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Abstract. This paper presents mathematical models of potentiometric as well as amper-

ometric biosensors, based on an electrode covered with an enzyme membrane. The models

involve three regions: the enzyme layer where enzyme reaction as well as mass transport

by diffusion takes place, a diffusion limiting region where only the diffusion takes place,

and a convective region, where the analyte concentration is maintained constant. Using

computer simulation the influence of the thickness of both the enzyme and the diffusion

layers on the biosensor response was investigated. The effect of the diffusion layer on the

biosensor response was evaluated for different conditions of the enzymatic reaction and

types of mixers. This paper deals also with the conditions when the mass transport in the

exterior diffusion region may be neglected to simulate the biosensor response assuming the

buffer solution is well-stirred and in powerful motion. The digital simulation was carried

out using the finite difference technique.

1 INTRODUCTION

Biosensors are analytical devices that are based on the direct coupling of an immobilised
biologically active compound with a signal transducer and an electronic amplifier. The
biosensors signal is proportional to the concentration of measured analyte or a group of
analytes. [1, 2, 3].

In potentiometric biosensors, the analytical information is obtained by converting the
recognition process into a potential, which is proportional (in a logarithmic fashion) to
the concentration of the reaction product [4]. The amperometric biosensors measures
the faradic current that arises on the electrode by direct electrochemical oxidation or
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reduction of the product. These devices have been widely used in environmental, medical
and industrial applications because of their high selectivity, simplicity and low cost [5, 6].

Since it is not generally possible to measure the concentration of substrate inside en-
zyme domain with analytical devices, starting from seventies various mathematical models
of biosensors have been developed and used as an important tool to study and optimise
analytical characteristics of actual biosensors [7, 8, 9].

The goal of this investigation is to make models allowing an effective computer sim-
ulation of potentiometric and amperometric biosensors acting in stirred as well as non
stirred analytes. The developed models are based on the reaction-diffusion equations,
containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic re-
action [10, 11, 12]. The models involves three regions: the enzyme layer where enzyme
reaction as well as mass transport by diffusion takes place, a diffusion limiting region
where only a mass transport by diffusion takes place, and a convective region, where
the analyte concentration is maintained constant [8, 13, 14]. The intensity of stirring is
expressed by the thickness of the diffusion limiting layer. The thickness of the diffusion
layer is inversely proportional to the intensity of stirring. The more intensive stirring re-
lates to the thinner enzyme layer. The behaviour of the potentiometric and amperometric
biosensors was compared together. The digital simulation of the biosensor response was
carried out using the finite difference technique [15].

2 MATHEMATICAL MODEL

We consider a scheme of catalysed with enzyme (E) substrate (S) conversion to a
product (P) [1, 2],

S
E

−→ P (1)

A biosensor may be considered as an electrode, having a layer of enzyme (enzyme
membrane) applied onto the electrode surface. Assuming the symmetrical geometry of
the electrode and homogeneous distribution of the immobilised enzyme in the enzyme
membrane, the biosensor action can be described by the reaction-diffusion system (t > 0)
[8, 13, 14]:

∂Se

∂t
= DSe

∂2Se

∂x2
−

VmaxSe

KM + Se

,

∂Pe

∂t
= DPe

∂2Pe

∂x2
+

VmaxSe

KM + Se

, x ∈ (0, d),

(2)

∂Sb

∂t
= DSb

∂2Sb

∂x2
,

∂Pb

∂t
= DPb

∂2Pb

∂x2
, x ∈ (d, d + δ),

(3)

where x stands for space, t stands for time, Se(x, t), Sb(x, t) (Pe(x, t), Pb(x, t)) are the
substrate (reaction product) concentrations, in the enzyme membrane and buffer solution,
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respectively, d is the thickness of the enzyme membrane, δ is the thickness of the diffusion
layer, DSe

