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Abstract

In this paper, we study various supervised learning methods for training feed-forward neural networks.
In general, such learning can be considered as a nonlinear global optimization problem in which the goal is
to minimize a nonlinear error function that spans the space of weights using heuristic strategies that look
for global optima (in contrast to local optima). We survey various global optimization methods suitable
for neural-network learning, and propose the NOVEL method, a novel global optimization method for
nonlinear optimization and neural network learning. By combining global and local searches, we show
how NOVEL can be used to find a good local minimum in the error space. Our key idea is to use a
user-defined trace that pulls a search out of a local minimum without having to restart it from a new
starting point. Using five benchmark problems, we compare NOVEL against some of the best global
optimization algorithms and demonstrate its superior improvement in performance.

1 Introduction

In this paper, we study various methods for the supervised learning of feed-forward neural networks. These
networks perform mappings from an input space to an output space. In spite of different activation functions
of neurons and connection structures, output O of a neural network can be defined as a function of inputs
X and connection weights W: O = ¢(X, W), where ¢ represents a mapping function.

Supervised learning involves finding a good mapping function that maps training patterns correctly as
well as to generalize the mapping found to test patterns not seen in training. This is done by adjusting
weights W on links while fixing the topology and activation function. In other words, given a set of training
patterns of input-output pairs { (I1, D1), (Iz, Da), -+, (I;m, D) } and an error function ¢(W, I, D), learning
strives to minimize learning error E(W):

min (W) = HI}Ii/nZE(W, I, Dy). (1)

i=1

One popular error function is the squared-error function in which e(W, I;, D;) = (¢(I;, W) — D;)?. Since
E(W) > 0 for a given set of training patterns, if there exists W’ such that E(W’) = 0, then W’ is a global
minimum; otherwise, the W that gives the smallest F(17) is the global minimum. The quality of a learned
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Figure 1: Two dimensional projections of the 33-dimensional error surface for a five hidden-unit 33-weight
feed-forward neural network with sigmoidal activation function. The terrain is around a solution found by
NOVEL to solve the two-spiral problem.

network is measured by its error on a given set of training patterns and its (generalization) error on a given
set of test patterns.

In the form represented in (1), supervised learning can be considered as an unconstrained nonlinear
minimization problem in which the objective function is defined by (1), and the search space is defined by
the space of the weights.! Unfortunately, the terrain modeled by the error function in its weight space can
be extremely rugged and has many local minima. This phenomenon is illustrated in Figure 1 that shows two
contour plots of the error surface around a local minimum along two pairs of dimensions. The network here
has been trained to solve the two-spiral problem (to be discussed in Section 4). Obviously, a search method
that cannot escape from a local minimum will have difficulty in finding a solution that minimizes (1).

Many learning algorithms find their roots in function-minimization algorithms that can be classified
into local minimization and global minimization. Local minimization algorithms, such as gradient-descent,
are fast but usually converge to local minima. In contrast, global minimization algorithms have heuristic
strategies to help escape from local minima.

There are many benefits in using smaller neural networks. First, they are less costly to implement and
are faster, both in hardware and in software. Second, they generalize better because they avoid over-fitting
the weights to the training patterns. In general, more unknown parameters (weights) induce more local
minima in the error surface. Hence, the error surface of smaller networks can be very rugged and have
few good solutions, making it difficult for a local minimization algorithm to find a good solution from a
random starting point. This phenomenon also explains why a gradient-based local search method, such as
back-propagation, can find a converged network when the number of weights is large, but have difficulty
otherwise. To overcome this problem, more powerful global search methods are needed.

In this paper, we propose a novel global minimization method called the NOVEL method, and demonstrate
its superior performance on neural network learning problems. Our major goals are to improve the neural
networks learned for an application using the same amount of time as in other algorithms, as well as to find
smaller networks using more time. In Section 2, we summarize previous work on unconstrained nonlinear
minimization methods, and discuss their applications in neural network learning. In Section 3, we present
the framework and components of NOVEL. To illustrate the minimization process, we show in Section 4 the
learning of a neural network for solving the two-spiral problem, and compare NOVEL with some of the best
global minimization algorithms. In Section 5, we evaluate the performance of NOVEL by applying it to four
other benchmark problems. Finally, conclusions are drawn in Section 6.

