" XK
=

Figure 4.28: Gaussian curvature of J3

Gaussian curvature of J_{7} smoothed B-spline surface

2
S
SR
e
NS

=
2 = 3
R
SREIITLI

222

AN 22
IS R s SRRz
N e e
> XL

KL
KL
SRR
(RT3
SRRREBZZLL AT
Iislaaa s
R s s s
L RRRTRRERIILIALA LS
LSRRI AL
SRR LI =
e
G

0.1 F

SRR

S

TSI

LGttt
{7

PRI
T RRRIZILISRARIARIL
[ss it sty
LR
525
L5

35

Gaussian curvature of J_{4} smoothed surface

e =
e =
% et
l,'f/,///,o"‘o“‘“ ==

e e
585 T
e s = S
NI S
M0 e
e fmwmu
IS
%%

and J; smoothed surfaces

Gaussian curvature of J_{8} smoothed surface

o,‘:‘:":::::‘—:‘:‘::‘:::‘ == NN

SR HTHIT
[A

T ““‘:‘m‘“

=T
T
i
i

Smesars

Figure 4.29: Gaussian curvature of J; and Jg smoothed surfaces

101

102 Variational Based Modelling and Analysis using B-splines

Curva... |Z|

Stple: Style:
Gaussian v |Mean ¥
IID 021732 II_U.ESUSB
00068183 014031
I-D.0080953 |?.2957&-005

Auto Range Auto Range

Max Range Max Range

Adjust Mesh Adjust Mesh

ali

Close Close

aldi

Figure 4.30: Gaussian and mean curvature map of J;3 smoothed surface

’|.G aussian ¥
l 0020146

0008708

00027363

Auloﬂ.amga |
Max Range |

Adist Mesh

AutoRange |
Mot Renge. |
Ajust Mesh

= =

Figure 4.31: Gaussian and mean curvature map of J; smoothed surface

Applications to Geometric Smoothing 103

|Gausswan ad

lu.zszsz
011632 10,3565
0017 .
Auto Range. | Auto Range _
Max Range | 'HaHF!"an'g.e l
=]
Figure 4.32: Gaussian and mean curvature map of J; smoothed surface
Curva... (X Curva... [X|
Stle St
Gaussian v Mean .v]

010448

7

ID Hin

003102 023719

-0.034278 003114

Ao Range Auto Range:

Mai Riange Max Range

Adiust Mesh

Adiust Mesh

ek §
ali

Close Close

Figure 4.33: Gaussian and mean curvature map of Jg smoothed surface

104 Variational Based Modelling and Analysis using B-splines

4.4.4 Local smoothing

It is of course not always necessary to smooth the whole surface. Irregularities may only be
present over a particular section of the domain and a surface that needs to be smoothed in
only a small region doesn’t require a change in shape everywhere. Hence it is important that a
smoothing algorithm deal with locality. To illustrate the effectiveness of the algorithm in fairing
over a specified region of the surface we take a second example with the same original surface but
with control points randomly perturbed in the range 5 to 8 in v and v. The partially perturbed
torus section is then smoothed over the u, v section [a, b] X [c, d] = [0.589, 1.963] x [0.589, 1.963],
these values corresponding to the parametric region of the surface that was modified. Figure [4.34]
displays the deviation map and the perturbed surface in environment mapped form. Table
gives the evaluation measures and figures to [A.38 the results in wireframe and environment
mapped forms. Figures .39 to [4.41]provide displays of the Gaussian and mean curvature maps.
Again functionals J3 and J; appear to do slightly better in producing a surface that comes ‘close’

to matching the original.

Evaluation Optimisation Criteria Perturbed Original
Measure | min — J2, | min — Jfas min — J2 | min — J}::);zs Surface Surface
JZ (J1) 1352.63 1379.37 1725.06 1730.19 2101.09 1590.56
JZ (Jo) 141.014 144.57 181.643 184.154 746.313 166.585
va (J3) 2028.89 2084.11 2612.67 2656.61 2191.91 2452.2
Jfas (Ja) 2372.77 2425.77 2930.53 3114.06 3085.19 2769.18
J3 (Js) 5318.45 4783.49 14373.8 12697.7 5753.77 1639.92
J3 (Js) 1033.56 865.488 1641.41 1343.44 11681.6 212.437
J3, (J7) 6231.48 5599.14 15305.7 13616.7 11767.9 1851.88
Jg;?as (Js) 23024.1 20369 27006.7 28295.7 117943 7741.65

JK 4.17905e-21 | 4.30838e-21 | 7.82576e-21 | 8.21328e-21 | 5.82889e-21 | 7.29018e-21
Ju 0.00439791 0.00447648 0.00631404 0.00616064 0.00424065 | 0.00562191
Ja 0.0703665 0.0716236 0.101025 0.0985702 0.0678515 0.0899506
Jr 0.000903488 | 0.000862518 | 0.00176585 0.00127207 | 0.000674266 | 0.00091451
Area 495.396 495.279 502.57 504.153 529.898 495.295
Mazx dev 0.825255 0.820711 0.817691 0.792637 0.0 0.777434
perturbed
Mazx dev 0.126234 0.122933 0.287779 0.302422 0.777434 0.0
Original

Table 4.5: Smoothing measures and values for partially perturbed torus section smoothed with
factor 0.1 over the range [0.589,1.963] in u and v

105

Applications to Geometric Smoothing

Deviation between original and perturbed surface
Surface perturbed over the range [0.589,1.963] in u and v

x(u,v)

inal and environment mapped views

18

Partially perturbed surface, deviation from or

Figure 4.34

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)

Smoothing of perturbed surface done using measure J_{4}

Smoothing of perturbed surface done using measure J_{3}

over the range [0.589,1.963] in uand v

1.963]inuand v

over the range [0.589

Smoothing factor 0.1

Smoothing factor 0.1

o

X
AR
R
R
R
\

!

\\
V%

M

I
M..........
gty
g ny.
A
i

REASANAN

.-
.......-.-.--nn-
Wiagy hi
R

odag iy,
1L
2

LY

JAVRRIEIIN
AL

T TR T
i
T
ul AT

ANNNL
ST
33181 LLLLREIIRRNNN
ety AN
T R

7
S

o

AARRANRRNRy
4—&”45555””””/
N\

S 1A HERLARNARRINNY

QRORTKY
QRN
,zw%”?———
N
RN
Dk
o

Wi \\\\
LI
A,

T

T,

T T
bt

TR
AR

XX

S

S

S e

on

Smoothed surfaces using J3 and .J4 functionals to partially perturbed torus sect

Figure 4.35

106 Variational Based Modelling and Analysis using B-splines

Smoothed B-spline surface order 5 by 5 (14 * 14 control points) Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{7} Smoothing of perturbed surface done using measure J_{8}
over the range [0.589,1.963] in u and v over the range [0.589,1.963] in u and v

z Smoothing factor 0.1 7 Smoothing factor 0.1
25 25
24 2 |
23 231
22 + 2 |
21 ¢ 21
20 S 20 =
19 SE= 19+ SSss
18 r == 18 =
17 + 17 ¢
16 16 -

20° 20°
2 ¢
. 72 X ¢ X
5 3 5 £
y W y 3

Figure 4.36: Smoothed surfaces using J; and Jg functionals to partially perturbed torus section

Figure 4.37: Environment maps for J3 and J; smoothed surfaces

Applications to Geometric Smoothing 107

Figure 4.38: Environment maps for J; and Jg smoothed surfaces

Slyle: Shyle:

Gaussian = Mean hd

P nores . [0 20
-l EE =

| : = 017758

0023818 : SRS o
‘ -~
&, I 1 418e005 ~ - I]ﬁ 52
~ —

- Auto Range ’ - F Autn Range
Max Range B 3 ; Max Range
Adjust Mesh Adjust Mesh

Close Close

i

Figure 4.39: Gaussian and mean curvature map of J; smoothed surface

108 Variational Based Modelling and Analysis using B-splines

Curva... \
Shye; Syl
|Gaussian hd Mean i
l|0.045525 IIU 20743
0022762
|-3 4731e-006

i

Auto ﬁiange-

_. AuioRangs |
] Has-ﬁaﬁq_e‘ |

Adst esh

Dose

Adst esh,

i

Figure 4.40: Gaussian and mean curvature map of J; smoothed surface

Stpler Shyle:

[aussian * IMean hd

I|n 065135 '|n 117
0030283 021347
|-0.0055595 |0‘01 577

Auto Range

huta R ange |
Max Range |

At Mesh

Max Rangs

Aidjust Mesh

ali

Figure 4.41: Gaussian and mean curvature map of J; smoothed surface

Applications to Geometric Smoothing 109

4.4.5 Alternative computational method

An alternative computational method for smoothing an existing surface based on equation [4.7]
is to take individual terms, a;;M{dM7, resulting from minimisation of the smoothing functional

and to repeatedly solve as necessary the following two term Kronecker equation:
sm x o MidM? + CdD = E. (4.13)

The motivation for this approach come from the paper of Gardiner et al, [23], who document
an algorithm for solving this type of matrix equation (called the Sylvester equation) based
on a Hessenberg-Schur method. Their implementation has a computational cost O(n?), where
n = maz(p, q), whereas the conventional LU factorisation for the Kronecker product method is
O((pg)*) ([24]).

We solve for d and then take this new surface as input to the equation for applying
the next term in the smoothing functional. Algorithm 4.5 presents the steps involved.

We test this alternative technique for smoothing as in examples 1 and 2. Table presents
the evaluation measures for the perturbed torus section smoothed over its whole domain in u
and v. Figures 43l and [£.44] show the surfaces in wireframe form and figures and
illustrate the corresponding Guassian curvature maps.

Finally, we apply algorithm 4.5 to the case of the partially perturbed torus section. Table
4.7 gives the numerical results, figures 47 and display the resulting surfaces and figure
[4.49] two of the corresponding Gaussian surfaces. The results as shown for these two tests are

comparable in terms of quality to the Kronecker product method.

Variational Based Modelling and Analysis using B-splines

110

Smoothing an existing B-spline surface, alternative method

Algorithm 4.5

1

q+l1

J

(v5)

+k
)izt

Uq

(

knot set

IN;i(v),

p
i Ni g (u
1j=1

>3 d;

%

x(u,v) =

du dv

2

8™ x
Ou(®) §v(d)

Olij ‘

i

0,147

b d

smoothing functional, [[

a c i,j
method uses Gardiner et al algorithm for solving system of the form AXBT 4+ CXDT

=m

=E

=1

P9
i3

1. create the basis function set (Nix(u)N;1(v))

MY from the basis function set

.7M;,MV,..

8. create matrices of u,v basis functions of x evaluated at knot averages

2. create the minimisation matrices M3, ..

q

P

(Ni7k(nj))-

D= (N:1())

1

13

1,3

C
4. for each as;

=E

4.1 solve the system sm* a;;MidMj + CdD

1

g+l

J

(v5)

) . k
4.2 build B-spline surface from d and knot sets (u;)?3)

4.8 update surface for next iteration

Figure 4.42: Algorithm 4.5: Smoothing an existing surface, alternative method

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{4} and algorithm 2

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{3} and algorithm 2

Smoothing factor 0.1

Smoothing factor 0.1

<5
SRS
QR
AR
AR
QR
R

L

W
\ %%e
o

logthy
i
XL

T
AR
T

%—%«ﬁ————————ﬁi
I

TN
—u——n——u—i———?—z? \

W

A\

R
S

it
1l
\l

iy
|

$=..-=-
T AT
i
ooy --
17
17

SRR
S

AR
PRI

i
T 1f
axgygita et

AARTAAAA A
IR
TN
A,
iy il
R

\\\
R
i NN
z”%%?—ﬁ???ﬁ”%ﬁ
\

1
i

tO

Figure 4.43: Smoothed surfaces using functionals J3 and Jy

Applications to Geometric Smoothing

FEvaluation Optimisation Criteria Perturbed Original
Measure | min — JZ2, | min — J2 | min — J | min — J7 Surface Surface
J? 1246.65 1670.78 2681.17 2756.55 4764.59 1590.56
J? 119.899 201.454 339.418 313.967 14679.5 166.585
va 1848.42 2431.74 3871.36 3745.13 17505.6 2452.2
JpgaS 2157.61 2752.92 4252.16 4026.15 18553 2769.18
J3? 5889.75 4356.95 30075.8 32151.3 73210.1 1639.92
JJ? 786.363 1567.93 7359.36 4405.28 747252 212.437
J3 6699.78 6910.8 44721.6 37220.3 758863 1851.88
Jfas 9338.57 10440.6 56922.6 36770.4 1.3747e+-06 7741.65
JK 3.99326e-21 | 1.22622e-20 2.0972e-19 7.92166e-20 | 7.88762e-07 | 7.29018e-21
Ju 0.00370058 0.00670396 0.0212138 0.0173101 74334.7 0.00562191
Ja 0.0592092 0.107263 0.339421 0.276962 1.18935e+4-06 | 0.0899506
Jr 0.000490429 | 0.00228712 0.0799141 0.0228024 2.50147e+12 | 0.00091451
Area 489.079 498.559 498.694 493.25 599.906 495.295
Maz dev 1.2607 1.28866 1.30139 1.27686 0.0 1.28526
perturbed
Maz dev 0.284613 0.206033 0.33812 0.328612 1.28526 0.0
Original

Table 4.6: Smoothing measures and values for totally perturbed torus section smoothed with

factor 0.1 over complete surface, algorithm 4.5

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{7} and algorithm 2
Smoothing factor 0.1

N
o
e e L e m e

y

W
e

T
Nttt

WL
N
(WA W
\\\§\\\\\\\\\\\\‘\\\ Y
AR

‘\\\\\\\\\\\

T
“‘\\\\\

i

W

W

W
At
N

LLMANIANY
\Y

* 1\
\}

\)

\

W

\

\\\\\‘\‘\\\\

\
\

i
i
N
\

\

1|
N

no
o
e e L e m e

Smoothing factor 0.1

117

17177
’llllll’l’l""

7
711

/1
4

y

T

R

e

AN

i\

I
1l
T

ILLEARRARRAANAY

I\

AN

T
!

N

T
T

IRLARNIRA
T

.
& Y
N

\

AR
y
i
W

W
W
\\Y
\\}
\
\
\

|
i
i
W\

Figure 4.44: Smoothed surfaces using functionals J; and Jg

A

!
R

AN
\‘\
-
\
A\

LAY
A\
A\
W
\\\y
W

\

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{8} and algorithm 2

W\
TR
¥
W
AR

R
W
e
RS

\\Y
Ay
\

TR
R

AN

UARRIAAMA

\

\

112

Variational Based Modelling and Analysis using B-splines

{4} smoothed B-

Gaussian curvature of J

spline surface using algorithm 2

{3} smoothed B-

Gaussian curvature of J

spline surface using algorithm 2

X(u,v)

X(u,v)

< o
Q<
oS o

i

SR
SSeees

e
=

ot

W
s
W

W

T
1
a5t} u«‘.‘o
1
859!
1 -;%-

"'
S

XS

o

2

-0.02
-0.04

e

S
W
Sl

X
N

ture of Js; and J4 surfaces

Gaussian curva

Figure 4.45

spline surface using algorithm 2

Gaussian curvature of J_{8} smoothed B

spline surface using algorithm 2

Gaussian curvature of J_{7} smoothed B

X(u,v)

X(u,v)

It
1
1

WA
u
st

uastit!

|||||||||||\\|||m

MM

|||||||||\l||||||||‘“

i

LY

W
i
Al Saasnetiy

s

.
: “‘,“‘“l\\\\

A

i

%
&
/////

Z
2

Seewems

N
S

s
=

< o
]
o o

-0.02
-0.04

ture of J; and Jg surfaces

Gaussian curva

Figure 4.46

Applications to Geometric Smoothing

113

Evaluation Optimisation Criteria Perturbed Original
Measure | min — J2, | min — J2 | min — J2, | min — J7 Surface Surface
JZ2 (J1) 1289.15 1684.93 1750.29 1696.88 2101.09 1590.56
JZ (Ja) 146.804 206.298 213.909 189.854 746.313 166.585
JZ2, (J3) 1931.78 2655.05 2758.68 2626.73 2191.91 2452.2
Jpgas (Ja) 2300.35 3077.17 3199.48 3049.73 3085.19 2769.18
J3 (Js) 9917.74 5024.12 9132.25 7567.91 5753.77 1639.92
J3 (Js) 1961.82 1361.52 1723 1197.81 11681.6 212.437
J3 (J7) 12414.6 6874.94 10856.1 8177.97 11767.9 1851.88
JZ‘:’;S (Js) 42270 24963.7 33691.1 21074.4 117943 7741.65

JK 3.64812e-21 | 2.48069e-20 | 2.71768e-20 | 9.45523e-21 | 5.82889e-21 | 7.29018e-21
Ju 0.00495916 0.00918412 0.00976201 0.00667339 0.00424065 | 0.00562191
Ja 0.0793465 0.146946 0.156192 0.106774 0.0678515 0.0899506
Jr 0.00175634 0.00758169 0.00921676 0.00188962 | 0.000674266 | 0.00091451
Area 497.469 500.694 501.84 501.51 529.898 495.295

Maz dev 0.858635 0.809541 0.81418 0.816421 0.0 0.777434

perturbed

Maz dev 0.220561 0.210453 0.291759 0.292765 0.777434 0.0

Original

Table 4.7: Smoothing/Fairness measures and values for partially perturbed torus section
smoothed with factor 0.1 over a range [0.589, 1.963], algorithm 4.5 used)

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{3} and algorithm 2
over the range [0.589,1.963] in u and v, Smoothing factor 0.1

Smoothed B-spline surface order 5 by 5 (14 * 14 control points)
Smoothing of perturbed surface done using measure J_{4} and algorithm 2
over the range [0.589,1.963] in u and v, Smoothing factor 0.1

z z
25 [25 [e ‘44:’:"
= %
2%+ %t =
S22
L L e o 0 0 s 5 08 0 5 £
23 23 SesEessese)
e e e e 2 5 5 1 |
22 | 22 e
ESScoscsscct
2l ¢ 21+ e
20 SE= 20 Es=s==cce |
F f r e o e e o 7
—— e 4
19 + E=E 19 - EESSss22
= E=sssess
18 + ! 18 -
17 + 17 -
16 16 -
70° 70°
(;526? X (?6262 X
> 242 k 242
y y

Figure 4.47: Smoothed surface using J3, J; functionals (alg. 4.5)

Variational Based Modelling and Analysis using B-splines

114

(14 * 14 control points)

Smoothed B-spline surface order 5 by 5
Smoothing of perturbed surface done using measure J_{8} with algorithm 2

)

(14 * 14 control points

Smoothed B-spline surface order 5 by 5
Smoothing of perturbed surface done using measure J_{7} and algorithm 2

8
X

¢!¢¢¢¢¢!~ﬂ~ﬂﬂﬂﬁﬂhfi
AR T TN
AU
R ———————— A
(IISSITLRARARUUARRR R
AT
R T
T T
T
i

20
@f§§é£
3

over the range [0.589,1.963] in u and v
Smoothing factor 0.1

L

20 |
19 -
18 -
17 ¢
16 -

25r
24 -
23+
22 -
21+

8
X

20
@?gggg
3

over the range [0.589,1.963] in u and v
Smoothing factor 0.1

25r
24 -
23 -
22 -
21 -
20 -
19 -
18 ¢
17 -
16 -

Figure 4.48: Smoothed surfaces using J; and Jg functionals (alg. 4.5)

Gaussian curvature of J_{4} smoothed surface using algorithm 2

Gaussian curvature of J_{3} smoothed surface using algorithm 2

Surface smoothed over the range [0.589,1.963] in u and v

Surface smoothed over the range [0.589,1.963] in u and v

X(u,v)

x(u,v)

0.06
0.04
0.02

-0.02
-0.04
-0.06

sies!
th %«o“-«-

gstesies|
Sssistiass)

wiyslantn!
issests

8!

983
0

19758!
u%utlst
I

jas3usfests
1 »-«oo»-o«\‘

hessel

55l
55|
3305

sasasssss]

3|
jasiusyusss
justint
“-«m“«- t
iy

19|
!
5|

T
b
s

408!

Figure 4.49: Gaussian curvature of J; and J; smoothed surfaces (alg. 4.5)

Applications to Geometric Smoothing 115

4.5 Volume Modelling

The development of algorithms surrounding the modelling and visualisation of three (and higher)
dimensional data is a relatively new endeavor held in check in the past due to the large amount of
computing power and memory required to process such models. Over the past decade or so there
has been much interest and research into the use of ‘solid” models and the potential they have
to model processes in a more accurate and realistic manner. The fields of geometric modelling,
image processing, data fitting and visualisation, medical imaging and others have been active in
developing tools and techniques to simulate structure and behaviour of volumetric objects.

In geometric modelling tensor product solids or volumes are a natural extension of tensor
product surfaces to a third dimension. As shown in section 2.5, algorithms and properties of
B-splines extend naturally from the curve/surface case to volumes. B-spline volumes have local
control for manipulation, satisfy the convex hull property and can be efficiently evaluated and
subdivided. Derivatives and integrals can be found analytically and represented as entities of
the same type. B-spline volumes have been used by the solid modelling community to model
freeform primitives, Joy, [41], [42], Lasser, [50], [51], to effect freeform deformations of space
curves and surfaces, Sedeberg & Parry [78], and to model both geometry and material properties
of composites, Stanton & Crain [79], Marston & Dutta, [55].

In traditional solid modelling the emphasis is on describing the boundaries of an object
where it is assumed that the interior of the object is homogeneous. The potential to analyse and
build objects which are composed of multiple materials and/or have varying material properties
throughout (such as density) has brought the need for an enhanced solid model which is capable
of containing this type of information. Such a model is called a heterogeneous solid model.
Tensor product functions can be used for describing such properties which vary through space
in addition to geometry.

The medical research community has also been active in the use of free-form solids. 3D
images from magnetic resonance and CAT scanned data have been used to construct free-form
volumes for the elastic modelling of soft tissue, Bro-Neilson [3], Roth et al [74], and the tracking
of deformations of human organs over time, Radeva et al [71], [72]. Assuming a regular grid
of voxels, the conversion to a tensor product solid is carried out here by assigning a value
which corresponds to some property of the object being modelled, such as density. By using
an interpolatory or approximative (given the typical size of 3D images) data fitting technique
such as least squares, the control points of a functional B-spline volume can be found which
interpolate or approximate the voxel value.

A tensor product solid can be described in either parametric or functional form. The para-

116 Variational Based Modelling and Analysis using B-splines

metric function is written as

x(u,v,w) = (z(u,v,w) y(u,v,w) z(u,v,w))

describing some freeform homogeneous solid, or as,

x(u,v,w) = (r(u,v,w) ylu,v,w) z(u,v,w) plu,v,w) >

where p is some property at the point (u,v,w). This representation can be used to describe a
free-form volume which has heterogeneous properties throughout its interior and on its surfaces.
The geometry and the material properties of the object are explicitly represented and the surfaces
of the object are the isoparametric surfaces at the limiting parameter values. However, there
are two drawbacks with the parametric form: first, we are limited to modelling objects that are
six sided (or tubular if periodic in one or two directions) and second, that there is no direct way
to get material properties at a particular point in space. The user must specify a parameter
triple instead. As in the curve/surface case a point/parameter inversion algorithm such as a
generalisation of Hoschek’s, [38], can be used at a computational cost to overcome this problem.

The other form of the tensor product solid is the nonparametric (or functional) representation
given by p = f(u,v,w), where p describes a material property, such as temperature or density,

throughout an object as a function of u, v, w. It can also be written parametrically as

x(u,v,w):(u vow f(u,v,w)).

Here the parameter values correspond directly to a point in space u = x,v = y,w = z and are
bounded by the limits of the bounding box around the object (Umin < U < Umaz, Vmin < U <
Umazs Winin < W < Wpee). The geometry of the boundaries of the object are stored explicitly as
separate curve and surface functions, or they are determined by setting p equal to a constant.
A wide range of applications produce this type of data consisting of three independent and one
scalar dependent variable, (z;,v;, 2, F;). For example, MRI and CAT scans as mentioned above,
measurements of mineral concentrations from core samples, 3D CFD simulations and pressure
or temperature readings. Although not dealt with explicitly in this report it is also possible
to have several scalar dependent variables such as used in certain CFD simulations where the
velocity and the pressure of the flow are measured at a point.

Although there are papers reviewing extensions of tensor product data fitting algorithms to
the volume case, for example Nielson, [63], little has been written on generalisations of smoothing
algorithms developed for the curve and surface case. We concentrate here on the use of volume B-

splines to produce ‘smooth’ approximations to regular (that is based on a rectangular topology)

Applications to Geometric Smoothing 117

data sets by extending and generalising the smoothing algorithms developed in sections 4.2.1
and 4.4.1 for curves and surfaces. As before we take the least squares algorithm and combine
it with a smoothing measure based on a suitable generalisation of a curve/surface based energy
term. The combined functional is then minimised to produce a volume that both approximates

and is ‘smooth’ in a number of ways in which we can quantify.

4.5.1 Volume smoothing combined with least squares data fitting

- LT bho~d~f 2
A .t 2 m e
5) Qs> > > [xwswosg| + sm S g [—2ZX | du dv
RN ST A e g D (D
- =3
P ptogt=m

blend of least squares fit and a smoothing component
mititmised to produce final volume, relative importance of
two terms determined by factor sm

smooth volume?

data points with irregularities

4

tune smoothing p
factors o, and
ity halance with &
the least squares

pratneter s,
and order m,

rror comming from
fit

Figure 4.50: Incorporating volume smoothing process with least squares construction

Figure
ing. Starting with a given set of data points (xijk)M’N’P

(Ti)f\ih

p q

x(u,v,w) = ZZ

i=1 j=1 k=1

to the combined least squares/smoothing functional:

i jok=1"
(115)721, (Vi) s, respectively, we seek a B-spline solution

Z dijkNi,l (U)Nﬁm (U)Nk,n (’(U)) (Uz>

P+l
i=1 X

(vj)

I(x) = (1 — sm)Ls(x) + smlsmootn(X)

qg+m
J=1

4.500 illustrates the setup for combining volume data fitting with smooth-

with w,v,w parameterisations ,

X (W)=

118 Variational Based Modelling and Analysis using B-splines

2
) du dv dw.

The minimisation of the least squares error term, Ol / od = 0, gives the following matrix

0¥)x
Ou® Gv(@) O (k)

M N P
(1—sm) ZZZ”X (Tis 1 Vi) ngk” —l—sm/(aijk

i=1 j=1 k=1

equation
where
PsqsT M P N q
d=(dy) " A= (2 Nu(m)Nu(r))' . B= (Z Newl) Nean 1)) |
P ; M N P D
= Nsn N, n) 5 D= < N?" i s N, n 3 > - .
(Z AN) D23 3 Nt Noslire)

From [B.13 the minimisation of the smoothness term gives

aIsmooth o

0="34

Z ailhklMZ ©;d ®j M;jl Ok M}cvl
i1,51,k1
By combining this with the least squares error term we obtain the following system of equations
for the control point matrix3D d:
(1-smA©;do;BoyCHsm Y aijnMi©;do; MY, o My, =D. (4.14)
i1,J1,k1
We solve this system by using the Kronecker product generalisation of to matrix3D entities,

reducing it to the following conventional matrix equation:

((1 —sm)CRB® A + sm Z Qi jr iy My, @ M @ MZ)Uec(d) = vec(D). (4.15)

11,J1,k1

Algorithm 4.6 presents the steps required to compute the B-spline solution for this case.

4.5.2 Smoothing an existing B-spline volume

Figure [£52] illustrates the local/global approach to smoothing an existing volume, highlight-
ing the functional/parametric distinction. For smoothing an existing B-spline volume we
combine the matrices derived from the minimisation of the smoothing functional with ma-

trices derived from evaluating the basis functions and B-spline volume at the knot averages,

(1)i=1, (%‘)?:1’ (Ck)r—y, where

1 1

— 1(Uj+1+' cAVjmo1), Gk = -1

1

1(Ui+1+- A U)W = -

Applications to Geometric Smoothing 119

The matrices in question

A = (Nu(n))? B = (Nim(¥));, s C=(NiwlQ)); e D= (x(0i 05, G)) ey

3,7=1"

are combined with the smoothing functional equation derived from minimising I,,00th:

a]:S'rnoo U v w
O: —th = Z ailjlklMil ®Zd®] M]l @k; Mk17

od L
11,J1,k1
to get the matrix equation
(C @B®A+sm Z Qiyji iy M, @ MG @ M?Jvec(d) = vec(D). (4.16)
i1,J1,k1

Algorithm 4.6: B-spline volume least squares fitting with smoothing

MNP
data set (Xijk)i,j,k:1
s 2
. . ®
smoothing functional, f(> Qi ik W)du dvdw

V M,j,k=0,it+j+k=s

create u,v,w parameterisations (73)%_y, (ni)¥_y, (n)E_, from the data points
create suitable knot sets (us)223, (vy)3T, (wie)3ts
create the basis function set (Ni1(w)Nju(v)Nga(w))

create minimisation matrices My, ... M3, My, ... MY My ... MZ, from the basis function set

pP,q,r
i,jk=1

ARSI

create the least squares matrices,

M N P
A= (Z_:l No2 (72)Ne1 (73))2 e=15 B = (3 Nom(ts)Newm(ptg))s =1, C= (kzl Ne.n (1) Ve n (V))5 =1

.
Il
"

6. create the right hand side matriz, D = EM: EN: EP: thl(Ti)Nsl’m(/uLj)Nti’n(Vk)Xijk>p7q,r -
i j r1,81,01=
7. for a given smoothing factor sm form the Kronecker product matriz
E=(1-sn)C®BR®A
. for a given smoothing factor sm form the Kronecker product matriz
F=sm Z aiijlkiMﬂl ® Mgl ® Ml]h
i1,j1,ke

9. solve the system (E+F)vec(d)=vec(D)
10. reconstruct the B-spline control point matriz3D from the vector vec(d)

Co

Figure 4.51: Algorithm 4.6: Volume least squares fitting combined with smoothing

120 Variational Based Modelling and Analysis using B-splines

local modification of data pointsfcontrol points to smooth -
wolume in regions where curvature distribution is poor iterate uhtil required © ature
ox distributipn is achieve
global smoothing of volume by minimisation of energy P
functinnal with multiplying smoothing Factor tume the|smoothing parameter
modify the functional

smooth volume?

Ty — D > > T QDI o (M o ()
1 1k

E-spline parametric volune with unwanted irregularities
leading to poor Cuassian/Mean curvature cross sechion map

A=

Wy = > > i QDT g (WO, (o
i i k

E-zpline functional wolume with control point value
irregularities leading to poor Guassian/hean curvature
map

Figure 4.52: Smoothing an existing volume

Using [4.16] algorithm 4.7 extends algorithm 4.4 to the volume case.

4.6 Volume Smoothing Examples: functional case

4.6.1 Example 1

To test the effectiveness of algorithm 4.7 in smoothing existing volumes we test it first on an
example functional B-spline volume of order 4 in w,v and w with 10 control points in each

direction:
10 10 10

x(u, v, w) = Z Z Z dijiNia(w) Nja(v) Nia(w).

i=1 j=1 k=1
The control points d;j are set to be constant in a given k level, varying linearly in a range from
-5at k=1to b5 at k = 10. As before, to simulate a perturbed volume we disturb the control
points using a random number generator such that the maximum absolute deviation of a given

control point is 0.1. The perturbed volume is smoothed using algorithm 4.6 and employing the

Applications to Geometric Smoothing 121

Algorithm 4.7: Smoothing an existing B-spline volume

P a9 r

x(u, v, w) = Zl -21 kzl disli 1 (WN; ()N (W), (u)32] X (v3)I2T x ()i}
i=1j= 3

S

smoothing functional, f(> Qi 5x
V M, k=0,11j+k=s

8®)x
Ou®) 9v(3) gu®)

2
’)dudvdw

,) P,q,r
1. create the basis function set (Ni’l(u)NJ-,m(V)Nkm(w))i7J,7k=1
2. create minimisation matrices My,... M3, My,... M7 My,... MY,

from the basis function set

3. create matrices of u,v,w basis functions evaluated at corresponding knot averages
o= (Naa(n9))] o No = (Maw(9))T,0p s = (Man(G9))]

i,j=1’ ij=t
3. create a matriz3D of volume evaluations at knot averages G= (x(ni,wj,ck))}:’?’izl
4. for a given smoothing factor sm form the Kronecker product matriz
F=sm Z ailjlklML’l ® Mj']/1 ® Mi
i1,j1.k
5. form the kronecker product H= N3 ® (No ® Ny)
. solve the system (F+H)vec(d)=vec(G)

7. reconstruct the B-spline control point matriz from the vector vec(d)

D

Figure 4.53: Algorithm 4.7: Smoothing an existing B-spline volume

following four functionals:

S = / <Xiu +x2, + Xiw> du dv dw,
1%
Jgas = / (Xiu + 2X12w + 2X12Lw + ng + 2X3w + Xfuw> du dv dw,
1%
I3 = / (xiw +x2, + Xiww> du dv dw,
v
JSLLS = / <X121,uu + 3X121,uv + BXiuw + 3X12wv + 6Xuvw + 3X12wa + X121Uv + 3X12)’Uw + 3X12)’ww -+ X?wa> du dv dw.
1%

(4.17)

The terms and coefficients appearing here originate from the extension of Pascal’s triangle

coefficients in two dimensions (used in the surface smoothing) to three dimensions forming the

122 Variational Based Modelling and Analysis using B-splines

Figure 4.54: Pascal tetrahedron coefficients for orders 0 through to 4

so called Pascal pyramid or tetrahedron, see figure M54l These coefficients can be generated
by expanding the trinomial (x + y + 2)™ for n = 0,...,4. The same four functionals are used
as evaluation measures to examine the effectiveness of the smoothing operation in each case. In
addition we use two 3D curvature measures, Gaussian (K), and Mean (H), based on evaluating
the principal curvatures kq, ko of the w-level surfaces of the functional volume (appendix F gives

more details of these measures).

JK:/(k1k2)2dudvdw, JH:/(

\%4 %4

ki + ko

) du dv duw.

In terms of the partial derivatives of z(u,v,w), the Gaussian and Mean curvatures of these

isosurfaces of the functional volume are given by

K = (-T?U(-Tuuxvv - ZE?W) + xz(muuxww - xiw) + xz<xvv$ww - x%w) + 2 [xuxv(muwwi - xuvxww)
+ T (TuoTow — TuwTow) + Tolw (TuwTuw — TowTuu)] > J(x2 + 22 4+ 22)? (4.18)

2 2 2
<:Uu(xvv + xww) + xv(xuu + xww) + xw(xuu + xvv) - 2$uxvxuv - quxwxuw - 2xvxwwi>

H =

2(z2 + 22 + 72)2

(4.19)
In addition to the numerical values obtained from the smoothed volume, we also illustrate graph-
ically, in terms of cross sectional curvatures and environment mapped images, the effectiveness
of the algorithm and the functional. To do this we take three section planes in the w direc-
tion. Figures M55 and (57 present these views for the original and perturbed volume.
The original volume has zero curvature measures and the modifications to the control points
introduce irregularities into the object as observed in the curvature and environment mapped

images.

Applications to Geometric Smoothing 123

Shple: e
e ————— - F -
|Gaussian w | ¥ =
P [0 ooeszs £ _
| - a
f = - — -
o
.
| |l %
f .
Auto Hm;ﬂ -
Max Range | F 'rf

£
Azt Mesh e =

Figure 4.55: Perturbed and original volume using sectional view with Gaussian curvature

mapped image

For the four functionals tested, five smoothing factors, (0.1,0.2,0.5,1,10) are applied and
the measures J2,,,, o Jo, Jras compared as well as the resulting deviation from the original
(obtained by sampling the volume over a grid of u, v, w values). The numerical comparisons are
given in tables to [4.12l As can be seen from the tables the smoothing algorithm produces
new volumes with significantly reduced mean and Gaussian curvature variations, predictably
getting smaller as the smoothing factor increases. The functionals containing the full complement
J3

bas» appear to produce somewhat better results in this respect.

of Pascal’s coefficients, .J3,,
Increasing the smoothing factor, while leading to more desirable curvature distributions, has the
expected side effect of increasing the point deviation from the original. Figures through
to illustrate graphically the sectional mean and Gaussian curvatures and the environment
mapped images of the smoothed volumes for the smoothing factors (0.1,0.2,0.5,1) and figures

.66, E.67 for sm = 10.

124 Variational Based Modelling and Analysis using B-splines

Curva... [X|

Figure 4.56: Perturbed and original volume using sectional view with mean curvature mapped

image

Figure 4.57: Perturbed and original volume using sectional view with environment mapped

image

Applications to Geometric Smoothing

Evaluation Optimisation Criteria, Smoothing factor 0.1 Perturbed | Original
Measure | min — J2,, | min — Jfas min — J2., | min — Jfas Volume Volume
2w 68.2443 69.4734 106.175 107.56 816.365 776.688
Jp'gaS 70.0268 70.7226 111.13 112.005 819.453 776.688
J3 211.022 212.154 82.0886 82.7701 1967.83 1640.5
Jl;?as 500.224 443.177 171.915 137.711 2159.21 1640.5
JK 0.000730434 | 0.000607229 | 0.000114043 | 8.11102e-05 | 0.0260893 0.0
Ju 0.315361 0.307859 0.12353 0.117451 5.77858 0.0
Mazx dev 0.164342 0.16419 0.1563374 0.153837 0.0 0.0901385
perturbed
Mazx dev 0.182314 0.181014 0.145298 0.145322 0.0901385 0.0
Original

section smoothed with factor 0.1 over complete volume

Evaluation Optimisation Criteria, Smoothing factor 0.2 Perturbed | Original
Measure | min — JZ,, | min— J2 | min— J7 | min— J3 | Volume Volume
Ju’guw 42.2833 43.5482 79.5072 81.2599 816.365 776.688
Jfas 49.3039 48.2824 86.7169 86.5393 819.453 776.688
Jguw 133.957 136.3 45.3546 45.9521 1967.83 1640.5
Jfas 279.344 210.101 112.723 73.3937 2159.21 1640.5
Jx 0.000177267 | 0.000113541 | 4.32194e-05 | 2.5255e-05 | 0.0260893 0.0
Ju 0.148497 0.140146 0.0828473 0.0761597 5.77858 0.0
Maz dev 0.214919 0.214124 0.188367 0.189002 0.0 0.0901385
perturbed
Maz dev 0.22673 0.222737 0.177893 0.177771 0.0901385 0.0
Original

section smoothed with factor 0.2 over complete volume

125

Table 4.8: Smoothing/Fairness measures and values for totally perturbed functional volume

Table 4.9: Smoothing/Fairness measures and values for totally perturbed functional volume

126

Table 4.10: Smoothing/Fairness measures and values for totally perturbed functional volume

section smoothed with factor 0.5 over complete volume

Table 4.11: Smoothing/Fairness measures and values for totally perturbed functional volume

Variational Based Modelling and Analysis using B-splines

Evaluation Optimisation Criteria, Smoothing factor 0.5 Perturbed | Original
Measure | min — J2,, | min — Jfas min — J2,, | min — Jz;?as Volume Volume
JZ 0w 22.9293 24.4178 52.9643 55.1923 816.365 776.688
Jfas 32.9718 28.5016 59.9636 59.0252 819.453 776.688
J3 . 59.5442 61.3634 18.8717 19.0245 1967.83 1640.5
J,Z?as 100.667 59.7379 68.8404 31.5993 2159.21 1640.5
JK 2.44132e-05 | 6.81157e-06 | 1.67577e-05 | 5.35277e-06 | 0.0260893 0.0
Ju 0.0666896 0.0523931 0.0650042 0.0475262 5.77858 0.0
Mazx dev 0.293676 0.287434 0.231838 0.232212 0.0 0.0901385
perturbed
Mazx dev 0.294669 0.279079 0.218715 0.218832 0.0901385 0.0
Original

Evaluation Optimisation Criteria, Smoothing factor 1.0 Perturbed | Original
Measure | min — JZ,, | min — JZ | min — J7,, | min — J7 | Volume Volume
quw 13.9075 15.658 38.417 40.8543 816.365 776.688
Jfas 22.6828 17.5689 44.0678 43.2773 819.453 776.688
vaw 27.8302 27.867 9.60166 9.5517 1967.83 1640.5
Jias 45.787 25.4135 48.6028 16.8132 2159.21 1640.5
Jx 9.23314e-06 | 9.50741e-07 | 1.05381e-05 | 1.79373e-06 | 0.0260893 0.0
Ju 0.0465829 0.024013 0.0589051 0.0330301 5.77858 0.0
Maz dev 0.358805 0.338399 0.260815 0.25819 0.0 0.0901385
perturbed
Mazx dev 0.350154 0.317285 0.245931 0.243653 0.0901385 0.0
Original

section smoothed with factor 1 over complete volume

Applications to Geometric Smoothing

127

Evaluation Optimisation Criteria, Smoothing factor 10 Perturbed | Original
Measure | min — JZ,, | min — JZ | min— J2 | min — J7 Volume Volume
JZ 0 1.95863 2.68722 11.3683 13.0721 816.365 776.688
Jpgas 4.44804 2.70585 14.8125 13.4469 819.453 776.688
J3 1.42586 1.20513 1.07077 1.10913 1629.74 1640.5
J{?as 5.90919 1.18066 15.3256 1.21023 1967.83 1640.5
JK 9.7446e-07 | 8.13845e-10 | 3.64999¢-06 | 2.14684e-08 | 0.0260893 0.0
Ju 0.0157271 | 0.000782721 | 0.0353609 0.00529835 5.77858 0.0
Maz dev 0.588441 0.519463 0.373793 0.345677 0.0 0.0901385
perturbed
Maz dev 0.55856 0.49737 0.341467 0.323212 0.0901385 0.0
Original

Table 4.12: Smoothing/Fairness measures and values for totally perturbed functional volume

section smoothed with factor 10.0 over complete volume

Figure 4.58: Perturbed and smoothed volume using sectional view with Gaussian curvature

mapped image, smoothing factors 0.1,0.2,0.5,1.0,functional J?,,

128 Variational Based Modelling and Analysis using B-splines

W

B
ul

Figure 4.59: Perturbed and smoothed volume using sectional view with mean curvature mapped
image, smoothing factors 0.1,0.2,0.5,1.0, functional J?

uvw

Y. ..

bl -
[

]

AL
g
B0k
R og
]

T

Figure 4.60: Perturbed and smoothed volume using sectional view with Gaussian curvature
mapped image, smoothing factors 0.1,0.2,0.5,1.0, functional J2

pas

Applications to Geometric Smoothing 129

i

R rrE

1 e S

itk

Figure 4.61: Perturbed and smoothed volume using sectional view with mean curvature mapped

image, smoothing factors 0.1,0.2,0.5,1.0,functional Jfas

Curva

(178

MaFarge

i
S

il

Figure 4.62: Perturbed and smoothed volume using sectional view with Gaussian curvature
mapped image, smoothing factors 0.1,0.2,0.5,1.0,functional J?

uvw

130 Variational Based Modelling and Analysis using B-splines

Figure 4.63: Perturbed and smoothed volume using sectional view with mean curvature mapped

image, smoothing factors 0.1,0.2,0.5,1.0, functional J?

