
Global Optimization for Neural Network Training �YI SHANG and BENJAMIN W. WAHCoordinated Science LaboratoryUniversity of Illinois at Urbana-Champaign1308 West Main StreetUrbana, IL 61801fshang, wahg@manip.crhc.uiuc.eduJune 24, 1996AbstractIn this paper, we study various supervised learning methods for training feed-forward neural networks.In general, such learning can be considered as a nonlinear global optimization problem in which the goal isto minimize a nonlinear error function that spans the space of weights using heuristic strategies that lookfor global optima (in contrast to local optima). We survey various global optimization methods suitablefor neural-network learning, and propose the NOVEL method, a novel global optimization method fornonlinear optimization and neural network learning. By combining global and local searches, we showhow NOVEL can be used to �nd a good local minimum in the error space. Our key idea is to use auser-de�ned trace that pulls a search out of a local minimum without having to restart it from a newstarting point. Using �ve benchmark problems, we compare NOVEL against some of the best globaloptimization algorithms and demonstrate its superior improvement in performance.1 IntroductionIn this paper, we study various methods for the supervised learning of feed-forward neural networks. Thesenetworks perform mappings from an input space to an output space. In spite of di�erent activation functionsof neurons and connection structures, output O of a neural network can be de�ned as a function of inputsX and connection weights W : O = �(X;W ), where � represents a mapping function.Supervised learning involves �nding a good mapping function that maps training patterns correctly aswell as to generalize the mapping found to test patterns not seen in training. This is done by adjustingweights W on links while �xing the topology and activation function. In other words, given a set of trainingpatterns of input-output pairs f (I1; D1); (I2; D2); � � � ; (Im; Dm) g and an error function �(W; I;D), learningstrives to minimize learning error E(W ):minW E(W ) = minW mXi=1 �(W; Ii; Di): (1)One popular error function is the squared-error function in which �(W; Ii; Di) = (�(Ii;W ) � Di)2. SinceE(W ) � 0 for a given set of training patterns, if there exists W 0 such that E(W 0) = 0, then W 0 is a globalminimum; otherwise, the W that gives the smallest E(W ) is the global minimum. The quality of a learned�This research was supported in part by National Science Foundation Grant MIP 92-18715 and in part by Joint ServicesElectronics Program Contract N00014-90-J-1270.Programs developed for this paper can be accessed through the World-Wide Web at http://manip.crhc.uiuc.edu.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



1 Introduction 2
Figure 1: Two dimensional projections of the 33-dimensional error surface for a �ve hidden-unit 33-weightfeed-forward neural network with sigmoidal activation function. The terrain is around a solution found byNOVEL to solve the two-spiral problem.network is measured by its error on a given set of training patterns and its (generalization) error on a givenset of test patterns.In the form represented in (1), supervised learning can be considered as an unconstrained nonlinearminimization problem in which the objective function is de�ned by (1), and the search space is de�ned bythe space of the weights.1 Unfortunately, the terrain modeled by the error function in its weight space canbe extremely rugged and has many local minima. This phenomenon is illustrated in Figure 1 that shows twocontour plots of the error surface around a local minimum along two pairs of dimensions. The network herehas been trained to solve the two-spiral problem (to be discussed in Section 4). Obviously, a search methodthat cannot escape from a local minimum will have di�culty in �nding a solution that minimizes (1).Many learning algorithms �nd their roots in function-minimization algorithms that can be classi�edinto local minimization and global minimization. Local minimization algorithms, such as gradient-descent,are fast but usually converge to local minima. In contrast, global minimization algorithms have heuristicstrategies to help escape from local minima.There are many bene�ts in using smaller neural networks. First, they are less costly to implement andare faster, both in hardware and in software. Second, they generalize better because they avoid over-�ttingthe weights to the training patterns. In general, more unknown parameters (weights) induce more localminima in the error surface. Hence, the error surface of smaller networks can be very rugged and havefew good solutions, making it di�cult for a local minimization algorithm to �nd a good solution from arandom starting point. This phenomenon also explains why a gradient-based local search method, such asback-propagation, can �nd a converged network when the number of weights is large, but have di�cultyotherwise. To overcome this problem, more powerful global search methods are needed.In