I'Without loss of generality, we consider minimization problems in this paper.
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Figure 2: Classification of unconstrained nonlinear continuous global minimization methods. See side-bar
for explanation of terminologies.

2 Methods for Nonlinear Unconstrained Minimization

Learning the weights of a feed-forward neural network can be considered as solving an unconstrained contin-
uous nonlinear minimization problem. In the past, many techniques have been developed for solving similar
problems in other disciplines. In this section, we summarize the key results in this area.

The task in solving an unconstrained continuous nonlinear minimization problem is to find assignments to
its variables so that the given objective function is minimized. These problems are classified into uni-modal
and multi-modal, depending on the number of local minima in the space of the objective function.

Neural network learning, in general, is a multi-modal nonlinear minimization problem with many local
minima. Our study of E(W) reveals the following features: (a) Flat regions may mislead gradient-based
methods; (b) There may be many local minima that trap gradient-based methods; (¢) Deep but suboptimal
valleys may trap any search method; (d) Gradients may differ by many orders of magnitude, making it
difficult to use gradients in any search method. A good search method should, therefore, have mechanisms
(a) to use gradient information to perform local search (and be able to adjust to changing gradients) and
(b) to escape from a local minimum after getting there.

Search methods can be classified into local minimization and global minimization. Local minimization
algorithms, such as gradient-descent and Newton’s method, find local minima efficiently and work best in
uni-modal problems. Global minimization methods, in contrast, employ heuristic strategies to look for global
minima and do not stop after finding a local minimum [1, 2].

Many local minimization methods have been applied to learning of feed-forward neural networks [3, 4].
Examples include back-propagation (BP), conjugate-gradient and quasi-Newton’s methods. Local minimiza-
tion algorithms have difficulties when the surface is flat (gradient close to zero), or when gradients can be in
a large range, or when the surface is very rugged. When gradients can vary greatly, the search may progress
too slowly when the gradient is small and may over-shoot when the gradient is large. When the error surface
is rugged, a local search from a randomly chosen starting point will likely converge to a local minimum
close to the initial point and a solution worse than the global minimum. Moreover, these algorithms require
choosing some parameters, as incorrectly chosen parameters may result in slow convergence.

To overcome the deficiencies in local-search methods, global minimization methods have been developed.
Figure 2 classifies unconstrained nonlinear global minimization algorithms. (See side-bar for further expla-
nation.) These algorithms can be classified into probabilistic and deterministic. They use local search to
determine local minima, and focus on bringing the search out of a local minimum once it gets there.

In the past, very few deterministic methods have been developed, most of which apply deterministic
heuristics (such as modifying the trajectory in covering methods and adding penalties in penalty-based
methods) to bring a search out of a local minimum. Other methods, like covering methods, partition a
search space into subspaces before searching. All these methods do not work well when the search space is
too large for deterministic methods to cover adequately.
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Existing global minimization methods

Covering methods — These methods detect subregions not containing the global minimum and exclude
them from further consideration. In general, this approach is useful for problems requiring solutions with
guaranteed accuracy. These methods can be computationally expensive, as computation time increases
dramatically as problem size increases.

Generalized descent methods — (a) Trajectory methods modify the differential equations describing
the local descent trajectory. Their major disadvantage is the large number of function evaluations spent
in unpromising regions. (b) Penalty methods prevent multiple determination of the same local minima by
modifying the objective function, namely, by introducing a penalty term relating each local minimum found
to an auxiliary function. Their problem is that as more local minima are found, the auxiliary function
becomes rather flat, and the modified objective function becomes more difficult to minimize.

Clustering methods — Clustering analysis is used to prevent redetermination of already known local
minima. There are two strategies for grouping the points around a local minimum: (a) retain only points
with relatively low function values; (b) push each point towards a local minimum by performing a few steps
of a local search. They do not work well when the terrain is very rugged.