Curva... B
—
e

=TT

L

Ao Flarge
_ MR |
At |
[]

bl

Figure 4.64: Perturbed and smoothed volume using sectional view with Gaussian curvature

mapped image, smoothing factors 0.1,0.2,0.5,1.0, functional J?

pas

Applications to Geometric Smoothing 131

Curva... [X|
Sl
Ihhm Ti

-

(S |
5l B
=

i

Figure 4.65: Perturbed and smoothed volume using sectional view with mean curvature mapped

image, smoothing factors 0.1,0.2,0.5,1.0,functional sz;s

Curva... E!

& <
S
£33

Q&Q
qoG

Figure 4.66: Perturbed and smoothed volume using sectional view with Gaussian curvature

mapped image, smoothing factor 10.0, functionals J2 Jfas, N Jfas

132 Variational Based Modelling and Analysis using B-splines

<SS
oW

Curva... FE

Al
|—M=an =

Wposse

12 k)

. [T77e

.Am:-nm.-|

e Ry |

j’mtﬂe:h

=
&

Figure 4.67: Perturbed and smoothed volume using sectional view with mean curvature mapped

image, smoothing factor 10.0, functionals JZ,,,, Jo. Jo,. Jos

4.7 Volume Smoothing Examples: parametric case

To test the effectiveness of algorithm 4.7 to the smoothing of parametrically defined volumes we

again use an example B-spline representing a cube:

10 10 10

x(u,v,w) = N ¥ digeNoa(u) Nja(0) Nea(w), (w)idy x (03)]2) % (wy)ils.
i=1 j=1 k=1
The control points d;j; are set to vary from (0,0, 0) to (9,9,9) and the uniformly spaced knot set
is taken to be (0,0,0,0,1/7,2/7,3/7,4/7,5/7,6/7,1,1,1,1) in u,v and w. As in the functional
case, to simulate irregularities we perturb the volume by disturbing the control points using a
random number generator such that the maximum absolute displacement of any given control

point is 0.1 in each of its x, y, z components. The perturbed volume is smoothed using algorithm
J2 . J3 3 . We test the algorithm using five

4.7, employing the same four functionals, J7,,, J2,q, Jopw: Jose-

smoothing factors, (0.1,0.2,0.5,1.0, 10).

The original and perturbed volumes are represented graphically using two views. In the first
we take the three isoparametric surfaces at v = 0.5, = 0.5, w = 0.5, and in the second we
use the bounding isoparametric surfaces of the volume, that is the six surfaces at u = 0,1,v =

0,1,w = 0,1. In each case we display Gaussian and mean curvature maps and environment

Applications to Geometric Smoothing 133

Gauszian ﬂ
W [oooero=2

1] | —
— i o[-
| [o00z27032 ﬂ!b
;] |
Apto Fange {l- -
Mas Fange |
Adjust Mesh |
Clags

Figure 4.68: Original and perturbed cube, sectional view with Gaussian curvature map

mapped images. Figures [1.68] and present these views. The original volume has zero
curvature measures and the modifications to the control points introduce irregularities into the
perturbed volume which can be clearly seen in the curvature and environment mapped images.

The numerical comparisons are given in tables E.13]for a smoothing factor of 0.1 to table E.17]
for a smoothing factor of 10. In addition to the four functional measures and the point deviation
(obtained by sampling), for the parametric case we also compare the resulting volumes. As can
be seen the perturbations to the control points result in an increased volume with the smoothing
algorithm reducing this in each case (more significantly with the second derivative functionals
than the third derivative ones). Increasing the smoothing factor results in successively smaller
volumes but with also smaller curvature variations illustrating the tradeoff between smoothness
and accuracy.

Figures LTI through to 8Tl illustrate graphically the mean and Gaussian curvatures of
the two isoparametric views and the environment mapped images of the resulting volumes for
the smoothing factors (0.1,0.2,0.5,1,10). In each case the image at the top left is the original
perturbed volume followed by the smoothed volumes for sm = 0.1 to 10 moving to the right and

down (so that the image at the bottom right is for sm = 10).

134 Variational Based Modelling and Analysis using B-splines
FEvaluation Optimisation Criteria, Smoothing factor 0.1 Perturbed | Original
Measure | min — J2,, | min — J5 | min — J7 | min — J7 Volume Volume
JZ 0 119.683 121.201 215.083 218.643 1175.86 1059.88
Jfas 126.235 126.702 224.28 225.458 1175.86 1066.08
g3 452.232 454.101 158.846 161.049 1646.86 | 1813.17
J[‘:’;s 802.161 725.908 276.206 203.109 1646.86 2194.47
Volume 641.305 641.507 681.157 681.516 736.471 707.775
Maz dev 0.145584 0.144276 0.152499 0.152054 0.0 0.156123
perturbed
Maz dev 0.211 0.211488 0.202493 0.203993 0.156123 0.0
Original

Table 4.13: Smoothing/Fairness measures and values for totally perturbed volume section

smoothed with factor 0.1 over complete volume

Figure 4.70: Original and perturbed cube, sectional view with environment mapped image

Applications to Geometric Smoothing

Evaluation Optimisation Criteria, Smoothing factor 0.2 Perturbed | Original
Measure | min — J2,, | min — J5 | min — J2 | min — JJ Volume Volume
JZ 81.233 82.9163 167.86 172.386 1175.86 1059.88
Jfas 96.8303 93.9574 180.636 179.314 1175.86 1066.08
J3 . 299.438 304.06 88.134 89.6675 1646.86 1813.17
Jpgas 442.216 353.487 190.978 107.504 1646.86 2194.47
Volume 636.517 636.883 676.458 677.059 736.471 707.775
Maz dev 0.191462 0.188791 0.184822 0.181374 0.0 0.156123
perturbed
Maz dev 0.240045 0.240354 0.223215 0.223896 0.156123 0.0
Original

smoothed with factor 0.2 over complete volume

FEvaluation Optimisation Criteria, Smoothing factor 0.5 Perturbed | Original
Measure | min — J2,, | min — Jfas min — J2 .. | min — Jgfas Volume Volume
JZ 0 47.6396 50.4563 121.51 127.135 1175.86 1059.88
Jfas 68.4949 59.0382 132.262 130.768 1175.86 1066.08
J3 136.448 139.71 39.3988 39.1131 1646.86 1813.17
sz’as 156.855 112.242 119.045 47.564 1646.86 2194.47
Volume 626.206 627.392 666.783 667.885 736.471 707.775
Mazx dev 0.259709 0.258397 0.22508 0.22273 0.0 0.156123
perturbed
Mazx dev 0.298455 0.299063 0.257298 0.262294 0.156123 0.0
Original

smoothed with factor 0.5 over complete volume

135

Table 4.14: Smoothing/Fairness measures and values for totally perturbed volume section

Table 4.15: Smoothing/Fairness measures and values for totally perturbed volume section

136

Variational Based Modelling and Analysis using B-splines

Evaluation Optimisation Criteria, Smoothing factor 0.1 Perturbed | Original
Measure | min — J2,, | min — J5 | min — J2 | min — JJ Volume Volume
JZ 28.6422 32.9368 92.788 100.325 1175.86 1059.88
Jfas 47.4557 36.883 101.156 102.349 1175.86 1066.08
J3 . 65.6644 65.3551 23.2107 22.8942 1646.86 1813.17
Jpgas 74.1624 54.6438 84.6556 27.7566 1646.86 2194.47
Volume 612.878 615.457 656.342 658.209 736.471 707.775
Maz dev 0.312025 0.321256 0.258374 0.261906 0.0 0.156123
perturbed
Maz dev 0.352291 0.361854 0.291048 0.290904 0.156123 0.0
Original

Table 4.16: Smoothing/Fairness measures and values for totally perturbed volume section

smoothed with factor 1.0 over complete volume

FEvaluation Optimisation Criteria, Smoothing factor 10.0 Perturbed | Original
Measure | min — J2,, | min — Jfas min — J2 .. | min — Jgfas Volume Volume
JZ 0 1.90455 2.59005 16.9353 23.5119 1175.86 1059.88
Jfas 6.65001 2.60717 29.2528 23.8873 1175.86 1066.08
J3 3.20003 2.64712 4.05336 4.48858 1646.86 1813.17
sz’as 12.6035 2.59015 4.96622 4.66045 1646.86 2194.47
Volume 562.144 565.012 596.811 599.861 736.471 707.775
Mazx dev 0.539557 0.653563 0.39657 0.504856 0.0 0.156123
perturbed
Mazx dev 0.557122 0.650506 0.418407 0.502111 0.156123 0.0
Original

Table 4.17: Smoothing/Fairness measures and values for totally perturbed volume section

smoothed with factor 10.0 over complete volume

Applications to Geometric Smoothing 137

Sl

o

[
|d.|:02‘|3ﬂ
dusa Fange l

Figure 4.71: Perturbed and smoothed cube using J7Z, functional, smoothing factors
0.1,0.2,0.5,1,10, sectional view with guassian curvature map

=
L2

Figure 4.72: Perturbed and smoothed cube using J2, functional, smoothing factors

uvw

0.1,0.2,0.5,1,10, sectional view with mean curvature map

138 Variational Based Modelling and Analysis using B-splines

J T TT Y

Figure 4.73: Perturbed and smoothed cube using JZ?

= functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with environment mapped image

Figure 4.74: Perturbed and smoothed cube using J7, functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with Gaussian curvature map

Applications to Geometric Smoothing 139

Curva... |§|
5

[

r*i 0U0E403

. 17T 005
Euitn F ange
Max Rangs
Ak Hezh

Figure 4.75: Perturbed and smoothed cube using Jpgas functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with mean curvature map

olry

Figure 4.76: Perturbed and smoothed cube using Jfas functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with environment mapped image

140 Variational Based Modelling and Analysis using B-splines

Curva... [

|

oo

1]
llw
Aat Fangs
W FAlange
sl Msth

'.j.'
‘.l.;:

Figure 4.77: Perturbed and smoothed cube using JJ = functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with Gaussian curvature map

o R
- F

Figure 4.78: Perturbed and smoothed cube using JJ = functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with mean curvature map

Applications to Geometric Smoothing 141

iIFEREN

Figure 4.79: Perturbed and smoothed cube using J?

uvw

functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with environment mapped image

Figure 4.80: Perturbed and smoothed cube using Jz‘fas functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with Gaussian curvature map

142 Variational Based Modelling and Analysis using B-splines

Stpim
[Men =]
l[nmsaz [

| 0017

Wi
Aukn Fange
M Flangm
et Mish

Figure 4.81: Perturbed and smoothed cube using Jz‘fas functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with mean curvature map

Figure 4.82: Perturbed and smoothed cube using ‘];;?as functional, smoothing factors

0.1,0.2,0.5,1,10, sectional view with environment mapped image

Applications to Geometric Smoothing 143

4.8 Summary

In this chapter we have presented a number of algorithms for smoothing B-spline curves, surfaces
and volumes both integrated with and separate from least squares data approximation. The
algorithms are simple to implement, flexible, can deal with local smoothing and, in principle,
linear geometric constraints. In addition they generalise well from curves and surfaces to volumes.
The algorithms have been based on the exact computation of the matrices arising from the
minimisation of energy based functionals developed in chapters 2 and 3. We have tested their
effectiveness on a number of examples and demonstrated the quality of smoothing for a range
of functionals using a selection of fairness measures. For the surface case we have examined the
use of a computationally efficient technique for solving the Sylvester type equation which arises
when smoothing existing B-spline surfaces. The methods implemented for curves and surfaces
have been generalised to the volumetric case and, using suitable generalisations of the energy
based functionals, algorithms for smoothing the functional and parametric forms presented with
examples to illustrate their utility.

In the following chapter we consider one other area where the results of chapter 3 can be
applied, that of the variational formulation of the finite element technique using the Rayleigh-
Ritz method.

Chapter 5

Applications to Finite Element
Problems using the Rayleigh-Ritz
Method

5.1 Introduction

The finite element method is applicable to a wide variety of boundary problems in engineering
(Rao, [70]). A solution is sought in the region of a body subject to the interpolation of prescribed
boundary (edge) conditions on the dependent variables and their derivatives. Examples of
typical problems include static analysis of beams, plates and shells, steady state temperature
distributions in solids and fluids, analysis of potential flows, free surface flows, boundary layer
flows.

Although B-splines have become a standard for both numerical approximation schemes and
free-form design and geometrical processing, mechanical analysis is normally operated as a sep-
arate module. However, interaction between these stages is desirable due to the iterative nature
of a product development process. For example, a given shape may have to be redesigned to
satisfy certain special constraints resulting from analysis. Then conversion to the original design
geometry representation is needed before the results of the analysis can be implemented. Hence
using the same representation and technique for design, analysis and optimisation can be advan-
tageous. The close link between geometric modelling and numerical simulation in engineering
applications suggests the use of B-splines as finite element basis functions.

Although not widespread, B-spline functions have in fact been employed to solve problems

144

Applications to Finite Element Problems using the Rayleigh-Ritz Method 145

in structural analysis for some time now. In particular, research has been carried out on static,
vibration, dynamic and stability analysis of plates and shells using B-splines as coordinate func-
tions based on energy principles. Antes, [2], investigates the use of bicubic splines for plate
bending on a rectangular topology. He uses a 2D variational formulation obtained by the prin-
ciple of minimum potential energy of a thin plate in the small-deflection theory. The author
presents some plate bending examples with differing boundary conditions and compares the re-
sults with known analytical solutions. Wang, [8§], uses B-spline functions and a Rayleigh-Ritz
variational approach to analyse the vibration and buckling of beams and plates. Cheng and
Dade, [I5], use splines in an energy based approach for modelling the dynamic response of stiff-
ened plates and shells and Shen and Wang, [89], use B-spline functions to obtain approximate
solutions for vibration of shells. Recent, more general accounts of the use of B-splines in finite
elements and not restricted to rectangular domains are given in Hollig, [37], and Sabin, [75].
In this chapter we combine the results of chapter 3 with the use of the Rayleigh-Ritz vari-
ational formulation of a continuum problem, to seek B-spline solutions to a selection of finite
element problems in one, two and three dimensions. To keep within the original scope of the
thesis we focus on the restricted class of problems enforced by topologically rectangular domains.
Within this class we examine the following cases: static analysis of beams, plate bending and
the elastic deformation of isotropic solids. Using the reduced transformation technique we deal
with a variety of geometric constraints and we use a number of examples in the above fields to
demonstrate the accuracy of the resulting solutions for varying orders and segment numbers.
The results presented for the plate bending examples can be considered to be a generalisation
of the analysis in [2]. We begin by reviewing briefly the essential elements of the Rayleigh-Ritz

method focusing on the one dimensional case.

5.1.1 The Raleigh-Ritz Method

In the Raleigh-Ritz method the physical problem is specified as a variational problem on the
extremum of a functional I(z) for which the given equation is the Euler equation (see section
3.2). The values of a functional I(z) are considered not on arbitrary admissible curves of a given

variational problem but only on all possible linear combinations

n
Ty = E aiVVi
i=1

with constant coefficients composed of n first functions of some chosen sequence of functions

Wiy, W, ...

146 Variational Based Modelling and Analysis using B-splines

The functions x,, must be admissible in the problem at hand which imposes certain restrictions

on the choice of sequence of W; (see below). On such linear combinations, the functional /(z) is

transformed into a function ¥ (ay, ..., a,) of the coefficients a;. These coefficients are chosen so
that the function ¢ is extremeised and hence are determined from the conditions:
0
v =0, 1=12,...,n
80@

Passing to the limit as n — oo, if the limit exists, we get the function
o0
y=> aWiz)
i=1

which for certain restrictions imposed on the functional I(x) and on the sequence
Wi(x),...,Wy,(zx),... is the exact solution of the variational problem at hand. By confining
ourselves to the first n terms we obtain an approximate solution of the variational problem.
We search for a solution not in the set of all admissible functions but in a finite sub space of
admissible functions as the set of polynomials of given degree. In this chapter we approximate
the function = using so-called trial functions of B-spline form which satisfy the given boundary
conditions but contain undetermined parameters to be optimised (the control points of the B-
spline). By substituting this approximation into the functional, we integrate and minimise with
respect to the unknown parameters.

For the trial functions to be admissible in the variational form of a problem of order m, the

following conditions should be met (see for example Strang, [80]):
1. the trial functions posses m derivatives and hence be of class C"™ ! across element bound-
aries

2. essential boundary conditions are met

3. the functional of the problem is computed exactly

Using the B-spline theory from chapter 3 and the reduced transformation technique to satisfy
the essential boundary conditions we can ensure that the trial functions used for solution to our

finite element problems are admissible in the variational principle.

5.2 B-splines and Finite Elements

The basic idea of finite element modelling is piecewise approximation, that is, the solution of a
complicated problem is obtained by dividing the region of interest into small regions (finite ele-

ments) and approximating the solution over each subregion by a simple function. The functions

Applications to Finite Element Problems using the Rayleigh-Ritz Method 147

used to represent the behavior of the solution within an element, the interpolation functions,

are most often polynomial in nature. The principal reasons for this are:

1.

It is easier to formulate and code the finite element equations with polynomial type of
interpolation functions and it is easier to perform integration and differentiation with

polynomials.

It is possible to improve the accuracy of results by increasing the order of the polynomial.
Theoretically a polynomial of infinite order corresponds to exact solution. The use of
higher order elements is especially important when the gradient of the field variable is

expected to vary rapidly.

B-splines, with their built-in continuity conditions, local control, efficient evaluation, fast subdi-

vision and refinement lend themselves to problems where piecewise polynomial approximations

to problems are desired. In addition to their geometric modelling properties there are a number

of algorithmic advantages of B-spline bases which can lead to efficient simulation techniques:

e no mesh generation is required

accurate approximations are possible with relatively low dimensional spaces
smoothness and approximation order can be chosen arbitrarily
integral polynomial form of arbitrary degree

analytical derivatives and integrals

5.2.1 Accuracy

Considering the B-spline solution to the variational formulation of a given finite element problem,

there are three possible ways to increase the accuracy of the solution:

1.

Increase the number of B-spline basis functions in the Rayleigh-Ritz expansion. This is so

called n-refinement where n refers to the upper index on the B-spline summation.

. Elevate the degree of the B-spline used in the expansion, so called p-refinement.

Modify the knot vector without increasing the degrees of freedom.

148 Variational Based Modelling and Analysis using B-splines

In the examples considered in this chapter we focus on the first two of these noting that knot
vector manipulation (in particular locating them at specific points) can be an important element
in adaptive schemes. For 1 and 2 it is known in standard finite element theory that (see for

example, Fischer et al, [22] or Strang, [80])

e as the number of B-spline functions in the expansion increases, the solution converges
algebraically at a rate proportional to the expansion degree. This means that increasing the
number of B-spline functions n in the approximation, the maximum error asymptotically
decreases in proportion to n® with slope a depending on the degree of the B-spline and

the order of the variational problem.

e as the approximation degree p increases, the maximum error asymptotically decreases in
proportion to ¢’P, with slope 3 being a scheme and problem dependent parameter, and
the rate of convergence is asymptotically independent of the the number of basis functions

used.

In addition convergence of the sth derivative where s may be smaller or larger than m is pro-
portional to n?~*.

Roundoff also presents a potential source of error and is proportional to a positive power of
n. The competition between the two opposing effects on accuracy generated by increasing the
value of n becomes significant when the element mesh size reduces below a certain point. As
shown in Strang, [80] this is dominated by a factor h=>™ where h is the mesh size. It does not
depend strongly on the degree so where roundoff becomes a serious issue the normal course of
action is to increase the degree of the expansion.

In the following sections we present algorithms for solving in B-spline form finite element
type problems using the minimum energy variational formulation. For the curve case we graph
a selection of static beam bending problems under various load and boundary conditions. For
these examples, where analytic polynomial solutions are known, we fix the degree and segment
number. Algorithms are presented for solving a range of plate bending problems and accuracy
comparisons for varying degrees and segment numbers made with results based on analytic series
solutions taken from Timoshenko, [85]. We then look at generalisations of the curve and surface
algorithms to the solution of problems in the elastic deformation of isotropic solids. Finally, an
example of heat flow through a cube is presented for which an analytic solution is also known.

We begin with a look at the one dimensional case.

Applications to Finite Element Problems using the Rayleigh-Ritz Method 149

5.3 1D Energy Minimisation Problems

5.3.1 Deflection of an elastic string

For a stretched string of length L at rest the potential energy is proportional to the change of
length with the proportionality factor being the tension T'. If x(t) describes the deflection then

the change of length assuming small deflections is given by

dz .2 1,dx.2 1,dx.2
1+ (d)ét 5t~(1+§(E) >5t ot = (dt)ét.

The internal energy Ej,; is due to tension 7"

L

1
—T—
= [57

0

External energy E,,; is due to the applied load conditions. Assuming distributed load functions
given by (F;(t))i_; defined over regions [a;,b;] € [0, L], and point forces (F;);_, at points (t}),

the external energy is
ewt - Z/ dt + Z PQ?

The total potential energy, W (z), of the system is then given by:

L
W(z) = By — / ZF (0)dt — 3" P, (5.1)
9 i=1
Assuming a B-spline solution

i=1

and using we minimise the internal energy expression to get the matrix equation

_TMld Z/ Nl dx+ZPN]k)):1. (5.2)

150 Variational Based Modelling and Analysis using B-splines

5.3.2 The loaded beam problem

We take the case of a beam of length L and flexural rigidity N = EI (also called the bending
stiffness), where £ is Young’s modulus and I the moment of inertia of the beam, under a series
of point and distributed loads. In particular, we seek to minimise the potential energy of the
beam with deflection z(t) under a series of applied distributed loads (F;(t))?_, over [a;, b;] € [0, L]
and point forces (P;){_; at points ¢} € [0, L]. The total energy of the system which represents a
combination of the strain energy due to bending and the work done by the applied forces over

the displacement x is given by

L

W(z) = %N / (@0 -y / Fi(0)e(tdt = 3 Paa() (5.3)

0

We treat two types of end condition, a simply supported beam and a built-in (cantilever) beam.

The boundary conditions for these are are such that

e if an end is simply supported then the deflection and the bending moment M = —Ex"”

must vanish. This leads to the requirements x = " = 0.

e if an end is built-in, then the deflection and slope must vanish, leading to the requirement

x=212 =0.

If the beam ends are free then 2”(t) = 0 and 2’’(t) = 0 at the ends. The variational functional
takes care of this condition automatically.

We assume a form for the deflection x(t) for the beam which satisfies all the geometric
boundary conditions i.e. is a so-called admissible function. Using the principle of stationary
potential energy and the Raleigh-Ritz technique we express the unknown function as a linear

combination of known functions, in our case B-spline basis functions, with unknown coefficients:

2(t) =Y diNi(t).

Using we minimise the strain energy functional given by equation [5.3] to get the matrix
equation

p U q n
%NMgd — (2 / Fi(t)N, 4 (t)dz + ZHNj,k(tj)> , (5.4)

-
i=1 J

Applications to Finite Element Problems using the Rayleigh-Ritz Method 151

or, writing M = (mg))%:p
S RN+ 30 PN
Wt t)dt ; ty
m@ om®\ [Ry O 2 Bl
(2) (2) p_ b q
i=la; =1

System is solved subject to the boundary conditions. Using the Ritz method, it is not
necessary to satisfy all the boundary conditions. The procedure verifies the so-called natural
boundary conditions automatically. In the case of beam bending all static conditions are natu-
ral, which means for example in simply supported ends the condition of disappearing bending
moments, and for free ends the condition of disappearing second and third derivatives.

To fit the essential (geometric) boundary constraints we use the boundary point and deriva-
tive property of B-spline curves and proceed as follows. For boundary point interpolation to a

value b at 0 we use algorithm 2.1 to generate the constraint equation
(N(0)"-d =b.

For boundary derivative interpolation to a value b* say, we use algorithm 2.5 to generate the
equation
(N'(0))"Dg - d = b7,

where N*(0) represents the vector basis function set formed from the derivative knot set eval-
uated at 0. Having set up the system of equations corresponding to the geometric boundary
conditions we use the reduced transformation technique presented in section 3.4 to obtain an
admissible solution. From the B-spline solution we can then compute the bending moment
(= EIz®(t)) and reactive force profiles (= EIz®(t)). The complete algorithm for a B-spline
solution to the elastic beam bending problem (and string stretching) under a combination of

point and distributed forces is presented in algorithm 5.1.

5.3.3 Examples

Algorithm 5.1 will produce exact solutions to minimisation problems for which exact polynomial

solutions exist. For example, a stretched string of length 4 under a load function given by

152 Variational Based Modelling and Analysis using B-splines

Algorithm 5.1: B-spline solution to 1D beam bending/string stretching problem
giwen k and n, solution z(t) = 3 d;N; x(t)
i=1

1. create the basis function set (Nix(t))i_,
2. create the minimisation matriz My(My) from the basis function set, alg. 3.1
3. create a vector, loads, size n, to store point and distributed forces
all of which appear on rhs of final linear system
4. for each point force at value ti with magnitude P;
4.1 calculate value of curve basis function set, b, at ti, thatis b(t]) = (Nj_,k(t*i‘))ljlz1
4.2 then loads+=P;b(t])
5. for each distributed force over given limits (ai,b;) with magnitude F;i(t)

5.1 calculate integral product of Fi(t) with curve basis function set b over (aj,bi), alg. 3.5
b n
Integral(a;,b;) = g Fi(t)Nj,k(t)dt)
s =t

5.2 then loads+=Integral(a;,b;)
6. determine the number of geometric point and derivative boundary conditions, num_bound
7. create a matriz (g_bound) size num_bound*n to store these conditions
8. for the left hand boundary
8.1 if there is a boundary point interpolation
8.1.1 create the constraint equation for end control point, alg. 2.1, insert into matriz g_bound
8.2 if there is boundary end derivative interpolation
8.2.1 create the constraint equation for control point, alg. 2.5, insert into matriz g_bound
8.3 if there is boundary end second derivative interpolation
8.3.1 create the constraint equation for control point, alg. 2.5, insert into matrix g bound
9. repeat step 8 for the right hand boundary
10. add in any internal point interpolation conditions (supports), alg. 2.1, to the g bound matrix
11. multiply the loads matriz by -1
12. find a set of elimination indices from the geometric boundary constraints matriz, g bound
18. eliminate corresponding rows of the minimisation matrix My and rhs vector, loads
14. solve the resulting reduced system of equations
15. reconstitute the complete solution using the elimination information
16. build the B-spline curve from the control points found from 15

Figure 5.1: Algorithm 5.1: B-spline solution to 1D beam bending problem

Applications to Finite Element Problems using the Rayleigh-Ritz Method 153

F(t) = 1+ t?/4 over [0,4] and subject to the geometric boundary conditions z(0) = x(4) = 0,
produces the exact solution
(1) = 1 <t4 t? 10t>
WETe T2

For more extensive tests of the algorithm we consider a range of beam bending problems using
simple and cantilever supports and under various point and distributed load conditions. In
each case we compute a B-spline solution of order 4 with the number of segments set to be 10.
Although most of the distributed loads are constant, in examples 4 and 5 we allow the load to
vary according to a simple function. In example 8 we use algorithm 2.6 to compute the bending
moment and reactive force profiles for a simply supported beam under both point and distributed
loads. The oscillations that appear in the reactive force curve are due to the functional nature of
the B-splines that are being used here (they represent a step change in the value of the reactive
force). In the examples listed below the theoretically exact solutions (which are polynomial
in nature), maximum displacements and reactive forces are given. Depending on the degree,
the B-spline representation generated by algorithm 5.1 matches exactly the theoretical solution
or approximates it. Figures to [B.IT] illustrate the beam configurations, the computed

displacement functions, and, in example 7, the bending moment and reactive force profile curves.

Beam bending cases
1. A simply supported beam under a point load, P;:

P
Elz(t) = 1—;#”’ -t

Tmar = QBT

0<t<

P L? L P L3
2 9

2. A simply supported beam under a uniform distributed load, Fi:

F\L Fy L3 5 FL*
Ela(t) = 2243 — Zlpa by = T
o(t) = 45 24 g " 384 EJ

3. An overhanging simply supported beam under a uniform load, Fi:

P, R(L‘-1), FL} F RL'—1) FBL
Elz(t) = — 21 f— P O<t<l
) =-5t + — g5 3 T o6 3 Ustshb
P, RIL? . F(L*-1) RL* F F(I*-1) FRL?
Blz(t) = ——1¢ t—1 - P
o) =54t + g - D+ — 5 T o %6 3

1<t< L

Tonaw = Ti=3 = 3.4mm.

154

10.

Variational Based Modelling and Analysis using B-splines

. A simply supported beam under a linearly increasing distributed load with maximum value

Fmaa::
F..L 1 1 7L?
Elx(t) = % (— £+ =t — —t).
w0 ="5"sr" Tt " 1w
. A simply supported beam under a triangular profile distributed load with maximum value
Fmaa::
23F,, .. L3 F..L L
Elx(t) = M - RS 0<t< =
z(t) 1536 8 4

Bls(t) Fraz (t L>5 Fmath:,, n 23FmaxL3t L e L
x(t) = —(t——=) — - =,
30L 4 48 1536 7 4 2

. A simply supported beam with multiple supports under point and distributed loads. Re-

action forces computed at t = 0,4,12,17:

Ri—om = 1.68kN, Ri_y4m = 87.2kN, Ri—12m = 84.5kEN, Ri—17m = 0kN.

. A simply supported beam with multiple supports under point and distributed loads. Re-

action forces computed at ¢t = 0,6,12,18:

Rt:Om - 269375]€N, Rt:ﬁm - 33375]€N, Rt=12m - 144375]€N, Rt:lSm - 4225]€N

. Bending moment and reactive force profile curves for example 7:

Cantilever beam under point load P;:

PL, P PL3
Elz(t) = —%tQ + Fltg’ Tomaz = — 31EI .

Cantilever beam under partial distributed load F:

FL. 3FIL2 L
Bla(t) = Sy 2017 4 t< 2
o(t) = 45 6 o U<t<gm
F(L—t* TFRL} 15RI4 L A1 F, LA
Elx(t) = — L=t TR, | 1SR Z<t<I, !

24 18 384 ' 2 Tmar = S BT

Applications to Finite Element Problems using the Rayleigh-Ritz Method

1.9kN

A >
Y ’

Sm

Deflection curve for 5m long simply supported beam under point load 1.9kN at 2.5m,
Flexural rigidity coefficient EI=9.82e+1INmm*{2}

B-spline solution with order=4, num segs=10

deflection (mm)
S

0 1000 2000 3000 4000 5000
uvalue (mm)

Figure 5.2: Example 1: Simply supported beam under a point load

2kNm'!

A D
Y P

Sm

Deflection curve for 5m long simply supported beam under distributed load 2kNm*{-1},
Flexural rigidity coefficient E1=9.82e+1INmm~{2}
B-spline solution with order=4, num segs=10

deflection (mm)

0 1000 2000 3000 4000 5000
u value (mm)

Figure 5.3: Example 2: Simply supported uniformly loaded beam

155

156 Variational Based Modelling and Analysis using B-splines

1.5kNm’

1lm ‘ 4m

Sm

AL

Deflection curve for 5m long simply supported beam at 1.0m and 5.0m under uniform distrbuted load 1.5kNm™{-1},
Flexural rigidity coefficient El=1.25e+12Nmm*{2}

B-spline solution with order=4, num segs=10

deflection (mm)

B b N s o kN W

0 1000 2000 3000 4000 5000
u value (mm)

Figure 5.4: Example 3: Overhanging simply supported uniformly loaded beam

9kN

6m

Deflection curve for 6m long simply supported beam under linear distrbuted load from 0 to kN,
Flexural rigidity coefficient El=3e+13Nmm*{2}
B-spline solution with order=4, num segs=10

0
,05 L
£
£ 1
§ 45}
H
9
R
kel
,25 L
3
0 1000 2000 3000 4000 5000 6000

uvalue (mm)

Figure 5.5: Example 4: Simply supported beam under ramp load

Applications to Finite Element Problems using the Rayleigh-Ritz Method 157
20kN

O0kN

‘- . _ .-‘
1m 2m 1m
- -
4m

Deflection curve for 4m long simply supported beam under linear distributed load
0to 20kN between 1m and 2m, 20kN to 0 between 2m and 3m,
Flexural rigidity coefficient EI=3.0e+13Nmm"{2}

B-spline solution with order=4, num segs=10

02
04
06 F
08 -

deflection (mm)

-12
0 500 1000 1500 2000 2500 3000 3500 4000

uvalue (mm)

Figure 5.6: Example 5: Simply supported beam under triangular profile distributed load

30kN 2.5kN
H H
2m 2.5m
15kNm!
| |
4m dm Sm

Deflection curve for 17m long simply supported beam with simple supports at Om, 4m, 12m, 17m
under uniform distributed load of 15kNm*{-1} between 4m and 12m
and two point loads of 30kN at 2m and 2.5kN at 14.5m,
Flexural rigidity coefficient El=2.0e+14Nmm~{2}

B-spline solution with order=4, num segs=10

deflection (mm)

-16
0 1000 3000 5000 7000 9000 11000 13000 15000 17000
uvalue (mm)

Figure 5.7: Example 6: Multiple simply supported beam under point and distributed loads

158

60KN
4.5m
10kNm! ‘
| :
ik 11
m 6m 6m

deflection (mm)

Variational Based Modelling and Analysis using B-splines

Deflection curve for 18m long simply supported beam with simple supports at 0m, 6m, 12m, 18m
under uniform distributed load of 10kNm"{-1} between 0 and 6m
and a point load of 60kN at 16.5m,
Flexural rigidity coefficient El=2.0e+14Nmm~{2}

B-spline solution with order=4, num segs=10

2000

4000 6000 8000 10000

uvalue (mm)

12000 14000 16000 18000

Figure 5.8: Example 7: Multiple simply supported beam under point and distributed loads

Bending moment curve for 18m long simply supported beam with simple supports at Om, 6m, 12m, 18m
under uniform distributed load of 10kNm*{-1} between 0 and 6m
and a point load of 60KN at 16.5m,
Flexural rigidity coefficient El=2.0e+14Nmm*{(2}

Reactive force curve for 18m long simply supported beam with simple supports at Om, 6m, 12m, 18m
under uniform distributed load of 10kNm*{-1} between 0 and 6m
and a point load of 60KN at 16.5m,
Flexural rigidity coefficient EI=2.0e+14Nmm*(2}

; B-spline solution with order=4, num segs=10 B-spline solution with order=4, num segs=10
T 0 2 06
£ X 04
£ 08 Z 0
g, 01 20
o 02
: s Y
E 0 ¢ 06
2 £ 08
E 005 g 1 1
° .
% 0.1 12
g 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
2 uvalue (mm) U value (mm)

Figure 5.9: Example 8: Bending moment and reactive force curves for simply supported beam

under point and distributed loads

Applications to Finite Element Problems using the Rayleigh-Ritz Method

S0KN
[
% -t -

3m

Deflection curve for 3m long cantilever beam under point load of 50kNm,
Flexural rigidity coefficient EI=6.0e+13Nmm"{2}

B-spline solution with order=4, num segs=10

deflection (mm)
L N SRS

’ 0 500 1000 1500 2000 2500
uvalue (mm)

Figure 5.10: Example 9: Cantilever beam under point load

7 2kNm'!

2.5m 2.5m

¥y

Sm

3000

Deflection curve for 5m long cantilever beam under uniform distributed load of 2kNm"{-1} between 2.5m and 5.0m,

Flexural rigidity coefficient EI=3.0e+13NmmA{2}
B-spline solution with order=4, num segs=10

05 F

15

25 F

deflection (mm)

35 |

-45
0 1000 2000 3000 4000

uvalue (mm)

Figure 5.11: Example 10: Cantilever beam under partial distributed load

5000

159

160 Variational Based Modelling and Analysis using B-splines

5.4 2D Energy Minimisation Problems

5.4.1 Membrane deflection

For a membrane at rest the potential energy is proportional to the change of area with the
proportionality factor being the tension T'. If z(u, v) describes the deflection then the change of

area for small deflections is given by

\/1 + (%)2 + (g—z)Q(Suév — dudv ~ %((%)2 + (%)2>5U(5’U-

The internal energy Ej,; is due to tension 7" and is given by

mem 1 Oz Ox
= 11 / () + (59)?) dudn. (5.6)
R

The external energy FE., is due to the applied load conditions. Assuming distributed load
functions given by (F;(u,v))i_; defined over regions [a;, b;] X [c;, d;], and point forces (P;)5_; at
points (uf, v), the external energy is

b d;

Enm = Z x(u, v) Fi(u,v)dudv + Z Pix(uf,v]).
i=1 i=1

ai G

The total potential energy, W (x), is then given by:

W)= g - g = [(Gr(G5+ (65)) = 3 Rwvintuen))dudo = 3 Purta).
f) (5.7)

Assuming a functional B-spline form for the displacement

p q
z(u,v) = Z ZdijNiyk(u)Njyl(v), knot set (u;)P4F x (vj)?ill,

i=1 j=1
and by minimising the energy functional using we have the following matrix system for the

unknown control points d:

p.q

b dim
T T S
3 (qudMS + Mng?) = (Z / / Fo(u, 0)N; g (uw)Nj(v)du dv + Z Px(uy,, vfn))
m=1r > m=1

1,j=1

(5.8)

Applications to Finite Element Problems using the Rayleigh-Ritz Method 161

5.4.2 The loaded plate problem

We consider the case of a rectangular plate of dimensions a,b under bending and under the

following ‘thin-plate’ assumptions:
1. the thickness of the plate is small compared to the other dimensions
2. the deflections are small
3. the transverse shear deformation is zero

Under these conditions the bending energy per unit volume of such a plate is given by the

following expression (see for example, Timoshenko [85], Parnes [60]):

E 1 (82x+82x)2+(0z _529:8295)
I1+v\2(1—v) 0u? 0v? OJudv Ou? Ov?

where F is Young’s modulus relating the tension of the object to its stretch in the same direc-
tion (dimension N/m?) and v Poisson’s ratio, the ratio between lateral contraction and axial
extension. Here the uv plane is the undeformed plate (so-called ‘neutral surface’), the w-axis is
normal to the surface, and z is the displacement of a point on the neutral surface (the deflection
function). The total bending energy of a deformed plate of thickness h is then given by

En? Px Pz, Px 0*x %z
24(1 — v?) /[(aUQ " 31}2) 2= V)(auc% ou? 81}2)}du @, (5.9)

R

where R = [0,a] x [0,b]. The total energy in plate bending consists of two parts, the strain
energy of bending given by and the work done by the applied point and distributed load

conditions over the plate. Defining the flexural rigidity as

En?
N=——"— 5.10
12(1 — v?)’ (5.10)

and assuming distributed load functions given by (F;(u, v))I_, defined over regions [a;, b;] X [¢;, d;],

s

and point forces (P;);_, at points (u},v}), the total energy, W(z), is given by:

0%x 0%z 0%*x 0%z 0%z
W (x)_/ [(aUQ) + (w)QJFQV@er?(l—V)(aU U)Q}dudv_
b d;
x((u,v dudv—ZPa} u;,). (5.11)

=1
a; G4

162 Variational Based Modelling and Analysis using B-splines

The first integral term in this expression is the strain energy functional. If a system is in a
position of stable equilibrium, its total energy is a minimum, therefore the problem of bending
of plates reduces to that of finding a function x of v and v that satisfies the given boundary
conditions and makes the above integral a minimum. On computing a solution, the following
expressions are used (see Timoshenko [85]) to calculate the bending/twisting moments and the

shearing /reactive forces on the plate:

e bending moments in v and v, M,, M,:

0w 0w 0*x 0*x
My=-N(Gatvgs) Mo=-N(55+v50) (5.12)
e twisting moment
My, = —Myy = N(1 - v) O (5.13)
uv T v T auav .
e shearing forces in u and v, Q,, Q,:
OM,, OM, 0 (0%x 0%
pu— f— —N— — —
@ v + ou ou (8u2 + 81}2>
OM,, OM, 0 0%z 0%z
Q==+ 5 =N (o) (5.14)
e reactive forces in v and v, V,,, V,:
OM,, B OM,,
%:<Qu_ ov)’ %_<Qv_ ou > (5.15)

Assuming a functional B-spline form for the displacement

P
ZZdWN”“ JN;i(v), knot set (u@)erf X (v);ﬂ:rll,
=1 j=1

and by minimising the strain energy functional from [E.I1] using and [BII] we have the

following matrix system for the unknown control points d:

N
5 (Mngg + MydM} + 2v (MgudMg“ + (Mgu)Td(Mg”)T> +2(1 — y)Mﬁ‘dM?{)

bun dim P
<Z// (u, 0)N; (W) Nj (v dudv+ZPma: (e m)) (5.16)

ij=1

am Cm

Applications to Finite Element Problems using the Rayleigh-Ritz Method 163

5.4.3 Boundary conditions

The three possible types of boundary condition dealt with for an edge (taken as example v = 0)
are the following:

1. Built-in edge: implies the deflection and slope along the edge is zero. The boundary
conditions are

z(u,v)| =0, Ou

v=0 0v lv=0

= 0.