this paper, we propose a novel global minimizationmethod called the NOVEL method, and demonstrateits superior performance on neural network learning problems. Our major goals are to improve the neuralnetworks learned for an application using the same amount of time as in other algorithms, as well as to �ndsmaller networks using more time. In Section 2, we summarize previous work on unconstrained nonlinearminimization methods, and discuss their applications in neural network learning. In Section 3, we presentthe framework and components of NOVEL. To illustrate the minimization process, we show in Section 4 thelearning of a neural network for solving the two-spiral problem, and compare NOVEL with some of the bestglobal minimization algorithms. In Section 5, we evaluate the performance of NOVEL by applying it to fourother benchmark problems. Finally, conclusions are drawn in Section 6.1Without loss of generality, we consider minimization problems in this paper.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



2 Methods for Nonlinear Unconstrained Minimization 3
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GeneralizedFigure 2: Classi�cation of unconstrained nonlinear continuous global minimization methods. See side-barfor explanation of terminologies.2 Methods for Nonlinear Unconstrained MinimizationLearning the weights of a feed-forward neural network can be considered as solving an unconstrained contin-uous nonlinear minimization problem. In the past, many techniques have been developed for solving similarproblems in other disciplines. In this section, we summarize the key results in this area.The task in solving an unconstrained continuous nonlinear minimization problem is to �nd assignments toits variables so that the given objective function is minimized. These problems are classi�ed into uni-modaland multi-modal, depending on the number of local minima in the space of the objective function.Neural network learning, in general, is a multi-modal nonlinear minimization problem with many localminima. Our study of E(W ) reveals the following features: (a) Flat regions may mislead gradient-basedmethods; (b) There may be many local minima that trap gradient-based methods; (c) Deep but suboptimalvalleys may trap any search method; (d) Gradients may di�er by many orders of magnitude, making itdi�cult to use gradients in any search method. A good search method should, therefore, have mechanisms(a) to use gradient information to perform local search (and be able to adjust to changing gradients) and(b) to escape from a local minimum after getting there.Search methods can be classi�ed into local minimization and global minimization. Local minimizationalgorithms, such as gradient-descent and Newton's method, �nd local minima e�ciently and work best inuni-modal problems. Global minimizationmethods, in contrast, employ heuristic strategies to look for globalminima and do not stop after �nding a local minimum [1, 2].Many local minimization methods have been applied to learning of feed-forward neural networks [3, 4].Examples include back-propagation (BP), conjugate-gradient and quasi-Newton's methods. Local minimiza-tion algorithms have di�culties when the surface is 
at (gradient close to zero), or when gradients can be ina large range, or when the surface is very rugged. When gradients can vary greatly, the search may progresstoo slowly when the gradient is small and may over-shoot when the gradient is large. When the error surfaceis rugged, a local search from a randomly chosen starting point will likely converge to a local minimumclose to the initial point and a solution worse than the global minimum. Moreover, these algorithms requirechoosing some parameters, as incorrectly chosen parameters may result in slow convergence.To overcome the de�ciencies in local-search methods, global minimization methods have been developed.Figure 2 classi�es unconstrained nonlinear global minimization algorithms. (See side-bar for further expla-nation.) These algorithms can be classi�ed into probabilistic and deterministic. They use local search todetermine local minima, and focus on bringing the search out of a local minimum once it gets there.In the past, very few deterministic methods have been developed, most of which apply deterministicheuristics (such as modifying the trajectory in covering methods and adding penalties in penalty-basedmethods) to bring a search out of a local minimum. Other methods, like covering methods, partition asearch space into subspaces before searching. All these methods do not work well when the search space istoo large for deterministic methods to cover adequately.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