Random search methods — These include pure random search, single-start, multi-start, random line
search, adaptive random search, partitioning into subsets, replacing the worst point, evolutionary algorithms,
and simulated annealing. They are simple to realize and perform well for some applications. However, they
usually have many parameters that are problem-specific, leading to low efficiency when improperly applied.
Methods based on stochastic models — Most of these methods use random variables to model unknown
values of an objective function. One example is the Bayesian method, which is based on a stochastic function
and minimizes the expected deviation of the estimate from the real global minimum. Although very attractive
theoretically, they are too expensive to be applied to problems with more than twenty variables. Further,
they approximate the objective function in the average sense, which does not help when the goal is to find
the minimum solution.

On the other hand, probabilistic global minimization methods rely on probability to make decisions.

The simplest probabilistic algorithm uses restarts to bring a search out of a local minimum when little
improvement can be made locally. This i1s used in learning methods such as BP. More advanced methods
rely on probability to indicate whether a search should ascend from a local minimum (like in simulated
annealing when it accepts up-hill movements). Other stochastic methods rely on probability to decide which
intermediate points to interpolate as new starting points (like in random recombinations and mutations in
evolutionary algorithms). All these algorithms are weak in either their local or their global search. TFor
instance, gradient information useful in local search is not used well in simulated annealing and evolutionary
algorithms. In contrast, gradient-descent algorithms with multi-starts are weak in global search.

Other probabilistic methods rely on sampling to determine the terrain and to decide where to search. Such
strategies may fail when the terrain is very rugged or when the search gets trapped in a deep but suboptimal
valley. This happens in clustering methods, whose performance is similar to that of random restarts when
the terrain is rugged. Bayesian methods, on the other hand, do not work well because most of the samples
they collect randomly from the error surface are close to the average error value, and these samples are
inadequate to model the behavior at minimal points. Further, they are very expensive computationally and
are usually not applicable for problems with over twenty variables.

Up to today, general nonlinear (global or local) minimization algorithms can at best find good local min-
ima of a multi-modal function. Only in cases with very restrictive assumptions, such as Lipschitz condition,
algorithms with guaranteed accuracy can be constructed.

In the next section, we propose a new global minimization method, called the NOVEL method, and its
application to neural network learning. The method is unique because it has a deterministic mechanism to
bring a search out of a local minimum.
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Figure 3: Framework of the NOVEL method. (See Section 3.2 for an explanation of the equations.)

3 NOVEL: A Novel Global Optimization Method

In this section, we describe the NOVEL method, a hybrid global- and local-search method. Our method
i1s a trajectory-based method that relies on an external force to pull the search out of a local minimum,
and employs local descents to locate local minima. It has three features: exploring the solution space,
locating promising regions, and finding local minima. In exploring the solution space, the search is guided
by a continuous terrain-independent trace that does not get trapped in local minima. In locating promising
regions, NOVEL uses local gradient to attract the search to a local minimum but relies on the trace to pull
it out of the local minimum once little improvement can be found. Finally, NOVEL selects one initial point
for each promising local region and uses them as initial points for a descent algorithm to find local minima.

NOVEL is efficient in the sense that it tries to first identify good starting points before applying a local
search. This avoids repeatedly determining unpromising local minima as in multi-start algorithms, and
avoids computationally expensive descent algorithms from random starting points.

3.1 Framework of the NOVEL method

NOVEL has two phases: global-search phase and local-search phase (see Figure 3). The goal of the global-
search phase is to identify regions containing local minima, whereas the goal of the local-search phase is to
actually find the local minima.

In the global-search phase, there are a number of bootstrapping stages. (Three stages are shown in
Figure 3.) The dynamics in each stage is represented by an ordinary differential equation. A stage is coupled
to the next stage by feeding its output trajectory as the trace function of the next stage, with a user-supplied
trace function as the input trace function of the first stage. Interpolations are performed when the input
trace supplied by the previous stage is not a continuous function.