2. Simply supported edge: this means that the deflection along the edge is zero, z(u,0) = 0,
but that it can rotate freely with respect to this axis, which means there are no bending

moments M, along this edge

om0 0 (% + V%)

3. Free-edge: implies no bending or twisting moments and no vertical shearing forces

=0.
v=0

=0, My = 0.

u=0

= 07 Qu

u=0

These reduce to the following two conditions along the free edge:

3z Pz

0%z 0%z
oud +(2- V)i?u&)?

=0 _ V—
u=aqa ’ 8’&2 + 8U2

= 0.

u=0

As in the curve case the boundary conditions are simplified when using the Ritz method
and the natural boundary conditions are verified automatically. In the case of plate bending all
static conditions are natural, which means in free edges the conditions of disappearing moments
(second derivatives) and shearing forces (third derivatives) and in simply supported edges the
disappearing of the bending moments.

To fit the essential (geometric) boundary constraints we use the boundary curve and deriva-
tive property of B-spline surfaces, (figure [2.I3]), and proceed as follows. For boundary edge

interpolation we create the constraint equations for an edge by setting up the system as follows:

q
Z ijj,l(U)
7j=1

along the edge u = 0, for example. The set of ¢ constraint equations is then given by

assume we wish to fit the function

vec(Nu(O) ®ej> -vec(d) =b;, e;=(0,...,0,1,0,...,0)T,

164 Variational Based Modelling and Analysis using B-splines

e; the jth unit vector of R?, j =1,...,q. For boundary derivative interpolation along u = 0 to

a function given by, for example,
q

> BNj(v),

j=1
the set of ¢ equations is

vee((NE(0)DL) @ e;) - vee(d) = b, =1,....,q,
(NLOD}) @ ;) - vee(d) = b,

where N (0) represents the vector basis function set formed from the derivative knot set in
u evaluated at 0 (see section 2.4.2). Particular care has to be taken when setting up these
constraint equations so as not to introduce redundancy into the system. For example, fitting
a boundary function along u = 0 reduces the number of constraint equations when fitting a
derivative function along v = 0 because of the boundary/derivative control point overlap at
the intersecting corner. When all constraints have been inserted into the constraint matrix the
reduced transformation technique described in section 3.6 is then used to furnish an admissible
solution. Based on equation [(.16l algorithm 5.2 presents a general B-spline solution to the 2D
plate bending problem.

Algorithm 5.2: B-spline solution to 2D plate bending problem

Loads (F;(u,v)i_y, point forces (P;)5_,, Poisson ratio v, flexural rigidity N

R ok g4l
Solution Z; 7;1 dij Nk (W)N; 1 (v), knot set (u;)?7)" x (Uj)j:1

P,q
i,j=1

1. create the surface basis function set (N x(u)Nj1(v))
2. create the minimisation matrices from the basis function set for the 0, 1st and 2nd derivatives
ME, MY ME MY ME MY, alg. 3.1
3. create the minimisation matrices from the basis function set based on the (2,0), (0,2)
(u,v) derivatives, M3*,M" respectively, alg. 3.4
4. form the following kronecker products from these matrices
vm1=M§ @ M3, vm2=M} @ M5, vm3=2v(M3" @ M5*) vm4=2v((M3")T ® (M3™)T), vm5=2(1 — v)(M} @ M})
5. form the minimisation matriz, mat=4(vmi + vm2 + vm3 + vm4 + vm5)
6. create a loads matrix size (p,q) to store the point and distributed forces
and natural boundary conditions which all appear on rhs of final linear system

7. for each point force at given (ul,v}) value with magnitude P

17 71

Applications to Finite Element Problems using the Rayleigh-Ritz Method 165

P9
v

7.1 calculate value of surface basis function set, b, at (u},v}), b(ui,v1)=<Nm7k(u;f)Nn,1(v’i‘))

m,n=1

7.2 then loads+=P;b(uf,vy)
8. for each distributed force over given region Ri=[a;, bi] X [ci,d;] with magnitude Fi(u,v)

8.1 calculate the integral product of the surface basis function set b over Ri, alg. 3.6
X1
Integral(R;)= Q{f Fsi(u, v)Np x (u)Ny 1 (v) du dv)
. m,n=1

8.2 then loads+=Integral(R;)
9. Compute the number of boundary conditions, num_bound
10. Create a matriz (g-bound) to store the geometric boundary conditions of size=num_bound*pq
11. for the boundary edge u=0
11.1 if there is a boundary edge interpolation
11.1.1 convert boundary data to B-spline curve form
11.1.2 for each control point in v
11.1.2.1 create the constraint equation for the control point, insert into matrix g-bound
11.2 if there is boundary edge derivative interpolation
11.2.1 convert boundary data to B-spline curve form
11.2.2 for each control point in v
11.2.2.1 create the constraint equation for the control point, insert into matriz g-bound
12. repeat step 11 for the remaining three edges
13. add in any internal point interpolation conditions (supports) to the g bound matriz
14. create an empty matriz bound size p,q to store natural boundary conditions
15. create four vectors (n_boundl1-4) for temporary storage
16. for the boundary edge u=0
16.1 if there is a natural boundary condition
16.1.1 convert the interpolation data into B-spline curve form, curv
16.1.2 calculate the v curve integral using the 1D product rule and v surface limits
vmin, vmax alg 3.5, n_boundl += IntegralProd(curv,vmin,vmax)
16.1.8 insert n_boundl into bound along the bottom edge
17. repeat 16 for the remaining 3 edges, inserting into appropriate boundary row/column of bound
18. subtract matriz 16 from the matriz of loads calculated in 6
19. create a Kronecker vector from the resulting matriz and multiply by -1
(this represents the rhs vector for the linear system)
20. find a set of elimination indices from the geometric boundary constraints
21. eliminate corresponding rows of the minimisation matriz, mat (step 4), and rhs vector, 19
22. solve the resulting reduced system of equations
23. reconstitute the complete solution using the elimination information
24. build the B-spline surface from the control points found

Figure 5.12: Algorithm 5.2: B-spline solution to 2D plate bending problem

166 Variational Based Modelling and Analysis using B-splines

5.5 Surface FEA Examples

Algorithm 5.2 will produce exact solutions to 2D minimisation problems for which exact polyno-
mial solutions exist. For example, running the algorithm on the following 2D Poisson problem:
Pr 0%z
ou? Ov?

in the region 0 < u < 1.5,0 < v < 1, with boundary conditions, z = 3 on v = 0 and with normal

=2

derivatives g—ﬁ, as shown in figure [B.13] returns the exact solution

z(u,v) = 3+ 2uv + v*.

SufPn=>0x/dv—=2ut+2

Bl An—=-Fxf Au=-2v T Pl n=0=n/du=2v

Figure 5.13: Region and boundary conditions for Poisson problem

We test algorithm 5.2 more extensively by finding B-spline solutions of varying orders and
segment numbers to a selection of plate bending problems with load and boundary conditions

taken from Timoshenko [85]. In particular we look at the following four cases:
1. Uniformly loaded, simply supported rectangular plate
2. Simply supported partially loaded square plate

3. Centrally point loaded, simply supported rectangular plate

Applications to Finite Element Problems using the Rayleigh-Ritz Method 167

4. Uniformly loaded square plate with two edges simply supported and two edges clamped
In addition we present numerical results for three more cases in appendix A:

e Uniformly loaded rectangular plate with two opposite edges simply supported, the third
edge free and the fourth clamped

e Uniformly loaded rectangular plate with three edges simply supported and the fourth edge

free

e Uniformly loaded rectangular plate with all edges clamped

In each of the above cases the theoretically exact solutions are known (for example, Timoshenko,
[85]) and expressed in the form of trigonometric infinite series which allows us to examine the

accuracy of the results.

5.5.1 Example 1: Uniformly loaded and simply supported rectangu-

lar plate
v ¥V
/ 3(v=0)) / simple ‘
j I A
2 (=0 simple i i i

4(u=2a) i i i i simple

- _ l =u

1(r=0) 2 simple A

Figure 5.14: Rectangular plate with corresponding isoparametric lines and load/boundary con-

ditions

For the case of a uniformly loaded, simply supported plate as shown in [5.14] the theoretically

exact solution can be expressed in terms of a trigonometric series. For a uniform load F} = F,

168 Variational Based Modelling and Analysis using B-splines

the deflection z(u,v) is given by:

nmv

o0 o0 . .
(u,) 16 F Sm%smT
r(u,v) = —— E —a
6\ m? | n?y2’
& m=1,3,5... n=1,3,5... mn(+)

a? b2

from which the maximum deflection of the plate (at the center) is given by
[e’e) [e’¢) mtn _

Tmaz = T\ 5, 5) = .
22 TN m=1,3,5... n=1,3,5... m”(zl—zz + 2—5)2

The series expansions for bending and twisting moments can be obtained from B.I3]and [E.I4]

Numerical results

Timoshenko uses the following forms to express the maximum deflection, maximum bending
moments, shearing and reactive forces along the middle of the sides u = a,v = b:

Fa*
Tmax = aEh37

(Mu)ma:c = ﬁFGQa (Mv)maa: = ﬁlFa27
(Qu)u:a,v:b/2 - —’)/FCL, (Qv)u:a/Z,v:b = _'71Faa
(Vu)u:a,v:b/Z = —(5F6L, (%)u:a/Z,v:b = —(51FCL, (517)

where «, 3, 81, 7,71, d, 61 are numerical factors depending upon the ratio b/a of the sides of the
plate and Poisson’s ratio v. We take the numerical results from the tables presented in [85] (the
values are tabulated to 4dp) which are based on the theoretically exact values, and, for the case
of a square plate, compute percentage absolute relative errors from the B-spline solution for the
maximum values of the deflection, bending moments, shearing and reactive forces in u (the v
values are identical due to symmetry). These value are computed using equations to
and the B-spline surface generalisation of algorithm 2.6. We give results for a Poisson ratio of
0.3 noting that results for a different value of v can be obtained by using [5.10 and multiplying
by (1—12?%)/0.91. Figures (.15 to [BE.I8 present the graphs of these errors for both fixed segment
number and varying order and vice versa. Figure gives a log-log plot of the error graphs for
bending moment and shearing force. Together these graphs show the approximate relationships
predicted from the theory:

e From the displacement error graph, [B.I5] doubling the number of segments decrease the
error by a factor of 2 for order 4

Applications to Finite Element Problems using the Rayleigh-Ritz Method 169

Percentage error in maximum deflection of uniformly loaded simply supported Percentage error in maximum deflection of uniformly loaded simply supported
square plate using B-spline solution of varying orders and segment numbers square plate using B-spline solution of varying orders and segment numbers
16 T
segment numbers inu and v ordersinuand v

14 ¢ 22 —— B 44 —o—
5 44 —— 5 55 ——
5 o12) 66 = | § 66 —o—
© 8,8 —x— ® 77 ——
E 1l 10,10 —— | E
© 12,12 —%— 2
8 14,14 —o— 8
=3 3
5 087 16,16 —e— 1%
0 0
Qo Qo
[[
g 06 18
o] o]
= €
S o4 18
[0} [
Q Q

0.2% * * L i i i s &

0 . 0
4 5 6 7 2 4 6 8 10 12 14 16
order (u,v) number of segments in (u,v)

Figure 5.15: Percentage error in max deflection for uniformly loaded simply supported square
plate

e From the shearing force error graph, [B.19] doubling the number of segments reduces the

error by a factor of approximately two for order 4 and four for order 5.

e From figure [B.19] the rate of convergence when increasing the degree is asymptotically

independent of the number of basis functions.

Appendix A.1 gives the numerical results in tabular form according to the parameters

a, 3, B1,7, 71,0, 01 for this case and for a selection of plates of varying ratios of b/a.

170

Percentage error in maximum bending moment in u of uniformly loaded simply supported

20

18

16

14

12

10

percentage absolute relative error

Variational Based Modelling and Analysis using B-splines

square plate using B-spline solution of varying orders and segment numbers

Percentage error in maximum bending moment in u of uniformly loaded simply supported

square plate using B-spline solution of varying orders and segment numbers

T T 20 T T T T T T
r segment numbers in u and v 1 18 orders inu and v 1
22 —o— 44 —o—
r 44 —— 18 16 55 ——]
6,6 —8— o 66 —5—
L 4 (0] 14 4
8,8 —x— 2 7,7 —%—
I 10,10 —5— 13 1]
12,12 —x— ©
L 14,14 —— 1 —g 10 1
16,16 —e— 2
[
1 s 8]
j=
©
4 ‘g 6 4
o
12 4 ,
, 2 ,
0 & &
4 5 6 7 2 4 6 8 10 12 14 16
order (u,v) number of segments in (u,v)

Figure 5.16: Percentage error in max bending moment in u for uniformly loaded simply supported

square plate

40

35

percentage absolute relative error

Figure 5.17: Percentage error in max

Percentage error in maximum shearing force in u of uniformly loaded simply supported
square plate using B-spline solution of varying orders and segment numbers

Percentage error in maximum shearing force in u of uniformly loaded simply supported
square plate using B-spline solution of varying orders and segment numbers

T T 40 T T T T T T
r segment numbers in u and v 1 35 ordersinuand v 1
22 —o— 5 44 —o—
44 —— 15 a2t 55 —— |
6,6 —8— ° 6,6 —5—
8,8 —x— 18 %l 77 —>—
10,10 —5— ©
1212 —%— 2
1414 —o— 18 Ay
16,16 —e— g
4 g 15 +
ol
c
Q
12 10r
Q
Q
7 . \ |
0 % = &

order (u,v)

square plate

shearing force

2 4 6 8 10 12 14 16

number of segments in (u,v)

in u for uniformly loaded simply supported

Applications to Finite Element Problems using the Rayleigh-Ritz Method

30

25

percentage absolute relative error

20 -

15 -

10§

Percentage error in maximum reactive force in u of uniformly loaded simply supported
square plate using B-spline solution of varying orders and segment numbers

Percentage error in maximum reactive force in u of uniformly loaded simply supported
square plate using B-spline solution of varying orders and segment numbers

171

30 T T T T T T
segment numbers in u and v _ > orders in uand v 1
2,2 —— g 44 ——
44 —— o 556 ——
6,6 —8— 2 20 66 —8—
88 —— 3 17—
10,10 —— 9
12,12 —%— 2 15+
14,14 —o— k|
16,16 —e— [}
j=)
g wf
c
8
g
5 4
. : .
4 5 2 4 6 8 10 12 14 16
order (u,v) number of segments in (u,v)
Figure 5.18: Percentage error in max reactive force in w for uniformly loaded simply supported

square plate

44 —— | _ 3§ 44—
5 '
55 £ 66 —5—
o 5% 88 —x— |
% 10,10 ——
g 1212 —%—
s 1l 14,14 —o— |
3 16,16 —o—
[e]
%)
3
o Of
o
o]
g
g1t
)
Q
£
_2 b 77
]
-1 L L L L 3L L
1 15 2 25 14 18

In percentage absolute relative error
—
ol

ordersinuand v

4 :

segment numbers in u and v

In number of segments in (u,v)

In order (u,v)

Figure 5.19: Log-log plot percentage error in max shearing force in u vs segment number/order

for uniformly loaded simply supported square plate

172 Variational Based Modelling and Analysis using B-splines

5.5.2 Example 2: Centrally point loaded and simply supported rect-

/I' sirmple

angular plate

simple

: >
simple &

Figure 5.20: Simply supported centrally point loaded rectangular plate

For the second example we take the case of a centrally point loaded and simply supported
rectangular plate as shown in [5.20l The solution for the maximum deflection under a concen-

trated force P, = P perpendicular to the plate is given in [85] as

Pab > 1 Qn, Pa?
w(u,v) = 2N73 mzlzii:i’) $<tanh(am) B coshzozm> ~YERs

We take the values of a corresponding to the maximum deflection from [85]. Figure B2 presents
the percentage error graphs for varying orders and segment numbers for the case b/a = 2, and
figure shows the log-log plot of error against segment number. Appendix A.2 gives the
numerical results for this and a selection of rectangular plates with varying ratio b/a under the

same load and boundary conditions.

Applications to Finite Element Problems using the Rayleigh-Ritz Method 173

percentage absolute relative error

Figure 5.21: Percentage error in max deflection

Percentage error in maximum deflection of centrally (i.e. point) loaded simply supported
rectangular (1.0,2.0) plate using B-spline solution of varying orders and segment numbers

Percentage error in maximum deflection in of centrally (i.e. point) loaded simply supported
rectangular (1.0,2.0) plate using B-spline solution of varying orders and segment numbers

35 35 . : : ,
30 segment numbers in u and v 30 orders in uand v
22 —— 33 —o—
44 —— 44 ——
25 - 6,6 —5— 2 55 —8—
88 —*— 6,6 —%—
20 10,10 —— 20 77 ——
1212 —*—

percentage absolute relative error

3 4 5 6
order (u,v)

rectangular plate (1,2)

In percentage absolute relative error

Log-log plot percentage error in maximum deflection in of centrally (i.e. point) loaded simply supported

square plate using B-spline solution of varying orders and segment numbers

4 T T T

orders in uand v

44 ——

4 . . .

33 —— 1

1 15 2

In number of segments in (u,v)

In percentage absolute relative error

number of segments in (u,v)

for centrally point loaded simply supported

Log-log plot percentage error in maximum deflection in of centrally (i.e. point) loaded simply supported

rectangular (1.0,2.0) plate using B-spline solution of varying orders and segment numbers

orders inu and v

33 —— o
44 ——
55 —8—
66 —<— |
77 ——

1 15 2

In number of segments in (u,v)

Figure 5.22: Log-log plot percentage error in max deflection vs segment number for centrally

point loaded simply supported square/rectangular plate (1,2)

174 Variational Based Modelling and Analysis using B-splines

5.5.3 Example 3: Simply supported and partially loaded square plate

v

/ simple

simple

simple

U
simple 2

Figure 5.23: Simply supported partially loaded square plate

For the third example we take the case of a simply supported, partially loaded square plate,
figure (.23l We assume the load, F; = F, is centered on the plate and distributed uniformly
over a rectangular region of side a1, b;. The B-spline solution is obtained using algorithm 5.2 and
the factor § in the maximum bending moment in u (which occurs at the center) is computed

using B.12] where
(Mu)maw = 5G%F = 6P7

and P = a?F is the total load. This is then compared with the value given in [85]. Figures
and show error graphs for this bending moment factor in u for three values of aj,
(0.1,0.2,0.5). The graphs display the absolute relative error between the value of (3 calculated
from the theoretical result and that obtained from the B-spline solution for varying orders and
segment numbers. The trend in increasing accuracy with increasing size of area bearing the load
for a given segment number can be understood in the sense that the mesh of basis functions is
better able to cover the defined region. For smaller load regions a; x b; the smaller the coverage
of the basis functions over that region. To achieve a target accuracy with smaller a,b; we
require increased segment numbers.

The numerical results for the bending moment are presented in tabular form in Appendix

A.3 for these cases and others with values of a1, b; ranging from 0.1 to 1.0 in steps of 0.1.

Applications to Finite Element Problems using the Rayleigh-Ritz Method

Percentage error in maximum bending moment in u of partially loaded (0.1,0.1) simply supported

80

square plate using B-spline solution of varying orders and segment numbers

70

40

30

¥

percentage absolute relative error

10 ¢

60

50 f

20 ¢

segment numbers in u and v
22 ——
44 ——
66 —5—
88 —%—
10,10 ——
12,12 —%—

Figure 5.24: Percentage error in

order (u,v)

supported square plates

Percentage error in maximum bending moment in u of partially loaded (0.2,0.2) simply supported

square plate using B-spline solution of varying orders and segment numbers

70

60

percentage absolute relative error

104

50 r

40 |

30 -

20 r

segment numbers in u and v
22 —o—
44 ——
6,6 —8—
88 —x—
1010 —v—
12,12 ——

percentage absolute relative error

percentage absolute relative error

175

Percentage error in maximum bending moment in u of partially loaded (0.1,0.1) simply supported

80

70

60 -

50

40

30

20 ¢

10 ¢

square using B-spline solution of varying orders and segment numbers

orders inu and v

33 —o—
44 —— |
55 —B—
66 —x— |
17 ——
88 —x—

2

2 4 6 8 10 12

number of segments in (u,v)

max bending moment in u for partially loaded (0.1,0.1) simply

Percentage error in maximum bending moment in x of partially loaded (0.2,0.2) simply supported

70

60

50 -

40t

30

20 ¢

10 ¢

square using B-spline solution of varying orders and segment numbers

ordersinuand v

33 ——
44 ——
55 —5— |
6,6 —%—
77— |
88 —x—

order (u,v)

2 4 6

[

10 12

number of segments in (u,v)

Figure 5.25: Percentage error in max bending moment in u for partially loaded (0.2,0.2) simply

supported square plate

176 Variational Based Modelling and Analysis using B-splines

Percentage error in maximum bending moment in u of partially loaded (0.5,0.5) simply supported Percentage error in maximum bending moment in x of partially loaded (0.5,0.5) simply supported

square plate using B-spline solution of varying orders and segment numbers square using B-spline solution of varying orders and segment numbers

40 T T T - 40

35 segment numbers in u and v] 35 ordersin uand v
5 22 —— 5 33 ——
o 3t 44 —— 5 30} 44 ——
$ 6,6 —8— 0 55 —8—
§ 25+ 8’8 E 25 - 6,6 —x—
e 10,10 —5— e 77 ——
g 1212 —— 2 88 —x—
5 2071 S 20°r
] 2
% ©
% 15 F ‘%, 15 -
£ <
§ 107 8 10t
g g

51 e p 59

‘ y %))
0 L Lil L 0 N
3 4 5 6 7 8 2 4 6 8 10 12
order (u,v) number of segments in (u,v)

Figure 5.26: Percentage error in max bending moment in u for partially loaded (0.5,0.5) simply

supported square plate

5.5.4 Example 4: Uniformly loaded rectangular plate with two edges
simply supported and two edges clamped

For the final example we take the uniformly loaded rectangular plate but this time with mixed
boundary conditions: two edges are clamped u = 0,u = a and the remaining two simply
supported, see figure .27 We use the tables provided in [85] and, for the case of a square
plate, graph absolute relative percentage errors in the maximum deflection (which occurs at the
center of the plate (a/2,a/2)), the bending moment in v along the side v = a, at (a/2,a), and
the bending moment of u at the center of the plate (a/2,a/2). Figures (.28 B30 and
display the error graphs based on the difference between the factors «, 3, 31 computed for the
exact solution and the values obtained from the B-spline approximation for varying orders and
segment numbers. Figure [B.31] shows a log-log plot of bending moment error against segment
number and order for a restricted set of the data. The small number of visible points on figure
(.28 is due to the error reducing to zero within the 4dp accuracy we are using with the comparison
data from [85]. Appendix A.4 gives the numerical results for a, 3, §; in tabular form for this

case and for a further selection of plates of varying ratio a : b under the same conditions.

Applications to Finite Element Problems using the Rayleigh-Ritz Method 177

clarmped

1

simple

U
clamped a

Figure 5.27: Uniformly loaded rectangular plate with two edges simply supported and two edges

clamped
Percentage error in maximum deflection of uniformly loaded simply supported along (u=0,u=a), Percentage error in maximum deflection of uniformly loaded simply supported along (u=0,u=a),
clamped along (v=0,v=a), square plate using B-spline solution clamped along (v=0,v=a), square plate using B-spline solution
of varying orders and segment numbers of varying orders and segment numbers

5 segment numbers in u and v 5 ordersinuand v

@ 22 ——) 44 ——
¢ 44 —— $ O
g 66 —8— ki 6,6 —=—
3 88 —x— g [
2 1010 —— 2 88 ——
9 12,12 —%— [}

Q el

© ©

Q Q

o] o

8 8

c c

g g

2 g

0 # ® & # # %
4 5 6 7 8 6 8 10 12
order (u,v) number of segments in (u,v)

Figure 5.28: Percentage error in max deflection for uniformly loaded square plate simply sup-

ported on two edges and clamped on two edges

178

40
35
5
30
)
2
54
] 25
2
=}
s 2
%]
e}
©
o 15
o
ol
1<
;_‘3 10
[}
Q
5
0

Variational Based Modelling and Analysis using B-splines

Percentage error in maximum bending moment in u (u=a/2,v=a/2) of uniformly loaded

simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate
using B-spline solution of varying orders and segment numbers

Percentage error in maximum bending moment in u (u=a/2,v=a/2) of uniformly loaded

simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate
using B-spline solution of varying orders and segment numbers

T T T 40 T T T T
r segment numbers in u and v ordersinuand v
22 —o— S 44 —o—
L 44 —— o 55 ——
66 8- | 2 66 —o—
L 88 —x— =z 7,0 —>—
10,10 —v— ° 88 —v—
L 12,12 —%— E
2
Qo
[
r 9]
o
o]
€
L 9]
<
7]
Q
— e a— 7 # i
4 5 6 7 6 8 10 12
order (u,v) number of segments in (u,v)

Figure 5.29: Percentage error in max bending moment in u for uniformly loaded square plate

simply supported on two edges and clamped on two edges

35

30

25

20

15

10

percentage absolute relative error

Percentage error in maximum bending moment in v (u=a/2,v=a) of uniformly loaded

simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate
using B-spline solution of varying orders and segment numbers

Percentage error in maximum bending moment in v (u=a/2,v=a) of uniformly loaded

simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate
using B-spline solution of varying orders and segment numbers

35 T T T T
F segment numbers in u and v . 30 orders in uand v
22 —— £ 44 —o—
| 44 —— H 55 ——
66 —=— | 2 66 ——
88 —>— | ¥ 77—
r 10,10 —— g 20 88 —v—
12,12 —%— 2
1]
H 2 15
)
g
L € 10
9]
o
g
r 5
o r \M = =
0 =
4 5 6 7 6 8 10 12

order (u,v)

number of segments in (u,v)

Figure 5.30: Percentage error in max bending moment in v for uniformly loaded square plate

simply supported on two edges and clamped on two edges

Applications to Finite Element Problems using the Rayleigh-Ritz Method 179

In percentage absolute relative error

Log-log percentage error in maximum bending moment in v (u=a/2,v=a) of uniformly loaded Log-log percentage error in maximum bending moment in v (u=a/2,v=a) of uniformly loaded
simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate simply supported along (u=0,u=a), clamped along (v=0,v=a), square plate
using B-spline solution of varying orders and segment numbers using B-spline solution of varying orders and segment numbers
4 4
35 segment numbers in u and v] 35 .
22 orders inuand v
3t 44 —— § 44 —— |
5 55 ——
25 o q
8,8 —x— 2
o
21]
Q
15+ 3
[=]
[%]
Lt £
[}
05 g
c
ot 8
Q
Q
05 r =
_1 L
-1.5
15 1 15 2
In order (u,v) In number of segments in (u,v)

Figure 5.31: Log-log plot percentage error in max bending moment in v for uniformly loaded

square plate simply supported on two edges and clamped on two edges

5.6 3D Energy Minimisation Problems

5.6.1 Deformation of isotropic elastic solids

In this final section we consider the possible generalisations of the energy minimisation expres-

sions given by [.4] and [5.10 for the one and two dimensional cases respectively, to solids. We

consider linear elastic solids, that is materials that satisfy the following conditions:

. they deform reversibly, if the loads are removed the solid returns to its original shape,

the strain in the solid depends only on the stress applied to it, not on the rate of loading

or the history of loading,

the stress is a linear function of the strain,

. the solid has no characteristic orientation (isotropic), i.e. the stress/strain curve is inde-

pendent of orientation.

180 Variational Based Modelling and Analysis using B-splines

Membrane generalisation

An extension of the internal energy membrane term, [(.6) for an isotropic solid described by a

parametric function

x(u, v, w)
x(u,v,w) = | y(u,v,w)
z(u, v, w)
is given by
895 Ox o Oyro Oy Oy, 0z, 0z, 0z,
1%

where V' represents the parametric domain of the solid.

Thin-plate energy generalisation

The thin plate internal strain energy component, 5.9 can be generalised to a volume in 3D in

more than one way. One possible formulation is given by

B Pr, Pr., Ox., Px ., Px Pr .,
Ei"t(x)/((@) (52 + (52 +2(<8u8v> * Goaw +(8u8w)>
J
Pyo Y.y 0%y o Py Py o 0’
+(8u2> +(8v2) +(8w2) +2<(8u80) +(8v8w) +(8u8w)>
Pz, %2, 0%z, 0%z ., 0%z 0z
G G TG T2 G0 T Gean) Tt (e))dudvdw. (5.18)

Another more intuitive formulation based on solid mechanics and called the linear elastic
model can be described as the following problem (see for example Parnes [65]) - given the
geometry of a body, the loads, the boundary or support conditions and the stress-strain relation
of the material, calculate the displacement field in the body.

We recall the stress (o;;)- strain(e;;) rank 2 tensor relation from linear elasticity (using the
summation convention):

EaAT

E(+ 7 5) 5
1+ o\ T g, R0) T Ty

where E and v are Young’s modulus and poisson’s ratio, « is the coefficient of thermal expan-

Uij =

sion, and AT is the increase in temperature of the solid. The strain field ¢;; is related to the

Applications to Finite Element Problems using the Rayleigh-Ritz Method 181

displacement by the following relations:

_ Ox Oy 0z or 0Oy _1/0x 0z 10y | 0z
V50 PTG BT gu P (av+a) as=3(gut o) = 3(a0+50)
(5.19)

with €;; = €;;. Assuming AT = 0, the stored elastic energy in the solid is given by

E v
Ein: <z i mm)ddd -
t /2(1+y)]]—l—l 26%6 udvdw =
1%

Ev

b 2
/(2(1+y) <6%1 +€§2+€§3+2€%2+2€%3+2633> + 21— 20) (1 + 1) (611 +622+e33))dudvdw
v

(5.20)

Using [B.19 we can write [£.20] as

9 = [(500430 22) u(Gr + G+ G2r)
\%

0 0 0 0 0 0 88 ox 0 dy 0
B (TP 1+ (04 (L7 4 (L2 4 (o (R 420 T 4 920 02 2“))“““

v +(8w) ou ow +(%) +(8v) 2 81}8u+ 0w8u+ ow Ov

(5.21)

where A and p are elastic weighting terms called the Lame constants. These can be written in

terms of of the more intuitive constants E, Young’s modulus and v Poisson’s ratio:

3N+ 2 A
po B o A
A p 200 + 1)
For our purposes we use a similar but slightly simplified form of the linear elastic model using

the following energy form taken from Rappoport et al [75] and Terzopoulos & Qin, [82]:

o [(G2 () +(2)+ (2" + (2" ()

v
0z\2 02\ 2 0z Jdrdy Ox dz Oy 0z
() + &) + (o))d“d”dw+ﬂ/<avau awau+awav>d“d”dw (5.22)

where o and 3 are material property constants. Using the two internal energy forms, [B.I8 and

(.22, we form total energy expressions suitable for minimisation.

182 Variational Based Modelling and Analysis using B-splines

Total energy expressions

Using the internal energy form given by (.18 and assuming distributed load functions given by
(Fi(u,v,w));L, defined over regions [a;, b;] X [c;,d;] X [e;, f;] in (u,v,w) space, and point forces

(P;)iL, applied at points (uf, v, w}), the total potential energy is given by

19 Yo

9%x .\ 2 0z o 0%x .\ o 0%x 0%z 9%x
W) = [(G G+ (oo 2+ o+)

v
Pyy2 | Py\2 | 0Py.2 Py Py Py

(%) + <%) + <W) + 2<8u8v + vow * 8u8w>+

Pzo ,0Pz2 0%z 2 0%z 02z 0%z

(%) * (ﬁ) + (W) * 2<8u81} + dvow + 8u8w)>duah} dw=

o bd Sy

Z/// x(u, v, v)F;(u, v, w)du dv dw — ZPXUNU@:U’) (5.23)
i=1

The first integral term in this expression is the solid strain energy functional and the other
two terms represent the work done by the applied point forces and distributed loads. We seek
a parametric function x = (x(u,v,w),y(u, v, w), z(u,v,w)) of w,v,w that satisfies the given
boundary conditions and makes the above integral a minimum. Assuming a B-spline solution

to the displacement function

x(u, v, w) ZZdekNM m (V) Nin (W), knot set (u;)72] x (v;)727" x (wy) i,

i=1 j=1 k=1
and by minimising the strain energy functional using B.I3] and [E.4] we obtain the following

matrix system for the unknown control points:
M; ®; d ®; My @ Mg + Mg ®; d ®; My @, My + Mg ®; d ®; Mg ®;, My +
2(My @ d @, M @ My + My @ d @5 MY @ MY + MY @, d @; Mj @ My) =

r beode fi s P,
(Z///Ft U, 0, W) N; (W) N (V) N (w)du dv dw+ZPtNZ-J(u;‘)Nj,m(vz‘)Nkyn(w:)>

TTatr ¢t et t=1 i,j,k):l
(5.24)

Using the simplified linear elastic model, [(.22], as the energy functional and using the volume
minimisation results, BI3, B.I4] BI5 BI6, we obtain the matrix3D equation:

a(Mg@id@)j’MS@]CMBU—G—Mg@id@ng®kMEU+M8®¢d®jMS®kM§U>+

Applications to Finite Element Problems using the Rayleigh-Ritz Method 183

3 (M?“ ®; d ©; MY’ @ My + (MY")" @; d ®; (M}")" @, Mg+
MY @; d ©; My @ MY + (M) ©; d ©; My @ (M) +

My ®@; d ®; MY @, MY + MY ®@; d ®; (M) @, (M?U’)T> =

de fi

1 bt S1 p,q,r
(Z / / / Ft(u,v,w)NiJ(u)Nj,m(v)Nkﬂ(w)dudvdw+zPtNi,l(u;‘)ij(vt*)Nk,n(w:))
t=1 at Ct €t t=1 i,j,k‘:1
(5.25)

Boundary conditions

The boundary conditions are simplified when using the Ritz method, as in the curve/surface
case the natural boundary conditions are verified automatically. To fit the geometric boundary
constraints we use the boundary surface and derivative property of B-spline volumes, figure 2.141
For boundary surface interpolation we create the constraint equations for a surface by setting

up the system as follows: assume we wish to fit the function

DD by Na(u)Nj(v)

i=1 j=1

along the boundary w = 0, for example. The set of p % ¢ constraint equations is then given by

’UeC(Nw(O) &® fj ®ez> : vec(d) = bz]7 Za] = 17 <5 D5 4,

where
e;=(0,...,0,1,0,...,0)" the ith unit vector of R, i=1,...,p.

fi =(0,...,0,1,0,...,0)" the jth unit vector of R, j=1,...,q.

For boundary derivative interpolation along w = 0 to a function given by

DD b Niu(u) Ny (v),

i=1 j=1

184 Variational Based Modelling and Analysis using B-splines

the set of p * ¢ equations is

wc((N}U(O)D}U) ®f;® ei) vee(d) = b, i,j=1,...,p,q,
where N! (0) represents the vector basis function set formed from the derivative knot set in w
evaluated at 0.

As in the surface case, particular care has to be taken when setting up these constraint
equations so as not to introduce redundancy into the system. For example, fitting a bound-
ary surface function along w = 0 reduces the number of constraint equations when fitting a
derivative function along v = 0 because of the boundary/derivative control point overlap at
the intersecting edge. When all constraints have been inserted into the constraint matrix the
reduced transformation technique described in section 3.6 is then used to furnish an admissible
solution.

Algorithm 5.3 computes a B-spline solution to the solid deformation problem based on the
total energy form [(.23] and the minimisation [(.24] and algorithm 5.4 a B-spline solution based
on the total energy expression with internal energy given by and minimisation equation

H.25l They will reproduce exact solutions where exact polynomial solutions exist.

Algorithm 5.3: Computes a B-spline solution to elastic solid deformation

given orders 1, m,n, dimensions p,q,r, knot sets in (u,v,w)

internal energy functional given by
P 4
solution x(u,v,w) =Y > > dijxNii(w)Njm(v)Nin(v)
k=1

i=1j=1k

1. create the basis function set (Nj1(w)Njn(v)Nin(w))] s
2. create the minimisation matrices from the basis function set for the w,v,w 0,1,2 derivatives
Mg, Mg, Mg, MY, MY, MY, M3, M3 M5
3. form the following Kronecker products from these matrices
vml =M@ (M§@M;), vm2=M® M;®Mg)
m3=Mj® (M{@M;), vmd=M M QM)
vmb =M @ (M] @ Mj), vm6 =M ® (M§@M})
4. form the minimisation matriz, mat=vml+vm2+vm3+2 (vmd+vm5+vme6)
5. create a loads matriz3D size (p,q,r) to store point and distributed forces

and natural boundary conditions all of which appear on rhs of final linear system

Applications to Finite Element Problems using the Rayleigh-Ritz Method 185

Algorithm 5.3 cont: Computes a B-spline solution to elastic solid deformation

6. for each point force Py at given value (uf,vi,w)

6.1 calculate value of volume basis function set, b at (uf,vi, w})
b, v,) = (N (0N Mea ()
6.2 then loads+=Py x b(uf, v}, w}) T

7. for each distributed force Fy(u,v,w) over given u,v,w range [ag,bg] X [cy,ds] X [e4, £

7.1 calculate integral of volume basis function set b over (ag,bs,ct,ds,er,fr), alg 3.7
by d; £

par
Integral(as, by, cy,de, eq,fr) = ([[[Fe(w, v, w)Ni 1 (0)N;n(v)Nin(w) dudvdw)_ .
1,],k=

t Ct €¢
7.2 then loads+=Integral(as,bs, Cs,ds, e, ft)
8. determine the number of geometric boundary conditions, num_bound
9. create a matriz (g-bound) size num_bound*pqr to store the geometric boundary conditions
10. for the boundary face w =0
10.1 if there is a boundary face interpolation
10.1.1 convert boundary data to B-spline surface form
10.1.2 for each control point in u
10.1.2.1 for each control point in v
10.1.2.1.1 create the constraint equation and insert into matriz g-bound
10.2 if there is boundary face derivative interpolation
10.2.1 convert boundary data to B-spline surface form
10.2.2 for each control point in u
10.2.2.1 for each control point in v
10.2.2.1.1 create the constraint equation and insert into matriz g-bound
11. repeat step 10 for the remaining five faces
12. add in any internal point interpolation conditions (supports) to the g bound matriz
13. Create siz matrices (n_boundl1-6) to store the natural boundary conditions
14. for the boundary face w=0
14.1 if there is a natural boundary condition
14.1.1 convert the interpolation data into B-spline surface form, surf
14.1.2 calculate the uv surface integral using the 2D product rule and
uv surface limits of volume, alg 3.6
14.1.83 then n_boundl += IntegralProd(surf,umin,umax,vmin,vmax)
15. repeat 14 for the remaining 5 faces

16. insert the 6 matrices, n_bound1-6, into the boundary faces of a empty matriz3D

186 Variational Based Modelling and Analysis using B-splines

Algorithm 5.3 cont: Computes a B-spline solution to elastic solid deformation

17. subtract the matriz3D from 13 from the matrix of loads from 4
18. create a Kronecker vector from the resulting matriz3D and multiply by -1
(this represents the rhs vector for the linear system)
19. find a set of elimination indices from the geometric boundary constraints matriz g-bound
20. eliminate corresponding rows of the minimisation matriz, mat, and rhs vector, 18
21. solve the resulting reduced system of equations
22. reconstitute the complete solution using the elimination information
23. build the B-spline volume from the control points found

Figure 5.32: Algorithm 5.3: B-spline solution to elastic solid deformation

5.7 Example: The 3D Laplace equation for heat flow
through a cube

To test algorithm 5.3/5.4 we take a slightly different problem, that of heat transfer through a
cube. We examine the B-spline functional obtained by solving Laplace’s equation
Px Px %x

Vi = =0,
v ou? + ov? + ow?

for the steady state temperature distribution on a parallelepiped (figure [(.34]), for which the

analytical solution (non-polynomial) is known. The corresponding variational functional is given

by (see B3 1 0x\ 2 0x\ 2 ox\ 2
I(x(u,v,w)) = 5/[(%) + (%) + <(9_w)]dudvdw.