2 Methods for Nonlinear Unconstrained Minimization 4Existing global minimization methodsCovering methods | These methods detect subregions not containing the global minimum and excludethem from further consideration. In general, this approach is useful for problems requiring solutions withguaranteed accuracy. These methods can be computationally expensive, as computation time increasesdramatically as problem size increases.Generalized descent methods | (a) Trajectory methods modify the di�erential equations describingthe local descent trajectory. Their major disadvantage is the large number of function evaluations spentin unpromising regions. (b) Penalty methods prevent multiple determination of the same local minima bymodifying the objective function, namely, by introducing a penalty term relating each local minimum foundto an auxiliary function. Their problem is that as more local minima are found, the auxiliary functionbecomes rather 
at, and the modi�ed objective function becomes more di�cult to minimize.Clustering methods | Clustering analysis is used to prevent redetermination of already known localminima. There are two strategies for grouping the points around a local minimum: (a) retain only pointswith relatively low function values; (b) push each point towards a local minimum by performing a few stepsof a local search. They do not work well when the terrain is very rugged.Random search methods | These include pure random search, single-start, multi-start, random linesearch, adaptive random search, partitioning into subsets, replacing the worst point, evolutionary algorithms,and simulated annealing. They are simple to realize and perform well for some applications. However, theyusually have many parameters that are problem-speci�c, leading to low e�ciency when improperly applied.Methods based on stochastic models|Most of these methods use random variables to model unknownvalues of an objective function. One example is the Bayesian method, which is based on a stochastic functionand minimizes the expected deviation of the estimate from the real global minimum. Although very attractivetheoretically, they are too expensive to be applied to problems with more than twenty variables. Further,they approximate the objective function in the average sense, which does not help when the goal is to �ndthe minimum solution.On the other hand, probabilistic global minimization methods rely on probability to make decisions.The simplest probabilistic algorithm uses restarts to bring a search out of a local minimum when littleimprovement can be made locally. This is used in learning methods such as BP. More advanced methodsrely on probability to indicate whether a search should ascend from a local minimum (like in simulatedannealing when it accepts up-hill movements). Other stochastic methods rely on probability to decide whichintermediate points to interpolate as new starting points (like in random recombinations and mutations inevolutionary algorithms). All these algorithms are weak in either their local or their global search. Forinstance, gradient information useful in local search is not used well in simulated annealing and evolutionaryalgorithms. In contrast, gradient-descent algorithms with multi-starts are weak in global search.Other probabilistic methods rely on sampling to determine the terrain and to decide where to search. Suchstrategies may fail when the terrain is very rugged or when the search gets trapped in a deep but suboptimalvalley. This happens in clustering methods, whose performance is similar to that of random restarts whenthe terrain is rugged. Bayesian methods, on the other hand, do not work well because most of the samplesthey collect randomly from the error surface are close to the average error value, and these samples areinadequate to model the behavior at minimal points. Further, they are very expensive computationally andare usually not applicable for problems with over twenty variables.Up to today, general nonlinear (global or local) minimization algorithms can at best �nd good local min-ima of a multi-modal function. Only in cases with very restrictive assumptions, such as Lipschitz condition,algorithms with guaranteed accuracy can be constructed.In the next section, we propose a new global minimization method, called the NOVEL method, and itsapplication to neural network learning. The method is unique because it has a deterministic mechanism tobring a search out of a local minimum.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



3 NOVEL: A Novel Global Optimization Method 5T (t) Descent MethodsApply gradient descent from these pointsGlobal Search PhaseLocal Search Phase Select starting points fromX1(t), X2(t), X3(t); Local MinimaStage 2 Stage 3X1(t) X2(t) X3(t)+Q(T (t);X1(t)) +Q(X1(t);X2(t)) +Q(X2(t);X3(t))Stage 1_X1(t) = P (rXf(X1(t))) _X2(t) = P (rXf(X2(t))) _X3(t) = P (rXf(X3(t)))Figure 3: Framework of the NOVEL method. (See Section 3.2 for an explanation of the equations.)3 NOVEL: A Novel Global Optimization MethodIn this section, we describe the NOVEL method, a hybrid global- and local-search method. Our methodis a trajectory-based method that relies on an external force to pull the search out of a local minimum,and employs local descents to locate local minima. It has three features: exploring the solution space,locating promising regions, and �nding local minima. In exploring the solution space, the search is guidedby a continuous terrain-independent trace that does not get trapped in local minima. In locating promisingregions, NOVEL uses local gradient to attract the search to a local minimum but relies on the trace to pullit out of the local minimum once little improvement can be found. Finally, NOVEL selects one initial pointfor each promising local region and uses them as initial points for a descent algorithm to �nd local minima.NOVEL is e�cient in the sense that it tries to �rst identify good starting points before applying a localsearch. This avoids repeatedly determining unpromising local minima as in multi-start algorithms, andavoids computationally expensive descent algorithms from random starting points.3.1 Framework of the NOVEL methodNOVEL has two phases: global-search phase and local-search phase (see Figure 3). The goal of the global-search phase is to identify regions containing local minima, whereas the goal of the local-search phase is toactually �nd the local minima.In the global-search phase, there are a number of bootstrapping stages. (Three stages are shown inFigure 3.) The dynamics in each stage is represented by an ordinary di�erential equation. A stage is coupledto the next stage by feeding its output trajectory as the trace function of the next stage, with a user-suppliedtrace function as the input trace function of the �rst stage. Interpolations are performed when the inputtrace supplied by the previous stage is not a continuous function.In general, the equations in each stage of the global-search phase can be di�erent. In earlier stages, moreweight can be placed on the trace function, allowing the resulting trajectory to explore more regions. Inlater stages, more weight can be placed on local descents, allowing the trajectory to descend deeper intolocal basins. Note that all the equations in the global-search phase can be combined into a single equationbefore being solved. We did not do so because each trajectory may identify new starting points that lead tobetter local minima. We present more details of the global-search phase in the next subsection.In the local-search phase, a traditional descent method, such as gradient descent, conjugate gradient orQuasi-Newton's method, is applied to �nd local minima. Initial points for the local search are selected basedon trajectories output by the global-search phase. Two heuristics can be applied in selecting initial points:use the best solutions in periodic time intervals as initial points, or use the local minima in the trajectoryin each stage as initial points. In our experiments, we have used the �rst alternative, as the error terrain inneural network learning is very rugged and the second alternative will result in too many initial points.Let us illustrate the global-search stage of NOVEL using a simple example based on Levy's No. 3IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



3.2 Major components in the global-search phase 6
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SFigure 4: 2-D contour plots of Levy's No. 3 function with superimposed search trajectories: trace functionstarting from S (�rst graph), trajectory after Stage 1 (second graph), trajectory after Stage 2 (third graph),and trajectory after Stage 3 (fourth graph). A darker color represents a smaller function value. Thetrajectories are solved by LSODE, a di�erential-equation solver.problem [5], which involves �nding the global minimum of a function of two variables x1 and x2:fl3 (x) = 5Xi=1 i cos[(i � 1)x1 + i] 5Xj=1 j cos[(j + 1)x2 + j] (2)Figure 4 shows the 2-D contour plots of this function and the search trajectories of NOVEL. In the rangeshown, the function has three local minima, one of which is the global minimum. Using a search range of[-1, 1] in each dimension, we start NOVEL from (0, 0) and run it until logical time t = 5. Although thetrace function visits all three basins, it only touches the basin with the global minimum. The trajectoriesare pulled closer to the local basins after Stages 1, 2 and 3, respectively. By following the trajectories, threebasins with local minima are identi�ed, and a set of minimal points in each trajectory can be used as initialpoints in the local-search phase.3.2 Major components in the global-search phaseAssume f(X) with gradient rXf(X) is to be minimized, where X = (x1; x2; � � � ; xn) are variables. Theremay be simple bounds like xi 2 [ai; bi], where ai; bi, i = 1; � � � ; n, are real numbers.Each stage in the global-search phase of NOVEL de�nes a trajectory X(t) = (x1(t); � � � ; xn(t)) that isgoverned by the following ordinary di�erential equation:_X(t) = P (rXf(X(t))) +Q(T (t); X(t)) (3)where t is the autonomous variable; T , the trace function, is a function of t; and P and Q are generalnonlinear functions. This equation speci�es a trajectory through variable space X. It has two components,P (rXf(X)) that enables the gradient to attract the trajectory to a local minimum, and Q(T;X) that