, DSb
, DPe

, DPb
are the diffusion coefficients, Vmax is the maximal enzymatic

rate and KM is the Michaelis constant.
Let x = 0 represents the electrode surface, while x = d represents the boundary layer

between the analyzed solution and enzyme membrane. The biosensor operation starts
when the biosensor is immersed in the substrate solution. This is used in the initial
conditions (t = 0),

Se(x, 0) = 0, Pe(x, 0) = 0, x ∈ [0, d),

Se(d, 0) = S0, Pe(d, 0) = 0,

Sb(x, 0) = S0, Pb(x, 0) = 0, x ∈ [d, d + δ],

(4)

where S0 is the concentration of the substrate to be analyzed.
On the boundary between two subregions having different diffusion coefficients we

define the matching conditions (t > 0),

DSe

∂Se

∂x

∣

∣

∣

x=d
= DSb

∂Sb

∂x

∣

∣

∣

x=d
, Se(d, t) = Sb(d, t),

DPe

∂Pe

∂x

∣

∣

∣

x=d
= DPb

∂Pb

∂x

∣

∣

∣

x=d
, Pe(d, t) = Pb(d, t).

(5)

In the bulk solution the concentration of the substrate as well as of the product remains
constant (t > 0),

Sb(d + δ, t) = S0, Pb(d + δ, t) = 0. (6)

At the electrode surface (x = 0), the boundary conditions depend on the electric
activity of the substance. Following the scheme (1) the substrate (S) is electro-inactive,

DSe

∂Se

∂x

∣

∣

∣

x=0
= 0, t > 0. (7)

The reaction product (P) is electro-active substance. The boundary condition for
the electro-active substance depends on a type of the electrode. We investigate enzyme
electrodes of two types: potentiometric and amperometric.

In the case of potentiometry, the change of the potential is caused by change of the
reaction product concentration,

DPe

∂Pe

∂x

∣

∣

∣

x=0
= 0, t > 0. (8)

In the case of amperometry, the potential at the electrode is chosen to keep zero
concentration of the product,

Pe(0, t) = 0, t > 0. (9)

The diffusion layer {x : x ∈ (d, d+δ)} may be treated as a Nernst diffusion layer, which
is widely used in modelling of the electrochemical processes [16, 17]. According to the
Nernst approach, a layer of thickness δ (the Nernst diffusion layer) remains unchanged
with time. Away from it the solution is in motion and uniform in concentration.
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3 BIOSENSOR RESPONSE

The measured potential is accepted as a response of potentiometric biosensors. The
potential of the biosensor is given by

E(t) = E0 +
RcTK

zF
ln Pe(0, t), t > 0, (10)

where E(t) is the measured potential (in volts) at time t, E0 is a characteristic constant
for the ion-selective electrode, Rc is the universal gas constant, Rc = 8.314 J/mol K, TK

is the absolute temperature (K), z is the signed ionic charge, F is the Faraday constant,
F = 9648C/mol [18, 19].

We assume, that the system (2)-(8) approaches a steady-state as t → ∞,

ER = lim
t→∞

E(t). (11)

ER is assumed as the steady-state biosensor potential.
In the case of amperometric biosensors, the current depends upon the flux of the

electro-active analyte (product) at the electrode surface. A density I(t) of the biosensor
current at time t can be obtained explicitly from Faraday’s and Fick’s laws [8, 20],

I(t) = neFDPe

∂Pe

∂x

∣

∣

∣

x=0
, (12)

where ne is a number of electrons involved in a charge transfer at the electrode surface,
F is Faraday constant.

We assume, that the system (2)-(7),(9) approaches an equilibrium or steady-state when
t → ∞,

IR = lim
t→∞

I(t), (13)

where IR is the steady-state biosensor current.
Four parameters: Vmax, KM , d and DSe

are among the most important parameters
determining the behaviour of the biosensor response [8, 11, 20]. The biosensor response is
known to be under mass transport control if the enzymatic reaction in the enzyme layer
is faster than the transport process. The dimensionless diffusion modulus (Damköhler
number) σ2 essentially compares the rate of enzyme reaction (Vmax/KM) with the diffusion
through the enzyme layer (DSe

/d2),

σ2 =
Vmaxd

2

DSe
KM

. (14)

If σ2 ≪ 1, the enzyme kinetics controls the biosensor response. The response is under
diffusion control when σ2 ≫ 1.