7
We assume the volume is a homogeneous parallelepiped with a thermal conductivity of 1.0. The
temperature at the surface w = L,, is taken to be 1. On the other five sides the temperature is

taken to be zero. The domain V' of the parallelepiped is limited by

0<u<lL, 0<v<L,, 0<w<L,,

Applications to Finite Element Problems using the Rayleigh-Ritz Method 187

Algorithm 5.4: Computes a B-spline solution to elastic solid deformation
internal energy functional given by

1. create the basis function set (Vi 1(W)Njn(v)Nea (W)} 51
2. create the minimisation matrices from the basis function set for the 0,1,2 u,v,w derivatives
M2, MY M MU MY MY MY MY, MY
3. create the minimisation matrices from the basis function set based on the
(1,1,0), (1,0,1), (0,1,1) derivatives M M7 MO¥
4. form the following Kronecker products from these matrices
vml =My @ (M§ @ M3), vm2 =M ® (Mj ® Mg)
vm3 =M ® (M; @ M3), vmd = M5 ® (M" @ M)
vms = Mg @ ((M")" @ (M*)7), vm6 = M{" ® (Mg @ M*)
vm7 = (M*)T @ Mg ® (M)7), vm8 = M{" ® (M}" ® Mp)
vm9 = (M) @ (M) @ M)
4. form the minimisation matriz, mat= «(vml + vm2 + vm3) + S(vm4 + vm5 + vm6 + vm7 + vm8 + vm9)
5. to 23. as in algorithm 5.3

Figure 5.33: Algorithm 5.4: B-spline solution to elastic solid deformation, version 2

and for the steady state solution the Laplacian operator is zero:
V2 =0 inside V

For the boundary conditions we set the Dirichlet conditions 7" = 0 on all boundaries except
w = L, and then examine the cases for two different boundary conditions on w = L,,, figure
5.35] (shown for L, = L, = L, = 1):

L. T(u,v,L,) =1, 0<u<lL, 0<v<lL,

2. oL =1, O<u<L, 0<v<lL,

ow
Uy, Loy

188 Variational Based Modelling and Analysis using B-splines

p s

3 uvatw =13 & (v at = 00

4 (o at = 03
—_—

)

T ZX {uwatwv= 12

N

f

11 1 Cuw at w = 03

i
S vwarat = 12

Figure 5.34: Volume model showing isoparametric faces

W W
&
T=1 dligw=1
1 f/ 1 ﬁ//
e i
1 ! -
o 1 - v
1

— o

u

Figure 5.35: Volume element with boundary conditions for 3D Poisson equation for heat flow in

a cube, temperature = 0 on all unmarked faces

Applications to Finite Element Problems using the Rayleigh-Ritz Method 189

5.7.1 Analytical solution for case 1

The analytical solution for boundary condition 1 is given by

16 oo 00 SZ?’L (2m+1)7ru) sin ((2n+1)7rv) Slnh ,ﬂ.w\/(2m+1 + (2n£1)2]
T(u,v,w) = — Z 5 “1 o T . —.
2 m + n —+ sinh [WLW\/QWF?;D + (2”2%1) }

From this the flow through the bottom side w = 0 can be calculated to be:

O e
= fau [l
0 0

(u77‘)’0)
00 00 (2m+1)2 (2n+1)2
1 z T2
LuLU - 2 .
7T3 7nZ::O nz 2m +1)2(2n+1)2 sinh (7TLw (2172-!,2-1)2 N (2nL+21)2)

We use algorithm 5.3 adapted to functional volumes to solve for a B-spline solution to the
heat transfer problem using varying orders and segment numbers. In particular we calculate
solutions for orders [, m,n = 3,4,5 and for segment numbers (4, 6,8, 10, 12) in (u,v,w). Figures

5.36] to [6.38] show the percentage absolute relative error expressed as

exact
. ‘ Q-Q
Qexact

where () represents either the heat flow through the bottom of the cube or the steady state tem-

perature distribution for the varying orders and segment numbers and Qc,q.+ the corresponding
theoretical value. Figure [.38 shows log-log plots of the relative errors against segment num-
ber for the heat flow across the bottom side and the solution itself. With the small range of
orders and segment numbers tested the individual results show some variation but the trends

are apparent.

5.7.2 Analytical solution for case 2

For the second boundary condition the analytic solution is given by

(2m+1 . r(2n+1 2m+1)2 2n+1)2
sm m+ Jru) sm((nJLr)m) smh 7””\/ }

T
(u Y w Z Z 2m —|— 1 2n + 1 \/(2m+1)2

m=0 n=0 %) + (Q”L‘%l) COSh[’]TLw\/(%Z—%I) + (2n+1)]

190 Variational Based Modelling and Analysis using B-splines

Percentage error in heat flow through the bottom side (z=0) of a unit cube. Percentage error in heat flow through the bottom side (z=0) of a unit cube.
Temperature=1 on z=1 and zero on all other sides. Temperature=1 on z=1 and zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers. Solutions obtained using B-spline volume form with varying orders and segment numbers.
18 18 ;
16 segment numbers in u,v,w 1 16 orders in u,v,w
333 ——
14 + 14+ 444 ——
555 —8—
12% 12%

10 r 10 +

percentage absolute relative error
percentage absolute relative error

0
3 4 5 4 6 8 10 12
order (u,v,w) number of segments in (u,v,w)
Figure 5.36: Percentage error in heat flow through bottom side of cube
Maximum percentage error in solution over 10*10*10 grid point sample. Maximum percentage error in solution over 10*10*10 grid point sample.
Temperature=1 on z=1 and zero on all other sides. Temperature=1 on z=1 and zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers. Solutions obtained using B-spline volume form with varying orders and segment numbers.
60 . 60 : . !

segment numbers in u,v,w
4,44 ——

50 1 50 - orders in u,v,w 1
6,66 —— 333 —o—
888 —5— 444 ——

40 ¢ 555 —8—

30+

20 -

percentage absolute relative error
percentage absolute relative error

10 ¢

0 L 0 . . .
3 4 5 4 6 8 10 12

order (u,v,w) number of segments in (u,v,w)

Figure 5.37: Maximum percentage error in solution for varying segment numbers

from which the heat flow through the bottom side w = 0 can be computed to be:

Ly L,

oT 64 = - 1 1 1
Tewact — d d i _ - uLv)
0 / u/ U@w (uw,0) T4 Z Z:;) (2m+1)2 (2n + 1)? cosh[wL \/(2m+1)2 (2n+1)2}

0 0 m=0n -t

Applications to Finite Element Problems using the Rayleigh-Ritz Method

In of percentage error in heat flow through the bottom side (z=0) of a unit cube.
Temperature=1 on z=1 and zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers.

3 : .

orders in u,v,w

333 —o—
444 ——
555 —8—

In percentage absolute relative error
o
o

2 . .
15 2

In number of segments in (u,v,w)

In percentage absolute relative error

45

Maximum percentage error in solution over 10¥10*10 grid point sample.
Temperature=1 on z=1 and zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers.

orders in u,v,w 1
333 —o—
444 ——
555 —8—

15

2

In number of segments in (u,v,w)

191

Figure 5.38: Log-log plot, maximum percentage error in heat flow and solution for varying

segment numbers

Figures [(.39 and [(.40] show percentage absolute relative error graphs for the steady state
temperature distribution and the heat flow through the bottom of the cube for the same set of

orders and segment numbers, and figure [5.41] shows the corresponding log-log plots.

Percentage error in heat flow through the bottom side (z=0) of a unit cube.
(dT/dz)=1 on z=1 and T=zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers.

Percentage error in heat flow through the bottom side (z=0) of a unit cube.

(dT/dz)=1 on z=1 and T=zero on all other sides.
Solutions obtained using B-spline volume form with varying orders and segment numbers.

9 T 9 T T T
segment numbers in u,v,w 1
8 orders in u,v,w R
3,33 ——
7t 444 —— A
555 —&—

percentage absolute relative error

percentage absolute relative error

3 4 5

order (u,v,w)

8 10

number of segments in (u,v,w)

Figure 5.39: Percentage error in heat flow through bottom side of cube

12

192

percentage absolute relative error

Solutions obtained using B-spline volume form with varying orders and segment numbers.

35

Variational Based Modelling and Analysis using B-splines

Maximum percentage error in solution over 10*10*10 grid point sample.
(dT/dz)=1 on z=1 and T=zero on all other sides.

30

25

20

15

ment numbers in u,v,w

Solutions obtained using B-spline volume form with varying orders and segment numbers.

order (u,v,w)

percentage absolute relative error

Maximum percentage error in solution over 10*10*10 grid point sample.
(dT/dz)=1 on z=1 and T=zero on all other sides.

Solutions obtained using B-spline volume form with varying orders and segment numbers.

35 T T T

30 orders in u,v,w b
333 —o—

25 | 444 —— |
555 —&—

6 8 10 12

number of segments in (u,v,w)

Figure 5.40: Maximum percentage error in solution over a sampled grid

Percentage error in heat flow through the bottom side (z=0) of a unit cube.
(dT/dz)=1 on z=1 and T=zero on all other sides.

15 2

In number of segments in (u,v,w)

Maximum percentage error in solution over 10¥10*10 grid point sample.
(dT/dz)=1 on z=1 and T=zero on all other sides.

Solutions obtained using B-spline volume form with varying orders and segment numbers.

25 4
orders in u,v,w
2 orders in u,v,w 35 333 — 1

5 333 —o— 5 444 ——
o 15 444 —— ° 3 555 —&5—
R 2
£ 555 —8— £
8 © 25
2 1]
3 3
] 3 2
S 05 >
g g 15
c c
S o g
g g
£ IS

15 2

In number of segments in (u,v,w)

Figure 5.41: Log-log plot, maximum

segment numbers

percentage error in

heat flow and solution for

varying

Applications to Finite Element Problems using the Rayleigh-Ritz Method 193

5.8 Summary

By using the variational form of the governing differential equation for certain types of finite
element problem and minimising the resulting energy based functional using the formulae from
chapter 3, we have presented algorithms for computing a B-spline solution for one, two and three
dimensional cases which reproduce exact polynomial solutions where they exist. A number of
examples have been tested ranging from the static behaviour of beams under small deflection
to the elastic bending of plates under various boundary conditions and the flow of heat through
a solid. Comparisons have been made with known analytical solutions to these problems and,
within the limits of the results generated, convergence behaviour has been compared and verified
with theoretical predictions. Assuming a rectangular topology, the algorithm presented for the
case of the deflection of a beam under varying load and boundary conditions, catered for using the
reduced transformation technique, has been generalised to cope with two and three dimensional
problems. Finally, the computation of the derivative B-spline curve/surface/volume form as an
entity of the same type has enabled us to represent bending moments and reactive/shearing

forces and other derived properties in closed form.

Chapter 6

Conclusions

The principal theme of this work has been B-spline based functional minimisation and the
derivation of a unified description of the equations for curves, surfaces and volumes. To support

this the report has focused in four main areas;

1. the derivation of the derivative matrix for a B-spline curve, expressing derivative control

points in terms of the original, and its generalisation to the surface and volume forms

2. using 1, derivation of the minimisation equations for B-spline curve, surface and volume
functionals based on squares and products of derivatives and an algorithm for the exact

computation of the minimisation matrices that arise
3. applications of 2 to geometric smoothing and
4. to solving finite element type problems using the principle of minimum energy.

Concerning 3, we have presented some new methods for pre- and post-construction smoothing
of B-splines which are simple to implement, generalise from curves to surfaces, and perform well
as measured by standard smoothing criteria. For the surface case we have investigated two
techniques for implementation, one based on a standard LU factorisation and the other on an
efficient solution of Sylvester’s equation. We have generalised the curve/surface algorithms to
the volume case with new smoothing algorithms and demonstrated the capability they have to
remove unwanted curvature variations as measured by appropriate volume smoothing criteria.

Concerning 4, we have used the minimisation equations to derive algorithms for solving finite
element type problems expressed in terms of energy based functionals by applying the minimum

energy criteria and variational principles to find B-spline solutions. We have considered problems

194

Conclusions 195

in one, two and three dimensions and the algorithms developed have been verified for accuracy
by testing them with a number of cases for which analytic solutions are known. For the 2D
case we have taken a number of examples from Timoshenko’s book and reproduced B-spline
solutions. The generalisation to the volume case represents a new approach for solving relatively
small problems in elastic solid deformation, heat conduction and others.

There are a number of issues and limitations arising from the work. Firstly, the nature of the
development with tensor product functions has imposed the restriction of rectangular topologies.
Although using the Rayleigh-Ritz method normally restricts the domain to relatively simple
shapes this factor has more of an effect on the scope of the work for treating finite element
problems than it does for the geometric smoothing application where tensor product functions
are already heavily used. It is well known that the computational advantages of bringing a
problem into rectangular form are great even if this can only be done locally. The finite element
problems we have dealt with here have been strictly rectangular but by suitably breaking the
domain down, more complicated shapes (for example L shapes) could be dealt with.

Secondly, we have attempted to maintain from the outset the principle that we use exact
methods. There are obviously pros and cons with this approach. The exact approach is theoret-
ically interesting and will reproduce polynomial solutions where they exist. However, although
errors are kept to a minimum this is often at the expense of execution speed. With the com-
putation of the minimisation matrices in algorithms 3.2 and 3.3, the bottleneck is the product
calculation and of course it grows considerably as we move up from curves to surfaces and vol-
umes. How significant the factor of execution speed is depends partly on whether computation
of the relevant (i.e. the time consuming) terms can be performed prior to the running of the
critical user code. For example, in geometric smoothing we can in principle pre-compute the
minimisation matrices since they are fixed for a given knot set. This can provide the user with
real-time manipulation of the smoothing parameter, behaving much like a tuning knob on a re-
ceiver. It is also possible that minimisation matrices for a number of ‘typical’ (often used) knot
sets might be stored in memory and called up when required. For the finite element algorithms
we are often in the position where we may want to refine the mesh and this of course requires
a new computation of the matrices. However, it may still be possible to pre-compute them in
certain circumstances. Another significant factor, again due to the use of the product algorithm,
is the computation of the source/boundary term as a B-spline in the variational form of the
problem. This factor occurs on the right hand side of the resulting system and it seems sensible

to compute it numerically.

196 Variational Based Modelling and Analysis using B-splines

Another factor that needs to be mentioned is that of the so called ‘curse of dimensionality ™.
As we go up in dimension we run the risk of rapidly outstripping the computational and memory
storage capabilities. This is of particular importance for the volume methods. As discussed
in Chapter 5 the increase in popularity of volume modelling is due to the rapid increase of
computing memory and power. However the computational burden for large problems still
represents a serious challenge. In this thesis we have used the Kronecker product ‘brute force’
method to solve the systems of equations arising from the smoothing and the finite element
techniques and this method suffers from the curse. Of course with tensor product algorithms
(as described in Chapter 2) we gain considerably over the brute force approach to solving the
system of equations. For example, a standard least squares algorithm operated in tensor product
form has an operation count O(p® + p*q + pg® + ¢3) whereas the brute force approach is O((pq)?)
(where p and ¢ are the dimensions of B-spline). The methods that we have implemented in
geometric smoothing and finite elements do not have a tensor product structure (but are more
general and flexible because of this fact!) and therefore cannot be brought into this form. There
are two possible routes to improve the situation, i/ find more efficient ‘standard’” methods to
solve the systems or ii/ accept the fact of the size of the system and investigate more advanced
techniques for speed optimisation such as paralleisation of the algorithms. The Sylvester type
solution to the surface smoothing problem implemented in Chapter 4 and the use of banded
factorisations where applicable are examples of i/. However, not even going this far we can in
principle improve the execution speed by using optimised tensor operator functions implemented

in libraries such as blitz++, which is written in C++ and is template based.

lthe size/complexity of a data set grows exponentially with its dimension

Appendix A

Numerical Results for Surface FEA

Examples

The numerical results obtained by applying algorithm 5.2 to problems involving the bending of
loaded plates with the following boundary conditions imposed are presented. In each case the

first table gives the numerical results from [85] for comparison.
1. Uniformly loaded and simply supported rectangular plate.
2. Simply supported and centrally point loaded rectangular plate.
3. Simply supported and partially loaded square plate.

4. Uniformly loaded rectangular plate with two edges simply supported and two edges
clamped.

5. Uniformly loaded rectangular plate with two opposite edges simply supported, the third
edge free and the fourth clamped.

6. Uniformly loaded rectangular plate with three edges simply supported and the fourth edge

free.

7. Uniformly loaded rectangular plate with all edges built in.

197

198 Variational Based Modelling and Analysis using B-splines

A.1 Uniformly loaded and simply supported rectangular
plate

Coefficients a, 3, 81,7, 71,0, 01 (section 5.5) for B-spline solution to uniformly loaded (load F})
simply supported rectangular plate of length a, width b, figure

+
A

Figure A.1: Simply supported rectangular plate with uniform load

% Tmax (Mu)mafc (Mv)mam (Qu)mafc (Qv)mam (Vu>mafc (V’U)mam
—aliel | —gFa? | =8,Fia® | =vFa | =y;Fja | =6Fa | =6,Fa
a B B Y ge! 4 01
1.0000 0.0443 0.0479 0.0479 0.338 0.338 0.420 0.420
1.2000 0.0616 0.0626 0.0501 0.380 0.353 0.455 0.453
1.4000 0.0770 0.0753 0.506 0.411 0.361 0.478 0471
1.6000 0.0906 0.0862 0.0493 0.435 0.365 0.491 0.485
1.8000 0.1017 0.0948 0.0479 0.452 0.368 0.499 0.491
2.0000 0.1106 0.1017 0.0464 0.465 0.370 0.503 0.496
3.0000 0.1336 0.1189 0.0404 0.493 0.372 0.505 0.498
4.0000 0.1400 0.1235 0.0384 0.498 0.372 0.502 0.500
5.0000 0.1416 0.1246 0.0375 0.500 0.372 0.501 0.500

Table A.1: Numerical results from [85], simply supported rectangular plate, uniform load

Appendix A: Surface FEA Examples

ordu = 4,ordv = 4,segu = 2,segv = 2,3,4,5,6,4,6,8,10
% Tmazx (M'M/)’V?’IU/I (M'U)maw (Qu)maz (QU)"L(LH? (Vu)muw (VU)WIU/Z
:aFéhl?f :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja
a B8 B1 ok Y1 § d1
1.0000 0.0450 0.0572 0.0572 0.2049 0.2049 0.3020 0.3020
1.2000 0.0624 0.0728 0.0463 0.2120 0.2311 0.2916 0.3472
1.4000 0.0777 0.0871 0.0382 0.2188 0.2561 0.2824 0.3855
1.6000 0.0911 0.1000 0.0337 0.2340 0.2695 0.2906 0.4072
1.8000 0.1021 0.1100 0.0273 0.2402 0.2786 0.2869 0.4216
2.0000 0.1107 0.1171 0.0187 0.2353 0.2380 0.2669 0.3856
3.0000 0.1337 0.1385 0.0069 0.2506 0.2388 0.2623 0.3906
4.0000 0.1400 0.1439 0.0015 0.2494 0.2388 0.2518 0.3908
5.0000 0.1417 0.1454 0.0005 0.2502 0.2388 0.2511 0.3908
ordu = 4,ordv = 4,segu = 4,segv = 4,5,6,7,8,8,12,16, 20
% Tmazx (Mu)mam (M'l))mr(lfl‘r (Q'U/)’”LG.T (Q’U)mr(h’E (V’U)mr(lfl? (VU)’”MLI?
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0486 0.0486 0.2335 0.2335 0.3158 0.3158
1.2000 0.0617 0.0640 0.0446 0.2705 0.2536 0.3464 0.3541
1.4000 0.0774 0.0776 0.0393 0.2995 0.2652 0.3666 0.3779
1.6000 0.0908 0.0890 0.0336 0.3207 0.2719 0.3778 0.3923
1.8000 0.1018 0.0980 0.0274 0.3341 0.2758 0.3804 0.4010
2.0000 0.1106 0.1053 0.0222 0.3450 0.2688 0.3824 0.3967
3.0000 0.1336 0.1236 0.0069 0.3689 0.2704 0.3805 0.4020
4.0000 0.1400 0.1285 0.0019 0.3738 0.2704 0.3770 0.4023
5.0000 0.1416 0.1298 0.0005 0.3747 0.2704 0.3756 0.4024
ordu = 4,ordv = 4,segu = 6,segv = 6,7,8,9,10, 12, 18, 24, 30
% Tmazx (Mu)ma.r (Mv)mu,z (Qu)maz (Qv)maz (Vu)mu,z (Vv)mu,z
:aFJ‘bI‘ha; =BFa® =B Fia® =Fra =v1Fra =6F;a =6;Fja
o 8 B1 ol "1 J 51
1.0000 0.0444 0.0483 0.0483 0.2648 0.2648 0.3485 0.3485
1.2000 0.0617 0.0633 0.0446 0.3034 0.2790 0.3799 0.3803
1.4000 0.0774 0.0765 0.0393 0.3330 0.2865 0.3997 0.3995
1.6000 0.0907 0.0875 0.0335 0.3560 0.2902 0.4129 0.4107
1.8000 0.1017 0.0963 0.0275 0.3719 0.2919 0.4186 0.4171
2.0000 0.1106 0.1033 0.0224 0.3839 0.2983 0.4219 0.4263
3.0000 0.1336 0.1210 0.0070 0.4099 0.2998 0.4217 0.4314
4.0000 0.1400 0.1257 0.0019 0.4153 0.2999 0.4185 0.4317
5.0000 0.1416 0.1269 0.0005 0.4164 0.2999 0.4172 0.4317
ordu = 4, ordv = 4, segu = 8,segv = 8,9,10,11,12,16, 24,32, 40
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
:a%ajr = BF;ad? = B;F;a? =~Fja =~1Fja =6F;a =6;Fja
o 8 B1 ol 71 [51
1.0000 0.0444 0.0481 0.0481 0.2806 0.2806 0.3636 0.3636
1.2000 0.0617 0.0631 0.0446 0.3209 0.2929 0.3972 0.3933
1.4000 0.0774 0.0761 0.0393 0.3516 0.2988 0.4185 0.4109
1.6000 0.0907 0.0869 0.0335 0.3749 0.3013 0.4318 0.4208
1.8000 0.1017 0.0956 0.0276 0.3912 0.3020 0.4380 0.4260
2.0000 0.1106 0.1026 0.0225 0.4038 0.3135 0.4419 0.4403
3.0000 0.1336 0.1201 0.0070 0.4305 0.3150 0.4424 0.4455
4.0000 0.1400 0.1247 0.0020 0.4361 0.3150 0.4393 0.4458
5.0000 0.1416 0.1259 0.0005 0.4372 0.3150 0.4381 0.4458

199

200 Variational Based Modelling and Analysis using B-splines

ordu = 4, ordv = 4,segu = 10,segv = 10,11, 12,13, 14, 20, 30, 40, 50
% Tmazx (M’M/)’V?’IU/I (M'l’)7ll(l/ﬂ) (Qu)ma't (QU)"L(LH? (Vu)maw (Vl7)7nﬂ/ﬂ}
= Féhaf :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja
a B8 B1 ok Y1 § d1
1.0000 0.0444 0.0480 0.0480 0.2912 0.2912 0.3743 0.3743
1.2000 0.0617 0.0629 0.0447 0.3319 0.3029 0.4084 0.4033
1.4000 0.0774 0.0759 0.0393 0.3630 0.3083 0.4299 0.4202
1.6000 0.0907 0.0867 0.0335 0.3864 0.3102 0.4432 0.4296
1.8000 0.1017 0.0954 0.0276 0.4032 0.3104 0.4500 0.4343
2.0000 0.1106 0.1023 0.0226 0.4158 0.3238 0.4540 0.4505
3.0000 0.1336 0.1196 0.0071 0.4429 0.3253 0.4548 0.4556
4.0000 0.1400 0.1243 0.0020 0.4485 0.3254 0.4518 0.4559
5.0000 0.1416 0.1255 0.0005 0.4497 0.3254 0.4506 0.4559

ordu = 4,ordv = 4,segu = 12,segv = 12,13, 14,15, 16, 24, 36,48, 60
T}; Tmazx (Mu)mazr (M'l))mr(lfl? (Q'U/)’”Lfl.?? (Q'U)m(m: (V’U)mr(lfl? (VU)’”L(LIT
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0480 0.0480 0.2984 0.2984 0.3814 0.3814
1.2000 0.0617 0.0628 0.0447 0.3395 0.3100 0.4159 0.4102
1.4000 0.0774 0.0758 0.0393 0.3707 0.3151 0.4377 0.4269
1.6000 0.0907 0.0865 0.0335 0.3942 0.3169 0.4511 0.4360
1.8000 0.1017 0.0952 0.0277 0.4112 0.3169 0.4580 0.4406
2.0000 0.1106 0.1021 0.0226 0.4239 0.3309 0.4622 0.4573
3.0000 0.1336 0.1194 0.0071 0.4512 0.3323 0.4631 0.4624
4.0000 0.1400 0.1240 0.0020 0.4568 0.3324 0.4602 0.4627
5.0000 0.1416 0.1252 0.0005 0.4580 0.3324 0.4589 0.4627

ordu = 5,ordv = 5,segu = 2,segv = 2,3,4,5,6,4,6,8,10

% Tmazx (Mu)maz (My)maz (Qu)maz (Qu)maz (Vi) maz (Vo) maz
:a?};j :ﬁF;a'g :ﬁ;F,ag =~Fja =~1Fja =6F;a =6;Fa
o B8 51 ol 71 [o1
1.0000 0.0448 0.0500 0.0500 0.2593 0.2593 0.3453 0.3453
1.2000 0.0618 0.0639 0.0441 0.3070 0.3048 0.3812 0.4079
1.4000 0.0775 0.0767 0.0395 0.3543 0.3250 0.4207 0.4393
1.6000 0.0909 0.0871 0.0333 0.3901 0.3365 0.4473 0.4581
1.8000 0.1018 0.0956 0.0277 0.4171 0.3437 0.4644 0.4698
2.0000 0.1106 0.1021 0.0224 0.4366 0.2940 0.4744 0.4225
3.0000 0.1337 0.1191 0.0072 0.4856 0.2968 0.4979 0.4288
4.0000 0.1400 0.1235 0.0019 0.4963 0.2971 0.4994 0.4293
5.0000 0.1417 0.1246 0.0005 0.4993 0.2972 0.5002 0.4294
ordu = 5,ordv = 5,segu = 4,segv = 4,5,6,7,8,8,12,16, 20
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
:a%ajr = BF;a? =B, F;d? =~Fia =~iFja =6Fa =d61Fia
o B8 B1 Y Y1) S1
1.0000 0.0444 0.0481 0.0481 0.3157 0.3157 0.3984 0.3984
1.2000 0.0617 0.0628 0.0446 0.3626 0.3319 0.4393 0.4317
1.4000 0.0774 0.0757 0.0394 0.3979 0.3416 0.4651 0.4529
1.6000 0.0907 0.0863 0.0334 0.4240 0.3469 0.4806 0.4655
1.8000 0.1017 0.0949 0.0278 0.4439 0.3500 0.4909 0.4732
2.0000 0.1106 0.1018 0.0227 0.4585 0.3473 0.4968 0.4732
3.0000 0.1336 0.1189 0.0071 0.4910 0.3489 0.5029 0.4784
4.0000 0.1400 0.1235 0.0020 0.4980 0.3490 0.5014 0.4787
5.0000 0.1416 0.1246 0.0005 0.4996 0.3490 0.5004 0.4787

Appendix A: Surface FEA Examples 201

ordu = 5,ordv = 5,segu = 6,segv = 6,7,8,9,10, 12,18, 24, 30
% Tmax (Mu)maz (M'l’)7ll(l/ﬂ) (Qu)ma't (QU)"L(LH? (Vu)maw (Vl7)7nﬂ/ﬂ)
:aFéhl?f :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja
a B8 B1 ok Y1 § d1
1.0000 0.0444 0.0479 0.0479 0.3284 0.3284 0.4113 0.4113
1.2000 0.0617 0.0627 0.0447 0.3717 0.3429 0.4480 0.4430
1.4000 0.0774 0.0756 0.0394 0.4051 0.3509 0.4721 0.4625
1.6000 0.0907 0.0862 0.0334 0.4302 0.3551 0.4870 0.4741
1.8000 0.1017 0.0949 0.0278 0.4487 0.3573 0.4957 0.4808
2.0000 0.1106 0.1017 0.0226 0.4622 0.3604 0.5005 0.4866
3.0000 0.1336 0.1189 0.0071 0.4920 0.3619 0.5040 0.4917
4.0000 0.1400 0.1235 0.0020 0.4983 0.3619 0.5016 0.4920
5.0000 0.1416 0.1246 0.0005 0.4996 0.3619 0.5005 0.4920

ordu = 5,ordv = 5,segu = 8,segv = 8,9,10,11, 12,16, 24, 32,40
T}; Tmazx (Mu)mazr (M'l))mr(lfl? (Q'U/)’”Lfl.?? (Q'U)m(m: (V’U)mr(lfl? (VU)’”L(LIT
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0479 0.0479 0.3323 0.3323 0.4151 0.4151
1.2000 0.0617 0.0627 0.0447 0.3753 0.3468 0.4517 0.4467
1.4000 0.0774 0.0756 0.0394 0.4079 0.3545 0.4749 0.4660
1.6000 0.0907 0.0862 0.0335 0.4321 0.3586 0.4888 0.4774
1.8000 0.1017 0.0949 0.0278 0.4502 0.3606 0.4972 0.4839
2.0000 0.1106 0.1017 0.0226 0.4635 0.3643 0.5018 0.4904
3.0000 0.1336 0.1189 0.0071 0.4923 0.3658 0.5043 0.4955
4.0000 0.1400 0.1235 0.0020 0.4984 0.3659 0.5017 0.4958
5.0000 0.1416 0.1246 0.0005 0.4997 0.3659 0.5005 0.4958

ordu = 5,ordv = 5,segu = 10,segv = 10,11,12,13, 14, 20, 30, 40, 50

% Tmazx (Mu)maz (My)maz (Qu)maz (Qu)maz (Vi) maz (Vo) maz
:a?};j :ﬁF;a'g :ﬁ;F,ag =~Fja =~1Fja =6F;a =6;Fa
o B8 51 ol 71 [o1
1.0000 0.0444 0.0479 0.0479 0.3343 0.3343 0.4172 0.4172
1.2000 0.0617 0.0627 0.0447 0.3767 0.3489 0.4531 0.4489
1.4000 0.0774 0.0756 0.0394 0.4090 0.3567 0.4759 0.4682
1.6000 0.0907 0.0862 0.0335 0.4331 0.3608 0.4899 0.4796
1.8000 0.1017 0.0948 0.0278 0.4509 0.3628 0.4980 0.4861
2.0000 0.1106 0.1017 0.0226 0.4640 0.3664 0.5024 0.4925
3.0000 0.1336 0.1189 0.0071 0.4925 0.3678 0.5045 0.4975
4.0000 0.1400 0.1235 0.0020 0.4984 0.3679 0.5017 0.4978
5.0000 0.1416 0.1246 0.0005 0.4997 0.3679 0.5005 0.4979
ordu = 5,ordv = 5,segu = 12,segv = 12,13, 14, 15, 16, 24, 36,48, 60
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
7&% = BF;ad? = B;F;a? =~Fja =~1Fja =6F;a =6;Fja
o 8 B1 ol 71 [51
1.0000 0.0444 0.0479 0.0479 0.3353 0.3353 0.4181 0.4181
1.2000 0.0617 0.0627 0.0447 0.3776 0.3500 0.4540 0.4500
1.4000 0.0774 0.0756 0.0394 0.4097 0.3579 0.4766 0.4694
1.6000 0.0907 0.0862 0.0335 0.4336 0.3620 0.4903 0.4809
1.8000 0.1017 0.0948 0.0278 0.4513 0.3641 0.4983 0.4874
2.0000 0.1106 0.1017 0.0226 0.4643 0.3674 0.5027 0.4934
3.0000 0.1336 0.1189 0.0071 0.4925 0.3688 0.5045 0.4985
4.0000 0.1400 0.1235 0.0020 0.4984 0.3689 0.5018 0.4988
5.0000 0.1416 0.1246 0.0005 0.4997 0.3689 0.5005 0.4988

202 Variational Based Modelling and Analysis using B-splines

ordu = 6,ordv = 6,segu = 2,segv = 2,3,4,5,6,4,6,8,10
% Tmax (M’M/)’V?’IG/I (M'l’)7ll(l/ﬂ} (Q’M)T?’Lﬂl‘ (QU)"L(LH? (VU)7llaﬂ) (Vl7)7nﬂ/ﬂ)
:aFéhl?f :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja
a B8 B1 ok Y1 § d1
1.0000 0.0443 0.0476 0.0476 0.3182 0.3182 0.3998 0.3998
1.2000 0.0617 0.0625 0.0449 0.3655 0.3451 0.4418 0.4439
1.4000 0.0774 0.0753 0.0393 0.4015 0.3546 0.4687 0.4650
1.6000 0.0907 0.0861 0.0334 0.4272 0.3618 0.4841 0.4796
1.8000 0.1017 0.0947 0.0278 0.4460 0.3642 0.4929 0.4865
2.0000 0.1106 0.1016 0.0226 0.4617 0.3497 0.5004 0.4744
3.0000 0.1336 0.1189 0.0071 0.4906 0.3518 0.5025 0.4801
4.0000 0.1400 0.1234 0.0020 0.4987 0.3520 0.5022 0.4805
5.0000 0.1416 0.1246 0.0005 0.4992 0.3521 0.5001 0.4806

ordu = 6,ordv = 6,segu = 4,segv = 4,5,6,7,8,8,12,16, 20
T}; Tmazx (Mu)mazr (M'l))mr(lfl? (Q'U/)’”Lfl.?? (Q'U)m(m: (V’U)mr(lfl? (VU)’”L(LIT
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0478 0.0478 0.3376 0.3376 0.4205 0.4205
1.2000 0.0617 0.0626 0.0447 0.3798 0.3534 0.4563 0.4535
1.4000 0.0774 0.0755 0.0394 0.4110 0.3618 0.4779 0.4734
1.6000 0.0907 0.0862 0.0335 0.4348 0.3664 0.4915 0.4855
1.8000 0.1017 0.0948 0.0277 0.4525 0.3689 0.4996 0.4924
2.0000 0.1106 0.1017 0.0226 0.4654 0.3699 0.5038 0.4961
3.0000 0.1336 0.1189 0.0071 0.4928 0.3713 0.5049 0.5012
4.0000 0.1400 0.1235 0.0020 0.4985 0.3714 0.5019 0.5015
5.0000 0.1416 0.1246 0.0005 0.4997 0.3714 0.5006 0.5015

ordu = 6,ordv = 6,segu = 6,segv = 6,7,8,9,10, 12,18, 24, 30

% Tmazx (Mu)maz (My)maz (Qu)maz (Qu)maz (Vi) maz (Vo) maz
:a?};j :ﬁF;a'g :ﬁ;F,ag =~Fja =~1Fja =6F;a =6;Fa
o B8 51 ol 71 [o1
1.0000 0.0444 0.0479 0.0479 0.3376 0.3376 0.4203 0.4203
1.2000 0.0617 0.0627 0.0447 0.3793 0.3529 0.4557 0.4528
1.4000 0.0774 0.0755 0.0394 0.4113 0.3614 0.4783 0.4728
1.6000 0.0907 0.0862 0.0335 0.4349 0.3659 0.4917 0.4847
1.8000 0.1017 0.0948 0.0278 0.4521 0.3684 0.4991 0.4917
2.0000 0.1106 0.1017 0.0226 0.4651 0.3697 0.5034 0.4957
3.0000 0.1336 0.1189 0.0071 0.4927 0.3711 0.5047 0.5007
4.0000 0.1400 0.1235 0.0020 0.4985 0.3712 0.5018 0.5010
5.0000 0.1416 0.1246 0.0005 0.4997 0.3712 0.5006 0.5010
ordu = 6,ordv = 6,segu = 8,segv = 8,9,10,11,12,16, 24,32, 40
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
:a%ajr = BF;a? =B, F;d? =~Fia =~iFja =6Fa =d61Fia
o B8 B1 Y Y1) S1
1.0000 0.0444 0.0479 0.0479 0.3378 0.3378 0.4206 0.4206
1.2000 0.0617 0.0627 0.0447 0.3795 0.3531 0.4560 0.4531
1.4000 0.0774 0.0755 0.0394 0.4110 0.3615 0.4780 0.4730
1.6000 0.0907 0.0862 0.0335 0.4347 0.3661 0.4914 0.4849
1.8000 0.1017 0.0948 0.0278 0.4523 0.3685 0.4993 0.4919
2.0000 0.1106 0.1017 0.0226 0.4651 0.3698 0.5034 0.4960
3.0000 0.1336 0.1189 0.0071 0.4927 0.3713 0.5047 0.5010
4.0000 0.1400 0.1235 0.0020 0.4985 0.3714 0.5018 0.5013
5.0000 0.1416 0.1246 0.0005 0.4997 0.3714 0.5006 0.5013

Appendix A: Surface FEA Examples 203

ordu = 6,ordv = 6,segu = 10,segv = 10,11, 12,13, 14, 20, 30, 40, 50
% Tmazx (M’M/)’V?’IU/I (M'l’)7ll(l/ﬂ) (Qu)ma't (QU)"L(LH? (Vu)maw (Vl7)7nﬂ/ﬂ}
= Féhaf :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja
a B8 B1 ok Y1 § d1
1.0000 0.0444 0.0479 0.0479 0.3376 0.3376 0.4204 0.4204
1.2000 0.0617 0.0627 0.0447 0.3794 0.3530 0.4558 0.4529
1.4000 0.0774 0.0755 0.0394 0.4111 0.3614 0.4781 0.4729
1.6000 0.0907 0.0862 0.0335 0.4348 0.3660 0.4915 0.4848
1.8000 0.1017 0.0948 0.0278 0.4522 0.3685 0.4992 0.4918
2.0000 0.1106 0.1017 0.0226 0.4650 0.3697 0.5034 0.4958
3.0000 0.1336 0.1189 0.0071 0.4927 0.3712 0.5047 0.5008
4.0000 0.1400 0.1235 0.0020 0.4985 0.3712 0.5018 0.5011
5.0000 0.1416 0.1246 0.0005 0.4997 0.3712 0.5006 0.5011

ordu = 6,ordv = 6,segu = 12,segv = 12,13, 14,15, 16, 24, 36,48, 60
T}; Tmazx (Mu)mazr (M'l))mr(lfl? (Q'U/)’”Lfl.?? (Q'U)m(m: (V’U)mr(lfl? (VU)’”L(LIT
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0479 0.0479 0.3377 0.3377 0.4205 0.4205
1.2000 0.0617 0.0627 0.0447 0.3794 0.3530 0.4558 0.4530
1.4000 0.0774 0.0755 0.0394 0.4111 0.3614 0.4780 0.4729
1.6000 0.0907 0.0862 0.0335 0.4347 0.3660 0.4915 0.4848
1.8000 0.1017 0.0948 0.0278 0.4522 0.3684 0.4992 0.4918
2.0000 0.1106 0.1017 0.0226 0.4650 0.3697 0.5034 0.4958
3.0000 0.1336 0.1189 0.0071 0.4927 0.3712 0.5047 0.5009
4.0000 0.1400 0.1235 0.0020 0.4985 0.3713 0.5018 0.5012
5.0000 0.1416 0.1246 0.0005 0.4997 0.3713 0.5006 0.5012

ordu = 7,ordv = 7,segu = 2,segv = 2,3,4,5,6,4,6,8,10

% Tmazx (Mu)maz (My)maz (Qu)maz (Qu)maz (Vi) maz (Vo) maz
:a?};j :ﬁF;a'g :ﬁ;F,ag =~Fja =~1Fja =6F;a =6;Fa
o B8 51 ol 71 [o1
1.0000 0.0444 0.0479 0.0479 0.3371 0.3371 0.4194 0.4194
1.2000 0.0617 0.0627 0.0447 0.3819 0.3517 0.4587 0.4511
1.4000 0.0774 0.0755 0.0393 0.4135 0.3621 0.4806 0.4731
1.6000 0.0907 0.0862 0.0335 0.4369 0.3653 0.4936 0.4836
1.8000 0.1017 0.0949 0.0278 0.4541 0.3675 0.5011 0.4904
2.0000 0.1106 0.1016 0.0225 0.4674 0.3726 0.5057 0.4981
3.0000 0.1336 0.1189 0.0071 0.4925 0.3739 0.5045 0.5031
4.0000 0.1400 0.1234 0.0019 0.4990 0.3738 0.5024 0.5031
5.0000 0.1416 0.1246 0.0005 0.4994 0.3737 0.5003 0.5030
ordu = 7,ordv = 7,segu = 4,segv = 4,5,6,7,8,8,12,16, 20
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
:a%ajr = BF;ad? = B;F;a? =~Fja =~1Fja =6F;a =6;Fja
o 8 B1 ol 71 [51
1.0000 0.0444 0.0479 0.0479 0.3388 0.3388 0.4217 0.4217
1.2000 0.0617 0.0627 0.0447 0.3795 0.3541 0.4559 0.4541
1.4000 0.0774 0.0755 0.0394 0.4111 0.3624 0.4780 0.4740
1.6000 0.0907 0.0862 0.0335 0.4348 0.3670 0.4916 0.4859
1.8000 0.1017 0.0948 0.0278 0.4522 0.3694 0.4993 0.4928
2.0000 0.1106 0.1017 0.0226 0.4652 0.3708 0.5035 0.4970
3.0000 0.1336 0.1189 0.0071 0.4928 0.3723 0.5048 0.5020
4.0000 0.1400 0.1235 0.0020 0.4985 0.3724 0.5018 0.5023
5.0000 0.1416 0.1246 0.0005 0.4997 0.3724 0.5006 0.5023

204 Variational Based Modelling and Analysis using B-splines

ordu — 7, ordv — 7, segu — 6, segv — 6, 7, 8, 9, 10, 12, 18, 24, 30

% Tmax (M'M/)7770/1' (M'l’)7ll(l/ﬂ) (Qu)ma't (QU)"L(LW (Vu)77laﬂ) (Vl7)7nﬂ/ﬂ)