In general, the equations in each stage of the global-search phase can be different. In earlier stages, more
weight can be placed on the trace function, allowing the resulting trajectory to explore more regions. In
later stages, more weight can be placed on local descents, allowing the trajectory to descend deeper into
local basins. Note that all the equations in the global-search phase can be combined into a single equation
before being solved. We did not do so because each trajectory may identify new starting points that lead to
better local minima. We present more details of the global-search phase in the next subsection.

In the local-search phase, a traditional descent method, such as gradient descent, conjugate gradient or
Quasi-Newton’s method, is applied to find local minima. Initial points for the local search are selected based
on trajectories output by the global-search phase. Two heuristics can be applied in selecting initial points:
use the best solutions in periodic time intervals as initial points, or use the local minima in the trajectory
in each stage as initial points. In our experiments, we have used the first alternative, as the error terrain in
neural network learning is very rugged and the second alternative will result in too many initial points.

Let us illustrate the global-search stage of NOVEL using a simple example based on Levy’s No. 3
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problem [5], which involves finding the global minimum of a function of two variables 21 and x5:

fis (2 :chos (i —1)x + 1] Z]cos (J+ Do+ 7] (2)

i=1 j=1

Figure 4 shows the 2-D contour plots of this function and the search trajectories of NOVEL. In the range
shown, the function has three local minima, one of which is the global minimum. Using a search range of
[-1, 1] in each dimension, we start NOVEL from (0, 0) and run it until logical time ¢ = 5. Although the
trace function visits all three basins, it only touches the basin with the global minimum. The trajectories
are pulled closer to the local basins after Stages 1, 2 and 3, respectively. By following the trajectories, three
basins with local minima are identified, and a set of minimal points in each trajectory can be used as initial
points in the local-search phase.

3.2 Major components in the global-search phase

Assume f(X) with gradient Vx f(X) is to be minimized, where X = (1,22, -, ,) are variables. There
may be simple bounds like ; € [a;, b;], where a;,b;, i = 1,--- n, are real numbers.

Each stage in the global-search phase of NOVEL defines a trajectory X(t) = (x1(t),- -+, 2, (t)) that is
governed by the following ordinary differential equation:

X (1) = P(VxF(X(1) + Q(T(1), X (1)) (3)

where ¢ is the autonomous variable; 7', the trace function, is a function of ¢; and P and @ are general
nonlinear functions. This equation specifies a trajectory through variable space X. It has two components,
P(Vxf(X)) that enables the gradient to attract the trajectory to a local minimum, and Q(7, X) that allows
the trace function to lead the trajectory out of the local minimum.

P and @ can have various forms. A simple form we have used in our experiments is a constant function.

X(1) = —pg VxJ(X () = pe (X (1) = T(1)) (4)

where pg and p; are constant coefficients.

To find the global minima efficiently without any knowledge on the terrain, we should design a trace
function that traverses the search space uniformly. There are two alternatives in traversing the space: (a)
divide the space into subspaces and search one subspace extensively before another; and (b) search the space
from coarse to fine. We have chosen the second approach because the number of dimensions is usually too
large for the first approach to be practical. Using the second approach and after substantial experimentation,
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Benchmark problems studied in our experiments (obtained from ftp.cs.cmu.edu)

Two-spiral problem — Discriminate between two sets of training points that lie on two distinct spirals in
the z-y plane. Each spiral has 94 input-output pairs in both the training and test sets.

Sonar problem — Discriminate between sonar signals bounced off a metallic cylinder and those bounced off
a roughly cylindrical rock. We used the training and test samples in “aspect angle-dependent” experiments.
Vowel recognition problem — Train a network to have speaker-independent recognition of the eleven
steady-state vowels of British English. Vowels are classified correctly when the distance of the correct output
to the actual output is the smallest among the distances from the actual output to all possible target outputs.
10-parity problem — Train a network that computes the modulo-two sum of ten binary digits. There are
1,024 training patterns and no test patterns.

NetTalk problem — Train a network to produce proper phonemes, given a string of letters as input.
NetTalk data set contains 20,008 English words. We have used the same network settings and unary encoding
as in Sejnowski and Rosenberg’s experiments [7], 1,000 most common English words as the training set, the
entire data set as the test set, and the “best-guess” criterion.

we have designed a non-periodic, analytical trace function as follows:

1-(0.0540.45(i—1)/n) .