allowsthe trace function to lead the trajectory out of the local minimum.P and Q can have various forms. A simple form we have used in our experiments is a constant function._X(t) = ��g rXf(X(t)) � �t (X(t) � T (t)) (4)where �g and �t are constant coe�cients.To �nd the global minima e�ciently without any knowledge on the terrain, we should design a tracefunction that traverses the search space uniformly. There are two alternatives in traversing the space: (a)divide the space into subspaces and search one subspace extensively before another; and (b) search the spacefrom coarse to �ne. We have chosen the second approach because the number of dimensions is usually toolarge for the �rst approach to be practical. Using the second approach and after substantial experimentation,IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



4 Two-Spiral Problem 7Benchmark problems studied in our experiments (obtained from ftp.cs.cmu.edu)Two-spiral problem { Discriminate between two sets of training points that lie on two distinct spirals inthe x-y plane. Each spiral has 94 input-output pairs in both the training and test sets.Sonar problem|Discriminate between sonar signals bounced o� a metallic cylinder and those bounced o�a roughly cylindrical rock. We used the training and test samples in \aspect angle-dependent" experiments.Vowel recognition problem | Train a network to have speaker-independent recognition of the elevensteady-state vowels of British English. Vowels are classi�ed correctly when the distance of the correct outputto the actual output is the smallest among the distances from the actual output to all possible target outputs.10-parity problem| Train a network that computes the modulo-two sum of ten binary digits. There are1,024 training patterns and no test patterns.NetTalk problem | Train a network to produce proper phonemes, given a string of letters as input.NetTalk data set contains 20,008 English words. We have used the same network settings and unary encodingas in Sejnowski and Rosenberg's experiments [7], 1,000 most common English words as the training set, theentire data set as the test set, and the \best-guess" criterion.we have designed a non-periodic, analytical trace function as follows:Ti(t) = � sin"2�� t2�1�(0:05+0:45(i�1)=n)+ 2�(i � 1)n # (5)where i represents the i'th dimension, � is a coe�cient specifying the range, and n is the number of dimen-sions.Given (4), various numerical approaches can be applied to evaluate the ordinary di�erential equation.We have used both a di�erential-equation solver and a di�erence-equation solver.A di�erential-equation solver solves (4) as an ordinary di�erential equation. The software package wehave used is the Livermore Solver for Ordinary Di�erential Equations [6] (LSODE) that solves (4) to within aprescribed degree of accuracy. However, it is usually computationally expensive, especially when the numberof weights is large. Further, it requires the true gradient, meaning that neural-network learning can only bedone in an epoch-wise mode, not in a pattern-wise mode.The second approach is to discretize (4) and use a �nite-di�erence equation solver. The di�erence equationderived from (4) is as follows.X(t + �t) = X(t) + �t[��grXf(X(t)) � �t(X(t) � T (t))] (6)where �t is the step size. A large �t causes a large stride of variable modi�cation, possibly resulting inoscillations. On the other hand, a small �t means a longer computation time for traversing the samedistance. This approach is fast, and allows learning in both pattern-wise and epoch-wise mode. Howeversolutions may be slightly worse as compared to those found by LSODE.In the next two sections, we present experimental results in applying NOVEL to solve some neural-network benchmark problems. In general, NOVEL is able to �nd better results as compared to other globalminimization algorithms in the same amount of time.4 Two-Spiral ProblemIn this section, we compare the performance of NOVEL with that of other good methods for global mini-mization. We then describe how to speed up NOVEL using a di�erence-equation solver, and show trade-o�sbetween solution quality and computation speed.The two-spiral problem is a di�cult classi�cation problem. Published results include training feed-forwardnetworks using BP, CASCOR [8], and projection pursuit learning [9]. The smallest network is believed tohave nine hidden units with 75 weights trained by CASCOR.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



4 Two-Spiral Problem 8k hidden unitswith shortcutsfrom neuron ito neuron j,j > i, Inputs