4 SOLUTION OF THE PROBLEM

The problems (2)-(8) and (2)-(7),(9) were solved numerically using the finite difference
technique [15, 16]. To simulate the biosensor action for t ∈ [0, T ] we introduced an uniform
discrete grid ωh × ωτ , where
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ωh = {xi : xi = ih, i = 0, ..., Nd, ..., N ; hNd = d, hN = d + δ},

ωτ = {tj : tj = jτ, j = 0, ..., M ; τM = T}.
(15)

The concentration S of the substrate S and the concentration P of the reaction product
P can be defined in entire domain x ∈ [0, d + δ] as follows (t ≥ 0):

S(x, t) =

{

Se(x, t), x ∈ [0, d],

Sb(x, t), x ∈ (d, d + δ],

P (x, t) =

{

Pe(x, t), x ∈ [0, d],

Pb(x, t), x ∈ (d, d + δ].

(16)

We assume the following:

Sj
i = S(xi, tj), P j

i = P (xi, tj), Ej = E(tj), Ij = I(tj),

i = 0, ..., N, j = 0, ..., M.
(17)

We use an implicit difference scheme where the differential equations (2),(3) are re-
placed with the following difference equations:

Sj+1
i − Sj

i

τ
= DSe

Sj+1
i+1 − 2Sj+1

i + Sj+1
i−1

h2
−

VmaxS
j+1
i

KM + Sj
i

,

P j+1
i − P j

i

τ
= DPe

P j+1
i+1 − 2P j+1

i + P j+1
i−1

h2
+

VmaxS
j+1
i

KM + Sj+1
i

,

i = 1, ..., Nd − 1, j = 1, ..., M,

(18)

Sj+1
i − Sj

i

τ
= DSb

Sj+1
i+1 − 2Sj+1

i + Sj+1
i−1

h2
,

P j+1
i − P j

i

τ
= DPb

P j+1
i+1 − 2P j+1

i + P j+1
i−1

h2
,

i = Nd + 1, ..., N − 1, j = 1, ..., M.

(19)

The initial conditions (4) are approximated by

S0
i = 0, i = 0, ..., Nd − 1,

S0
i = S0, i = Nd, ..., N,

P 0
i = 0, i = 0, ..., N.

(20)

The matching and boundary conditions (5)-(7) are approximated as follows:

DSe
(Sj

Nd
− Sj

Nd−1) = DSb
(Sj

Nd+1 − Sj
Nd

),

DPe
(P j

Nd
− P j

Nd−1) = DPb
(P j

Nd+1 − P j
Nd

),

Sj
N = S0, P j

N = 0, Sj
0 = Sj

1,

j = 1, ..., M.

(21)
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In the case of potentiometric biosensor, the finite difference equations (18)-(21) are
followed by the approximation of (8),

P j
0 = P j

1 , j = 1, ..., M. (22)

While in the case of amperometry biosensor, the equations (18)-(21) are followed by
the approximation of (9),

P j
0 = 0, j = 1, ..., M. (23)

The systems of linear algebraic equations were solved efficiently because of the tridi-
agonality of the matrices of the systems.