T;(t) = psin [271' (z) + (i1 (5)
2 n

where ¢ represents the ¢'th dimension, p is a coefficient specifying the range, and n is the number of dimen-
sions.

Given (4), various numerical approaches can be applied to evaluate the ordinary differential equation.
We have used both a differential-equation solver and a difference-equation solver.

A differential-equation solver solves (4) as an ordinary differential equation. The software package we
have used is the Livermore Solver for Ordinary Differential Equations [6] (LSODE) that solves (4) to within a
prescribed degree of accuracy. However, it is usually computationally expensive, especially when the number
of weights is large. Further, it requires the true gradient, meaning that neural-network learning can only be
done in an epoch-wise mode, not in a pattern-wise mode.

The second approach is to discretize (4) and use a finite-difference equation solver. The difference equation
derived from (4) is as follows.

X(t+6t) = X (1) + 6tV x F(X (1) — (X (1) — T(2))] (6)

where dt is the step size. A large dt causes a large stride of variable modification, possibly resulting in
oscillations. On the other hand, a small ¢ means a longer computation time for traversing the same
distance. This approach is fast, and allows learning in both pattern-wise and epoch-wise mode. However
solutions may be slightly worse as compared to those found by LSODE.

In the next two sections, we present experimental results in applying NOVEL to solve some neural-
network benchmark problems. In general, NOVEL is able to find better results as compared to other global
minimization algorithms in the same amount of time.

4 Two-Spiral Problem

In this section, we compare the performance of NOVEL with that of other good methods for global mini-
mization. We then describe how to speed up NOVEL using a difference-equation solver; and show trade-offs
between solution quality and computation speed.

The two-spiral problem is a difficult classification problem. Published results include training feed-forward
networks using BP, CASCOR [8], and projection pursuit learning [9]. The smallest network is believed to
have nine hidden units with 75 weights trained by CASCOR.
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Figure 5: Neural-network structure for the two-spiral problem.

In our experiments, we have used feed-forward networks with shortcuts (see Figure 5.) Each hidden unit
is ordered and labeled by an index, and has incoming connections from all input nodes and from all hidden
units with smaller indexes. The activation function is an asymmetric sigmoidal function f(z) = 1/(1+e%%),
where « is the sigmoid gain. We have fixed the search range as [-1,1] in each dimension, and have varied
« from 1 to 150. The error function E(w) defined in (1) is the total sum of squared error (TSSE). All our
experiments were carried out on Sun SparcStation 20 model 71 (75 MHz) workstations.

In applying NOVEL with the differential-equation solver LSODE, we always started our trace from the
origin of the weight space. This eliminates any bias in choosing “good” starting points in the search. NOVEL
generates trajectories that are function of the autonomous variable ¢, which we call logical time, and one
time unit represents a change from ¢t = 7 tot = 7 4+ 1. In our experiments, we executed all three stages in
the global-search phase in each time unit.

After trying various combinations of o, g and p; for 4 and 5 hidden-unit networks, we found that the
combination of y, = 1, iy = 20 and o = 100 works well. This set of parameters were used in our experiments.

NOVEL successfully trained five hidden-unit networks in less than 100 time units. Training four hidden-
unit networks is more difficult. After running NOVEL for 800 time units, which was 77.48 hours of CPU
time on a SparcStation 20/71, we found a solution with TSSE of 2.1 and 99% correct. Using this solution
as a new starting point, we executed NOVFEL for another 89.44 hours and found in a solution that is 100%
correct. The second figure in the first row of Figure 6 shows how the best four hidden-unit network found
classifies the 2-D space.

Next, we compare the performance of NOVEL with that of simulated annealing, evolutionary algorithms,
cascade correlation with multi-starts (CASCOR-MS), gradient descent with multi-starts (GRAD-MS), and
truncated Newton’s method with multi-starts (TN-MS). (See side-bar for explanation.) To allow a fair
comparison, we ran all these methods for the same amount of time using the same network structure.