OutputsgOutput neurong g ghidden unit 1 g(x) = 11+exp��xActivation function f :other neurons and incoming weights.where � is the sigmoid gain,x is inner product of outputs ofhidden unit kInput neuronsw wFigure 5: Neural-network structure for the two-spiral problem.In our experiments, we have used feed-forward networks with shortcuts (see Figure 5.) Each hidden unitis ordered and labeled by an index, and has incoming connections from all input nodes and from all hiddenunits with smaller indexes. The activation function is an asymmetric sigmoidal function f(x) = 1=(1+e��x),where � is the sigmoid gain. We have �xed the search range as [-1,1] in each dimension, and have varied� from 1 to 150. The error function E(w) de�ned in (1) is the total sum of squared error (TSSE). All ourexperiments were carried out on Sun SparcStation 20 model 71 (75 MHz) workstations.In applying NOVEL with the di�erential-equation solver LSODE, we always started our trace from theorigin of the weight space. This eliminates any bias in choosing \good" starting points in the search. NOVELgenerates trajectories that are function of the autonomous variable t, which we call logical time, and onetime unit represents a change from t = � to t = � + 1. In our experiments, we executed all three stages inthe global-search phase in each time unit.After trying various combinations of �, �g and �t for 4 and 5 hidden-unit networks, we found that thecombination of �g = 1, �t = 20 and � = 100 works well. This set of parameters were used in our experiments.NOVEL successfully trained �ve hidden-unit networks in less than 100 time units. Training four hidden-unit networks is more di�cult. After running NOVEL for 800 time units, which was 77.48 hours of CPUtime on a SparcStation 20/71, we found a solution with TSSE of 2.1 and 99% correct. Using this solutionas a new starting point, we executed NOVEL for another 89.44 hours and found in a solution that is 100%correct. The second �gure in the �rst row of Figure 6 shows how the best four hidden-unit network foundclassi�es the 2-D space.Next, we compare the performance of NOVEL with that of simulated annealing, evolutionary algorithms,cascade correlation with multi-starts (CASCOR-MS), gradient descent with multi-starts (GRAD-MS), andtruncated Newton's method with multi-starts (TN-MS). (See side-bar for explanation.) To allow a faircomparison, we ran all these methods for the same amount of time using the same network structure.The simulated annealing program used in our experiments is SIMANN from netlib [10]. We experimentedwith various temperature scheduling factors RT , function evaluation factors NT , and search ranges. Thebest results were achieved when RT = 0:99, NT = 5n, and the search range is [-2.0, 2.0].We have also studied two evolutionary algorithms (EAs): GENOCOP (GEnetic algorithm for NumericalOptimization for COnstrained Problems) by Michalewicz [11] and LICE (LInear Cellular Evolution) bySprave [12]. GENOCOP aims at �nding a global minimum of an objective function under linear constraints.We have tried various search ranges and population sizes. Search range [-0.5, 0.5] and population size100n give the best results. LICE is a parameter optimization program based on evolutionary strategies.In applying LICE, we have tried various initial search ranges and population sizes. Range [-0.1, 0.1] andpopulation size 100n give the best results.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996
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o oFigure 6: 2-D classi�cation graphs for the two-spiral problem by 3 (�rst column), 4 (second column), 5(third column) and 6 (fourth column) hidden-unit neural networks trained by NOVEL (upper row) andSIMANN (lower row). Parameters for NOVEL are �g = 1; �t = 20, and � = 100. Parameters for SIMANNare RT = 0:99; NT = 5n, and the search range is [-2.0, 2.0]. The crosses and circles represent the trainingpatterns.In applying CASCOR-MS, we ran Fahlman's CASCOR program [8] from random initial weights. Westarted from a new starting point when the current run did not result in a converged network for a maximumof 3, 4, 5 and 6 hidden units, respectively.In GRAD-MS, we generated multiple random initial points in the range [-0.2, 0.2]. Gradient descentswere done using LSODE.Finally, we have used truncated Newton's method obtained from netlib with multi-starts (TN-MS). Wegenerated random initial points in the range [-1, 1], and set the sigmoid gain to 1. Since one run of TN-MSis very fast, a large number of runs were done within the time limit.The best performance of these algorithms is shown in Figure 7, each showing the progress of one run ofa learning algorithm. Figure 8 summarizes the training and test results of the best solutions found by eachof these algorithms when run under 20 hours of CPU time on a Sun SparcStation 20/71. The graphs showthat NOVEL has the best training and test results for the neural networks found, followed by SIMANN,TN-MS, CASCOR-MS, and the two evolutionary algorithms. Figure 6 shows the best solutions obtained byNOVEL and SIMANN.The experimental results show that a learning algorithm's performance depends on the complexity ofthe error function. When the error function is complex and good solutions are few, NOVEL performs muchbetter than other algorithms.The di�erential-equation solver is computationally expensive. To improve the computational speed, wehave used a di�erence-equation solver instead of LSODE. In using a di�erence-equation solver, we have triedfour pairs of coe�cients: �g = 0:001 and �t = 0:01; �g = 0:001 and �t = 0:1; �g = 0:01 and �t = 0:1; and�g = 0:01 and �t = 0:1. Further, we have tried the following sigmoid gains �: 1, 10, 30, 50 and 100. Table 1presents the combination of parameters leading to the best results of NOVEL with epoch-wise training. Theresults show that the di�erence-equation solver is about ten times faster than LSODE. however, the solutionquality is slightly worse. IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