Having the numerical solution of the problem, the biosensor potential at time t = tj is
calculated by

Ej = E0 +
RcTK

zF
ln

(

P j
0

)

, j = 1, ..., M. (24)

The density of the biosensor current at time t = tj is calculated as follows:

Ij = neFDSe
(Sj

1 − Sj
0)/h, j = 1, ..., M. (25)

5 NUMERICAL SIMULATION

The mathematical model as well as the numerical solution of the model were evaluated
for different values of the maximal enzymatic rate Vmax, substrate concentration S0 and
the thickness d of the enzyme layer. The following values of the parameters were constant
in the numerical simulation of all the experiments:

DSe
= DPe

= 300 µm2/s, DSb
= 2DSe

, DPb
= 2DPe

,

KM = 100 µM, E0 = 0 V, z = 1, ne = 2, TK = 298K.
(26)

The steady-state biosensor response as well as the time moment of occurrence of the
steady-state response time were assumed and analysed as ones of the most important
characteristics of the biosensors.

In digital simulation, the biosensor response time T = TR was assumed as the time
when the normalised absolute response (potential or current) slope value falls below a
given small value ǫ,

TR = min
P

j
0
>0

{

tj :

∣

∣

∣

∣

Ej − Ej−1

Ejτ

∣

∣

∣

∣

< ǫ , j = 1, ...

}

, ER ≈ E(TR), (27)

TR = min
Ij>0

{

tj :

∣

∣

∣

∣

Ij − Ij−1

Ijτ

∣

∣

∣

∣

< ǫ , j = 1, ...

}

. IR ≈ I(TR). (28)

(27) was used for the potentiometric biosensor while (28) for the amperometric one.
The digital simulator has been programmed in Java language [21].
At zero thickness of the diffusion layer (δ = 0) and low concentrations (S0 ≪ KM)

as well as high concentrations (S0 ≫ KM) of the substrate, the steady-state response
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can be calculated analytically [7, 19]. The adequacy of the mathematical and numerical
models was evaluated using known analytical solutions. The relative difference between
the numerical and analytical solutions was less than 1%.

6 RESULTS AND DISCUSSION

Using computer simulation the influence of the thickness of both the enzyme and the
diffusion layers on the biosensors response was investigated.

The thickness d of the enzyme membrane of a biosensor can usually be measured
physically rather precisely. The thickness δ of the diffusion layer depends upon the stirring
of the buffer solution. The thickness δ is inversely proportional to the intensity of the
stirring (rotation speed of the electrode). The more intensive stirring is, the thinner
diffusion layer is. Furthermore, δ depends upon the type of stirring. No exact analytical
expression of δ is available for stirred solutions. δ can be estimated experimentally by
measuring the electrode response at given bulk concentration.

6.1 The effect of the thickness of the diffusion layer

We investigate the dependence of the steady-state biosensor response on the relative
thickness of the diffusion layer. We consider a dimensionless ratio k of the thickness δ of
the diffusion layer to the thickness d of the enzyme layer, k = δ/d, k ≥ 0. k is a relative
thickness of the diffusion layer.

The steady-state current IR of an amperometric biosensor as well as the steady-state
potential ER of a potentiometric one are very sensitive to the thickness of the enzyme
layer. IR and ER vary even in orders of magnitude [20, 22]. Because of this we normalise
the biosensor response to evaluate the effect of the ratio k on the response.

The normalised steady-state biosensor potential EN (current IN) is expressed by the
steady-state potential (current) calculated at the thickness δ of the diffusion layer divided
by the steady-state potential (current) assuming the zero thickness of the diffusion layer,

EN (d, δ) =
ER(d, δ)

ER(d, 0)
, IN(d, δ) =

IR(d, δ)

IR(d, 0)
, d > 0, δ ≥ 0, (29)

where ER(d, δ) is the steady-state potential (11) calculated at given thickness d of the
membrane and thickness δ of the diffusion layer, IR(d, δ) is the corresponding steady-state
current (13) of the amperometric biosensor.

The biosensor response versus the dimensionless ratio k = δ/d was investigated at
different values of the maximal enzymatic rate Vmax and membrane thickness d. Results
of the calculation obtained at two values of Vmax: 10 and 100µM/s and various values of
d are depicted in figure 1 for both types of biosensors: potentiometric and amperometric.