The simulated annealing program used in our experiments is SIMANN from netlib [10]. We experimented
with various temperature scheduling factors RT, function evaluation factors NT', and search ranges. The
best results were achieved when RT = 0.99, NT = bn, and the search range is [-2.0, 2.0].

We have also studied two evolutionary algorithms (EAs): GENOCOP (GEnetic algorithm for Numerical
Optimization for COnstrained Problems) by Michalewicz [11] and LICE (LInear Cellular Evolution) by
Sprave [12]. GENOCOP aims at finding a global minimum of an objective function under linear constraints.
We have tried various search ranges and population sizes. Search range [-0.5, 0.5] and population size
100 give the best results. LICE is a parameter optimization program based on evolutionary strategies.
In applying LICE, we have tried various initial search ranges and population sizes. Range [-0.1, 0.1] and
population size 100n give the best results.
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Figure 6: 2-D classification graphs for the two-spiral problem by 3 (first column), 4 (second column), 5
(third column) and 6 (fourth column) hidden-unit neural networks trained by NOVEL (upper row) and
SIMANN (lower row). Parameters for NOVEL are py = 1, iy = 20, and o = 100. Parameters for SIMANN
are RT = 0.99, NT = bn, and the search range is [-2.0, 2.0]. The crosses and circles represent the training
patterns.

In applying CASCOR-MS, we ran Fahlman’s CASCOR program [8] from random initial weights. We
started from a new starting point when the current run did not result in a converged network for a maximum
of 3, 4, 5 and 6 hidden units, respectively.

In GRAD-MS, we generated multiple random initial points in the range [-0.2, 0.2]. Gradient descents
were done using LSODE.

Finally, we have used truncated Newton’s method obtained from netlib with multi-starts (TN-MS). We
generated random initial points in the range [-1, 1], and set the sigmoid gain to 1. Since one run of TN-MS
is very fast, a large number of runs were done within the time limit.

The best performance of these algorithms is shown in Figure 7, each showing the progress of one run of
a learning algorithm. Figure 8 summarizes the training and test results of the best solutions found by each
of these algorithms when run under 20 hours of CPU time on a Sun SparcStation 20/71. The graphs show
that NOVEL has the best training and test results for the neural networks found, followed by SIMANN,
TN-MS, CASCOR-MS, and the two evolutionary algorithms. Figure 6 shows the best solutions obtained by
NOVEL and SIMANN.

The experimental results show that a learning algorithm’s performance depends on the complexity of
the error function. When the error function is complex and good solutions are few, NOVEL performs much
better than other algorithms.

The differential-equation solver is computationally expensive. To improve the computational speed, we
have used a difference-equation solver instead of LSODE. In using a difference-equation solver, we have tried
four pairs of coefficients: p, = 0.001 and p; = 0.01; py = 0.001 and gz = 0.1; gy = 0.01 and g = 0.1; and
ttg = 0.01 and p; = 0.1. Further, we have tried the following sigmoid gains «: 1, 10, 30, 50 and 100. Table 1
presents the combination of parameters leading to the best results of NOVEL with epoch-wise training. The
results show that the difference-equation solver is about ten times faster than LSODE. however, the solution
quality is slightly worse.
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Good global minimization methods for neural network learning

Simulated annealing (S4) — SA is a stochastic global minimization method. Starting from an initial
point, the algorithm takes a step and evaluates the error function once. When minimizing a function, any
down-hill movement 1s accepted, and the process repeats from this new starting point. An uphill movement
may be accepted, and by doing so, the search can escape from local minima. This uphill decision is made
by the Metropolis criteria. As the minimization process proceeds, the length of steps decreases and the
probability of accepting uphill movements decreases as well. The search converges to a local (sometimes
global) minimum at the end.

Evolutionary algorithm (EFA) — FA is based on the computational model of evolution. A variety of EAs
have been proposed in the past, among which include genetic algorithms, evolutionary programming, and
evolutionary strategies. EAs maintain a population of individual points in the search space, and the perfor-
mance of the population evolves to be better through selection, recombination, mutation and reproduction.
The fittest individual has the largest probability of survival. EAs have been applied to complex, multi-modal
minimization problems with both discrete and continuous variables.