5 Experimental Results on Other Benchmarks 10Good global minimization methods for neural network learningSimulated annealing (SA) | SA is a stochastic global minimization method. Starting from an initialpoint, the algorithm takes a step and evaluates the error function once. When minimizing a function, anydown-hill movement is accepted, and the process repeats from this new starting point. An uphill movementmay be accepted, and by doing so, the search can escape from local minima. This uphill decision is madeby the Metropolis criteria. As the minimization process proceeds, the length of steps decreases and theprobability of accepting uphill movements decreases as well. The search converges to a local (sometimesglobal) minimum at the end.Evolutionary algorithm (EA) | EA is based on the computational model of evolution. A variety of EAshave been proposed in the past, among which include genetic algorithms, evolutionary programming, andevolutionary strategies. EAs maintain a population of individual points in the search space, and the perfor-mance of the population evolves to be better through selection, recombination, mutation and reproduction.The �ttest individual has the largest probability of survival. EAs have been applied to complex, multi-modalminimization problems with both discrete and continuous variables.Cascade correlation with multi-starts (CASCOR-MS) | Cascade correlation learning algorithm isa constructive method that starts from a small network, and gradually builds a larger network to solvethe problem. This algorithm was originally proposed by Fahlman and Lebiere [8] and has been appliedsuccessfully to some neural-network learning problems. In CASCOR-MS, multiple runs of CASCOR wereexecuted from randomly selected initial points.Gradient descent with multi-starts (GRAD-MS) |Gradient-descent algorithms are simple and popular,and their variants have been applied in many engineering applications. An example is the back-propagationlearning algorithm. For solving the two-spiral problem using NOVEL, gradient descents were performed bysolving an ordinary di�erential equation using LSODE.Truncated Newton's method with multi-starts (TN-MS) | Truncated Newton's method uses second-order information that may help convergence. They are usually much faster than LSODE.
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LICEFigure 8: Training and test errors of the best designs obtained by various algorithms for solving the two-spiral problem. There are 18, 25, 33, and 42 weights (including biases in neurons) in the neural network fornetworks with, respectively, 3, 4, 5, and 6 hidden units.Table 1: Summary results of NOVEL with a �nite di�erence-equation solver for solving the two-spiralproblem. The total number of time units in each run is 400.Number Number Sigmoid Coe�cients Best Solution CPU timeof hidden of gain training testing per time unitunits weights � �g �t TSSE Correct % Correct % (minutes)4 25 50 0.01 0.1 14.0 92.8 85.6 0.205 33 50 0.001 0.01 6.0 96.9 94.8 0.366 42 10 0.01 0.1 0.0 100 95.4 0.55The network topologies used in these experiments are layered feed-forward networks without shortcuts(to be consistent with what others have used), and the goal is to minimize the total sum of squared errors.Other setups are similar to those described for the two-spiral problem.For the sonar problem, we have applied NOVEL with a di�erence-equation solver, TN-MS, SIMANN,and BP. As found by Dixon [4], TN runs much faster than epoch-wise BP and achieves comparable solutions.SIMANN is one order of magnitude slower than TN-MS and NOVEL with a di�erence-equation solver, andthe results are not better. For these reasons, we describe only the results for TN-MS and NOVEL using adi�erence-equation solver, where TN is used in the local-search phase of NOVEL.Table 2 2 shows the best solutions of both algorithms that achieve the highest percentage of being correcton test patterns of the sonar problem. Our results show that NOVEL has found solutions with 1%-4% bettertest accuracy.The reason why NOVEL can �nd better local minima is attributed to its global-search stage. Since thefunction searched is very rugged, it is important to identify good basins before committing expensive localdescents into them. In contrast, the number of restarts that a multi-start algorithm can have is relativelysmall, given the limited time that the algorithm can run. However, multi-start algorithms may provide goodstarting points for NOVEL, although this is not the case for the sonar problem.2All the results