One can see in figure 1a the steady-state biosensor potential notably decreases with
increase of the ratio k in the cases when the diffusion modulus σ is less than about 2. In
cases of relatively high values of σ (σ > 2), the influence of the thickness δ of the diffusion
layer on the biosensor response is slight only. In the case of σ = 3.65 (d = 0.02 cm,
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Figure 1: The normalised steady state response of potentiometric (a) and amperometric (b) biosensors
versus the ratio k = δ/d at Vmax = 100 (1-4), Vmax = 10 µM/s (5-9) and nine diffusion modulus σ: 0.18
(5), 0.29 (1), 0.37 (6), 0.58 (2), 0.91 (7), 1.15 (3), 1.83 (8), 2.89 (4), 3.65 (9).

Vmax = 10 µM/s) the steady-state potential decreases less than 3% only, EN ≈ 0.972,
while in the case of σ = 0.58 (d = 0.001 cm, Vmax = 100 µM/s) it decreases even about
30%, EN ≈ 0.703, when k changes from 0 to 4.

Consequently, in the cases when the response of a potentiometric biosensor is con-
siderably under diffusion control (σ > 2), the mass transport by the diffusion outside
the enzyme membrane may be neglected. In those cases the response of potentiometric
biosensors practically does not depend on the intensity of stirring of the buffer solution.

In the case of the amperometric biosensor (figure 1b), the behaviour of the normalised
steady-state current differs significantly from that of the potentiometric one (figure 1a).
IN is a monotonous decreasing function of the ratio k when the response is under diffusion
control (σ >≈ 2). IN is a monotonous increasing function of k when the enzyme kinetics
controls the biosensor response (σ <≈ 0.5).

6.2 The effect of the Nernst diffusion layer

The thickness δ of the diffusion layer depends upon the nature and stirring of the
buffer solution. Usually, the more intensive stirring corresponds to the thinner diffusion
layer. That diffusion layer is known as the Nernst layer [17]. The thickness of the Nernst
diffusion layer practically does not depend upon the membrane thickness. In practice,
the zero thickness of the Nernst layer can not be achieved. In a case when the solution
to be analysed is stirred by rotation of the enzyme electrode, the thickness of the Nernst
diffusion layer may be minimized up to δ = 2 µm by increasing the rotation speed [17].
However, in another frequently used case when the solution is stirred in a magnetic stirrer,
it is difficult to achieve the thickness δ less than about 20 µm.

In the cases when an analyte is well-stirred and in powerful motion, the mass transport
by diffusion outside the enzyme membrane rather often is neglected [8, 9, 16]. We assume,
that a model of the biosensor action, taking into consideration the Nernst diffusion layer,
describes the biosensor action more precisely than an another one where the Nernst diffu-
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sion layer is neglected. In addition, we assume that the Nernst diffusion layer of thickness
δ may be neglected for a biosensor having membrane thickness d only if the steady-state
response calculated considering the Nernst layer is approximately the same as in the case
when the Nernst diffusion layer is neglected.

We introduce the relative error of the biosensor response,

RP (d, δ) =

∣

∣

∣

∣

ER(d, δ) − ER(d, 0)

E(d, δ)

∣

∣

∣

∣

, RA(d, δ) =

∣

∣

∣

∣

IR(d, δ) − IR(d, 0)

IR(d, δ)

∣

∣

∣

∣

. (30)

RP (d, δ) and RA(d, δ) may be called the relative errors of the use of the model where
the diffusion layer of thickness δ is neglected. Those functions may also be regarded as
levels of a reliability of the mathematical model where the Nernst diffusion layer is not
taken into account.

We investigate the conditions when the Nernst diffusion layer may be neglected to
simulate the response of biosensors accurately. To investigate the effect of the Nernst
diffusion layer on the biosensor response when the analyte is well-stirred and in powerful
motion we calculate the relative errors RP and RA at practically minimal thickness of the
diffusion layer for both types of stirring: by electrode rotation and in magnetic stirrer.
Since the effect of the diffusion layer on the biosensor response significantly depends upon
the modulus of diffusion, we calculate the normalised response changing in wide range
both: the maximal enzymatic rate Vmax and the membrane thickness d.