:aFéhl?f :/BFlaZ :ﬁ1F1a,2 =~Fja =~:Fra =46F;a =46;Fja

a B8 B1 ok Y1 § d1

1.0000 0.0444 0.0479 0.0479 0.3376 0.3376 0.4204 0.4204
1.2000 0.0617 0.0627 0.0447 0.3795 0.3529 0.4560 0.4529
1.4000 0.0774 0.0755 0.0394 0.4112 0.3614 0.4782 0.4729
1.6000 0.0907 0.0862 0.0335 0.4346 0.3660 0.4913 0.4848
1.8000 0.1017 0.0948 0.0278 0.4521 0.3684 0.4991 0.4918
2.0000 0.1106 0.1017 0.0226 0.4651 0.3696 0.5034 0.4957
3.0000 0.1336 0.1189 0.0071 0.4927 0.3711 0.5047 0.5007
4.0000 0.1400 0.1235 0.0020 0.4985 0.3711 0.5018 0.5010
5.0000 0.1416 0.1246 0.0005 0.4997 0.3711 0.5005 0.5010

ordu = 7,ordv = 7,segu = 8,segv = 8,9,10,11, 12,16, 24, 32,40
T}; Tmazx (Mu)mazr (M'l))mr(lfl? (Q'U/)’”Lfl.?? (Q'U)m(m: (V’U)mr(lfl? (VU)’”L(LIT
:apé]%; :BFIG,2 :ﬁ]FIaZ =~Fja =~;Fja =6Fja =6;Fza
o 8 B1 ol Y1 3 S1
1.0000 0.0444 0.0479 0.0479 0.3377 0.3377 0.4206 0.4206
1.2000 0.0617 0.0627 0.0447 0.3793 0.3530 0.4557 0.4530
1.4000 0.0774 0.0755 0.0394 0.4110 0.3614 0.4779 0.4729
1.6000 0.0907 0.0862 0.0335 0.4348 0.3660 0.4916 0.4848
1.8000 0.1017 0.0948 0.0278 0.4523 0.3684 0.4993 0.4918
2.0000 0.1106 0.1017 0.0226 0.4650 0.3698 0.5034 0.4959
3.0000 0.1336 0.1189 0.0071 0.4927 0.3712 0.5047 0.5010
4.0000 0.1400 0.1235 0.0020 0.4985 0.3713 0.5018 0.5012
5.0000 0.1416 0.1246 0.0005 0.4997 0.3713 0.5006 0.5013

ordu = 7,ordv = 7,segu = 10,segv = 10,11,12,13, 14, 20, 30, 40, 50

% Tmazx (Mu)maz (My)maz (Qu)maz (Qu)maz (Vi) maz (Vo) maz
:a?};j :ﬁF;a'g :ﬁ;F,ag =~Fja =~1Fja =6F;a =6;Fa
o B8 51 ol 71 [o1
1.0000 0.0444 0.0479 0.0479 0.3376 0.3376 0.4204 0.4204
1.2000 0.0617 0.0627 0.0447 0.3794 0.3529 0.4559 0.4529
1.4000 0.0774 0.0755 0.0394 0.4111 0.3614 0.4781 0.4729
1.6000 0.0907 0.0862 0.0335 0.4347 0.3659 0.4914 0.4848
1.8000 0.1017 0.0948 0.0278 0.4521 0.3684 0.4991 0.4918
2.0000 0.1106 0.1017 0.0226 0.4650 0.3697 0.5034 0.4957
3.0000 0.1336 0.1189 0.0071 0.4927 0.3711 0.5047 0.5008
4.0000 0.1400 0.1235 0.0020 0.4985 0.3712 0.5018 0.5011
5.0000 0.1416 0.1246 0.0005 0.4997 0.3712 0.5006 0.5011
ordu = 7,ordv = 7,segu = 12,segv = 12,13, 14, 15, 16, 24, 36,48, 60
% Tmax (Mu)mul’ (Mv)maz (Qu)'mar (Qv)muz (Vu)maz (Vv)muz
7&% = BF;ad? = B;F;a? =~Fja =~1Fja =6F;a =6;Fja
o 8 B1 ol 71 [51
1.0000 0.0444 0.0479 0.0479 0.3377 0.3377 0.4205 0.4205
1.2000 0.0617 0.0627 0.0447 0.3793 0.3530 0.4558 0.4530
1.4000 0.0774 0.0755 0.0394 0.4110 0.3614 0.4780 0.4729
1.6000 0.0907 0.0862 0.0335 0.4348 0.3659 0.4915 0.4848
1.8000 0.1017 0.0948 0.0278 0.4522 0.3684 0.4992 0.4918
2.0000 0.1106 0.1017 0.0226 0.4650 0.3697 0.5034 0.4958
3.0000 0.1336 0.1189 0.0071 0.4927 0.3712 0.5047 0.5009
4.0000 0.1400 0.1235 0.0020 0.4985 0.3712 0.5018 0.5012
5.0000 0.1416 0.1246 0.0005 0.4997 0.3713 0.5006 0.5012

Appendix A: Surface FEA Examples 205

A.2 Simply supported and centrally point loaded rectan-
gular plate

Coefficient o for maximum deflection, x,,,, for the case of a centrally point loaded, P;, simply

supported rectangular plate, figure [A.2l

I simple

sirmple
simple

: > U
simple &

Figure A.2: Simply supported centrally point loaded rectangular plate

2 |o

10 | 11 | 12 | 14 | 16 [18 [20 [30 |

_ _Pid®
= O3

0.1714 | 0.1769 | 0.1803 | 0.1846

Coeff o in Tmagx
| 0.1265 | 0.1381 | 0.1478 | 0.1621

Table A.2: Numerical results from [85], simply supported rectangular plate, point load

206 Variational Based Modelling and Analysis using B-splines

ordu = 3,ordv = 3,segu = 2,segv = 2

3
. Pja
Coeff o in Tmae = @ 103

Eh
[0.0873 0.1097 0.1137 [0.1284 0.1314 0.1381 0.1251 0.1269

l ordu = 3,ordv = 3,segu = 4,segv = 4 l
l [0.1125 0.1276 0.1351 0.1506 0.1569 0.1640 0.1628 0.1665]

l ordu = 3,ordv = 3,segu = 6,segv = 6 l
l [0.1193 0.1325 0.1409 0.1560 0.1633 0.1700 0.1716 0.1757]

l ordu = 3,ordv = 3,segu = 8,segv = 8 l
l [0.1221 0.1346 0.1434 0.1583 0.1661 0.1725 0.1751 0.1793]

l ordu = 3,ordv = 3,segu = 10,segv = 10 l
l [0.1236 0.1357 0.1448 0.1595 0.1676 0.1738 0.1768 0.1811]

l ordu = 3,ordv = 3,segu = 12,segv = 12 l
l [0.1244 0.1364 0.1456 0.1602 0.1685 0.1746 0.1778 0.1822]

l ordu = 4,ordv = 4,segu = 2,segv = 2 l
l [0.1210 0.1277 0.1440 0.1546 0.1677 0.1701 0.1739 0.1783]

l ordu = 4,ordv = 4,segu = 4,segv = 4 l
l [0.1249 0.1341 0.1466 0.1587 0.1700 0.1734 0.1786 0.1831]

ordu = 4,ordv = 4,segu = 6,segv = 6
0.1259 0.1362 0.1473 0.1602 0.1707 0.1747 0.1796 0.1841

ordu = 4,ordv = 4,segu = 8,segv = 8
[0.1262 0.1370 0.1476 0.1610 0.1710 0.1754 0.1800 0.1845

l ordu = 4, ordv = 4,segu = 10,segv = 10 l
l [0.1264 0.1375 0.1477 0.1614 0.1711 0.1759 0.1802 0.1846 l

l ordu = 4, ordv = 4,segu = 12,segv = 12 l
l [0.1265 0.1377 0.1478 0.1616 0.1712 0.1761 0.1802 0.1847 l

l ordu = 5,ordv = 5,segu = 2,segv = 2 l
l [0.1144 0.1296 0.1375 0.1541 0.1612 0.1689 0.1626 0.1652 l

l ordu = 5,ordv = 5,segu = 4,segv = 4 l
l [0.1208 0.1343 0.1429 0.1584 0.1663 0.1731 0.1741 0.1785 l

Appendix A: Surface FEA Examples 207

l ordu = 5,ordv = 5,segu = 6,segv = 6 l
l [0.1237 0.1363 0.1453 0.1603 0.1686 0.1750 0.1774 0.1819]

l ordu = 5,ordv = 5,segu = 8,segv = 8 l
l [0.1250 0.1371 0.1464 0.1611 0.1696 0.1758 0.1787 0.1832]

ordu = 5,ordv = 5,segu = 10, segv = 10]
[0.1256 0.1375 0.1469 0.1615 0.1702 0.1762 0.1793 0.1838 l

l ordu = 5,ordv = 5,segu = 12,segv = 12]
l [0.1259 0.1378 0.1472 0.1618 0.1705 0.1764 0.1797 0.1842 l

ordu = 6,ordv = 6,segu = 2,segv = 2]
[0.1223 0.1325 0.1442 0.1569 0.1677 0.1717 0.1736 0.1769 l

ordu = 6,ordv = 6,segu = 4,segv = 4]
[0.1244 0.1352 0.1460 0.1593 0.1694 0.1739 0.1779 0.1823]

l ordu = 6,ordv = 6,segu = 6,segv = 6
l [0.1255 0.136 0.1469 0.1605 0.1702 0.1751 0.1792 0.1836

ordu = 6,ordv = 6,segu = 8,segv = 8
[0.1260 0.1372 0.1473 0.1611 0.1707 0.1757 0.1797 0.1842

l ordu = 6,ordv = 6,segu = 10,segv = 10]
[[o1262] 01376 | 0.1476 [0.1615 | 0.1709 | 0.1761 | 0.1800 | 0.1844 |

ordu = 6,ordv = 6,segu = 12,segv = 12]
[0.1264 0.1378 0.1477 0.1617 0.1710 0.1763 0.1801 0.1846 l

l ordu = 7,ordv = 7,segu = 2,segv = 2
[] 01212 [0.133 | 0.1428 [0.1580 | 0.1660 | 0.1727 [0.1708 | 0.1723

l ordu = 7,ordv = 7,segu = 4,segv = 4 l
l [0.1233 0.1357 0.1448 0.1597 0.1680 0.1744 0.1760 0.1802]

l ordu = 7,ordv = 7,segu = 6,segv = 6 l
l [0.1246 0.1367 0.1460 0.1607 0.1692 0.1753 0.1781 0.1825]

ordu = 7,ordv = 7,segu = 8,segv = 8]
[0.1253 0.1373 0.1467 0.1612 0.1699 0.1759 0.1790 0.1835 l

ordu = 7,ordv = 7,segu = 10,segv = 10]
[0.1258 0.1376 0.1471 0.1616 0.1704 0.1762 0.1795 0.1840 l

l ordu = 7,ordv = 7,segu = 12,segv = 12]
[[o1260 [01378 | 0.1474 [0.1618 [0.1707 | 0.1764 | 0.1798 [0.1843 |

208 Variational Based Modelling and Analysis using B-splines

A.3 Simply supported and partially loaded square plate

Coefficients [for maximum bending moment in u, (M,)me for a simply supported partially

loaded (over centrally located area size a; x by) square plate, figure [A.3l

v

/ simple

simple

sitnple

simple &

Figure A.3: Simply supported partially loaded square plate

2] 01 | o2] 03 | 0405] 0607] 08]o09]10]
b Coeff B in (My)maz = BP

0.1 0284102320197 [0.170 [0.150 [0.134 | 0.120 | 0.108 | 0.098 | 0.088
0.2 | 0.254 | 0.214 | 0.184 | 0.161 | 0.142 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084
0.3] 0.225 [0.195 | 0.168 | 0.151 | 0.134 | 0.120 | 0.108 | 0.098 | 0.088 | 0.080
0.4 | 0.203 [0.179 | 0.158 | 0.141 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.185 | 0.164 | 0.146 | 0.131 | 0.116 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.168 | 0.150 | 0.135 | 0.121 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.153 [0.137 [0.124 [0.112 | 0.101 | 0.091 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.140 | 0.126 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.127 [0.115 | 0.104 | 0.094 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.115 [0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

Table A.3: Numerical results from [85], simply supported square plate, partial load

Appendix A: Surface FEA Examples 209

l ordu = 3,ordv = 3,segu = 2,segv = 2]

[L] o1 0.2 0.3 04 [05 | 06 [07 [08 0.9 1.0
% Cocf B in (Mu)mas = BP
0.1 | 0.083 | 0.082 | 0.080 | 0.078 | 0.076 | 0.073 | 0.069 | 0.065 | 0.060 | 0.055
0.2 | 0.082 | 0.081 | 0.080 | 0.078 | 0.075 | 0.072 | 0.069 | 0.064 | 0.060 | 0.055
0.3 | 0.080 | 0.080 | 0.078 | 0.076 | 0.074 | 0.071 | 0.067 | 0.063 | 0.059 | 0.054
0.4 | 0.078 | 0.078 | 0.076 | 0.074 | 0.072 | 0.069 | 0.066 | 0.062 | 0.057 | 0.052
0.5 | 0.076 | 0.075 | 0.074 | 0.072 | 0.070 | 0.067 | 0.064 | 0.060 | 0.056 | 0.051
0.6 | 0.073 | 0.072 | 0.071 | 0.069 | 0.067 | 0.064 | 0.061 | 0.058 | 0.053 | 0.049
0.7 | 0.069 | 0.069 | 0.067 | 0.066 | 0.064 | 0.061 | 0.058 | 0.055 | 0.051 | 0.046
0.8 | 0.065 | 0.064 | 0.063 | 0.062 | 0.060 | 0.058 | 0.055 | 0.051 | 0.048 | 0.044
0.9 | 0.060 | 0.060 | 0.059 | 0.057 | 0.056 | 0.053 | 0.051 | 0.048 | 0.044 | 0.040
1.0 | 0.055 | 0.055 | 0.054 | 0.052 | 0.051 | 0.049 | 0.046 | 0.044 | 0.040 | 0.037

l ordu = 3,ordv = 3,segu = 2,segv = 2

[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
o Cocff B in (Mu)max = BP
0.1 | 0.083 | 0.082 | 0.080 | 0.078 | 0.076 | 0.073 | 0.069 [0.065 | 0.060 | 0.055
0.2 | 0.082 | 0.081 | 0.080 | 0.078 | 0.075 | 0.072 | 0.069 | 0.064 | 0.060 | 0.055
0.3 | 0.080 | 0.080 | 0.078 | 0.076 | 0.074 | 0.071 | 0.067 | 0.063 | 0.059 | 0.054
0.4 | 0.078 | 0.078 | 0.076 | 0.074 | 0.072 | 0.069 | 0.066 | 0.062 | 0.057 | 0.052
0.5 | 0.076 | 0.075 | 0.074 | 0.072 | 0.070 | 0.067 | 0.064 | 0.060 | 0.056 | 0.051
0.6 | 0.073 | 0.072 | 0.071 | 0.069 | 0.067 | 0.064 | 0.061 | 0.058 | 0.053 | 0.049
0.7 | 0.069 | 0.069 | 0.067 | 0.066 | 0.064 | 0.061 | 0.058 | 0.055 | 0.051 | 0.046
0.8 | 0.065 | 0.064 | 0.063 | 0.062 | 0.060 | 0.058 | 0.055 | 0.051 | 0.048 | 0.044
0.9 | 0.060 | 0.060 | 0.059 | 0.057 | 0.056 | 0.053 | 0.051 | 0.048 | 0.044 | 0.040
1.0 | 0.055 | 0.055 | 0.054 | 0.052 | 0.051 | 0.049 | 0.046 | 0.044 | 0.040 | 0.037

l ordu = 3,ordv = 3,segu = 4,segv = 4

[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Coeff B in (Mu)maz = BP
0.1 | 0.136 | 0.134 | 0.130 | 0.125 | 0.118 | 0.110 | 0.101 | 0.092 | 0.084 | 0.076
0.2 | 0.134 | 0.132 | 0.128 | 0.123 | 0.116 | 0.108 | 0.099 | 0.091 | 0.083 | 0.075
0.3 | 0.131 | 0.128 | 0.125 | 0.120 | 0.113 | 0.105 | 0.097 | 0.089 | 0.081 | 0.073
0.4 | 0.126 | 0.124 | 0.120 | 0.116 | 0.109 | 0.102 | 0.094 | 0.086 | 0.078 | 0.071
0.5 | 0.120 | 0.118 | 0.115 | 0.110 | 0.104 | 0.097 | 0.090 | 0.082 | 0.075 | 0.068
0.6 | 0.113 | 0.111 | 0.108 | 0.104 | 0.098 | 0.092 | 0.085 | 0.078 | 0.071 | 0.064
0.7 | 0.105 | 0.104 | 0.101 | 0.097 | 0.092 | 0.086 | 0.079 | 0.073 | 0.066 | 0.060
0.8 | 0.097 | 0.096 | 0.093 | 0.090 | 0.085 | 0.079 | 0.074 | 0.067 | 0.062 | 0.056
0.9 | 0.089 | 0.088 | 0.085 | 0.082 | 0.078 | 0.073 | 0.068 | 0.062 | 0.057 | 0.051
1.0 | 0.081 | 0.080 | 0.078 | 0.075 | 0.071 | 0.066 | 0.061 | 0.056 | 0.052 | 0.047

ordu = 3,ordv = 3,segu = 6,segv = 6

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP
0.1 | 0.173 | 0.167 | 0.159 | 0.146 | 0.133 | 0.120 | 0.109 | 0.098 | 0.089 | 0.081
0.2 | 0.169 | 0.164 | 0.155 | 0.143 | 0.130 | 0.118 | 0.107 | 0.097 | 0.087 | 0.079
0.3 | 0.162 | 0.157 | 0.149 | 0.138 | 0.126 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077
0.4 | 0.153 | 0.149 | 0.141 | 0.131 | 0.120 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074
0.5 | 0.143 | 0.139 | 0.132 | 0.123 | 0.113 | 0.103 | 0.093 | 0.085 | 0.077 | 0.070
0.6 | 0.132 | 0.128 | 0.123 | 0.114 | 0.105 | 0.096 | 0.088 | 0.080 | 0.073 | 0.066
0.7 | 0.122 | 0.118 | 0.113 | 0.106 | 0.098 | 0.089 | 0.082 | 0.074 | 0.068 | 0.061
0.8 | 0.112 | 0.109 | 0.104 | 0.097 | 0.090 | 0.083 | 0.076 | 0.069 | 0.063 | 0.057
0.9 | 0.102 | 0.099 | 0.095 | 0.089 | 0.083 | 0.076 | 0.069 | 0.063 | 0.058 | 0.052
1.0 | 0.093 | 0.090 | 0.086 | 0.081 | 0.075 | 0.069 | 0.063 | 0.058 | 0.052 | 0.047

210 Variational Based Modelling and Analysis using B-splines

l ordu = 3,ordv = 3,segu = 8,segv = 8]
[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0 |

Coeff B in (My)maz = BP
.156 0.139 0.125 0.112 0.101 0.092 0.083
151 0.135 0.122 0.110 0.099 0.090 0.081
144 0.130 0.117 0.106 0.095 0.086 0.078
.136 0.123 0.111 0.100 0.091 0.082 0.075
127 0.115 0.104 0.095 0.086 0.078 0.071
0.6 0.143 0.137 0.128 118 0.107 0.098 0.089 0.080 0.073 0.066
0.7 0.131 0.126 0.118 109 0.099 0.091 0.082 0.075 0.068 0.062
0.8 0.120 0.116 0.109 0.100 0.092 0.084 0.076 0.069 0.063 0.057
0.9 0.110 0.106 0.099 0.092 0.084 0.077 0.070 0.064 0.058 0.052
1.0 0.099 0.096 0.090 0.083 0.076 0.070 0.064 0.058 0.053 0.048

0.1 0.199 0.189 0.174
0.2 0.192 0.183 0.168
0.3 0.181 0.173 0.160
0.4 0.168 0.161 0.149
0.5 0.155 0.149 0.139

l ordu = 3,ordv = 3,segu = 10,segv = 10]
[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 10|

3 Coeff B in (Mu)maz = BP

0.1 0.218 0.203 0.181 0.160 0.142 0.127 0.114 0.103 0.093 0.084
0.2 0.208 0.195 0.174 0.155 0.138 0.124 0.111 0.100 0.091 0.082
0.3 0.193 0.181 0.164 0.147 0.131 0.118 0.106 0.096 0.087 0.079
0.4 0.177 0.167 0.153 0.138 0.124 0.112 0.101 0.091 0.083 0.075
0.5 0.163 0.154 0.142 0.128 0.116 0.105 0.095 0.086 0.078 0.071
0.6 0.149 0.142 0.131 0.119 0.108 0.098 0.089 0.081 0.073 0.066
0.7 0.137 0.130 0.121 0.110 0.100 0.091 0.083 0.075 0.068 0.062
0.8 0.125 0.120 0.111 0.101 0.092 0.084 0.076 0.070 0.063 0.057
0.9 0.114 0.109 0.101 0.093 0.085 0.077 0.070 0.064 0.058 0.052
1.0 0.104 0.099 0.092 0.084 0.077 0.070 0.064 0.058 0.053 0.048

l ordu = 3,ordv = 3,segu = 12,segv = 12 l
[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0 |

Coeff B in (Mu)max = BP

0.1 0.233 0.212 0.185 0.163 0.144 0.129 0.116 0.104 0.094 0.085
0.2 0.219 0.201 0.177 0.157 0.139 0.125 0.112 0.101 0.092 0.083
0.3 0.201 0.186 0.166 0.148 0.132 0.119 0.107 0.097 0.088 0.079
0.4 0.183 0.171 0.154 0.139 0.125 0.112 0.101 0.092 0.083 0.075
0.5 0.168 0.157 0.143 0.129 0.117 0.105 0.095 0.086 0.078 0.071
0.6 0.154 0.145 0.132 0.120 0.109 0.098 0.089 0.081 0.073 0.066
0.7 0.141 0.133 0.122 0.111 0.101 0.091 0.083 0.075 0.068 0.062
0.8 0.129 0.122 0.112 0.102 0.093 0.084 0.077 0.070 0.063 0.057
0.9 0.118 0.111 0.102 0.093 0.085 0.077 0.070 0.064 0.058 0.053
1.0 0.107 0.101 0.093 0.085 0.077 0.070 0.064 0.058 0.053 0.048

ordu = 4, ordv = 4, segu = 2,segv = 2

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP

0.1 | 0.195 | 0.189 | 0.181 | 0.170 | 0.158 | 0.145 | 0.131 | 0.118 | 0.106 | 0.096
0.2 | 0.190 | 0.185 | 0.177 | 0.167 | 0.155 | 0.142 | 0.129 | 0.116 | 0.104 | 0.094
0.3 | 0.184 | 0.179 | 0.171 | 0.161 | 0.150 | 0.138 | 0.125 | 0.113 | 0.101 | 0.091
0.4 | 0.176 | 0.171 | 0.164 | 0.154 | 0.144 | 0.132 | 0.120 | 0.109 | 0.098 | 0.088
0.5 | 0.166 | 0.161 | 0.154 | 0.146 | 0.136 | 0.125 | 0.114 | 0.103 | 0.093 | 0.084
0.6 | 0.155 | 0.151 | 0.144 | 0.137 | 0.128 | 0.118 | 0.107 | 0.097 | 0.088 | 0.079
0.7 | 0.143 | 0.139 | 0.134 | 0.127 | 0.118 | 0.109 | 0.100 | 0.091 | 0.082 | 0.074
0.8 | 0.131 | 0.128 | 0.123 | 0.116 | 0.109 | 0.101 | 0.092 | 0.084 | 0.076 | 0.069
0.9 | 0.119 | 0.116 | 0.112 | 0.106 | 0.100 | 0.092 | 0.085 | 0.077 | 0.070 | 0.063
1.0 | 0.108 | 0.105 | 0.101 | 0.096 | 0.090 | 0.084 | 0.077 | 0.070 | 0.063 | 0.057

Appendix A: Surface FEA Examples 211

l ordu = 4,ordv = 4,segu = 4,segv = 4]

[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0
571 Coeff B in (My)maz = BP
0.1 | 0.249 | 0.234 | 0.213 | 0.189 | 0.164 | 0.142 | 0.124 | 0.109 | 0.098 | 0.089
0.2 | 0.239 | 0.225 | 0.205 | 0.182 | 0.159 | 0.138 | 0.120 | 0.106 | 0.095 | 0.086
0.3 | 0.224 | 0.212 | 0.194 | 0.172 | 0.151 | 0.131 | 0.115 | 0.102 | 0.091 | 0.083
0.4 | 0.207 | 0.196 | 0.180 | 0.161 | 0.141 | 0.124 | 0.109 | 0.096 | 0.087 | 0.078
0.5 | 0.189 | 0.179 | 0.165 | 0.148 | 0.131 | 0.115 | 0.102 | 0.090 | 0.081 | 0.073
0.6 | 0.172 | 0.163 | 0.151 | 0.136 | 0.121 | 0.107 | 0.094 | 0.084 | 0.076 | 0.068
0.7 | 0.156 | 0.148 | 0.137 | 0.124 | 0.111 | 0.098 | 0.087 | 0.078 | 0.070 | 0.063
0.8 | 0.142 | 0.135 | 0.125 | 0.114 | 0.101 | 0.090 | 0.080 | 0.072 | 0.065 | 0.058
0.9 | 0.129 | 0.123 | 0.114 | 0.104 | 0.093 | 0.082 | 0.073 | 0.066 | 0.059 | 0.053
1.0 | 0.117 | 0.112 | 0.104 | 0.094 | 0.084 | 0.075 | 0.067 | 0.060 | 0.054 | 0.049

l ordu = 4,ordv = 4,segu = 6,segv = 6

[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
o Coeff B in (Mu)maz = BP
0.1 | 0.281 | 0.253 | 0.217 | 0.182 | 0.155 | 0.136 | 0.122 | 0.110 | 0.100 | 0.090
0.2 | 0.263 | 0.238 | 0.205 | 0.174 | 0.149 | 0.131 | 0.117 | 0.106 | 0.096 | 0.087
0.3 | 0.239 | 0.217 | 0.190 | 0.162 | 0.140 | 0.124 | 0.111 | 0.100 | 0.091 | 0.082
0.4 | 0.214 | 0.196 | 0.173 | 0.150 | 0.131 | 0.116 | 0.104 | 0.094 | 0.085 | 0.077
0.5 | 0.193 | 0.178 | 0.158 | 0.138 | 0.121 | 0.108 | 0.097 | 0.088 | 0.080 | 0.072
0.6 | 0.175 | 0.162 | 0.145 | 0.128 | 0.113 | 0.100 | 0.091 | 0.082 | 0.074 | 0.067
0.7 | 0.160 | 0.148 | 0.133 | 0.118 | 0.104 | 0.093 | 0.084 | 0.076 | 0.069 | 0.063
0.8 | 0.146 | 0.136 | 0.122 | 0.108 | 0.096 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058
0.9 | 0.133 | 0.124 | 0.112 | 0.099 | 0.088 | 0.079 | 0.071 | 0.065 | 0.059 | 0.053
1.0 | 0.121 | 0.112 | 0.101 | 0.090 | 0.080 | 0.072 | 0.065 | 0.059 | 0.053 | 0.048

l ordu = 4,ordv = 4,segu = 8,segv = 8

[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
o Cocff B in (My)maz = BP
0.1 | 0.298 | 0.256 | 0.210 | 0.175 | 0.153 | 0.137 | 0.123 | 0.110 | 0.100 | 0.090
0.2 | 0.271 | 0.235 | 0.196 | 0.166 | 0.145 | 0.130 | 0.117 | 0.106 | 0.095 | 0.086
0.3 | 0.240 | 0.212 | 0.180 | 0.155 | 0.136 | 0.122 | 0.110 | 0.099 | 0.090 | 0.081
0.4 | 0.214 | 0.191 | 0.165 | 0.144 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084 | 0.076
0.5 | 0.194 | 0.174 | 0.152 | 0.134 | 0.119 | 0.107 | 0.097 | 0.088 | 0.079 | 0.072
0.6 | 0.177 | 0.160 | 0.141 | 0.124 | 0.111 | 0.100 | 0.090 | 0.082 | 0.074 | 0.067
0.7 | 0.161 | 0.146 | 0.129 | 0.114 | 0.103 | 0.093 | 0.084 | 0.076 | 0.069 | 0.062
0.8 | 0.147 | 0.134 | 0.119 | 0.105 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058
0.9 | 0.133 | 0.122 | 0.108 | 0.096 | 0.087 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.121 | 0.110 | 0.098 | 0.087 | 0.079 | 0.071 | 0.065 | 0.059 | 0.053 | 0.048

ordu = 4, ordv = 4,segu = 10,segv = 10

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (My)maz = BP
0.1 | 0.307 | 0.251 | 0.203 | 0.174 | 0.154 | 0.137 | 0.122 | 0.110 | 0.099 | 0.090
0.2 | 0.272 | 0.229 | 0.190 | 0.164 | 0.145 | 0.130 | 0.116 | 0.105 | 0.095 | 0.086
0.3 | 0.239 | 0.206 | 0.175 | 0.152 | 0.136 | 0.122 | 0.109 | 0.099 | 0.089 | 0.081
0.4 | 0.214 | 0.187 | 0.162 | 0.142 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084 | 0.076
0.5 | 0.194 | 0.172 | 0.149 | 0.132 | 0.119 | 0.107 | 0.096 | 0.087 | 0.079 | 0.072
0.6 | 0.177 | 0.157 | 0.138 | 0.123 | 0.111 | 0.100 | 0.090 | 0.082 | 0.074 | 0.067
0.7 | 0.161 | 0.144 | 0.127 | 0.113 | 0.102 | 0.093 | 0.084 | 0.076 | 0.069 | 0.062
0.8 | 0.146 | 0.131 | 0.116 | 0.104 | 0.094 | 0.085 | 0.077 | 0.070 | 0.064 | 0.058
0.9 | 0.133 | 0.120 | 0.106 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.121 | 0.109 | 0.097 | 0.087 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

212 Variational Based Modelling and Analysis using B-splines

l ordu = 4,ordv = 4,segu = 12,segv = 12]
[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0 |

Coeff B in (My)maz = BP

174 0.154 0.136 0.122 0.110 0.099 0.090
163 0.144 0.129 0.115 0.104 0.094 0.085
152 0.135 0.121 0.109 0.098 0.089 0.080
142 0.127 0.114 0.103 0.093 0.084 0.076
132 0.119 0.107 0.096 0.087 0.079 0.072
0.6 0.176 0.155 0.137 123 0.110 0.099 0.090 0.082 0.074 0.067
0.7 0.160 0.142 0.126 113 0.102 0.092 0.084 0.076 0.069 0.062
0.8 0.146 0.130 0.115 0.104 0.094 0.085 0.077 0.070 0.064 0.058
0.9 0.132 0.118 0.105 0.095 0.086 0.078 0.071 0.064 0.058 0.053
1.0 0.120 0.107 0.096 0.086 0.078 0.071 0.064 0.058 0.053 0.048

0.1 0.310 0.246 0.200
0.2 0.270 0.223 0.186
0.3 0.237 0.202 0.173
0.4 0.214 0.184 0.160
0.5 0.193 0.169 0.148

ole|ee|ele|e

l ordu = 5,ordv = 5,segu = 2,segv = 2]
[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 10|

3 Coeff B in (Mu)maz = BP

0.1 0.143 0.140 0.136 0.130 0.123 0.116 0.107 0.098 0.089 0.081
0.2 0.140 0.138 0.134 0.128 0.122 0.114 0.105 0.097 0.088 0.079
0.3 0.137 0.134 0.130 0.125 0.119 0.111 0.103 0.094 0.086 0.078
0.4 0.132 0.130 0.126 0.121 0.115 0.107 0.100 0.091 0.083 0.075
0.5 0.126 0.124 0.120 0.115 0.110 0.103 0.095 0.087 0.080 0.072
0.6 0.119 0.117 0.114 0.109 0.104 0.097 0.090 0.083 0.076 0.068
0.7 0.111 0.109 0.106 0.102 0.097 0.091 0.085 0.078 0.071 0.064
0.8 0.103 0.101 0.098 0.094 0.090 0.084 0.079 0.072 0.066 0.060
0.9 0.094 0.092 0.090 0.087 0.082 0.078 0.072 0.066 0.061 0.055
1.0 0.085 0.084 0.082 0.079 0.075 0.070 0.066 0.060 0.055 0.050

l ordu = 5,ordv = 5,segu = 4,segv = 4 l
[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0 |

Coeff B in (Mu)max = BP

0.1 0.179 0.173 0.165 0.153 0.140 0.126 0.113 0.101 0.091 0.082
0.2 0.175 0.169 0.161 0.150 0.137 0.124 0.111 0.099 0.089 0.081
0.3 0.168 0.163 0.155 0.145 0.133 0.120 0.108 0.096 0.087 0.078
0.4 0.160 0.155 0.148 0.138 0.127 0.115 0.103 0.092 0.083 0.075
0.5 0.150 0.145 0.138 0.130 0.119 0.108 0.097 0.088 0.079 0.071
0.6 0.138 0.135 0.128 0.120 0.111 0.101 0.091 0.082 0.074 0.067
0.7 0.127 0.124 0.118 0.111 0.103 0.094 0.085 0.076 0.069 0.062
0.8 0.116 0.113 0.108 0.102 0.094 0.086 0.078 0.071 0.064 0.058
0.9 0.106 0.103 0.099 0.093 0.086 0.079 0.071 0.065 0.058 0.053
1.0 0.096 0.094 0.090 0.084 0.078 0.072 0.065 0.059 0.053 0.048

ordu = 5,ordv = 5,segu = 6,segv = 6

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP

0.1 | 0.210 | 0.200 | 0.184 | 0.165 | 0.146 | 0.129 | 0.115 | 0.103 | 0.094 | 0.085
0.2 | 0.203 | 0.193 | 0.178 | 0.160 | 0.142 | 0.125 | 0.112 | 0.101 | 0.092 | 0.083
0.3 | 0.192 | 0.183 | 0.169 | 0.153 | 0.136 | 0.120 | 0.108 | 0.097 | 0.088 | 0.080
0.4 | 0.179 | 0.171 | 0.158 | 0.144 | 0.128 | 0.114 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.164 | 0.157 | 0.146 | 0.133 | 0.120 | 0.107 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.150 | 0.144 | 0.135 | 0.123 | 0.111 | 0.100 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.137 | 0.132 | 0.124 | 0.113 | 0.102 | 0.092 | 0.083 | 0.075 | 0.069 | 0.062
0.8 | 0.126 | 0.121 | 0.113 | 0.104 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.115 | 0.110 | 0.104 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.104 | 0.100 | 0.094 | 0.087 | 0.079 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

Appendix A: Surface FEA Examples 213

l ordu = 5,ordv = 5,segu = 8,segv = 8]

[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0
7 Coeff B in (Mu)maex = BP
0.1 | 0.234 | 0.217 | 0.193 | 0.168 | 0.146 | 0.130 | 0.117 | 0.106 | 0.095 | 0.086
0.2 | 0.223 | 0.207 | 0.185 | 0.162 | 0.141 | 0.126 | 0.113 | 0.103 | 0.093 | 0.084
0.3 | 0.206 | 0.193 | 0.173 | 0.1563 | 0.134 | 0.120 | 0.108 | 0.098 | 0.089 | 0.080
0.4 | 0.188 | 0.177 | 0.160 | 0.142 | 0.126 | 0.113 | 0.102 | 0.093 | 0.084 | 0.076
0.5 | 0.172 | 0.162 | 0.148 | 0.132 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.157 | 0.148 | 0.136 | 0.122 | 0.110 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.144 | 0.136 | 0.125 | 0.113 | 0.102 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.132 | 0.125 | 0.115 | 0.104 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.120 | 0.114 | 0.105 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.109 | 0.103 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053 | 0.048

l ordu = 5,ordv = 5,segu = 10,segv = 10

[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Coeff B in (Mu)maz = BP
0.1 | 0.252 | 0.227 | 0.195 | 0.167 | 0.147 | 0.132 | 0.118 | 0.106 | 0.096 | 0.087
0.2 | 0.235 | 0.214 | 0.186 | 0.161 | 0.142 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084
0.3 | 0.214 | 0.196 | 0.173 | 0.151 | 0.134 | 0.120 | 0.109 | 0.098 | 0.089 | 0.080
0.4 | 0.194 | 0.179 | 0.159 | 0.141 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.177 | 0.164 | 0.147 | 0.131 | 0.117 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.162 | 0.151 | 0.136 | 0.122 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.148 | 0.138 | 0.125 | 0.112 | 0.101 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.135 | 0.126 | 0.115 | 0.103 | 0.093 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.123 | 0.115 | 0.105 | 0.094 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.112 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

l ordu = 5,ordv = 5,segu = 12,segv = 12

[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Cocff 8 in (Mu)max = BP
0.1 | 0.264 | 0.231 | 0.195 | 0.168 | 0.149 | 0.133 | 0.119 | 0.107 | 0.097 | 0.088
0.2 | 0.243 | 0.215 | 0.184 | 0.160 | 0.143 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084
0.3 | 0.218 | 0.196 | 0.171 | 0.150 | 0.134 | 0.120 | 0.108 | 0.098 | 0.088 | 0.080
0.4 | 0.197 | 0.179 | 0.158 | 0.140 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.180 | 0.165 | 0.147 | 0.131 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.164 | 0.151 | 0.135 | 0.121 | 0.110 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.150 | 0.139 | 0.125 | 0.112 | 0.102 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.137 | 0.127 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.125 | 0.116 | 0.104 | 0.094 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.113 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

ordu = 6,ordv = 6,segu = 2,segv = 2

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP
0.1 | 0.195 | 0.188 | 0.176 | 0.162 | 0.146 | 0.130 | 0.115 | 0.102 | 0.092 | 0.083
0.2 | 0.190 | 0.182 | 0.171 | 0.157 | 0.142 | 0.127 | 0.113 | 0.100 | 0.090 | 0.081
0.3 | 0.181 | 0.175 | 0.164 | 0.151 | 0.137 | 0.122 | 0.109 | 0.097 | 0.087 | 0.079
0.4 | 0.171 | 0.165 | 0.155 | 0.143 | 0.130 | 0.116 | 0.104 | 0.093 | 0.083 | 0.075
0.5 | 0.159 | 0.153 | 0.145 | 0.134 | 0.122 | 0.109 | 0.098 | 0.087 | 0.079 | 0.071
0.6 | 0.146 | 0.141 | 0.133 | 0.124 | 0.113 | 0.102 | 0.091 | 0.082 | 0.074 | 0.067
0.7 | 0.134 | 0.129 | 0.122 | 0.114 | 0.104 | 0.094 | 0.085 | 0.076 | 0.068 | 0.062
0.8 | 0.122 | 0.118 | 0.112 | 0.104 | 0.095 | 0.086 | 0.078 | 0.070 | 0.063 | 0.057
0.9 | 0.111 | 0.107 | 0.102 | 0.095 | 0.087 | 0.079 | 0.071 | 0.064 | 0.058 | 0.052
1.0 | 0.101 | 0.097 | 0.092 | 0.086 | 0.079 | 0.072 | 0.065 | 0.058 | 0.053 | 0.048

214 Variational Based Modelling and Analysis using B-splines

l ordu = 6,ordv = 6,segu = 4,segv = 4]
[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0 |

Coeff B in (My)maz = BP

169 0.148 0.130 0.115 0.104 0.095 0.086
164 0.144 0.126 0.112 0.102 0.092 0.084
155 0.137 0.121 0.108 0.097 0.089 0.080
145 0.129 0.114 0.102 0.092 0.084 0.076
134 0.120 0.107 0.096 0.087 0.079 0.071
0.6 0.155 0.148 0.137 124 0.111 0.099 0.089 0.081 0.074 0.067
0.7 0.142 0.135 0.125 114 0.102 0.092 0.083 0.075 0.068 0.062
0.8 0.130 0.124 0.115 0.105 0.094 0.085 0.076 0.069 0.063 0.057
0.9 0.119 0.113 0.105 0.096 0.086 0.078 0.070 0.064 0.058 0.053
1.0 0.108 0.103 0.096 0.087 0.079 0.071 0.064 0.058 0.053 0.048

0.1 0.225 0.211 0.192
0.2 0.216 0.203 0.185
0.3 0.202 0.191 0.174
0.4 0.187 0.177 0.162
0.5 0.170 0.162 0.149

ole|ee|ele|e

l ordu = 6,ordv = 6,segu = 6,segv = 6]
[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 10|

3 Coeff B in (Mu)maz = BP

0.1 0.250 0.227 0.198 0.170 0.147 0.130 0.118 0.107 0.096 0.087
0.2 0.235 0.215 0.189 0.163 0.142 0.126 0.114 0.103 0.093 0.084
0.3 0.215 0.198 0.176 0.153 0.134 0.120 0.108 0.098 0.089 0.080
0.4 0.195 0.181 0.162 0.142 0.126 0.113 0.102 0.093 0.084 0.076
0.5 0.177 0.165 0.148 0.132 0.117 0.105 0.096 0.087 0.079 0.071
0.6 0.162 0.151 0.137 0.122 0.109 0.098 0.089 0.081 0.074 0.067
0.7 0.148 0.139 0.126 0.113 0.101 0.091 0.083 0.076 0.069 0.062
0.8 0.136 0.127 0.116 0.104 0.093 0.084 0.077 0.070 0.063 0.057
0.9 0.123 0.116 0.106 0.095 0.085 0.077 0.070 0.064 0.058 0.053
1.0 0.112 0.105 0.096 0.086 0.078 0.070 0.064 0.058 0.053 0.048

l ordu = 6,ordv = 6,segu = 8,segv = 8 l
[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0 |

