
A Generic Persistence Model
for (C)LP Systems

J. Correas∗, J. M. Gómez∗, M. Carro∗, D. Cabeza∗, and M. Hermenegildo∗,∗∗

(∗) School of Computer Science, Technical University of Madrid (UPM)
(∗∗) Depts. of Comp. Science and El. and Comp. Eng., U. of New Mexico (UNM)

Mutable state is traditionally implemented in Prolog and other (C)LP sys-
tems by performing dynamic modifications to predicate definitions at runtime,
i.e. to dynamic predicates of the internal database. Dynamic facts are often used
to store information accessible per module or globally and which can be preserved
through backtracking. These database updates, despite the obvious drawback of
their non-declarative nature, have practical applications and they are given a
practical semantics by the so-called logical view of (internal) database updates.

On the other hand, the lifetime of the data in the Prolog internal database
is that of the Prolog process, i.e., the Prolog database lacks persistence. In this
context persistence means that program state modifications will survive across
program executions, and may even be accessible to other programs—atomically
and concurrently. Traditionally, this has been taken care of explicitly by the
programmer by, e.g., periodically reading and writing state to an external device
(a file or an external database through a suitable interface) and providing locking
for concurrency. This approach offers a workable but very tedious solution, where
significant modifications to programs are needed and where, unless substantial
effort is invested, only limited functionality is achieved.

The fundamental idea that we propose is to make persistence be a character-

istic of certain dynamic predicates, which encapsulate the persistent state, and
to automate implementation by coding persistence once and for all in a reusable
(system) library providing the class of persistent predicates. The main effect of
declaring a predicate persistent (a process for which we propose a suitable syn-
tax, compatible with the Ciao system’s assertion language) is that any changes

made to such predicates persist from one execution to the next one, and are

transactional, and, optionally, externally visible. The model allows associating
an external, persistent storage medium (a file, a database table, etc.) to each
such predicate, which will “reside” in that medium. Notably, persistent predi-
cates appear to a program as ordinary (dynamic) predicates: calls to them do
not need to be coded or marked specially, and the builtins to update them are
(suitably modified versions of) the same used with the internal database (e.g.,
asserta/1, assertz/1, retract/1, etc.). Thus, only minor modifications to the
program code (often independent of its internal logic) are needed to achieve per-
sistence. Also, when using persistent predicates the external storage is at all
times in sync with the internal database. This provides security against, e.g.,
system crashes or abnormal termination. Also, transaction atomicity allows con-

current access to be handled with only limited effort. Thus, files and/or external
databases can be used to communicate and share data among programs, which



each view as part of their internal databases. Quite interestingly, since persis-
tent predicates are viewed as regular dynamic Prolog predicates, analyzers (and
related tools) can deal with them with no additional effort. In turn, information
deduced by analysis tools (such as, e.g., types and modes) can be used to opti-

mize accesses to external storage (the full paper provides performance data for
such optimizations in the context of a relational, SQL database).

Finally, perhaps the most interesting advantage of the notion of persistent
predicates is that it abstracts away the storage mechanism. This allows devel-
oping applications which can store data alternatively on, e.g., files or databases
with only a few simple changes to a declaration stating the location and modal-
ity used for persistent storage. It also minimizes impact on the host language,
as the semantics of the access to the database is compatible with that of Prolog.
We also argue that the conceptual model of persistence developed provides one
of the most natural way of interfacing logic programs with databases.

A number of current Prolog systems offer features which are related to the
capabilities offered by our approach: Quintus Prolog has ProDBI (also available
for SICStus under the generic name Prodata), which allows queries (but not
updates) on tables in a similar way to Prolog predicates. SICStus Prolog has
also special interfaces to database systems. XSB and SWI include PrologSQL,
which can compile on demand a conjunction of literals to SQL using the compiler
by Draxler, also used in our approach, but which do not provide transparent
persistence. However, we argue that none of these approaches achieve the same
level of flexibility, conceptual simplicity, and seamless integration with Prolog
achieved by our proposal.

Implementations of our proposed model have been used in several non-trivial
applications, such as the WebDB deductive database engine, a generic database
system with a highly customizable html interface. WebDB allows creating and
maintaining Prolog databases stored in a variety of mediums by means of per-
sistent predicates and using a WWW interface. They have also been used in
real-world applications such as the Amos tool, aimed at facilitating the reuse of
Open Source code through the use of an ontology-based search engine working
on a large database of code information.

Full details are available in the full paper, where also experimental data and
examples can be found [CGC+03].

Acknowledgments: This work has been partially supported by the EU IST
Project IST-2001-34717, Amos and by MCYT project TIC 2002-0055, CUBICO.
Thanks are due to I. Caballero, J. F. Morales, S. Genaim, and C. Taboch for
their collaboration and feedback.

References

[CGC+03] J. Correas, J. M. Gomez, M. Carro, D. Cabeza, and M.V. Hermenegildo.
A Generic Model for Persistence in CLP Systems. Technical Report
CLIP3/2003.0, Technical University of Madrid, School of Computer Science,
UPM, August 2003. http://clip.dia.fi.upm.es/papers/persdb-tr.pdf.