Figure 2 shows the results of calculation at the thickness δ = 2 µm while figure 3 shows
the results at 10 times thicker (δ = 20 µm) the Nernst diffusion layer.
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Figure 2: The relative errors RP and RA versus the enzyme membrane thickness d at the thickness
δ = 2 µm of the Nernst diffusion layer and four values of Vmax: 0.1 (1), 1 (2), 10 (3) and 100 (4) µM/s.

One can see in figure 2, the effect of the Nernst layer decreases with increase of the
membrane thickness d. Figure 2 shows, that the Nernst diffusion layer of the thickness
of 2µm should be taken into consideration in all the cases when the enzyme membrane
is thinner than about 20µm. The simulated steady-state biosensor current IR may differ
even more than 30% (RA > 0.3) from the true current if the Nernst diffusion layer is

9



Romas Baronas and Feliksas Ivanauskas

neglected in cases of thin enzyme membranes, d ≤ 1 µm, when the buffer solution is well-
stirred and in powerful motion. The potentiometric biosensors are less sensitive to the
intensity of stirring. The relative error RP is more than 2 times less than RA at the same
conditions.

The effect of the Nernst diffusion layer becomes slight only in the cases when the
enzyme membrane is more than about 10 times thicker than the diffusion layer, d > 10δ
= 20µm. Assuming the high speed rotation of the electrode (δ = 2µm) and the membrane
thickness d = 10δ, the error RP varies from 0.01 to 0.03 changing Vmax between 0.1 and
100µM/s, i.e. in the case when the Nernst diffusion layer is taken into consideration, the
steady-state potential (ER(20, 2)) of the potentiometric biosensor differs in about 1–3%
from the steady-state potential when the Nernst diffusion layer is neglected (ER(20, 0)).

Figure 3 shows very similar effect of the Nernst diffusion layer on the biosensors re-
sponse also at 10 times thicker (δ = 20 µm) layer. The Nernst diffusion layer of the
thickness δ of 20 µm should be taken into consideration in all the cases when the enzyme
membrane is thinner than about 200 µm, i.e. d < 10δ.
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Figure 3: The relative errors RP and RA versus the enzyme membrane thickness d at the thickness
δ = 20 µm of the Nernst diffusion layer and four values of Vmax: 0.1 (1), 1 (2), 10 (3) and 100 (4) µM/s.

One can see in figure 3, that the sensitivity to the intensity of stirring is rather similar
for both types of electrode: potentiometric and amperometric. The relative error RP is
approximately the same as RA at the same conditions, while those errors notably differs
in the case on thin membrane (figure 2).

As it is possible to notice in figures 2 and 3, the relative error RP is notable less sensitive
to changes of maximal enzymatic rate Vmax than RA. Potentiometric biosensors of less
enzymatic activity are less sensitive rather than of the higher enzymatic activity.

7 CONCLUSIONS

- The mathematical model (2)-(7), (9) of the operation of the potentiometric biosen-
sors can be used to investigate regularities of the biosensor response in stirred and
non-stirred analytes. The model (2)-(8) defines the action of the corresponding
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amperometric biosensors.

- The steady-state potential of the potentiometric biosensors is a monotonous decreas-
ing function of the ratio k of the thickness of the diffusion layer to the thickness of
the enzyme membrane (figure 1a). In particular cases when the biosensor response
is distinctly under diffusion control (σ > 2), variation of k practically does not effect
the steady-state potential. Consequently, in the cases when σ > 2 the response of
potentiometric biosensors practically does not depend upon the intensity of stirring
of the buffer solution (upon rotation speed of the electrode).

- The Nernst diffusion layer of the thickness δ > 0 should be taken into consideration
if the enzyme membrane is thinner than about 10δ, i.e. d < 10δ (figures 2 and 3).
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