Coeff B in (Mu)max = BP

0.1 0.268 0.235 0.197 0.168 0.148 0.133 0.120 0.107 0.097 0.088
0.2 0.247 0.218 0.186 0.160 0.142 0.128 0.115 0.103 0.093 0.085
0.3 0.221 0.199 0.172 0.150 0.134 0.120 0.109 0.098 0.089 0.080
0.4 0.199 0.181 0.159 0.140 0.125 0.113 0.102 0.092 0.084 0.076
0.5 0.181 0.166 0.147 0.130 0.117 0.106 0.096 0.087 0.079 0.071
0.6 0.166 0.152 0.136 0.121 0.109 0.099 0.090 0.081 0.074 0.067
0.7 0.152 0.140 0.125 0.112 0.101 0.092 0.083 0.076 0.069 0.062
0.8 0.138 0.128 0.115 0.103 0.093 0.085 0.077 0.070 0.063 0.057
0.9 0.126 0.116 0.105 0.094 0.085 0.078 0.071 0.064 0.058 0.053
1.0 0.114 0.106 0.095 0.086 0.078 0.071 0.064 0.058 0.053 0.048

ordu = 6, ordv = 6,segu = 10,segv = 10
] 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0

a

2 Coeff B in (Mu)masz = BP

0.1 | 0.279 | 0.236 | 0.195 | 0.169 | 0.150 | 0.134 | 0.120 | 0.108 | 0.097 | 0.088
0.2 0.252 0.217 0.184 0.160 0.143 0.128 0.114 0.103 0.093 0.084
0.3 | 0.224 | 0.197 | 0.170 | 0.150 | 0.134 | 0.120 | 0.108 | 0.098 | 0.088 | 0.080
0.4 | 0.202 | 0.180 | 0.158 | 0.140 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
05 | 0.184 | 0.166 | 0.146 | 0.131 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.168 | 0.152 | 0.135 | 0.121 | 0.110 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.153 | 0.139 | 0.124 | 0.112 | 0.102 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.140 | 0.127 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.127 | 0.116 | 0.104 | 0.094 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.115 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

Appendix A: Surface FEA Examples 215

l ordu = 7,ordv = 7,segu = 2,segv = 2]

[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0
7 Coeff B in (Mu)maex = BP
0.1 | 0.184 | 0.177 | 0.168 | 0.156 | 0.142 | 0.128 | 0.114 | 0.102 | 0.091 | 0.082
0.2 | 0.179 | 0.173 | 0.164 | 0.152 | 0.139 | 0.125 | 0.112 | 0.100 | 0.089 | 0.081
0.3 | 0.172 | 0.167 | 0.158 | 0.147 | 0.134 | 0.121 | 0.108 | 0.097 | 0.087 | 0.078
0.4 | 0.163 | 0.158 | 0.150 | 0.139 | 0.128 | 0.115 | 0.103 | 0.092 | 0.083 | 0.075
0.5 | 0.152 | 0.148 | 0.140 | 0.131 | 0.120 | 0.109 | 0.098 | 0.088 | 0.079 | 0.071
0.6 | 0.141 | 0.137 | 0.130 | 0.121 | 0.112 | 0.101 | 0.091 | 0.082 | 0.074 | 0.067
0.7 | 0.129 | 0.125 | 0.119 | 0.112 | 0.103 | 0.094 | 0.085 | 0.076 | 0.069 | 0.062
0.8 | 0.118 | 0.115 | 0.109 | 0.102 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.057
0.9 | 0.107 | 0.104 | 0.100 | 0.093 | 0.086 | 0.079 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.097 | 0.095 | 0.090 | 0.085 | 0.078 | 0.072 | 0.065 | 0.059 | 0.053 | 0.048

l ordu = 7,ordv = 7,segu = 4,segv = 4

[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Coeff B in (Mu)maz = BP
0.1 | 0.206 | 0.197 | 0.182 | 0.164 | 0.146 | 0.129 | 0.114 | 0.103 | 0.093 | 0.085
0.2 | 0.200 | 0.190 | 0.176 | 0.160 | 0.142 | 0.126 | 0.112 | 0.101 | 0.091 | 0.083
0.3 | 0.189 | 0.181 | 0.168 | 0.153 | 0.136 | 0.121 | 0.108 | 0.097 | 0.088 | 0.080
0.4 | 0.177 | 0.169 | 0.157 | 0.143 | 0.129 | 0.115 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.163 | 0.156 | 0.146 | 0.133 | 0.120 | 0.107 | 0.096 | 0.087 | 0.079 | 0.072
0.6 | 0.149 | 0.143 | 0.134 | 0.123 | 0.111 | 0.100 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.136 | 0.131 | 0.123 | 0.113 | 0.103 | 0.093 | 0.083 | 0.075 | 0.068 | 0.062
0.8 | 0.125 | 0.120 | 0.113 | 0.104 | 0.095 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.114 | 0.110 | 0.103 | 0.095 | 0.087 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.103 | 0.100 | 0.094 | 0.087 | 0.079 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

l ordu = 7,ordv = 7,segu = 6,segv = 6

[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Cocff 8 in (Mu)max = BP
0.1 | 0.227 | 0.212 | 0.191 | 0.168 | 0.146 | 0.129 | 0.116 | 0.105 | 0.095 | 0.086
0.2 | 0.217 | 0.204 | 0.184 | 0.162 | 0.142 | 0.125 | 0.113 | 0.102 | 0.092 | 0.084
0.3 | 0.203 | 0.191 | 0.173 | 0.154 | 0.135 | 0.120 | 0.108 | 0.098 | 0.089 | 0.080
0.4 | 0.186 | 0.176 | 0.161 | 0.143 | 0.127 | 0.113 | 0.102 | 0.093 | 0.084 | 0.076
0.5 | 0.170 | 0.161 | 0.148 | 0.133 | 0.119 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.155 | 0.147 | 0.136 | 0.123 | 0.110 | 0.099 | 0.089 | 0.081 | 0.074 | 0.067
0.7 | 0.142 | 0.135 | 0.125 | 0.113 | 0.102 | 0.092 | 0.083 | 0.075 | 0.069 | 0.062
0.8 | 0.130 | 0.124 | 0.115 | 0.104 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.119 | 0.113 | 0.105 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.108 | 0.103 | 0.095 | 0.087 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

ordu = 7,ordv = 7,segu = 8,segv = 8

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP
0.1 | 0.245 | 0.224 | 0.195 | 0.168 | 0.146 | 0.131 | 0.118 | 0.106 | 0.096 | 0.087
0.2 | 0.231 | 0.212 | 0.186 | 0.161 | 0.141 | 0.126 | 0.114 | 0.103 | 0.093 | 0.084
0.3 | 0.212 | 0.196 | 0.174 | 0.152 | 0.134 | 0.120 | 0.109 | 0.098 | 0.089 | 0.080
0.4 | 0.192 | 0.179 | 0.160 | 0.142 | 0.126 | 0.113 | 0.102 | 0.093 | 0.084 | 0.076
0.5 | 0.175 | 0.163 | 0.148 | 0.131 | 0.117 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.160 | 0.150 | 0.136 | 0.122 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.147 | 0.138 | 0.126 | 0.113 | 0.101 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.134 | 0.126 | 0.115 | 0.104 | 0.093 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.122 | 0.115 | 0.105 | 0.095 | 0.085 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.111 | 0.104 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053 | 0.048

216 Variational Based Modelling and Analysis using B-splines

l ordu = 7,ordv = 7,segu = 10, segv = 10]
[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0 |

Coeff B in (My)maz = BP
.168 0.148 0.133 0.119 0.107 0.097 0.087
.160 0.142 0.128 0.114 0.103 0.093 0.084
.151 0.134 0.121 0.108 0.098 0.089 0.080
140 0.126 0.113 0.102 0.092 0.084 0.076
.131 0.117 0.106 0.096 0.087 0.079 0.071
0.6 0.164 0.151 0.136 121 0.109 0.099 0.090 0.081 0.074 0.067
0.7 0.150 0.139 0.125 112 0.101 0.092 0.083 0.076 0.069 0.062
0.8 0.136 0.127 0.115 0.103 0.093 0.085 0.077 0.070 0.063 0.057
0.9 0.124 0.116 0.105 0.094 0.085 0.078 0.071 0.064 0.058 0.053
1.0 0.113 0.105 0.095 0.086 0.078 0.071 0.064 0.058 0.053 0.048

0.1 0.259 0.230 0.196
0.2 0.241 0.216 0.186
0.3 0.217 0.197 0.172
0.4 0.196 0.180 0.159
0.5 0.179 0.165 0.147

l ordu = 7,ordv = 7,segu = 12,segv = 12]
[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 10|

3 Coeff B in (Mu)maz = BP

0.1 0.270 0.233 0.195 0.168 0.150 0.133 0.119 0.107 0.097 0.088
0.2 0.246 0.216 0.184 0.160 0.143 0.127 0.114 0.103 0.093 0.084
0.3 0.220 0.197 0.171 0.150 0.134 0.120 0.108 0.098 0.088 0.080
0.4 0.199 0.180 0.158 0.140 0.126 0.113 0.102 0.092 0.084 0.076
0.5 0.182 0.165 0.147 0.131 0.118 0.106 0.096 0.087 0.079 0.071
0.6 0.166 0.152 0.135 0.121 0.110 0.099 0.090 0.081 0.074 0.067
0.7 0.151 0.139 0.125 0.112 0.102 0.092 0.083 0.076 0.069 0.062
0.8 0.138 0.127 0.114 0.103 0.094 0.085 0.077 0.070 0.063 0.057
0.9 0.126 0.116 0.104 0.094 0.086 0.078 0.070 0.064 0.058 0.053
1.0 0.114 0.105 0.095 0.086 0.078 0.071 0.064 0.058 0.053 0.048

l ordu = 8,ordv = 8,segu = 2,segv = 2 l
[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0 |

Cocff 8 in (Mu)max = BP
0.1 0.217 0.205 0.187 0.167 0.147 0.129 0.115 0.104 0.094 0.085
0.2 0.209 0.197 0.181 0.162 0.143 0.126 0.112 0.101 0.092 0.083
0.3 0.197 0.186 0.171 0.154 0.136 0.121 0.108 0.097 0.088 0.080
0.4 0.182 0.173 0.160 0.144 0.129 0.114 0.102 0.092 0.084 0.076
0.5 0.167 0.159 0.148 0.134 0.120 0.107 0.096 0.087 0.079 0.072
0.6 0.152 0.146 0.135 0.123 0.111 0.099 0.089 0.081 0.074 0.067
0.7 0.139 0.133 0.124 0.114 0.103 0.092 0.083 0.075 0.068 0.062
0.8 0.127 0.122 0.114 0.104 0.094 0.085 0.077 0.070 0.063 0.057
0.9 0.117 0.112 0.104 0.096 0.086 0.078 0.070 0.064 0.058 0.053
1.0 0.106 0.101 0.095 0.087 0.079 0.071 0.064 0.058 0.053 0.048

ordu = 8,ordv = 8,segu = 4,segv = 4

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (Mu)masz = BP

0.1 | 0.235 | 0.218 | 0.194 | 0.169 | 0.147 | 0.129 | 0.117 | 0.106 | 0.096 | 0.086
0.2 | 0.224 | 0.208 | 0.186 | 0.162 | 0.142 | 0.126 | 0.113 | 0.103 | 0.093 | 0.084
0.3 | 0.208 | 0.194 | 0.174 | 0.153 | 0.135 | 0.120 | 0.108 | 0.098 | 0.089 | 0.080
0.4 | 0.190 | 0.178 | 0.161 | 0.143 | 0.127 | 0.113 | 0.102 | 0.093 | 0.084 | 0.076
0.5 | 0.172 | 0.162 | 0.148 | 0.133 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.157 | 0.149 | 0.136 | 0.123 | 0.110 | 0.099 | 0.089 | 0.081 | 0.074 | 0.067
0.7 | 0.144 | 0.137 | 0.125 | 0.113 | 0.102 | 0.091 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.132 | 0.125 | 0.115 | 0.104 | 0.094 | 0.084 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.121 | 0.114 | 0.105 | 0.095 | 0.086 | 0.077 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.109 | 0.104 | 0.096 | 0.087 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053 | 0.048

Appendix A: Surface FEA Examples 217

l ordu = 8,ordv = 8,segu = 6,segv = 6]

[L] o1 0.2 03 [04 [05 [06 [07 [0.8 0.9 1.0
571 Coeff B in (My)maz = BP
0.1 | 0.252 | 0.228 | 0.197 | 0.168 | 0.147 | 0.131 | 0.119 | 0.107 | 0.096 | 0.087
0.2 | 0.236 | 0.215 | 0.187 | 0.161 | 0.141 | 0.127 | 0.115 | 0.103 | 0.093 | 0.084
0.3 | 0.215 | 0.197 | 0.174 | 0.152 | 0.134 | 0.120 | 0.109 | 0.098 | 0.089 | 0.080
0.4 | 0.195 | 0.180 | 0.160 | 0.141 | 0.125 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.177 | 0.164 | 0.148 | 0.131 | 0.117 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.162 | 0.151 | 0.136 | 0.122 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.149 | 0.139 | 0.126 | 0.113 | 0.101 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.136 | 0.127 | 0.115 | 0.103 | 0.093 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.123 | 0.116 | 0.105 | 0.095 | 0.085 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.112 | 0.105 | 0.095 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053 | 0.048

l ordu = 8,ordv = 8,segu = 8,segv = 8

[L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
3 Coeff B in (Mu)mas = BP
0.1 | 0.266 | 0.233 | 0.196 | 0.168 | 0.149 | 0.133 | 0.119 | 0.107 | 0.097 | 0.088
0.2 | 0.245 | 0.217 | 0.185 | 0.160 | 0.142 | 0.128 | 0.115 | 0.103 | 0.093 | 0.084
0.3 | 0.220 | 0.198 | 0.172 | 0.150 | 0.134 | 0.121 | 0.108 | 0.098 | 0.089 | 0.080
0.4 | 0.198 | 0.180 | 0.159 | 0.140 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.181 | 0.165 | 0.147 | 0.131 | 0.117 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.165 | 0.152 | 0.136 | 0.121 | 0.109 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.151 | 0.139 | 0.125 | 0.112 | 0.101 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.138 | 0.127 | 0.115 | 0.103 | 0.093 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.125 | 0.116 | 0.105 | 0.094 | 0.085 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.114 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

l ordu = 8,ordv = 8,segu = 10,segv = 10

[*L] o1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
o Coeff B in (Mu)mas = BP
0.1 | 0.276 | 0.234 | 0.195 | 0.169 | 0.150 | 0.134 | 0.119 | 0.108 | 0.097 | 0.088
0.2 | 0.250 | 0.216 | 0.183 | 0.160 | 0.143 | 0.128 | 0.114 | 0.103 | 0.093 | 0.084
0.3 | 0.222 | 0.197 | 0.170 | 0.150 | 0.134 | 0.120 | 0.108 | 0.098 | 0.088 | 0.080
0.4 | 0.201 | 0.180 | 0.158 | 0.140 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.183 | 0.165 | 0.146 | 0.131 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.167 | 0.152 | 0.135 | 0.121 | 0.110 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.152 | 0.139 | 0.124 | 0.112 | 0.102 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.139 | 0.127 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.127 | 0.116 | 0.104 | 0.094 | 0.086 | 0.078 | 0.070 | 0.064 | 0.058 | 0.053
1.0 | 0.115 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

ordu = 8,ordv = 8,segu = 12,segv = 12

L 0.1 0.2 03 | 04 [05 | 06 [07 | 08 0.9 1.0
2 Coeff B in (My)maz = BP
0.1 | 0.283 | 0.233 | 0.195 | 0.171 | 0.151 | 0.133 | 0.120 | 0.108 | 0.097 | 0.088
0.2 | 0.252 | 0.214 | 0.183 | 0.161 | 0.143 | 0.127 | 0.114 | 0.103 | 0.093 | 0.084
0.3 | 0.224 | 0.195 | 0.170 | 0.151 | 0.134 | 0.120 | 0.108 | 0.098 | 0.088 | 0.080
0.4 | 0.203 | 0.179 | 0.158 | 0.141 | 0.126 | 0.113 | 0.102 | 0.092 | 0.084 | 0.076
0.5 | 0.185 | 0.165 | 0.146 | 0.131 | 0.118 | 0.106 | 0.096 | 0.087 | 0.079 | 0.071
0.6 | 0.168 | 0.151 | 0.135 | 0.122 | 0.110 | 0.099 | 0.090 | 0.081 | 0.074 | 0.067
0.7 | 0.153 | 0.139 | 0.124 | 0.112 | 0.102 | 0.092 | 0.083 | 0.076 | 0.069 | 0.062
0.8 | 0.140 | 0.127 | 0.114 | 0.103 | 0.094 | 0.085 | 0.077 | 0.070 | 0.063 | 0.057
0.9 | 0.127 | 0.116 | 0.104 | 0.094 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053
1.0 | 0.115 | 0.105 | 0.095 | 0.086 | 0.078 | 0.071 | 0.064 | 0.058 | 0.053 | 0.048

218 Variational Based Modelling and Analysis using B-splines

A.4 Uniformly loaded rectangular plate with two edges
simply supported and two edges clamped

Coefficients a, 3, 81, B2 for uniformly loaded (load F}) rectangular plate with two edges simply
supported (u = 0,u = a) and two edges clamped (v = 0,v = b)

simple

clamped a

Figure A.4: Uniformly loaded rectangular plate with two edges simply supported and two edges

clamped

g u:%,v:O4 u:%,v:% u=g5,v=0 | u=35,v=0

Timaw = @it | M, = BFia® | M, = piFia® | M, = B2F1a?
1.0000 0.0209 -0.070 0.024 0.033
1.2000 0.0340 -0.087 0.038 0.040
1.4000 0.0502 -0.100 0.052 0.045
1.6000 0.0658 -0.109 0.065 0.047
1.8000 0.0799 -0.115 0.077 0.048
2.0000 0.0987 -0.119 0.087 0.047
3.0000 0.1276 -0.125 0.114 0.042

Table A.4: Numerical results from [85], rectangular plate, two simple edges, two clamped,

uniform load

Appendix A: Surface FEA Examples

ordu = 4, ordv = 4,segu = 2,segv = 2

ordu = 4,ordv = 4,segu = 4,segv = 4

1.0000 0.0212 -0.0466 0.0328 0.0523
1.2000 0.0353 -0.0647 0.0431 0.0424
1.4000 0.0505 -0.0809 0.0596 0.0474
1.6000 0.0660 -0.0917 0.0749 0.0495
1.8000 0.0802 -0.0991 0.0890 0.0516
2.0000 0.0916 -0.0821 0.0987 0.0466
3.0000 0.1276 -0.0859 0.1331 0.0483

1.0000 0.0209 -0.0611 0.0246 0.0355
1.2000 0.0348 -0.0774 0.0375 0.0393
1.4000 0.0504 -0.0900 0.0527 0.0456
1.6000 0.0657 -0.0990 0.0664 0.0472
1.8000 0.0799 -0.1050 0.0790 0.0484
2.0000 0.0922 -0.1065 0.0896 0.0481
3.0000 0.1276 -0.1116 0.1188 0.0433

ordu = 4,ordv = 4,segu = 6,segv = 6

ordu = 4,ordv = 4,segu = 8,segv = 8

1.0000 0.0209 -0.0657 0.0246 0.0344
1.2000 0.0349 -0.0818 0.0377 0.0397
1.4000 0.0504 -0.0941 0.0522 0.0451
1.6000 0.0658 -0.1027 0.0657 0.0470
1.8000 0.0799 -0.1085 0.0779 0.0480
2.0000 0.0922 -0.1131 0.0881 0.0477
3.0000 0.1276 -0.1184 0.1163 0.0426

1.0000 0.0209 -0.0675 0.0245 0.0339
1.2000 0.0349 -0.0837 0.0377 0.0399
1.4000 0.0504 -0.0960 0.0520 0.0449
1.6000 0.0658 -0.1047 0.0654 0.0469
1.8000 0.0799 -0.1104 0.0774 0.0478
2.0000 0.0922 -0.1156 0.0876 0.0476
3.0000 0.1276 -0.1210 0.1155 0.0424

ordu = 4, ordv

= 4,segu = 10,segv = 10

ordu = 4, ordv

= 4,segu = 12,segv = 12

1.0000 0.0209 -0.0683 0.0245 0.0337
1.2000 0.0349 -0.0847 0.0377 0.0399
1.4000 0.0504 -0.0972 0.0519 0.0448
1.6000 0.0658 -0.1059 0.0652 0.0469
1.8000 0.0799 -0.1116 0.0772 0.0478
2.0000 0.0922 -0.1168 0.0873 0.0475
3.0000 0.1276 -0.1223 0.1151 0.0423

1.0000 0.0209 -0.0688 0.0245 0.0335
1.2000 0.0349 -0.0853 0.0377 0.0400
1.4000 0.0504 -0.0978 0.0518 0.0447
1.6000 0.0658 -0.1066 0.0652 0.0469
1.8000 0.0799 -0.1124 0.0771 0.0477
2.0000 0.0922 -0.1175 0.0872 0.0474
3.0000 0.1276 -0.1230 0.1149 0.0423

ordu = 5,ordv = 5,segu = 2,segv = 2

ordu = 5,ordv = 5,segu = 4,segv = 4

1.0000 0.0215 -0.0629 0.0271 0.0367
1.2000 0.0350 -0.0834 0.0391 0.0397
1.4000 0.0506 -0.0976 0.0534 0.0454
1.6000 0.0659 -0.1074 0.0662 0.0470
1.8000 0.0801 -0.1139 0.0779 0.0480
2.0000 0.0921 -0.1094 0.0877 0.0475
3.0000 0.1277 -0.1148 0.1147 0.0424

1.0000 0.0209 -0.0691 0.0246 0.0336
1.2000 0.0349 -0.0859 0.0378 0.0400
1.4000 0.0504 -0.0989 0.0518 0.0446
1.6000 0.0658 -0.1081 0.0651 0.0469
1.8000 0.0799 -0.1142 0.0770 0.0477
2.0000 0.0922 -0.1178 0.0870 0.0474
3.0000 0.1276 -0.1232 0.1144 0.0421

ordu = 5,ordv = 5,segu = 6,segv = 6

ordu = 5,ordv = 5,segu = 8,segv = 8

1.0000 0.0209 -0.0697 0.0244 0.0333
1.2000 0.0349 -0.0865 0.0377 0.0401
1.4000 0.0504 -0.0995 0.0517 0.0446
1.6000 0.0658 -0.1087 0.0650 0.0469
1.8000 0.0799 -0.1148 0.0768 0.0476
2.0000 0.0922 -0.1188 0.0869 0.0474
3.0000 0.1276 -0.1243 0.1144 0.0421

1.0000 0.0209 -0.0698 0.0244 0.0333
1.2000 0.0349 -0.0867 0.0377 0.0401
1.4000 0.0504 -0.0996 0.0517 0.0446
1.6000 0.0658 -0.1088 0.0650 0.0469
1.8000 0.0799 -0.1149 0.0768 0.0476
2.0000 0.0922 -0.1189 0.0869 0.0474
3.0000 0.1276 -0.1245 0.1144 0.0421

ordu = 5, ordv

= 5,segu = 10,segv = 10

ordu = 5, ordv

= 5,segu = 12,segv = 12

1.0000 0.0209 -0.0698 0.0244 0.0333
1.2000 0.0349 -0.0867 0.0377 0.0401
1.4000 0.0504 -0.0997 0.0517 0.0445
1.6000 0.0658 -0.1089 0.0650 0.0469
1.8000 0.0799 -0.1150 0.0768 0.0476
2.0000 0.0922 -0.1190 0.0869 0.0474
3.0000 0.1276 -0.1245 0.1144 0.0421

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0867 0.0377 0.0401
1.4000 0.0504 -0.0997 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1151 0.0768 0.0476
2.0000 0.0922 -0.1190 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 6,ordv = 6,segu = 2,segv = 2

ordu = 6,ordv = 6,segu = 4,segv = 4

1.0000 0.0209 -0.0689 0.0240 0.0327
1.2000 0.0349 -0.0866 0.0376 0.0404
1.4000 0.0504 -0.0995 0.0513 0.0443
1.6000 0.0657 -0.1089 0.0648 0.0468
1.8000 0.0799 -0.1150 0.0767 0.0476
2.0000 0.0922 -0.1176 0.0866 0.0472
3.0000 0.1276 -0.1232 0.1144 0.0422

1.0000 0.0209 -0.0699 0.0243 0.0331
1.2000 0.0349 -0.0869 0.0377 0.0401
1.4000 0.0504 -0.0999 0.0516 0.0445
1.6000 0.0658 -0.1091 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0868 0.0473
3.0000 0.1276 -0.1247 0.1143 0.0421

219

220

ordu = 6,ordv = 6,segu = 6,segv = 6

.0000 0.0209

-0.0698 0.0244 0.0332

.2000 0.0349

-0.0868 0.0377 0.0401

4000 0.0504

-0.0998 0.0517 0.0445

.6000 0.0658

-0.1090 0.0650 0.0469

.8000 0.0799

-0.1152 0.0768 0.0476

.0000 0.0922

-0.1191 0.0869 0.0474

wlv|~|~|=]~|~

.0000 0.1276

-0.1246 0.1144 0.0421

ordu = 6, ordv

= 6,segu = 10,segv = 10

.0000 0.0209

-0.0698 0.0244 0.0332

.2000 0.0349

-0.0868 0.0377 0.0401

.4000 0.0504

-0.0998 0.0517 0.0445

.6000 0.0658

-0.1090 0.0650 0.0469

.8000 0.0799

-0.1152 0.0768 0.0476

.0000 0.0922

-0.1191 0.0869 0.0474

wlw| |~~~

.0000 0.1276

-0.1246 0.1144 0.0421

ordu = 7,ordv = 7,segu = 2,segv = 2

.0000 0.0209

-0.0699 0.0244 0.0333

.2000 0.0349

-0.0867 0.0377 0.0401

.4000 0.0504

-0.0998 0.0517 0.0445

.6000 0.0658

-0.1089 0.0650 0.0469

.8000 0.0799

-0.1150 0.0768 0.0476

.0000 0.0922

-0.1194 0.0868 0.0472

wlo| ==~~~

.0000 0.1276

-0.1249 0.1144 0.0422

ordu = 7,ordv = 7,segu = 6,segv = 6

.0000 0.0209

-0.0698 0.0244 0.0332

.2000 0.0349

-0.0868 0.0377 0.0401

.4000 0.0504

-0.0998 0.0517 0.0445

.6000 0.0658

-0.1090 0.0650 0.0469

.8000 0.0799

-0.1152 0.0768 0.0476

0000 0.0922

-0.1191 0.0869 0.0474

wlw| ||~~~

.0000 0.1276

-0.1246 0.1144 0.0421

ordu = 7, ordv

= 7,segu = 10,segv = 10

.0000 0.0209

-0.0698 0.0244 0.0332

.2000 0.0349

-0.0868 0.0377 0.0401

4000 0.0504

-0.0998 0.0517 0.0445

i

.6000 0.0658

-0.1090 0.0650 0.0469

1.8000 0.0799

-0.1152 0.0768 0.0476

2.0000 0.0922

-0.1191 0.0869 0.0474

3.0000 0.1276

-0.1246 0.1144 0.0421

ordu = 8,ordv = 8,segu = 2,segv = 2

1.0000 0.0209

-0.0699 0.0244 0.0332

1.2000 0.0349

-0.0869 0.0377 0.0401

1.4000 0.0504

-0.0999 0.0517 0.0445

1.6000 0.0658

-0.1091 0.0650 0.0469

1.8000 0.0799

-0.1152 0.0768 0.0476

2.0000 0.0922

-0.1193 0.0869 0.0474

3.0000 0.1276

-0.1249 0.1143 0.0421

ordu = 8,ordv = 8,segu = 6,segv = 6

1.0000 0.0209

-0.0698 0.0244 0.0332

1.2000 0.0349

-0.0868 0.0377 0.0401

1.4000 0.0504

-0.0998 0.0517 0.0445

1.6000 0.0658

-0.1090 0.0650 0.0469

1.8000 0.0799

-0.1152 0.0768 0.0476

2.0000 0.0922

-0.1191 0.0869 0.0474

3.0000 0.1276

-0.1246 0.1144 0.0421

Variational Based Modelling and Analysis

ordu = 6,ordv = 6,segu = 8,segv = 8

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 6, ordv

= 6,segu = 12,segv = 12

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 7,ordv = 7,segu = 4,segv = 4

1.0000 0.0209 -0.0699 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0999 0.0517 0.0445
1.6000 0.0658 -0.1091 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1247 0.1144 0.0421

ordu = 7,ordv = 7,segu = 8,segv = 8

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 7,ordv

= 7,segu = 12,segv = 12

using B-splines

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 8,ordv = 8,segu = 4,segv = 4

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

ordu = 8,ordv = 8,segu = 8,segv = 8

1.0000 0.0209 -0.0698 0.0244 0.0332
1.2000 0.0349 -0.0868 0.0377 0.0401
1.4000 0.0504 -0.0998 0.0517 0.0445
1.6000 0.0658 -0.1090 0.0650 0.0469
1.8000 0.0799 -0.1152 0.0768 0.0476
2.0000 0.0922 -0.1191 0.0869 0.0474
3.0000 0.1276 -0.1246 0.1144 0.0421

Appendix A: Surface FEA Examples 221

A.5 Uniformly loaded rectangular plate with two oppo-
site edges simply supported, the third edge free and
the fourth clamped

Bending moments along the sides and maximum deflection for a uniformly loaded rectangular

plate with two opposite edges simply supported, one free and one clamped.

AT
N

clamped 2

Figure A.5: Uniformly loaded rectangular plate with two edges simply supported (v = 0,u = a),
the third edge free (v = b) and the fourth clamped (v = 0)

Table A.5: Numerical results from

clamped, uniform load

2 (@)maz | (Mu)u=as2.0=b | (My)u=a/2,.0=0
0.3333 1.03 0.0078 -0.428
0.5000 | 0.635 0.0293 -0.319
0.6667 | 0.366 0.0558 -0.227
1.0000 | 0.123 0.0972 -0.119
1.5000 | 0.154 0.123 -0.124
2.0000 | 0.164 0.131 -0.125
3.0000 | 0.166 0.133 -0.125

[85], rectangular plate, two simple edges, one free, one

222 Variational Based Modelling and Analysis using B-splines

ordu = 3,ordv = 3,segu = 2,segv = 2 ordu = 3,ordv = 3,segu = 4,segv = 4
0.3333 0.9566 0.0080 -0.2268 0.3333 1.0153 0.0091 -0.3136
0.5000 0.5692 0.0258 -0.1379 0.5000 0.6224 0.0309 -0.2123
0.6667 0.3180 0.0467 -0.0794 0.6667 0.3554 0.0570 -0.1361
1.0000 0.1022 0.0774 -0.0277 1.0000 0.1176 0.0963 -0.0576
1.5000 0.1257 0.0873 -0.0482 1.5000 0.1473 0.1179 -0.0665
2.0000 0.1299 0.0915 -0.0304 2.0000 0.1549 0.1240 -0.0613
3.0000 0.1312 0.0920 -0.0305 3.0000 0.1572 0.1255 -0.0615
ordu = 3,ordv = 3,segu = 6,segv = 6 ordu = 3,ordv = 3,segu = 8,segv = 8
0.3333 1.0209 0.0085 -0.3475 0.3333 1.0232 0.0083 -0.3660
0.5000 0.6300 0.0306 -0.2432 0.5000 0.6326 0.0303 -0.2602
0.6667 0.3615 0.0575 -0.1613 0.6667 0.3636 0.0574 -0.1756
1.0000 0.1204 0.0985 -0.0729 1.0000 0.1214 0.0989 -0.0821
1.5000 0.1513 0.1227 -0.0765 1.5000 0.1527 0.1241 -0.0834
2.0000 0.1596 0.1290 -0.0772 2.0000 0.1612 0.1305 -0.0868
3.0000 0.1621 0.1309 -0.0774 3.0000 0.1638 0.1325 -0.0870
ordu = 3,ordv = 3,segu = 10,segv = 10 ordu = 3,ordv = 3,segu = 12,segv = 12
0.3333 1.0242 0.0082 -0.3776 0.3333 1.0249 0.0081 -0.3855
0.5000 0.6337 0.0302 -0.2710 0.5000 0.6344 0.0300 -0.2785
0.6667 0.3646 0.0572 -0.1848 0.6667 0.3651 0.0571 -0.1912
1.0000 0.1219 0.0989 -0.0882 1.0000 0.1221 0.0988 -0.0926
1.5000 0.1533 0.1245 -0.0886 1.5000 0.1537 0.1247 -0.0925
2.0000 0.1619 0.1310 -0.0932 2.0000 0.1623 0.1312 -0.0977
3.0000 0.1646 0.1331 -0.0934 3.0000 0.1650 0.1334 -0.0980
ordu = 4, ordv = 4,segu = 2,segv = 2 ordu = 4,ordv = 4,segu = 4,segv = 4
0.3333 1.0381 0.0103 -0.4018 0.3333 1.0254 0.0071 -0.4191
0.5000 0.6401 0.0367 -0.2832 0.5000 0.6359 0.0297 -0.3082
0.6667 0.3673 0.0684 -0.1875 0.6667 0.3663 0.0580 -0.2148
1.0000 0.1224 0.1165 -0.0822 1.0000 0.1227 0.1020 -0.1058
1.5000 0.1547 0.1473 -0.1066 1.5000 0.1545 0.1294 -0.1139
2.0000 0.1633 0.1571 -0.0860 2.0000 0.1632 0.1372 -0.1116
3.0000 0.1661 0.1599 -0.0861 3.0000 0.1660 0.1396 -0.1119
ordu = 4,ordv = 4,segu = 6,segv = 6 ordu = 4,ordv = 4,segu = 8,segv = 8
0.3333 1.0262 0.0077 -0.4246 0.3333 1.0262 0.0077 -0.4259
0.5000 0.6359 0.0296 -0.3143 0.5000 0.6358 0.0294 -0.3163
0.6667 0.3663 0.0569 -0.2214 0.6667 0.3663 0.0564 -0.2238
1.0000 0.1227 0.0994 -0.1125 1.0000 0.1227 0.0984 -0.1150
1.5000 0.1545 0.1262 -0.1176 1.5000 0.1545 0.1250 -0.1195
2.0000 0.1632 0.1335 -0.1185 2.0000 0.1632 0.1322 -0.1211
3.0000 0.1660 0.1359 -0.1188 3.0000 0.1660 0.1345 -0.1214
ordu = 4, ordv = 4,segu = 10, segv = 10 ordu = 4, ordv = 4,segu = 12,segv = 12
0.3333 1.0263 0.0078 -0.4267 0.3333 1.0263 0.0078 -0.4271
0.5000 0.6358 0.0294 -0.3173 0.5000 0.6358 0.0293 -0.3178
0.6667 0.3663 0.0562 -0.2249 0.6667 0.3663 0.0561 -0.2255
1.0000 0.1227 0.0980 -0.1162 1.0000 0.1227 0.0977 -0.1168
1.5000 0.1545 0.1244 -0.1207 1.5000 0.1545 0.1241 -0.1214
2.0000 0.1632 0.1316 -0.1223 2.0000 0.1632 0.1313 -0.1230
3.0000 0.1660 0.1339 -0.1226 3.0000 0.1660 0.1336 -0.1233
ordu = 5,ordv = 5,segu = 2,segv = 2 ordu = 5,ordv = 5,segu = 4,segv = 4
0.3333 1.0414 0.0092 -0.4346 0.3333 1.0260 0.0079 -0.4267
0.5000 0.6398 0.0311 -0.3193 0.5000 0.6359 0.0294 -0.3181
0.6667 0.3674 0.0575 -0.2227 0.6667 0.3663 0.0560 -0.2260
1.0000 0.1228 0.0989 -0.1092 1.0000 0.1227 0.0974 -0.1171
1.5000 0.1545 0.1236 -0.1223 1.5000 0.1545 0.1234 -0.1228
2.0000 0.1632 0.1310 -0.1149 2.0000 0.1632 0.1306 -0.1233
3.0000 0.1660 0.1332 -0.1152 3.0000 0.1660 0.1329 -0.1236

Appendix A: Surface FEA Examples

ordu = 5,ordv = 5,segu = 8,segv = 8

ordu = 5,ordv = 5,segu = 6,segv = 6
0.3333 1.0262 0.0078 -0.4282
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2268
1.0000 0.1227 0.0972 -0.1181
1.5000 0.1545 0.1234 -0.1234
2.0000 0.1632 0.1305 -0.1243
3.0000 0.1660 0.1328 -0.1246

0.3333 1.0263 0.0078 -0.4278
0.5000 0.6358 0.0293 -0.3189
0.6667 0.3663 0.0559 -0.2268
1.0000 0.1227 0.0972 -0.1183
1.5000 0.1545 0.1233 -0.1235
2.0000 0.1632 0.1305 -0.1245
3.0000 0.1660 0.1328 -0.1248

ordu = 5,ordv = 5,segu = 10, segv = 10
0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1183
1.5000 0.1545 0.1233 -0.1236
2.0000 0.1632 0.1305 -0.1246
3.0000 0.1660 0.1328 -0.1249
ordu = 6,ordv = 6,segu = 2,segv = 2
0.3333 1.0245 0.0074 -0.4261
0.5000 0.6356 0.0290 -0.3181
0.6667 0.3662 0.0557 -0.2261
1.0000 0.1227 0.0972 -0.1169
1.5000 0.1545 0.1233 -0.1235
2.0000 0.1632 0.1306 -0.1233
3.0000 0.1660 0.1329 -0.1236
ordu = 6,ordv = 6,segu = 6,segv = 6
0.3333 1.0263 0.0078 -0.4278
0.5000 0.6358 0.0293 -0.3189
0.6667 0.3663 0.0558 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 6,ordv = 6,segu = 10,segv = 10
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 7,ordv = 7,segu = 2,segv = 2
0.3333 1.0255 0.0077 -0.4266
0.5000 0.6358 0.0293 -0.3184
0.6667 0.3663 0.0559 -0.2266
1.0000 0.1227 0.0972 -0.1183
1.5000 0.1545 0.1233 -0.1236
2.0000 0.1632 0.1305 -0.1249
3.0000 0.1660 0.1328 -0.1252
ordu = 7,ordv = 7,segu = 6,segv = 6
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3189
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 5,ordv = 5,segu = 12,segv = 12
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1246
3.0000 0.1660 0.1328 -0.1249
ordu = 6,ordv = 6,segu = 4,segv = 4
0.3333 1.0262 0.0078 -0.4284
0.5000 0.6358 0.0292 -0.3192
0.6667 0.3663 0.0558 -0.2271
1.0000 0.1227 0.0972 -0.1185
1.5000 0.1545 0.1233 -0.1238
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 6,ordv = 6,segu = 8,segv = 8
0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 6,ordv = 6,segu = 12,segv = 12
0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 7,ordv = 7,segu = 4,segv = 4
0.3333 1.0262 0.0078 -0.4282
0.5000 0.6358 0.0293 -0.3191
0.6667 0.3663 0.0559 -0.2270
1.0000 0.1227 0.0972 -0.1185
1.5000 0.1545 0.1233 -0.1238
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250
ordu = 7,ordv = 7,segu = 8,segv = 8
0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

223

224

ordu = 7,ordv = 7,segu = 10, segv = 10

0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 8,ordv = 8,segu = 2,segv = 2

0.3333 1.0263 0.0078 -0.4284
0.5000 0.6358 0.0293 -0.3192
0.6667 0.3663 0.0558 -0.2271
1.0000 0.1227 0.0972 -0.1185
1.5000 0.1545 0.1233 -0.1238
2.0000 0.1632 0.1305 -0.1249
3.0000 0.1660 0.1328 -0.1252

ordu = 8,ordv = 8,segu = 6,segv = 6

0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 8,ordv = 8,segu = 10, segv = 10

0.3333 1.0263 0.0078 -0.4280
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

Variational Based Modelling and Analysis using B-splines

ordu = 7,ordv = 7,segu = 12,segv = 12
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 8,ordv = 8,segu = 4,segv = 4
0.3333 1.0263 0.0078 -0.4278
0.5000 0.6358 0.0293 -0.3189
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 8,ordv = 8,segu = 8,segv = 8
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

ordu = 8,ordv = 8,segu = 12,segv = 12
0.3333 1.0263 0.0078 -0.4279
0.5000 0.6358 0.0293 -0.3190
0.6667 0.3663 0.0559 -0.2269
1.0000 0.1227 0.0972 -0.1184
1.5000 0.1545 0.1233 -0.1237
2.0000 0.1632 0.1305 -0.1247
3.0000 0.1660 0.1328 -0.1250

Appendix A: Surface FEA Examples 225

A.6 Uniformly loaded rectangular plate with three edges
simply supported and the fourth edge free

Bending moments and maximum deflection for uniformly loaded rectangular plate with three

edges simply supported and one free.

simple &

Figure A.6: Uniformly loaded rectangular plate with three edges simply supported and the
fourth edge free

(u=a/2,v=0/2) | (u=a/2,v="0) | u=0a/2,v=">/2
2 (Tma)a/2,0/2 (Mu)maz M, M,
0.5000 0.0775 0.060 0.039 0.022
0.7143 0.1117 0.088 0.059 0.032
0.8333 0.1265 0.100 0.069 0.036
1.0000 0.1404 0.112 0.080 0.039
1.2000 0.1511 0.121 0.090 0.041
1.4000 0.1575 0.126 0.098 0.042
2.0000 0.1646 0.132 0.113 0.041

Table A.6: Numerical results from [85], rectangular plate, three simple edges, one free, uniform
load