in Table 2 were run under similar conditions and time limits. In particular, NOVEL always started fromthe origin and searched in the range [�1; 1] for each variable, using some combinations of sigmoid gains from the set f1, 10,30, 50, 100, 300g and (�g; �t) from the set f(10, 1), (1, 1), (1, 0.1), (0.1, 0.1), (0.1, 1), (0.1, 0.01), (0.01, 0.1)g. TN-MS wasrun using di�erent combinations of random initial points in the same search ranges and the same sigmoid gains as in NOVEL.In TN-MS+NOVEL, NOVEL always started from the best result of TN-MS using the same sigmoid gain when TN-MS wasrun. In solving the NetTalk problem, NOVEL used a learning rate of 2, a momentum of 0.1, and a search range of [-1,1]. BPgenerated its initial point in the range [-0.5,0.5].IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996



6 Conclusions 12Table 2: Comparison of the best results obtained by NOVEL and truncated Newton's algorithm with multi-starts (TN-MS) for solving four benchmark problems, where the parameters in one method that obtains thebest result may be di�erent from those of another method. Results in bold font are better than or equal toresults obtained by TN-MS. TN-MS NOVEL TN-MS + NOVELProblems # of # of Correct % # of Correct % # time Correct % # time CPU timeH.U. Wts. training test restarts training test units training test units limitsSonar 2 125 98.1 90.4 454 98.1 94.2 191 98.1 92.3 226 1000 sec3 187 100 91.3 485 100 92.3 291 100 92.3 315 2000 secVowel 2 55 72.2 50.9 298 72.5 49.1 131 73.5 50.6 203 2 hours4 99 80.7 56.5 152 82.6 57.8 41 81.2 57.1 168 2 hours10-parity 5 61 97.2 | 148 98.9 | 51 97.2 | 49 2000 sec6 73 97.6 | 108 99.8 | 62 97.6 | 44 3000 secPattern-wise BP NOVEL Pattern-wise BP + NOVELNetTalk 15 3,476 86.3 70.5 13 87.4 72.7 11 89.0 70.4 11 3 hours30 6,926 92.9 73.1 9 93.2 72.5 4 94.7 72.3 7 4 hoursOn the vowel-recognition problem, Table 2 shows that NOVEL improves in training as compared toTN-MS, but performs slightly worse in testing when there are two hidden units. TN-MS+NOVEL obtaineddesigns that are slightly worse than those by NOVEL but better than those by TN-MS.The next application is based on the 10-parity problem. Using a similar setup as described for the sonarproblem, NOVEL was able to improve the learning results as compared to TN-MS.In the last application, we have studied the NetTalk problem. Since the number of weights and trainingpatterns are very large, we have used pattern-wise learning when applying BP (as in the original experimentsby Sejnowski and Rosenberg [7]). By experimenting with di�erent parameter settings of BP, we have foundthe best learning result by BP is 86.3% for a 15 hidden-unit network.In applying NOVEL to solve the NetTalk problem, the number of weights is too large for us to use anymethod other than pattern-wise mode in the global-search phase and pattern-wise BP in the local-searchphase. Even so, very few (logical) time units could be simulated, and our designs perform slightly better inlearning but worse in testing when the number of hidden units is 15. To �nd better designs, we took thebest designs obtained by pattern-wise BP and applied NOVEL for 11 and 7 time units, respectively. Table 2shows slightly improved learning results but worse testing results. The worse testing results are probablydue to the small number of time units that NOVEL was run.In short, our experimental results by NOVEL in learning are always better than or equal to those byTN-MS but occasionally may be slightly worse in testing. This is attributed to the reasons that we did nothave enough time to run NOVEL, and that the solutions found by existing methods are already very good.In general, improvements of solutions that are close to the global minima are very hard, often requiringexponential amount of time unless a better search method is used.6 ConclusionsIn this paper, we have applied various global minimization methods to supervised learning of feed-forwardneural networks. The learning of weights in such networks can be treated as a nonlinear continuous mini-mization problem with rugged terrains. Our goal is to �nd neural networks with small number of weightsusing the same amount of time as in other algorithms, while avoiding the over�tting of weights in largenetworks. Our reasoning is that there are many good local minima in the error space of large networks,hence increasing the chance to �nd a good local minimum that does not generalize well to test patterns.We have identi�ed two crucial features of suitable algorithms for solving these problems. (a) Use gradientinformation to descend into local minima. Many algorithms have di�culties when the surface is 
at, or whengradients can vary in a large range, or when the terrain is rugged. (b) Escape from a local minimum oncethe search gets there. Such mechanisms can be classi�ed into probabilistic and deterministic. The suitabilityof a speci�c strategy is usually problem dependent.IEEE Computer, vol. 29, no. 3, pp. 45-54, March 1996
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