226

ordu = 3,ordv = 3,segu = 2,segv = 2

u=a/2,v=>5b/2 u=a/2,v=>5b/2
0.5000 0.0698 0.0513 0.0272 0.0086
0.7143 0.0972 0.0713 0.0398 0.0123
0.8333 0.1073 0.0786 0.0455 0.0137
1.0000 0.1167 0.0854 0.0521 0.0152
1.2000 0.1239 0.0863 0.0629 0.0259
1.4000 0.1277 0.0874 0.0684 0.0280
2.0000 0.1306 0.0918 0.0770 0.0261

ordu = 3,ordv = 3,segu = 6,segv = 6

u=a/2,v=>b/2 uw=a/2,v=>/2
0.5000 0.0769 0.0616 0.0373 0.0198
0.7143 0.1109 0.0900 0.0571 0.0281
0.8333 0.1244 0.1012 0.0661 0.0312
1.0000 0.1379 0.1125 0.0765 0.0341
1.2000 0.1482 0.1200 0.0867 0.0371
1.4000 0.1542 0.1245 0.0944 0.0385
2.0000 0.1608 0.1300 0.1084 0.0385

ordu = 3,ordv = 3,segu = 10, segv = 10

u=a/2,v=">b/2 u=a/2,v=">b/2
0.5000 0.0773 0.0614 0.0379 0.0210
0.7143 0.1118 0.0901 0.0583 0.0299
0.8333 0.1256 0.1016 0.0688 0.0373
1.0000 0.1395 0.1132 0.0784 0.0363
1.2000 0.1500 0.1216 0.0886 0.0387
1.4000 0.1563 0.1266 0.0964 0.0398
2.0000 0.1632 0.1320 0.1109 0.0399

ordu = 4,ordv = 4,segu = 2,segv = 2

u=a/2,v=>5b/2

u=a/2,v=>5b/2

0.5000 0.0779 0.0729 0.0459 0.0282
0.7143 0.1128 0.1072 0.0707 0.0406
0.8333 0.1267 0.1209 0.0820 0.0452
1.0000 0.1407 0.1348 0.0951 0.0496
1.2000 0.1513 0.1441 0.1049 0.0459
1.4000 0.1576 0.1497 0.1141 0.0470
2.0000 0.1646 0.1585 0.1304 0.0453

ordu = 4, ordv = 4,segu = 6,segv = 6

u=a/2,v=>5b/2

u=a/2,v=>5b/2

0.5000 0.0775 0.0612 0.0390 0.0228
0.7143 0.1123 0.0905 0.0603 0.0327
0.8333 0.1263 0.1023 0.0700 0.0364
1.0000 0.1404 0.1143 0.0812 0.0397
1.2000 0.1511 0.1232 0.0916 0.0417
1.4000 0.1574 0.1285 0.0996 0.0425
2.0000 0.1646 0.1346 0.1144 0.0420
ordu = 4, ordv = 4,segu = 10, segv = 10

u=a/2,v=>5b/2 u=a/2,v=>5b/2
0.5000 0.0775 0.0605 0.0387 0.0225
0.7143 0.1123 0.0894 0.0597 0.0323
0.8333 0.1263 0.1009 0.0693 0.0359
1.0000 0.1403 0.1126 0.0803 0.0393
1.2000 0.1511 0.1215 0.0907 0.0414
1.4000 0.1574 0.1268 0.0986 0.0422
2.0000 0.1646 0.1327 0.1132 0.0416

Variational Based Modelling and Analysis

using B-splines

ordu = 3,ordv = 3,segu = 4,segv = 4
u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0760 0.0613 0.0361 0.0179
0.7143 0.1091 0.0884 0.0548 0.0254
0.8333 0.1220 0.0990 0.0632 0.0282
1.0000 0.1349 0.1095 0.0730 0.0308
1.2000 0.1445 0.1156 0.0832 0.0349
1.4000 0.1502 0.1193 0.0906 0.0366
2.0000 0.1561 0.1248 0.1036 0.0362
ordu = 3,ordv = 3,segu = 8,segv = 8
u=a/2,v=>5b/2 u=a/2,v=>b/2
0.5000 0.0771 0.0615 0.0377 0.0205
0.7143 0.1116 0.0902 0.0579 0.0293
0.8333 0.1253 0.1016 0.0671 0.0325
1.0000 0.1390 0.1131 0.0778 0.0355
1.2000 0.1494 0.1212 0.0880 0.0381
1.4000 0.1556 0.1260 0.0958 0.0393
2.0000 0.1624 0.1315 0.1101 0.0395
ordu = 3,ordv = 3,segu = 12,segv = 12
u=a/2,v=>b/2 u=a/2,v=>b/2
0.5000 0.0773 0.0612 0.0380 0.0212
0.7143 0.1120 0.0900 0.0586 0.0303
0.8333 0.1258 0.1015 0.0679 0.0337
1.0000 0.1398 0.1132 0.0787 0.0368
1.2000 0.1503 0.1217 0.0890 0.0391
1.4000 0.1566 0.1268 0.0968 0.0402
2.0000 0.1636 0.1322 0.1113 0.0402
ordu = 4,ordv = 4,segu = 4,segv = 4
u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0623 0.0394 0.0233
0.7143 0.1124 0.0927 0.0612 0.0335
0.8333 0.1263 0.1049 0.0712 0.0372
1.0000 0.1404 0.1173 0.0827 0.0405
1.2000 0.1511 0.1264 0.0933 0.0424
1.4000 0.1574 0.1318 0.1016 0.0432
2.0000 0.1646 0.1383 0.1169 0.0426
ordu = 4,ordv = 4,segu = 8,segv = 8
u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0607 0.0388 0.0226
0.7143 0.1123 0.0897 0.0599 0.0324
0.8333 0.1263 0.1014 0.0695 0.0360
1.0000 0.1403 0.1131 0.0806 0.0394
1.2000 0.1511 0.1221 0.0910 0.0415
1.4000 0.1574 0.1273 0.0989 0.0423
2.0000 0.1646 0.1333 0.1136 0.0417
ordu = 4, ordv = 4,segu = 12,segv = 12
u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0604 0.0386 0.0224
0.7143 0.1123 0.0892 0.0596 0.0322
0.8333 0.1263 0.1007 0.0691 0.0358
1.0000 0.1403 0.1123 0.0802 0.0392
1.2000 0.1511 0.1212 0.0905 0.0413
1.4000 0.1574 0.1265 0.0984 0.0421
2.0000 0.1646 0.1324 0.1130 0.0416

Appendix A: Surface FEA Examples

ordu = 5,ordv = 5,segu = 2,segv = 2

ordu = 5,ordv = 5,segu = 4,segv = 4

u=a/2,v=>5b/2 u=a/2,v=>5b/2
0.5000 0.0777 0.0616 0.0396 0.0229
0.7143 0.1125 0.0899 0.0605 0.0329
0.8333 0.1264 0.1013 0.0701 0.0368
1.0000 0.1404 0.1129 0.0812 0.0405
1.2000 0.1511 0.1208 0.0909 0.0415
1.4000 0.1575 0.1259 0.0986 0.0422
2.0000 0.1646 0.1321 0.1127 0.0414

u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0603 0.0385 0.0223
0.7143 0.1123 0.0888 0.0594 0.0321
0.8333 | 0.1263 0.1003 0.0690 0.0357
1.0000 0.1404 0.1118 0.0800 0.0391
1.2000 0.1511 0.1206 0.0902 0.0412
1.4000 0.1574 0.1258 0.0981 0.0420
2.0000 0.1646 0.1317 0.1125 0.0414

ordu = 5,ordv = 5,segu = 6,segv = 6

ordu = 5,ordv = 5,segu = 8,segv = 8

u=a/2,v=>b/2 uw=a/2,v=>/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1002 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 5,ordv = 5,segu = 10, segv = 10

u=a/2,v=">b/2 u=a/2,v=">b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

u=a/2,v=>5b/2 u=a/2,v=>b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1002 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 5,ordv = 5,segu = 12,segv = 12

u=a/2,v=>b/2 u=a/2,v=>b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 6,ordv = 6,segu = 2,segv = 2

ordu = 6,ordv = 6,segu = 4,segv = 4

u=a/2,v=>5b/2

u=a/2,v=>5b/2

u=a/2,v=>/2

u=a/2,v=>/2

0.5000 0.0775 0.0599 0.0382 0.0222
0.7143 0.1123 0.0886 0.0591 0.0319
0.8333 0.1263 0.1001 0.0686 0.0355
1.0000 0.1403 0.1117 0.0797 0.0387
1.2000 0.1511 0.1205 0.0900 0.0411
1.4000 0.1574 0.1257 0.0979 0.0420
2.0000 0.1646 0.1317 0.1124 0.0414

0.5000 0.0775 0.0601 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0688 0.0356
1.0000 0.1403 0.1117 0.0798 0.0389
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1257 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 6,ordv = 6,segu = 6,segv = 6

ordu = 6,ordv = 6,segu = 8,segv = 8

u=a/2,v=>5b/2

u=a/2,v=>5b/2

u=a/2,v=>/2

u=a/2,v=>/2

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0798 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414
ordu = 6, ordv = 6,segu = 10, segv = 10

u=a/2,v=>5b/2 u=a/2,v=>5b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414
ordu = 6,ordv = 6,segu = 12,segv = 12

u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

227

228

ordu = 7,ordv = 7,segu = 2,segv = 2

u=a/2,v=>5b/2 u=a/2,v=>5b/2
0.5000 0.0775 0.0602 0.0384 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1002 0.0688 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 7,ordv = 7,segu = 6,segv = 6

u=a/2,v=">b/2 u=a/2,v=">b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 7,ordv = 7,segu = 10, segv = 10

u=a/2,v=>b/2 u=a/2,v=>b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 8,ordv = 8,segu = 2,segv = 2

u=a/2,v=>5b/2

u=a/2,v=>5b/2

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1257 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 8,ordv = 8,segu = 6,segv = 6

u=a/2,v=>b/2

u=a/2,v=>b/2

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414
ordu = 8,ordv = 8,segu = 10, segv = 10

u=a/2,v=>b/2 uw=a/2,v=>/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

Variational Based Modelling and Analysis

ordu = 7,ordv = 7,segu = 4,segv = 4

u=a/2,v=>b/2 u=a/2,v=>b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1257 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 7,ordv = 7,segu = 8,segv = 8

u=a/2,v=>b/2 u=a/2,v=>b/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 7,ordv = 7,segu = 12,segv = 12

u=a/2,v=>/2 u=a/2,v=>/2
0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 8,ordv = 8,segu = 4,segv = 4

u=a/2,v=>b/2

u=a/2,v=>/2

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 8,ordv = 8,segu = 8,segv = 8

u=a/2,v=>/2

u=a/2,v=>/2

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

ordu = 8,ordv = 8,segu = 12,segv = 12

u=a/2,v=>/2 uw=a/2,v=>/2
% () maw (My)maax My M,y

0.5000 0.0775 0.0602 0.0385 0.0223
0.7143 0.1123 0.0887 0.0593 0.0320
0.8333 0.1263 0.1001 0.0689 0.0356
1.0000 0.1403 0.1117 0.0799 0.0390
1.2000 0.1511 0.1205 0.0901 0.0411
1.4000 0.1574 0.1258 0.0980 0.0420
2.0000 0.1646 0.1316 0.1125 0.0414

using B-splines

Appendix A: Surface FEA Examples 229

A.7 Uniformly loaded rectangular plate with all edges

clamped

Deflection and bending moments for uniformly loaded rectangular plate will all edges clamped.

Figure A.7: Uniformly loaded rectangular plate with all edges clamped

2 (T)u=as2w=b/2 | (Mu)u=aw=bs2 | (Mi)u=aj2v=b | (Mu)u=as2,v=bs2 | (Mv)u=a/2,0=b/2
1.0000 0.0138 -0.0513 -0.0513 - -
1.2000 0.0188 -0.0639 -0.0554 0.0299 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0349 0.0212
1.6000 0.0251 -0.0780 -0.0571 0.0381 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0571 - -

Table A.7: Numerical results from [85], rectangular plate, all edges clamped, uniform load

230 Variational Based Modelling and Analysis using B-splines

ordu = 4,ordv = 4,segu = 2,segv = 2 ordu = 4,ordv = 4,segu = 4,segv = 4
1.0000 0.0145 -0.0318 -0.0318 0.0413 0.0413 1.0000 0.0138 -0.0423 -0.0423 0.0237 0.0237
1.2000 0.0195 -0.0429 -0.0358 0.0483 0.0308 1.2000 0.0188 -0.0553 -0.0464 0.0318 0.0232
1.4000 0.0226 -0.0496 -0.0413 0.0524 0.0242 1.4000 0.0226 -0.0648 -0.0480 0.0380 0.0221
1.6000 0.0251 -0.0552 -0.0435 0.0576 0.0249 1.6000 0.0251 -0.0710 -0.0486 0.0421 0.0206
1.8000 0.0267 -0.0587 -0.0449 0.0604 0.0231 1.8000 0.0267 -0.0747 -0.0487 0.0444 0.0184
2.0000 0.0271 -0.0596 -0.0315 0.0591 0.0161 2.0000 0.0277 -0.0768 -0.0471 0.0458 0.0169
ordu = 4, ordv = 4,segu = 6,segv = 6 ordu = 4,ordv = 4,segu = 8,segv = 8
1.0000 0.0138 -0.0469 -0.0469 0.0236 0.0236 1.0000 0.0138 -0.0487 -0.0487 0.0233 0.0233
1.2000 0.0188 -0.0598 -0.0504 0.0310 0.0231 1.2000 0.0188 -0.0615 -0.0523 0.0305 0.0230
1.4000 0.0226 -0.0690 -0.0515 0.0364 0.0216 1.4000 0.0226 -0.0705 -0.0533 0.0358 0.0215
1.6000 0.0251 -0.0748 -0.0516 0.0400 0.0199 1.6000 0.0251 -0.0762 -0.0533 0.0392 0.0196
1.8000 0.0267 -0.0783 -0.0515 0.0420 0.0178 1.8000 0.0267 -0.0795 -0.0530 0.0412 0.0176
2.0000 0.0277 -0.0802 -0.0521 0.0432 0.0163 2.0000 0.0277 -0.0813 -0.0541 0.0423 0.0161
ordu = 4, ordv = 4, segu = 10,segv = 10 ordu = 4,ordv = 4,segu = 12,segv = 12
1.0000 0.0138 -0.0496 -0.0496 0.0232 0.0232 1.0000 0.0138 -0.0501 -0.0501 0.0231 0.0231
1.2000 0.0188 -0.0624 -0.0532 0.0303 0.0229 1.2000 0.0188 -0.0628 -0.0538 0.0302 0.0229
1.4000 0.0226 -0.0712 -0.0543 0.0355 0.0214 1.4000 0.0226 -0.0716 -0.0549 0.0353 0.0214
1.6000 0.0251 -0.0768 -0.0543 0.0388 0.0195 1.6000 0.0251 -0.0772 -0.0549 0.0386 0.0194
1.8000 0.0267 -0.0801 -0.0540 0.0408 0.0175 1.8000 0.0267 -0.0804 -0.0547 0.0406 0.0174
2.0000 0.0277 -0.0819 -0.0551 0.0419 0.0160 2.0000 0.0277 -0.0822 -0.0556 0.0417 0.0159
ordu = 4,ordv = 4, segu = 14,segv = 14 ordu = 5,ordv = 5,segu = 2,segv = 2
1.0000 0.0138 -0.0504 -0.0504 0.0230 0.0230 1.0000 0.0145 -0.0425 -0.0425 0.0276 0.0276
1.2000 0.0188 -0.0631 -0.0542 0.0302 0.0229 1.2000 0.0191 -0.0558 -0.0516 0.0322 0.0226
1.4000 0.0226 -0.0719 -0.0553 0.0352 0.0213 1.4000 0.0228 -0.0669 -0.0543 0.0371 0.0221
1.6000 0.0251 -0.0774 -0.0554 0.0385 0.0194 1.6000 0.0253 -0.0742 -0.0555 0.0397 0.0196
1.8000 0.0267 -0.0806 -0.0552 0.0404 0.0174 1.8000 0.0269 -0.0788 -0.0559 0.0411 0.0176
2.0000 0.0277 -0.0824 -0.0560 0.0415 0.0159 2.0000 0.0276 -0.0808 -0.0480 0.0413 0.0153
ordu = 5,ordv = 5,segu = 4,segv = 4 ordu = 5,ordv = 5,segu = 6,segv = 6
1.0000 0.0138 -0.0501 -0.0501 0.0232 0.0232 1.0000 0.0138 -0.0509 -0.0509 0.0229 0.0229
1.2000 0.0188 -0.0630 -0.0542 0.0302 0.0228 1.2000 0.0188 -0.0637 -0.0549 0.0300 0.0228
1.4000 0.0226 -0.0720 -0.0557 0.0352 0.0214 1.4000 0.0226 -0.0725 -0.0563 0.0350 0.0213
1.6000 0.0251 -0.0777 -0.0560 0.0383 0.0193 1.6000 0.0251 -0.0779 -0.0565 0.0382 0.0192
1.8000 0.0267 -0.0810 -0.0560 0.0402 0.0174 1.8000 0.0267 -0.0811 -0.0565 0.0401 0.0174
2.0000 0.0277 -0.0828 -0.0556 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0565 0.0412 0.0158
ordu = 5,ordv = 5,segu = 8,segv = 8 ordu = 5,ordv = 5,segu = 14,segv = 14
1.0000 0.0138 -0.0512 -0.0512 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0638 -0.0552 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0725 -0.0566 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0567 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0568 0.0382 0.0192 1.6000 0.0251 -0.0780 -0.0570 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0567 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0570 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0568 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 6,ordv = 6,segu = 2,segv = 2 ordu = 6,ordv = 6,segu = 4,segv = 4
1.0000 0.0138 -0.0498 -0.0498 0.0221 0.0221 1.0000 0.0138 -0.0512 -0.0512 0.0228 0.0228
1.2000 0.0188 -0.0630 -0.0546 0.0296 0.0230 1.2000 0.0188 -0.0638 -0.0553 0.0299 0.0228
1.4000 0.0226 -0.0720 -0.0562 0.0346 0.0211 1.4000 0.0226 -0.0727 -0.0567 0.0349 0.0212
1.6000 0.0251 -0.0777 -0.0567 0.0380 0.0192 1.6000 0.0251 -0.0781 -0.0570 0.0381 0.0193
1.8000 0.0267 -0.0811 -0.0568 0.0400 0.0173 1.8000 0.0267 -0.0812 -0.0569 0.0400 0.0173
2.0000 0.0277 -0.0829 -0.0548 0.0411 0.0159 2.0000 0.0277 -0.0829 -0.0568 0.0411 0.0158
ordu = 6,ordv = 6,segu = 6,segv = 6 ordu = 6,ordv = 6,segu = 8,segv = 8
1.0000 0.0138 -0.0514 -0.0514 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0192 1.6000 0.0251 -0.0781 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158

Appendix A: Surface FEA Examples

ordu = 6,ordv = 6,segu = 10, segv = 10

ordu = 6,ordv = 6,segu = 12,segv = 12

1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 6,ordv = 6,segu = 14,segv = 14 ordu = 7,ordv = 7,segu = 2,segv = 2
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0512 -0.0512 0.0228 0.0228
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0229
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0727 -0.0569 0.0350 0.0212
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0782 -0.0572 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0814 -0.0572 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0276 -0.0829 -0.0569 0.0411 0.0157
ordu = 7,ordv = 7,segu = 4,segv = 4 ordu = 7,ordv = 7,segu = 6,segv = 6
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0514 -0.0514 0.0229 0.0229
1.2000 0.0188 -0.0640 -0.0553 0.0300 0.0229 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0567 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0570 0.0382 0.0193 1.6000 0.0251 -0.0781 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0570 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0828 -0.0569 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 7,ordv = 7,segu = 8,segv = 8 ordu = 7,ordv = 7,segu = 10,segv = 10
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 7,ordv = 7,segu = 12,segv = 12 ordu = 7,ordv = 7,segu = 14,segv = 14
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 8,ordv = 8,segu = 2,segv = 2 ordu = 8,ordv = 8,segu = 4,segv = 4
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0514 -0.0514 0.0229 0.0229
1.2000 0.0188 -0.0638 -0.0554 0.0299 0.0228 1.2000 0.0188 -0.0640 -0.0555 0.0300 0.0228
1.4000 0.0226 -0.0727 -0.0567 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0569 0.0350 0.0213
1.6000 0.0251 -0.0781 -0.0570 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0572 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0570 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0830 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 8,ordv = 8,segu = 6,segv = 6 ordu = 8,ordv = 8,segu = 8,segv = 8
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0781 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158
ordu = 8,ordv = 8,segu = 10,segv = 10 ordu = 8,ordv = 8,segu = 12,segv = 12
1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229 1.0000 0.0138 -0.0513 -0.0513 0.0229 0.0229
1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228 1.2000 0.0188 -0.0639 -0.0554 0.0300 0.0228
1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213 1.4000 0.0226 -0.0726 -0.0568 0.0350 0.0213
1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193 1.6000 0.0251 -0.0780 -0.0571 0.0382 0.0193
1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174 1.8000 0.0267 -0.0812 -0.0571 0.0401 0.0174
2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158 2.0000 0.0277 -0.0829 -0.0570 0.0412 0.0158

231

Appendix B

Class Definitions

The class definitions for the principle classes making up the software package developed as part

of this thesis and which wraps the algorithms documented in the report are presented here.

class: Vector

Vector class for storage. Uses the standard library class as a base

access and manipulation functions plus read/write functions

template<class T>
class Vector : public std::vector<T>, public ReadWriteObject
{
int min; minimum (base) index
int Math::max; mazimum index
int num; number of elements
public:
constructors
Vector(int);

read and write functions
virtual void read(std::istream&);

virtual void write(std::ostream&) ;

s

232

Appendix B: Class Definitions

class: Matrix

Matrixz class for storage. Uses the Vector class as a base

access and manipulation functions plus read/write functions

template<class T>
class Matrix : public Vector<Vector<T> >
{
int r1,r2; start, end row
int c1,c2; start, end col
public:
constructors
Matrix(int, int);

Matrix(const Vector<T>&);

u vartes in direction of the columns
v vartes in direction of the rows
Get a column of the matriz
Vector<T> GetU(int) const;

Get a row of the matriz

Vector<T> GetV(int) const;

insert a row into the matriz

Matrix<T>& InsertRow(const Vector<T>&, int);
insert a column into the mairiz

Matrix<T>& InsertCol(const Vector<T>&, int);

read and write functions
virtual void read(std::istream&);

virtual void write(std::ostream&) ;

233

234 Variational Based Modelling and Analysis using B-splines

class: Matrix3D

Volume matriz class for storage. Uses the Vector class as a base

access and manipulation functions plus read/write functions

template<class T>
class Matrix3D : public Vector<Matrix<T> >
{
int r1,r2; start, end row
int c1,c2; start, end col
int hi1,h2; start, end layer
public:
constructors
Matrix3D(int, int, int);
Matrix3D(const Vector<Matrix<T> >&, int);

get the UV layer matriz at w=indezx

Matrix<T> GetUV(int index);

get the UW layer matriz at v=indezx

Matrix<T> GetUW(int index);

get the VW layer matriz at u=indezx

Matrix<T> GetVW(int index);

get the U line wvector at indv, indw
Vector<T> GetU(int indv, int indw);
get the V line vector at indu, indw
Vector<T> GetV(int indu, int indw);
get the W line wector at indu, indv
Vector<T> GetW(int indu, int indv);

read and write functions
virtual void read(std::istream&);

virtual void write(std::ostream&) ;

Appendix B: Class Definitions 235

class: ReadWriteObject

abstract base class for reading and writing, keyboard, screen and file

4 read/write pure virtual functions to be overridden

class ReadWriteObject
{
overloaded keyboard input
friend std::istream& operator>>(std::istream& is, ReadWriteObject& r);
{ r.read(is); return is; }
overloaded screen output
friend std::ostream& operator<<(std::ostream& os, ReadWriteObject& r);
{ r.write(os); return os; }
overloaded file input
friend std::ifstream& operator>>(std::ifstream& ifs, ReadWriteObject& r);
{ r.readfile(ifs); return ifs; }
overloaded file output
friend std::ofstream& operator<<(std::ofstream& ofs, ReadWriteObject& r);
{ r.writefile(ofs); return ofs; }
public:
pure virtual functions to be overriden in derived classes
virtual void read(std::istream& is) = O;
virtual void write(std::ostream& os) = 0;
virtual void readfile(std::istream& ifs) = 0;

virtual void writefile(std::ostream& ofs) = 0;

236 Variational Based Modelling and Analysis

using B-splines

class: Curve

abstract base curve class
pure virtual point/derivative, limit functions and read/write functions

template<class T>

class Curve : public ReadWriteObject

{

public:
pure virtual functions to be overridden in derived classes
virtual T operator() (double) const = O;
virtual T Deriv(int, double) const = 0;
virtual double GetLeftLimit() const = 0;
virtual double GetRightLimit() const = O0;
virtual void read(std::istream&) = O;
virtual void readfile(std::ifstream&) = 0;
virtual void write(std::ostream&) = 0;
virtual void writefile(std::ofstream&) = O;

Appendix B: Class Definitions

class: Surf

abstract base surface class

pure virtual point/derivative, limit functions and read/write functions

{

public:

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

class Surf

template<class T>

public ReadWriteObject

pure virtual functions to be overridden in derived classes

T operator() (double, double) const = O;

T Deriv(int, int, double, double) const = 0;
double GetLeftLimitU() const = 0O;

double GetRightLimitU() const = 0;

double GetLeftLimitV() const = 0;

double GetRightLimitV() const = O0;

void read(std::istream&) = 0;

void readfile(std::ifstream&) = O0;

void write(std::ostream&) = O;

void writefile(std::ofstream&) = 0;

237

238 Variational Based Modelling and Analysis using B-splines

class: Vol

abstract base volume class

pure virtual point/derivative, limit and read/write functions

template<class T>
class Vol : public ReadWrite(Object
{
public:
pure virtual functions to be overridden
virtual T operator() (double, double, double) const = O0;
virtual T Deriv(int, int, double, double, double) const = 0;
virtual double GetLeftLimitU() const = 0;
virtual double GetRightLimitU() const = O;
virtual double GetLeftLimitV() const = O;
virtual double GetRightLimitV() const = 0;
virtual double GetLeftLimitW() const = 0;
virtual double GetRightLimitW() const = 0;
virtual void read(std::istream&) = O;
virtual void readfile(std::ifstream&) = 0;
virtual void write(std::ostream&) = O;

virtual void writefile(std::ofstream&) = 0;

Appendix B: Class Definitions 239

class: KnotSet

encapsulates a B-spline knot set

class KnotSet : public ReadWriteObject

{
int nk; number of knots
int ord; order of curve
int nd; number of distinct knots
Vector<double> kts; wector of knots
Vector<double> dts; wector of distinct knots
Vector<double> mult; wector of multiplicities
mathematical set representation
std: :multiset<double> mset;

public:
constructors
KnotSet (const Vector<double>&, int, int);

find the index, ind, such that t € [ting,ting+ 1)
int FindIndex(double x);

create the matriz D}

Matrix<double> CreateMatrixDeriv() const;

create the matriz DKV

Matrix<double> CreateMatrixDeriv(int) const;
create interpolation vector

Vector<double> CreateVectorInterp(double) const;
create derivative interpolation vector

Vector<double> CreateVectorInterpDeriv(int, double) const;

create the product knot set
CreateKnotSetProduct (const KnotSet&) const;
create the derivative knot set
CreateKnotSetDeriv(int) const;

create the integral knot set
CreateKnotSetIntegrate(int) const;

input/output
virtual void read(std::istream&) ;

240 Variational Based Modelling and Analysis using B-splines

class: BspCurvBasisFunc

encapsulates single B-spline basis function

algorithms for integration, evaluation

class BspCurvBasisFunc : public Curve<double> {
order of basts function
int ord;
vector of knots
Vector<double> kts;
BspCurv representation of basis function
BspCurv<double> b;
creates the BspCurv representation
BspCurv<double> CreateBspCurv();

public:
constructors
BspCurvBasisFunc(const Vector<double>&, int);

integrate the basis function

double Integrate(double, double);

point and derivative evaluation
virtual double operator() (double) const;

virtual double Derive(int, double) const;

limits
virtual double GetLeftLimit() const;
virtual double GetRightLimit() const;

input/output

virtual void read(std::istream&) ;

Appendix B:

Class Definitions

class: BspCurvBasisFuncSet

encapsulates a complete set of basis functions for a given KnotSet

algorithms for integration by parts, minimisation

class BspCurvBasisFuncSet : public ReadWriteObject {

order of basis functions

int ord;

knots making up the set

Vector<double> kts;

vector of basis functions

Vector<double> BspCurvBasisFunc bs;

public:

constructors
BspCurvBasisFuncSet (const Vector<double>&, int, int);

integrate the basis function set

Vector<double> Integrate(double x1, double x2);

integrate product with B-spline

Vector<double> IntegrateProductl(const BspCurv<double>&, double, double);
integrate product with general curve

Vector<double> IntegrateProduct2(const Curve<double>&, double, double);
Create the matriz of the integrals of the products of derivative

basis functions

Matrix<double> CreateMatrixIntegral(int, double, double);

Create the matriz of the integrals of products of derivatives

(levl, lev2) of bastis functions

Matrix<double> CreateMatrixIntegral(int, int, double, double);

Create the minimisation matriz, symmetrical form

Matrix<double> CreateMatrixMinimisation(int, double, double);

Create the minimisation matriz, unsymmetrical form

Matrix<double> CreateMatrixMinimisation(int, int, double, double);

input/output
virtual void read(std::istream&);

241

242

Variational Based Modelling and Analysis using B-splines

class: BspCurv

encapsulates a B-spline curve
algorithms for differentiation, integration, product...

template<class T>

class BspCurv : public Curve<T>

{
int ord; order of curve
int num; number of control points
Vector<T> cpts; wvector control points
Vector<double> kts; wector of knots
KnotSet kset; KnotSet object

public:
constructors
BspCurv(...);

differentiate the curve
BspCurv<T> Derive(int);
integrate the curve

BspCurv<T> Integrate(int);

form the product B-spline curve

BspCurv<T> Product(const BspCurv<T>&);

point and derivative evaluation
virtual T operator() (double) const;

virtual T Derive(int, double) const;

get limits
virtual double GetLeftLimit() const;
virtual double GetRightLimit() const;

read and write

virtual void read(std::istream&);

Appendix B: Class Definitions 243

class: FBspCurv

encapsulates a functional B-spline curve
algorithms for finite element analysis and smoothing

class FBspCurv : public BspCurv<Point1D>
{
public:
constructors
FBspCurv() ;
build an FBspCurv from a BspCurv
FBspCurv(const BspCurv<Point1D>&) ;

functions for limear finite element beam problems

FBspCurv ComputeBeamBending(...) const;

functions to smooth curves
FBspCurv ComputeSmoothCurve(...) const;

244

Variational Based Modelling and Analysis using B-splines

class: PBspCurv3D

encapsulates a parametric B-spline curve

algorithms for finite element analysis and smoothing

class PBspCurv3D : public BspCurv<Point3D>
{
public:
constructors
PBspCurv3D() ;
build an PBspCurv3D from a BspCurv
PBspCurv3D(const BspCurv<Point3D>& v);

functions for curvature analysis

Point3D ComputeCurvatureVec(double) const;
double ComputeCurvature(double) const;
Vector<Point2D> ComputeCurvatureArray(int m)
functions for approximation

PBspCurv3D ComputelLeastSquares(...);

functions to smooth curves

PBspCurv3D ComputeSmoothCurve(...) const;

const;

Appendix B: Class Definitions 245

class: BezCurv

encapsulates a single segment Bezier curve

algorithms for differentiation, integration, product...

template<class T>

class BezCurv : public Curve<T>

{
int ord; order of curve
Vector<T> cpts; wvector control points
Vector<double> kts; wvector of knots
KnotSet kset; KnotSet object

public:
constructors

BezCurv(...);

differentiate the curve

BezCurv<T> Derive(int) const;

integrate the curve

BezCurv<T> Integrate(int) const;

form the product Bezier curve

BezCurv<T> Product (const BezCurv<T>&) const;

point and derivative evaluation
virtual T operator() (double) const;

virtual T Derive(int, double) const;

get limits
virtual double GetLeftLimit() const;
virtual double GetRightLimit() comnst;

read and write

virtual void read(std::istream&);

246 Variational Based Modelling and Analysis using B-splines

class: CompBezCurv

encapsulates a multi-segment Bezier curve

algorithms for differentiation, integration, product...

template<class T>

class CompBezCurv : public Curve<T>

{
int ord; order of curve
int num; number of control points
Vector<T> cpts; wvector control points
Vector<double> kts; wvector of knots
KnotSet kset; KnotSet object

public:
constructors

CompBezCurv(...);

find a segment number given a parameter
int FindSegment(double) const;

extract a given segment index
BezCurv<T> GetSegment(int) const;

form the product curve

CompBezCurv<T> Product(const CompBezCurv<T>&) const;

point and derivative evaluation
virtual T operator() (double) const;

virtual T Derive(int, double) const;

get limits
virtual double GetLeftLimit() comnst;
virtual double GetRightLimit() const;

read and write

virtual void read(std::istream&) ;

Appendix B: Class Definitions

class: BspSurfBasisFunc

Stores a single surface basis function

algorithms for integration, evaluation

{

class BspSurfBasisFunc : public Surf<double>

orders of basts function in u and v

int ordu, ordv;

vector of knots in u and v
Vector<double> ktsu, ktsv;

BspSurf representation of basis function
BspSurf<double> b;

creates the BspSurf representation

BspSurf<double> CreateBspSurf();

public:

constructors
BspSurfBasisFunc(int, Vector<double>&);

integrate the basis function
double Integrate(double, double, double, double) const;

point and derivative evaluation
virtual double operator() (double, double) const;
virtual double Derive(int, int, double, double) const;

limits in uw and v
virtual double GetLeftLimitU() const;

input/output
virtual void read(std::istream&) ;

247

248 Variational Based Modelling and Analysis using B-splines

class: BspSurfBasisFuncSet

encapsulates a complete set of basis functions given knot sets in u and v
algorithms for integration, evaluation

class BspSurfBasisFuncSet : public ReadWriteObject
{

order of basts functions in u and v

int ordu, ordv;

knots making up the set in u and v

Vector<double> ktsu, ktsv;

matriz of basts functions

Matrix<double> BspSurfBasisFunc bs;

public:
constructors
build a set from knot set objects in u and v
BspSurfBasisFuncSet (const KnotSet&, const KnotSet&);

integrate the basis function set

Matrix<double> Integrate(double, double, double, double);

tntegrate product with B-spline surface

Matrix<double> IntegrateProductl(const BspSurf<double>&, double, double,
double, double);

integrate product with general surface

Matrix<double> IntegrateProduct2(const Surf<double>&, double, double,
double, double);

input/output

virtual void read(std::istream&) ;

Appendix B: Class Definitions 249

class: BspSurf

encapsulates a B-spline surface
algorithms for differentiation, integration, product...

template<class T>

class BspSurf : public Surf<T>

{
int ordu, ordv; order of surface
int numu, numv; number of control points
Matrix<T> cpts; matriz of control points
Vector<double> ktsu, ktsv; wvectors of knots in u and v
KnotSet ksetu; KnotSet object in u
KnotSet ksetv; KnotSet object in v

public:
constructors
BspSurf(...);

differentiate the surface

BspSurf<T> Deriv(int, int);

integrate the surface

BspSurf<T> Integrate(int, int);

form the product B-spline surface
BspSurf<T> Product(const BspSurf<T>&) ;

point and derivative evaluation
virtual T operator() (double, double) const;

virtual T Derive(int, int, double, double) const;

get limits in u and v
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write
virtual void read(std::istream&);

250 Variational Based Modelling and Analysis using B-splines

class: FBspSurf

encapsulates a functional B-spline surface

algorithms for finite element analysis, data fitting and smoothing

class FBspSurf : public BspSurf<Point1D>
{
public:
constructors
FBspSurf () ;
build an FBspSurf from a BspSurf
FBspSurf (const BspSurf<Point1D>&);

functions for finite element analystis, plate bending
FBspSurf ComputeFiniteElement(...);
FBspSurf ComputePlateBending(...);

least squares fitting

FBspSurf ComputeLeastSquares(...);

functions for surface smoothing
FBspSurf ComputeSmoothSurface(...);

Appendix B: Class Definitions

class: PBspSurf3D

encapsulates a parametric B-spline surface
algorithms for approximation, analysis and smoothing

cl

{
pu

ass PBspSurf3D : public BspSurf<Point3D>

blic:

constructors

PBspSurf3D() ;

build a PBspSurf3D from a BspSurf
PBspSurf3D(const BspSurf<Point3D>&) ;

functions to smooth surfaces

PBspSurf3D ComputeSmoothSurface(...) const;

algorithms for approximation

PBspSurf3D ComputelLeastSquares(...);
functions to perform surface analysts

double ComputeGaussian(double, double) const;

double ComputeMean(double, double) const;

251

252

Variational Based Modelling and Analysis using B-splines

class: BezSurf

encapsulates a single patch B-spline surface, (Bezier surface)

algorithms for differentiation, integration, product...

template<class T>
class BezSurf : public Surf<T>
{
int ordu, ordv; order of surface

Matrix<T> cpts; matriz of control points

Vector<double> ktsu, ktsv; wvectors of knots in u and v

KnotSet ksetu; KnotSet object in u
KnotSet ksetv; KnotSet object in v

public:
constructors
BezSurf(...);

differentiate the surface

BezSurf<T> Deriv(int, int);

integrate the surface

BezSurf<T> Integrate(int, int);

form the product B-spline surface
BezSurf<T> Product (const BezSurf<T>&);

point and derivative evaluation
virtual T operator() (double, double) const;

virtual T Derive(int, int, double, double) const;

get limits in u and v
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write

virtual void read(std::istream&);

Appendix B: Class Definitions 253

class: CompBezSurf

encapsulates a multi-patch Bezier surface

algorithms for differentiation, integration, product...

template<class T>

class CompBezSurf : public Surf<T>

{
int ordu, ordv; order of surface
int numu, numv; number of control points in u and v
Matrix<T> cpts; wvector control points
Vector<double> ktsu, ktsv; wvector of knots in u and v
KnotSet ksetu, ksetv; KnotSet objects

public:
constructors

CompBezSurf(...);

find a segment number given a parameter

int FindSegmentU(double) const;

find a segment number given a parameter

int FindSegmentV(double) const;

extract a given patch

BezSurf<T> GetPatch(int, int) const;

form the product surface

CompBezSurf<T> Product(const CompBezSurf<T>&) const;

point and derivative evaluation
virtual T operator() (double, double) const;

virtual T Derive(int, int, double, double) const;

get limits in u and v
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write

virtual void read(std::istream&) ;

254 Variational Based Modelling and Analysis using B-splines

class: BspVolBasisFunc

Encapsulates a single B-spline volume basis function

functions to integrate, access plus read/write functions

class BspVolBasisFunc : public Vol<double>
{
orders of basis function in u, v and w
int ordu, ordv, ordw;
vector of knots in u, v and w
Vector<double> ktsu, ktsv, ktsw;
Bsplol representation of basis function
BspVol b;
creates the BsplVol representation

BspVol CreateBspVol();

public:
constructors
BspVolBasisFunc(...);

tntegrate the basis function
double Integrate(double, double, double, double, double, double);

point and derivative evaluation
virtual T operator() (double, double, double) const;
virtual T Derive(int, int, int, double, double, double) const;

get limits in u, v and w
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write

virtual void read(std::istream&) ;

Appendix B: Class Definitions 255

class: BspVolBasisFuncSet

encapsulates a complete set of B-spline volume basis functions
functions to integrate, access

plus read/write functions

class BspVolBasisFuncSet : public ReadWriteObject
{

order of basts functions in u, v and w

int ordu, ordv, ordw;

knots making up the set in u, v and w

Vector<double> ktsu, ktsv, ktsw;

matriz3D of bastis functions

Matrix3D<double> BspVolBasisFunc bs;

public:
constructors, build a set from u,v,w knot sets
BspVolBasisFuncSet (const KnotSet&, const KnotSet&, const KnotSet&);

integrate the basis function set

Matrix<double> Integrate(double, double, double, double,
double, double);

integrate product with B-spline volume

Matrix<double> IntegrateProductl(const BspVol<double>&, double, double,
double, double, double, double);

integrate product with general wvolume

Matrix<double> IntegrateProduct2(const Vol<double>&, double, double,
double, double, double, double);

read and write
virtual void read(std::istream&);

256 Variational Based Modelling and Analysis using B-splines

class: BspVol

encapsulates a B-spline volume
algorithms for differentiation, integration, product...

template<class T>
class BspVol : public Vol<T>
{
int ordu, ordv, ordw; order of surface
int numu, numv, numw; number of control points
Matrix3D<T> cpts; matriz3D of control points
Vector<double> ktsu, ktsv, ktsw; wvectors of knots in u and v
KnotSet ksetu; KnotSet object in u
KnotSet ksetv; KnotSet object in v
KnotSet ksetw; KnotSet object in w

public:
constructors
BspVol(...);

differentiate the volume

BspVol<T> Deriv(int, int, int);
integrate the wvolume

BspVol<T> Integrate(int, int, int);
form the product B-spline wvolume
BspVol<T> Product(const BspVol<T>&);

point and derivative evaluation
virtual T operator() (double, double, double) const;
virtual T Derive(int, int, int, double, double, double) const;

get limits in u, v and w
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write

virtual void read(std::istream&);

Appendix B: Class Definitions 257

class: FBspVol

encapsulates a functional B-spline volume

algorithms for finite element analysis, fitting and smoothing

class FBspVol : public BspVol<Point1D>
{
public:
constructors
butld an FBspVol from a BsplVol
FBspVol(const BspVol<Point1D>&);

functions for analysis of linear elastic solids
FBspVol ComputeFiniteElement(...);

functions for smoothing functional volumes
FBspVol ComputeSmoothVolume(...);

258 Variational Based Modelling and Analysis using B-splines

class: PBspVol3D

encapsulates a parametric B-spline volume

algorithms for analysis, approrimation and smoothing

class PBspVol3D : public BspVol<Point3D>
{
public:
constructors
butld an BspVol3D from a BsplVol
PBspVol3D(const BspVol<Point3D>& v);

functions for analysis of linear elastic solids
PBspvol3D ComputeFiniteElement(...);

functions for data approxzimation

PBspVol3D ComputeLeastSquares(...);

functions for smoothing parametric wvolumes
PBspVol3D ComputeSmoothVolume(...);

Appendix B:

Class Definitions

class: BezVol

encapsulates a single hyperpatch B-spline volume, (a Bezier volume)

algorithms for differentiation, integration, product...

template<class T>
class BezVol : public Vol<T>
{
int ordu, ordv, ordw; order of surface
Matrix3D<T> cpts; matriz3D of control points
Vector<double> ktsu, ktsv, ktsw; wvectors of knots in u and v
KnotSet ksetu; KnotSet object in u
KnotSet ksetv; KnotSet object in v
KnotSet ksetw; KnotSet object in w

public:
constructors
BezVol(...);

differentiate the volume

BezVol<T> Deriv(int, int, int);
integrate the wvolume

BezVol<T> Integrate(int, int, int);
form the product B-spline wvolume
BezVol<T> Product(const BezVol<T>&);

point and derivative evaluation
virtual T operator() (double, double, double) const;
virtual T Derive(int, int, int, double, double, double) const;

get limits in u, v and w
virtual double GetLeftLimitU() const;
virtual double GetRightLimitU() const;

read and write

virtual void read(std::istream&);

259

260 Variational Based Modelling and Analysis using B-splines

class: Math

functions for solving linear systems

functions for multiplying and manipulating Vector/Matriz/Matriz3D objects

class Math

{
combinatorial coefficient and factorial
static double Comb(int, int);
static Fact(int);

Guasstan quadrature

static double Integral (Curve<T>&) ;
static double Integral (Surf<T>&);
static double Integral (Vol<T>&);

kronecker products and assoctiated functions

static Matrix<T> MatrixFromVector(const Vector<T>&, int, int);

static Matrix3D<T> Matrix3DFromVector (const Vector<T>&, int, int, int);

static Vector<T> CreateKroneckerVector(const Matrix<T>&);

static Vector<T> CreateKroneckerVector(const Matrix3D<T>&);

static Matrix<double> KroneckerProduct(const Matrix<double>&, const Matrix<double>&);

Vector/Matriz/Matriz3D multiplication operations
static Matrix<T> VM3DI_1(const Vector<double>&, const Matrix3D<T>&) ;
static Matrix<T> VM3DI_2(const Vector<double>&, const Matrix3D<T>&) ;

static Matrix3D<T> MM3DI_1(const Matrix<double>&, const Matrix3D<T>&) ;
static Matrix3D<T> MM3DI_2(const Matrix<double>&, const Matrix3D<T>&);

elimination algorithms for reducing constrained systems
static Matrix<double> EliminateMat(...);

static Matrix<double> EliminateVec(...);

static Matrix<double> EliminateMVariables(...);

static Vector<T> EliminateVVariables(...);

solve linear system

static Vector<T> Solve(const Matrix<double>&, const Vector<T>&);

Appendix C

Inheritance Structure Diagrams

The principle inheritance relationships amongst the classes detailed in appendix B are presented

here.

261

262 Variational Based Modelling and Analysis using B-splines

ReadWriteObject

Curve=T-= Surf<T> Yol<T=

Figure C.1: Inheritance structure for Curve/Surf/Vol classes

ReadWrite Object

Curve=T> Bsp CurvBasisFuncSet

BezCurv<T> CompBez Curv<T> Bsp Curv<T> BspCunBasisFunc

FBsp Curv PBsp Curv2D PBspCurv3D

Figure C.2: Inheritance structure for curve entities

Appendix C: Inheritance Structure Diagrams

Figure C.3: Inheritance structure for surface entities

Read Write Object
t ‘
Surf<T= BspSurfBasisFuncSet
T
BezSurf<T> CompBez Surf<T> BspSurf<T= BspSurfBasisFunc
T
FBspSurf PBspSurfiD

Figure C.4: Inheritance structure for volume entities

ReadWrite Object
t ‘
Vol<T= BspVolBasisFuncSet
T
BezVol<T> ConpBezVol<T> BspVol<T> BspVolBasisFunc
?
FBsp Vol PBspVol3D

263

264

std::vector<T> ReadWriteObject
F Y Fy
Vector<"T>=
F 3
Matrix<"T>= MMatrix3D<"T>=

ysis using B-splines

Figure C.5: Inheritance structure for vector/matrix/matrix3D

ReadWriteObject

KnotSet

PoimtlD

Point2D

Point3D

MathFunctions

Figure C.6: Ancillary classes

Appendix D

Kronecker Product and Related

Functions

The code for the functions used to compute the Kronecker product of two matrices and the

associated vector conversion routines covered in Chapter 2 of the report is presented here.

265

266 Variational Based Modelling and Analysis using B-splines

class: Math

Function: MatrizFrom Vector
Algorithm: to construct a Matriz from a long vector

Parameters: Vector, number of rows cols of the matrix

Matrix<T> Math::MatrixFromVector (const Vector<T>& vec, int numu, int numv)

{

Matrix<T> mat(numu, numv);
int count=0;

for (int j=0; j<numv; j++)
for (int i=0; i<numu; i++) {
mat[i] [j] = vec[count];
count++;

}

return mat;

Appendix D: Kronecker Product Functions

class: Math

Function: Matriz3DFrom Vector
Algorithm: to construct a Matriz3D from a long vector

Parameters: Vector, number of rows, cols and layers of the matriz

Matrix3D<T> Math: :Matrix3DFromVector (const Vector<T>& vec, int numu, int numv, int numw)

{

Matrix<T> mat(numu, numv, numw);
int count=0;

for (int k=0; k<numw; k++)
for (int j=0; j<numv; j++)
for (int i=0; i<numu; i++) {
mat[k] [i] [j] = vec[count];
count++;

}

return mat;

267

268 Variational Based Modelling and Analysis using B-splines

class: Math

Function: CreateKroneckerVector
Algorithm: to construct a Vector from a Matriz3D
Parameters: Matriz3D

Vector<T> Math: :CreateKroneckerVector (const Matrix3D<T>& mat)

{

int num = mat.GetNumRows () *GetNumCols () *GetNumLayers () ;
Vector<T> vec (numu) ;

int count=0;
for (int k=0; k<mat.GetNumLayers(); k++)
for (int j=0; j<mat.GetNumCols(); j++)
for (int i=0; i<mat.GetNumRows(); i++) {
vec[count] = mat[k][i][j];
count++;

}

return vec;

Appendix D: Kronecker Product Functions 269

class: Math

Function: KroneckerProduct
Algorithm: to construct the Kronecker product

Parameters: Two matrices, matl, mat2

Matrix<double> Math: :KroneckerProduct (const Matrix<double>& matl, const Matrix<double>& mat2)

{

Matrix<double> mat (mat.GetNumRows ()*mat2.GetNumRows () ,mat1.GetNumCols ()*mat2.GetNumCols());
int c1=0;
int c2=0;

int rowStart, colStart;

for (int i=0; i<matl.GetNumRows(); i++) {
rowStart = i * mat2.GetNumRows();
cl = rowStart;
for (int j=0; j<matl.GetNumCols(); j++) {
colStart = j*mat2.GetNumCols();
c2 = colStart;
for (int k=0; k<mat2.GetNumRows(); k++) {
for (int 1=0; l<mat2.GetNumCols(); 1++) {
mat [c1] [c2] = mat1[i] [j]*mat2[k] [1];
c2++;
}
c2 = colStart;
cl++;
}
cl = rowStart;
}
¥

return mat;

270 Variational Based Modelling and Analysis using B-splines

class: Math

Function: VMS3DI_1
Algorithm: to compute the contraction of a Matriz3D with a Vector object

Parameters: Matrix3D and a Vector

Matrix<double> Math::VM3DI_1(Matrix3D<double>& D, Vector<double>& P)
{

double sum=0.0;

int m = D.GetNumRows();

int n = D.GetNumCols();
D.GetNumLays() ;

int p
Matrix<double> T(n,p);

for (int k=0; k<p; k++)
for (int j=0; j<n; j++) {
for (int i=0; i<m; i++)
sum+=D [i] [j] [k]*P[i];
T[] [k]=sum;
sum=0.0

return T;

Appendix D: Kronecker Product Functions 271

class: Math

Function: VM3DI 2
Algorithm: to compute the contraction of a Matriz3D with a Vector object

Parameters: Matrix3D and a Vector

Matrix<double> Math::VM3DI_2(Matrix3D<double>& D, Vector<double>& P)
{
double sum=0.0;
int m = D.GetNumRows();
int n = D.GetNumCols();
D.GetNumLays() ;
Matrix<double> T(n,p);

int p

for (int j=0; j<m; j++)
for (int k=0; k<p; k++) {
for (int i=0; i<m; i++)
sum+=D[i] [j] [kI*P[i];
T[] [k]=sum;
sum=0.0;

return T;

272

Variational Based Modelling and Analysis using B-splines

class: Math

Function: MM3DI_1
Algorithm: to compute the contraction of a Matriz3D with a Matriz object
Parameters: Matriz8D and a Matriz

Matrix<double> Math::MM3DI_1(Matrix3D<double>& D, Matrix<double>& A)

{

double sum=0.0;

int m = D.GetNumRows();
int n = D.GetNumCols();
D.GetNumLays() ;
A.GetNumCols () ;
Matrix3D<double> T(c,n,p);

int p

int c

for (int k=0; k<p; k++)
for (int 1=0; 1<c; 1++)
for (int j=0; j<m; j++) {
for (int i=0; i<m; i++)
sum+=D[1] [j] [k]*A[i] [1];
T[1] [j] [k]=sum;

sum=0.0;

return T;

Appendix D: Kronecker Product Functions

class: Math

Function: MM3DI_2
Algorithm: to compute the contraction of a Matriz3D and a Matrixz object
Parameters: Matriz8D and a Matriz

Matrix<double> Math::MM3DI_2(Matrix3D<double>& D, Matrix<double>& A)
{
double sum=0.0;
int m = D.GetNumRows();
int n = D.GetNumCols();
D.GetNumLays () ;
A.GetNumCols () ;
Matrix3D<double> T(c,n,p);

int p

int c

for (int j=0; j<n; j++)
for (int 1=0; 1<c; 1++)
for (int k=0; k<p; k++) {
for (int i=0; i<m; i++)
sum+=D[1] [j] [k]*A[i] [1];
T[1] [j] [k]=sum;

sum=0.0;

return T;

273

Appendix E

B-spline Derivative and Knot Insertion

Formulae

The various B-spline formulae used in Chapter 2 are given brief derivations in this appendix.
Further details can be found in [10] and [40].

E.1 Derivative Formula

For a B-spline curve given by
F(£) = diN;i(t)
i=1

we have the result

/(6 =D N (t) = (k=1) Y diNiga (1),

where

dgl) — (dz — di_l)/(ti+k—1 - ti)'

To show this we recall the definition of the normalised B-spline basis functions in terms of the
divided difference of truncated power functions. The kth divided difference of a function g on

the points ¢;,...,t; 1 is given by

itk
gltiva, - tivk) — gltis - tign—1] q(t;)
titints o tin] = — , E.1
glti,tin +k] ton — 1, ; w'(t)) (E.1)

274

Appendix E: B-spline Formulae 275

where
itk
w'(t;) = H (t; —t)
I=i,l#]
If

kel g
dr(sit) = (s —)kt = (s —1) > ¢,

0 s<t

then the standardized B-spline basis function M; ;(t) is defined to be the kth divided difference
of ¢r(s;t) in s on ¢, ..., t;1y for fixed ¢:

Mip(t) = dult o i) = 2t e 2 Ol b] (£2)
i+k 7

The normalized B-spline basis function N; () is defined as
Nig(t) = (tigr — t3) M (t). (E.3)
To differentiate f(t) we note that from the divided difference recursion formula [E.] we have,
N () = (d/dt) ((tHk —) ulti . ik t})
= (d/dt) (Sultios,- - tiwst] = Gulti - tisss])
=—(k-1) (Mi+1,k71<t) - Mi,kfl(t))

Hence

FO) = (k-1) Zd(ik—1(My g 1(7f)>
=(k—1) Zd Ni g1 (

where

dgl) — (dz — di_l)/(ti+k—1 - ti)'

E.2 Basis Function Recursion

To show the B-spline basis function recursive formula

Nis (1) 1 4, <t <tipa
i1(t) =
0 otherwise

t—1t; tivke —t
Nipor () + — N (), k>2. (E.4)

Nig(t) = ———
(1) tivk—1—t; tivk — tit1

276 Variational Based Modelling and Analysis using B-splines

we first recall Leibniz’s formula for divided differences: If f(z) = g(x)h(x) for all x i.e f is the

product of two functions, then

i+k

f[z+k; Zg Z"")'I‘ T7~--ati+k]'
If we apply this formula to the function

h(s) = duls:) = b (5:1) (5 — 1)
we get
Oltis- s tivns t] = Gr—altis s tign—13)1+ G [ty g . (B — 1),
where all divided differences of (s — t) of order 2 and higher vanish. Hence, using and [E.1]

we have

tivp — T
Mig(t) = My () + —E (Mg o1 () — Mg (2)),

Livk — i
t—1t; tiqp — 1
= T M () + Ty /
tik —t 1) togp —t; 0" 1)

This identity states that for t; < t < t;x, M;x(t) is strictly a conver combination of the numbers
M, -1 (t) and M; 1 ,—1(t) (similarly for the N;(t)). Since M, (t) is positive for t; < t < t;44
and zero otherwise, it follows by induction that, for k& > 1, M; () is positive for t; < t < t;44

and zero otherwise.

E.3 Knot Insertion Formula

We wish to derive the relationship given by [2.36in chapter 2 between the two sets of B-spline
basis functions {N;x(t)} and {N;(t)}. The second set differs from the first in that it has had
one extra knot inserted at ¢ = t,,;. Using and we have the following result,

()Qbk;[I 'L+k l)t t]—i_(tz-f—k_f)gbk[futz—f—l)7tz+k)t]

—(tigr —) Ok[tis . tin;t] =0 fori=p—k+1,...,1.

Hence
(tivk — ta) Mige(t) = (E = t:) My, (t) + (L —) M (1),

Appendix E: B-spline Formulae 277

or,
t— tzl 1 tz1+k+1 —t 1 :
Nik(t) = T thi,k(t> + WNHM@) , i=p—k+1,...,1
itk T b i+k+1 it
as was to be shown. Note that if £, occurs with multiplicity s then ¢ = t;H =...= t}?+5+1

and so N}, (t) = N}, (t) for i <p —k+ s and N} (t) = Niy1 () fori > p + 1.

E.4 Schoenberg-Whitney Conditions

We assume we have a set of B-spline basis functions (N, (t)), the n over the knot vector

(t)"*F and that (7;)7, a set of parameter values. Then the matrix B for curve fitting given by
Nl,k(Tl) Nn,k<7—1>

B = : :
Nl,k(Tm) e Nn,k(Tm)

is of full column rank if and only if there exists (1), contained in (7;)", such that

Nz,k(nz) 7é 07 1= 17"'7”7

or, equivalently,

t; < < itk 1=1,...,n.

In the case of k& multiple knots over the definition domain of the N; x(¢) the ith condition for n;
can be relaxed to

L S <tivk, ti=...=bigg—1 <tliyk, <N Stigg, 6 <tip1=...=tik

E.4.1 Surface case

If (Nin(u))izy; (Nju(v))j=, are the respective u,v basis function sets defined over knot vectors

(e (vj)j-;, and parameter values (7;)i2;, (11;)j=; for u and v are given, then there must exist

(Vi)i=; contained in (7;)i2; and ((;)i_; contained in (u;)}_; such that
Nigp(vi)Nju(G) #0, i=1,2,....p; j=1....¢
or equivalently,
Ui <Y < Uigk, 05 <G <vjy, t=1,...,p; j=1,...,¢q

Again the conditions can be relaxed in the same way as for curves if there are k£ or [fold knots

in the respective basis functions. The volume case generalises this result in the natural way.

Appendix F

Curvature Formulae

The various curvature formulae for curves, surfaces and volumes used in Chapter 4 are given
in this appendix (without formal proofs). Further details can be found in standard differential

geometry texts.

F.1 Curve Formulae

F.1.1 Functional curves

The curvature is given by the second derivative with respect to arc length (s). For a functional

curve z(t) we have
d*z

’f(s) = 752

and in terms of the actual parameter t:

ds = /(1 + [(O)dt, r(t) = “’—(t)

F.1.2 Parametric curves

For a parametric curve x(t) = (z(t),y(t)) we have

X x K1) |
"= O P

For the 2D planar case this gives

Appendix F: Curvature Formulae 279

F.2 Surface Formulae

F.2.1 Parametric surfaces

The curvature of a parametric surface is defined in terms of the so-called first and second
fundamental forms. They can be defined as follows.

For a parametric surface x(u,v) = (z(u,v),y(u,v), z(u,v)) the unit normal is given by

No XXX
| Xy X X, |
The moving frame {x,,x,, N} is called the Guass frame. The tangent plane at a point (u,v) is
given by
Tox = {x(u,v,w) + Ax, (v, v, w) + px,(u,v,w) | (A, 1) € R*}.

The bilinear form on T,x given by the inner product of R? is called the first fundamental form

of the surface. It has the following matrix form with respect to the basis (x,,X,):

gi1 912 Xy " Xy Xyt Xy
G = (9i5) = = :
921 g22 Xy Xy Xy Xy
The first fundamental form is symmetric and geometrically invariant.

The second fundamental form of the surface x is given by a matrix H where

H = (hy) = (ZH 212) = (E'XW N - %) :
21 22 “Xou N Xy
The matrix HG™! is symmetric and has two real eigenvalues k;, ko, With corresponding eigen-
vectors. ky and ko are called the principal curvatures of the surface x. Geometrically these cur-
vatures are the magnitudes of the maximum and minimum of all possible normal curvaturesT.
The product of the principle curvatures K = kiky = det(H)/det(G) is called the Gaussian
curvature, and the average H = (1/2)(k1 + k2) is called the mean curvature.

An alternative way but related of looking at this is as follows. For each point on the surface

we have a map to the normal vector at that point:

P = X(u,v) — Ny

IThe normal curvature at a point on a surface in a direction specified by a tangent vector is determined from

the intersection curve of the surface with the plane spanned by the surface normal and the tangent vector

280 Variational Based Modelling and Analysis using B-splines

This can be viewed as a map from the surface x to the unit sphere S? and in this form it is called
the Guass map. The derivative of the Guass map, dNy, at a point p on the surface measures the
variation of the normal near p, that is how the surface ‘curves’ near p. The Jacobian matrix
of —dN,, with respect to the basis (x,,x,) is equal to the matrix HG™!. This matrix is often

called the shape matriz of the surface and generalises to higher dimensions.

F.2.2 Functional surfaces

We can write a functional surface x = z(u,v) parametrically as x(u,v) = (u, v, x(u,v)). Using

this form we obtain the following formulae for the coefficients of the first and second fundamental

forms:
2 2
Xy Xy =142, Xy Xy=2Tyly, Xy X,=1+2]
No XuXXo (—Zuy — Ty, 1)
| xu X%y | \/T+ a2 + a2
and
xuu xu’u m'[}’l}
N xpy=———+—— N-x,, = N x,, =

1+ 22 422 V1422 422 1422 422
From these one obtains the mean and Gaussian curvature:

(1 + 222y — 20400y + (1 4+ 22) 200 Tyulpy — T2,

(1+ 22 + 22)3/2 (1422 +22)2

)

F.3 Volume Formulae

F.3.1 Functional volumes

We can write a functional volume z(u,v,w) in the parametric 4D form x(u,v,w) =
(u,v,w,z(u,v,w)). This form can be used to calculate curvatures and other geometrical at-

tributes. A basis for the tangent plane is given by the vectors
x, = (1,0,0,2,), x,=1(0,1,0,z,), x,=1(0,0,1,2,).

The Gauss map is then given by

o (_xua — Ly — Ly, 1)
V1t a2+ a2+ a2

p

Appendix F: Curvature Formulae

281

The derivative of the Gauss map with respect to the tangent plane basis vectors above is such

that

N, = anw, + a7, + a137,
N, = as1xy + a2z, + a23%y

Ny = a317y + a327, + a337y,
where N, = N'p(xu). Since N - x, = 0 we have, taking derivatives,

N, x, = —-N- -x,.
N, x, = —N-x,
N, -x,=-N-x_,

This together with the expressions for x,, X,,x,, and N gives us the equation
Hess(z) = AM,

where A = (a;;) is the shape matrix, Hess(z) is the Hessian matrix:

and M is the matrix

) 1+ xi TuLy Tulow
M= - Ty, 1+22 114
V31t + a2+ a2

TyTy TyTy 1+12

(F.1)

Hence in the volumetric case the shape matrix is given by Hess(z)M™!. The principal curvatures,

K1, Ko, k3 are the eigenvalues of this matrix and the Guassian and mean curvatures are given by

K= R1KoK3, H = (/‘il + Ko + Hg)/?).

In addition there is one further curvature measure obtained by taking the products in pairs of

the principal curvatures (sometimes called the scalar curvature)

M = K1Ko + K1K3 + KoKksg.

282 Variational Based Modelling and Analysis using B-splines

In explicit terms of the partial derivatives these curvatures are given by the following expressions:

2 2 2
LyuLovvLww + quvmuwwi - xuuwi - xwwxuv - xvvxuw

K = =
(1+22+a22+22)2

1+ 22+ 22)2p + (1 4+ 22 + 22) 2 + (1 + 22 + 22)Tpe
(1422 422 +22)2
20, T Ty + 240w Tuw + 200w Tow

(1+ 22+ 22 +22)3

3H =

(1 + 23) (@oTuww — 25,) + (1 + 20) (Tuu@oo — 25,) + (1 + 20) (TuuTuww — T54)
M = +
(1422 4+ 22 + 22)2
quxv(xuwwi - xuvxww> + quxw(xuvwi - xuwxvv) + 2xvxw (xuvxuw - wixuu>

(1422 4+ 22+ 22)2

F.3.2 Volume level surface curvature

An alternative approach for dealing with curvature is to consider level surfaces (also called

isosurfaces) of the functional volume z(u,v,w). A level surface is given by
S ={(u,v,w) | z(u,v,w) =k},

where k is arbitrary. The surface normal of an isosurface is given by the normalised gradient

vector:
(T, To, Ty)

Nowwa) = e

The description of the curvature of the isosurface is given by the shape matrix of the function

x. This is given by the projection of the Gauss map onto the tangent plane of the isosurface.

For the derivative of the Gauss map given by
de = (Nm Nm Nw)7

the normal projection operator P is defined as

1'2

1 U
P= Lo L T Ty X
2 2 2 urv v

TyLy LyLy

TuTw Toly L

Appendix F: Curvature Formulae 283

The tangential projection operator is T = I — P and the shape matrix is given by
—dN,T = THess(z)T.

This matrix has three real eigenvalues, k1, k9, k3 Wwhere k3 = 0. The corresponding eigenvectors
are the principle directions in the tangent plane and normal respectively. Concentrating on the
principal curvatures for the isosurface, the mean and Gaussian curvatures are given by

l€1—|—l12

H= ,
2

K = K1Kk2

In terms of partial derivatives the expressions are
K = (-T?U(xuuxvv - .T?w) + xz(muuxww - xiw) + xz<xvv$ww - Zlﬁzw) + 2 [xuxv(xuwwi - xuvxww)
+ wuww<wuvwi - xuwxvv) + wiw(wuvxuw - wixuu)} > /(.’Ei + wg + wa)z

2 2 2
<xu(xvv + xw’w) + xv(xuu + xww) + xw(xuu + xvv) - 2$uxvxuv - quxwxuw - 2xvxwwi>

H = 3
2(x2 + 22+ 22)2

Bibliography

1]

8]

[9]
[10]

[11]

M Alhanaty and M Bercovier. Curve and Surface Fitting and Design by Optimal Control
Methods. CAGD, (33):167-182, 2001.

H Antes. Bicubic Fundamental Splines in Plate Bending. International Journal for Numer-
ical Methods in Engineering, 8:503-511, 1974.

M Bro-Neilson. Modelling Elasticity in Solids using Active Cubes - Applications to Sim-
ulated Operations. In Proceedings Computer Vision, Virtual Reality and Robotics in
Medicine, pages 1-13, 1995.

A Barr. Global and Local Deformations of Solid Primitives. Computer Graphics, 18(3):21—
30, 1984.

J Beck, R Farouki, and J K Hinds. Surface Analysis Methods. IEFEE CGE&A, pages 18-35,
1986.

M Bloor, M J Wilson, and H Hagen. The Smoothing Properties of Variational Schemes for
Surface Design. CAGD, 12:381-394, 1995.

M Bloor and M Wilson. Using Partial Differential Equations to Generate Free-form Sur-
faces. CAD, 22:202-212, 1990.

M Bloor, M Wilson, R Schneider, and L. Kobbett. Mesh Fairing Based on an Intrinsic PDE
Approach. CAD, 33:767-777, 2001.

M Bloor and M Wilson. Generating Blend Surfaces Using PDE’s. CAD, 21:165-171, 19809.
C de Boor. A Practical Guide to Splines. Springer Verlag, 2001.

W Boehm, G Farin, and J Kahmann. A Survey of Curve and Surface Methods in CaGD.
CAGD, 1:1-60, 1984.

284

Appendix F: Curvature Formulae 285

[12]

[18]

[19]

23]

[24]

J M Brown, M Bloor, M S Bloor, and M Wilson. The Use of Multiple Knots for B-spline
Finite Element Approximation to PDE Surfaces. Computing Supplement, 10:87-99, 1995.

M Casale and E Stanton. An Overview of Analytic Solid Modelling. IEEE CG&A, pages
45-56, Feb 1985.

G Celniker and D Gossard. Deformable Curve and Surface Finite Elements for Free-form
Shape Design. Computer Graphics, 25(4), 1991.

S Cheng and C Dade. Dynamic Analysis of Stiffened Plates and Shells Using Spline Gauss
Collocation Method. Computers and Structures, 36(4):623-629, 1990.

L D Cohen and I Cohen. Finite-Element Methods for active Contour Models and Balloons
for 2D and 3D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1131-1147, 1993.

M Eck and J Hadenfeld. Local Energy Fairing of B-spline Curves. Computing, 10:129-147,
1995.

L Elsgolts. Differential Equations and the Calculus of Variations. Mir Publishers, Moscow,
1977.

L Fang and D Gossard. Multidimensional Curve Fitting to Unorganised Data Points by
Non-linear Optimisation. CAD, 27(1):48-58, 1995.

G Farin, G Rein, N Sapadis, and A Worsey. Fairing Cubic B-spline Curves. CAGD,
(4):91-103, 1987.

G Farin and N Sapadis. Curvature and the Fairness of Curves and Surfaces. CGA, pages
52-57, 1989.

A Fischer, P Kagan, P Z Bar-Yoseph, and M Shpitalni. Product Modelling for Computer
Integrated Design and Manufacture, chapter A B-spline Finite Element Approach for De-
signing and Analysing Sculptured Objects, pages 129-138. Chapman and Hall, 1996.

J Gardiner, A Laub, J Amato, and C Moler. Solution of the Sylvester Equation AX BT +
CXDT = E. ACM Transactions on Mathematical Software, 18(2):223-231, 1992.

G H Golub and C Van Loan. Matrix Computations. John Hopkins University Press, 1996.

286

[25]

[37]
[38]

[39]

Variational Based Modelling and Analysis using B-splines
A Graham. Kronecker Products and Matriz Calculus with Applications. Ellis Horwood Ltd,
1981.

G Greiner. Wavelets, Images and Surface Fitting, chapter Surface Construction Based on
Variational Principles, pages 277-286. 1-56881-040-7, 1994.

G Greiner and J Loos. Data Dependent Thin Plate Energy and its use in Interactive Surface
Modelling. Computer Graphics Forum, 15(3):175-185, 1996.

G Greiner. Variational Design and Fairing of Spline Surfaces. Computer Graphics Forum,
13(3):143-154, 1994.

G Greiner. Creating Fair and Shape-Preserving Curves and Surfaces, chapter Modelling of
Curves and Surfaces based on Optimisation Techniques, pages 11-27. B G Teubner, 1998.

J Greissmair and W Purgathofer. Deformation of Solids with Trivariate B-splines. Euro-
graphics 89, pages 137-148, 1989.

H Hagen and G P Bonneau. Variational Surface Design and Surface Interrogation. Euro-
graphics 93, 12(3):447-459, 1993.

H Hagen and P Santarelli. Topics in Surface Modelling, chapter Variational Design of
Smooth B-spline Surfaces, pages 85-94. SIAM, 1992.

H Hagen and H Schulze. Geometric Modelling, chapter Variational Principles in Curve and

Surface Design, pages 161-184. Springer, 1990.

B Hahmann and T A Foley. A Quartic Spline Based on a Variational Approach. Computing
Supplement, 10:199-210, 1995.

H Henderson, F Pukelsheim, and S Searle. On the History of the Kronecker Product. Linear
and Multilinear Algebra, (14):113-120, 1983.

H V Henderson and S R Searle. The Vec Operator and Kronecker Products: A Review.
Linear and Multiliner Algebra, (9):271-288, 1983.

K Hollig. Finite Element Methods with B-splines. STAM, 2003.
J Hoschek. Intrinsic Parameterisation for Approximation. CAGD, (5):27-31, 1988.

J Hoschek. Smoothing of Curves and Surfaces. CAGD, (2):97-105, 1985.

Appendix F: Curvature Formulae 287

[40]

[41]

J Hoschek and D Lasser. Fundamentals of Computer Aided Geometric Design. Wellesley,
1993.

K I Joy. Utilising Parametric Hyperpatch Methods for Modelling and Display of Free-form
Solids. pages 455-472. Proceedings of the Symposium on Solid Modelling Foundatations
and CAD/CAM Applications, 1991.

K I Joy. Mechanical Deformation of Hyperpatch Solids. pages 567-582. Proceedings of the
Computer Graphics International, 1992.

M Kallay, H Hagen, S Hahmann, and T Schreiber. Constrained Optimisation in Surface
Design. IEEE CGEA, pages 53-59, Sept 1992.

M Kallay and B Ravani. Optimal Twist Vectors as a Tool for Interpolating a Network of
Curves with a Minimum Energy Surface. CAGD, 7:465-473, 1990.

M Kass, A Witkin, and D Terzopoulos. Snakes, Active Contour Models. International
Journal of Computer Vision, 2:321-331, 1988.

J Kjellander. Smoothing of Bicubic Parametric Surfaces. CAD, 15(5):288-293, 1983.
J Kjellander. Smoothing of Cubic Parametric Splines. CAD, 15(3):175-179, 1983.

G J Klein. Deformable Models for Volume Feature Tracking. PhD thesis, University of
California, Berkeley, 1999.

U Langbecker and H Nowacki. A Knowledge Based System for Geometric Design. Com-
puting Supplement, 10:211-226, 1995.

D Lasser. Rational Tensor Product Bézier Volumes. Computer and Mathematics with
Applications, 28:49-62, 1994.

D Lasser. Bernstein-Bézier Representation of Volumes. CAGD, 2:145-149, 1985.

AY T Leung and F T K Au. Spline Finite Elements for Beam and Plate. Computers and
Structures, 37(5):717-729, 1986.

N J Lott and D I Pullin. Method for Fairing B-spline Surfaces. CAD, 20(10):597-604, 1988.

K Maccallum and J Zhang. Curve Smoothing Techniques using B-splines. The Computer
Journal, 29(6):564-569, 1986.

288

[55]

Variational Based Modelling and Analysis using B-splines

A Marsan and D Dutta. On the Application of Tensor Product Solids in Heterogeneous Solid
Modelling. ASME Design Engineering Technical Conferences, Proceedings of DETC9S,
1998.

H Meier. Creating Fair and Shape-Preserving Curves and Surfaces, chapter FAIR, An
Interpolation/Approximation Method and Tool, pages 73-87. B G Teubner, 1998.

H Meier and H Nowacki. Interpolating Curves with Gradual Changes in Curvature. CAGD,
(4):297-305, 1987.

D Metaxas and D Terzopoulos. Dynamic Deformation of Solid Primitives with Constraints.
In Proceedings of Siggraph 92, pages 309-312, 1992.

H P Moreton and C H Sequin. Functional Optimisation in Fair Surface Design. Computer
Graphics, 26(2):167-176, 1992.

K M Morken. Some Identities for Products and Degree Raising of Splines. Constructive
Approzimation, 7:195-208, 1991.

H Nowacki and X Lu. Fairing Composite Polynomial Curves with Constraints. CAGD,
(11):1-15, 1994.

H Nowacki, G Westgaard, and J Heimann. Creating Fair and Shape-Preserving Curves and
Surfaces, chapter Creation of Fair Surfaces Based on Higher Order Fairness Measures with
Interpolation Constraints, pages 141-161. B G Teubner, 1998.

G Nielson. Scattered Data Modelling. IEEE CGEA, pages 6070, Jan 1993.

G Nielson. Volume Graphics, chapter Volume Modelling, pages 29-48. Springer, 2000.
R Parnes. Solid Mechanics in Engineering. Wiley, 2001.

L Piegl and W Tiller. Symbolic Operators for NURBS. CAD, 29(5):361-368, 1997.

J Poliakoff. An Improved Algorithm for Automatic Fairing of Non-Uniform Parametric
Cubic Splines. CAD, 28(1):59-66, 1996.

H Pottmann. Smooth Curves Under Tension. CAD, 22(4), 1990.

H Qin and D Terzopoulos. D-NURBS, a Physics Based Design Framework for Geometric
Design. IEEE Transactions on Visualization and Computer Graphics, 2(1):85-96, 1996.

Appendix F: Curvature Formulae 289

[70]

[71]

[80]

[81]

S S Rao. The Finite Element Method in Engineering. Butterworth-Heinemann, 1999.

P Radeva, A Amini, and J Huang. Deformable B-solids and Implicit Snakes for 3D Local-
ization and Tracking of MRI-SPaMM Data. International journal on Computer Vision and
Image Understanding, 66(2):163-178, 1997.

P Radeva, A Amini, J Huang, and E Marti. Deformable B-solids: Applications for Lo-
calisation and Tracking of MRi-SPaMM Data. Technical report, UPIIA, UAB, Barcelona,
Spain, 1996.

A Rappoport, A Sheffer, and M Bercovier. Volume-Preserving Freeform Solids. [EFE
Transactions on Visualisation and Computer Graphics, 2(1):19-27, 1996.

S Roth, M Gross, S Turello, and F Carls. A Bernstein-Bézier Approach to Soft Tissue
Simulation. Technical Report 282, Institute of Scientific Computing, Ecole Polytechnique
Federal de Zurich, 1998.

M Sabin. Spline Finite Elements. http://www.damtp.cam.ac.uk/user/na/people/Malcolm,
2000.

N Sapadis and G Farin. Automatic Fairing Algorithm for B-spline Curves. CAD, 22(2):121-
129, 1990.

B Schmitt, M Kazakov, A Paska, and V Savchenko. Volume Sculpting with 4D Volume
Splines. In International Conference on Imaging Science, Systems and Technology, pages
475-483, 2000.

T Sederberg and S Parry. Free-form Deformation of Solid Geometric Models. Computer
Graphics, pages 151-160, 1986.

E L Stanton and L M Crain. A Parametric Cubic Modelling System for General Solids of
Composite Material. International Journal for Numerical Methods in Engineering, 11:653—
670, 1997.

G Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

D Terzopoulos, J Platt, A Barr, and K Fleischer. Elastically Deformable Models. Computer
Graphics, 21(4):205-215, 1987.

290

[82]

[83]

[84]

[91]

[92]

Variational Based Modelling and Analysis using B-splines
D Terzopoulos and H Qin. Dynamic NURBS with Geometric Constraints for Interactive
Sculpting. ACM Transactions on Graphics, 13(2):103-136, 1994.
S Tikhonov and V Aresnin. Solutions of Ill-Posed Problems. Winston, 1977.

W Tiller. Knot-Removal algorithms for NURB Curves and Surfaces. CAD, 24(8):445-453,
1992.

S Timoshenko. Theory of Plates and Shells. McGraw-Hill, 1940.

A H Vermeulen, R H Bartels, and G R Heppler. Integrating Products of B-splines. SIAM
Journal of Scientific and Statistical Computation, 13(4):1025-1038, 1992.

X Wang, F Cheng, and B Barsky. Energy and B-spline Approximation. CAD, 29(7):485—
496, 1997.

S Wang. A Unified Timoshenko Beam B-spline Rayleigh-Ritz Method for Vibration and
Buckling Analysis of Thick and Thin beams and Plates. International Journal for Numerical
Methods in Engineering, 40:473-491, 1997.

J Wang and P C Shen. Solution Governing Differential Equations of Vibrating Cylindrical
Shells Using B-spline Functions. Numerical Methods for Partial Differential Equations,
2:173-185, 1986.

W Weiss, L Andor, G Rener, and T Varady. Advanced Surface Fitting Techniques. CAGD,
19:19-42, 2002.

W Welch and A Witkin. Variational Surface Modelling. Computer Graphics, 26(2):157-166,
1992.

W Wesselink and R C Veltkamp. Interactive Design of Constrained Variational Curves.
CAGD, 12:533-546, 1995.

G Westgaard and H Nowacki. A Process for Surface Fairing in Irregular Meshes. CAGD,
18:619-638, 2001.

C Zhang, P Zhang, and F Cheng. Fairing Spline Curves and Surfaces by Minimising Energy.
CAD, 33:913-923, 2001.

	1 Introduction
	1.1 Preliminaries
	1.2 Layout of the thesis

	2 B-spline Curve, Surface and Volume Algorithms
	2.1 Introduction
	2.2 Background on Tensors
	2.2.1 Operations on tensors

	2.3 B-spline Curves
	2.3.1 Evaluation
	2.3.2 Derivatives
	2.3.3 Integration
	2.3.4 Knot insertion and removal
	2.3.5 Product

	2.4 B-spline Surfaces
	2.4.1 Evaluation
	2.4.2 Derivatives
	2.4.3 Integration
	2.4.4 Knot insertion and removal
	2.4.5 Product

	2.5 B-spline Volumes
	2.5.1 Evaluation
	2.5.2 Derivatives
	2.5.3 Integral
	2.5.4 Knot insertion and removal
	2.5.5 Product

	2.6 Summary

	3 Functional Minimisation Formulae & Algorithms
	3.1 Introduction and Background
	3.2 Functionals and Differential Equations
	3.2.1 Functionals dependent on functions of one variable
	3.2.2 Functionals dependent on functions of several variables

	3.3 Curve Functional Minimisation
	3.3.1 Minimisation of the zeroth derivative
	3.3.2 Minimisation of higher derivatives

	3.4 Surface Functional Minimisation
	3.4.1 Minimisation of the zeroth derivative
	3.4.2 Minimisation of higher derivatives
	3.4.3 Products of derivatives

	3.5 Volume Functional Minimisation
	3.5.1 Minimisation of the zeroth derivative
	3.5.2 Minimisation of higher derivatives
	3.5.3 Products of derivatives

	3.6 Boundary Conditions and Constraint Handling
	3.6.1 The reduced transformation technique

	3.7 Source and Boundary Term Integration
	3.7.1 Curve product
	3.7.2 Surface product
	3.7.3 Volume product

	3.8 Summary

	4 Applications to Geometric Smoothing
	4.1 Introduction and Background
	4.2 Curve Smoothing
	4.2.1 Smoothing combined with least squares data fitting
	4.2.2 Smoothing an existing B-spline curve

	4.3 Examples
	4.3.1 Example 1
	4.3.2 Example 2
	4.3.3 Example 3

	4.4 Surface Smoothing
	4.4.1 Smoothing combined with least squares data fitting
	4.4.2 Smoothing an existing B-spline surface
	4.4.3 Examples
	4.4.4 Local smoothing
	4.4.5 Alternative computational method

	4.5 Volume Modelling
	4.5.1 Volume smoothing combined with least squares data fitting
	4.5.2 Smoothing an existing B-spline volume

	4.6 Volume Smoothing Examples: functional case
	4.6.1 Example 1

	4.7 Volume Smoothing Examples: parametric case
	4.8 Summary

	5 Applications to Finite Element Problems
	5.1 Introduction
	5.1.1 The Raleigh-Ritz Method

	5.2 B-splines and Finite Elements
	5.2.1 Accuracy

	5.3 1D Energy Minimisation Problems
	5.3.1 Deflection of an elastic string
	5.3.2 The loaded beam problem
	5.3.3 Examples

	5.4 2D Energy Minimisation Problems
	5.4.1 Membrane deflection
	5.4.2 The loaded plate problem
	5.4.3 Boundary conditions

	5.5 Surface FEA Examples
	5.5.1 Example 1: Uniformly loaded and simply supported rectangular plate
	5.5.2 Example 2: Point loaded, simply supported rectangular plate
	5.5.3 Example 3: Simply supported and partially loaded square plate
	5.5.4 Example 4: Uniformly loaded, two simple edges, two clamped

	5.6 3D Energy Minimisation Problems
	5.6.1 Deformation of isotropic elastic solids

	5.7 Example: The 3D Laplace equation for heat flow through a cube
	5.7.1 Analytical solution for case 1
	5.7.2 Analytical solution for case 2

	5.8 Summary

	6 Conclusions
	A Numerical Results for Surface FEA Examples
	A.1 Uniformly loaded and simply supported rectangular plate
	A.2 Simply supported and centrally point loaded rectangular plate
	A.3 Simply supported and partially loaded square plate
	A.4 Uniformly loaded, two simple edges, two edges clamped
	A.5 Uniformly loaded, two simple edges, one free, fourth clamped
	A.6 Uniformly loaded, three edges simple, fourth edge free
	A.7 Uniformly loaded rectangular plate with all edges clamped

	B Class Definitions
	C Inheritance Structure Diagrams
	D Kronecker Product and Related Functions
	E B-spline Derivative and Knot Insertion Formulae
	E.1 Derivative Formula
	E.2 Basis Function Recursion
	E.3 Knot Insertion Formula
	E.4 Schoenberg-Whitney Conditions
	E.4.1 Surface case

	F Curvature Formulae
	F.1 Curve Formulae
	F.1.1 Functional curves
	F.1.2 Parametric curves

	F.2 Surface Formulae
	F.2.1 Parametric surfaces
	F.2.2 Functional surfaces

	F.3 Volume Formulae
	F.3.1 Functional volumes
	F.3.2 Volume level surface curvature