Cascade correlation with multi-starts (CASCOR-MS) — Cascade correlation learning algorithm is
a constructive method that starts from a small network, and gradually builds a larger network to solve
the problem. This algorithm was originally proposed by Fahlman and Lebiere [8] and has been applied
successfully to some neural-network learning problems. In CASCOR-MS, multiple runs of CASCOR were
executed from randomly selected initial points.

Gradient descent with multi-starts (GRAD-MS) — Gradient-descent algorithms are simple and popular,
and their variants have been applied in many engineering applications. An example 1s the back-propagation
learning algorithm. For solving the two-spiral problem using NOVEL, gradient descents were performed by
solving an ordinary differential equation using LSODE.

Truncated Newton’s method with multi-starts (7N-MS) — Truncated Newton’s method uses second-
order information that may help convergence. They are usually much faster than LSODE.
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Figure 7: The best performance of one run of various global minimization algorithms for learning the weights
of neural networks with 5 and 6 hidden units for solving the two-spiral problem. (Sigmoid gain o = 100 for
all algorithms except CASCOR-MS and TN-MS, which has o = 1. CPU time allowed for each experiment
is 20 hours on Sun 20/71.)

5 Experimental Results on Other Benchmarks
In this section, we show our results in applying NOVEL on four benchmark problems described in the last

section (sonar, vowel-recognition, 10-parity, and NetTalk problems). All these benchmarks were obtained
from ftp.cs.cmu.edu in directory /afs/cs/project/connect/bench.
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Figure 8: Training and test errors of the best designs obtained by various algorithms for solving the two-
spiral problem. There are 18, 25, 33, and 42 weights (including biases in neurons) in the neural network for
networks with, respectively, 3, 4, 5, and 6 hidden units.

Table 1: Summary results of NOVEL with a finite difference-equation solver for solving the two-spiral
problem. The total number of time units in each run is 400.

Number | Number || Sigmoid | Coefficients Best Solution CPU time
of hidden of gain training testing per time unit
units weights o Hg pe || TSSE | Correct % | Correct % (minutes)
4 25 50 0.01 | 0.1 14.0 92.8 85.6 0.20
5 33 50 0.001 | 0.01 6.0 96.9 94.8 0.36
6 42 10 0.01 | 0.1 0.0 100 95.4 0.55

The network topologies used in these experiments are layered feed-forward networks without shortcuts
(to be consistent with what others have used), and the goal is to minimize the total sum of squared errors.
Other setups are similar to those described for the two-spiral problem.

For the sonar problem, we have applied NOVEL with a difference-equation solver, TN-MS, SIMANN,
and BP. As found by Dixon [4], TN runs much faster than epoch-wise BP and achieves comparable solutions.
SIMANN is one order of magnitude slower than TN-MS and NOVEL with a difference-equation solver, and
the results are not better. For these reasons, we describe only the results for TN-MS and NOVEL using a
difference-equation solver, where TN is used in the local-search phase of NOVEL.

Table 2 ? shows the best solutions of both algorithms that achieve the highest percentage of being correct
on test patterns of the sonar problem. Our results show that NOVEL has found solutions with 1%-4% better
test accuracy.

The reason why NOVEL can find better local minima is attributed to its global-search stage. Since the
function searched is very rugged, it is important to identify good basins before committing expensive local
descents into them. In contrast, the number of restarts that a multi-start algorithm can have is relatively
small, given the limited time that the algorithm can run. However, multi-start algorithms may provide good
starting points for NOVEL, although this 1s not the case for the sonar problem.

2 All the results in Table 2 were run under similar conditions and time limits. In particular, NOVEL always started from
the origin and searched in the range [—1,1] for each variable, using some combinations of sigmoid gains from the set {1, 10,
30, 50, 100, 300} and (g, u¢) from the set {(10, 1), (1, 1), (1, 0.1), (0.1, 0.1), (0.1, 1), (0.1, 0.01), (0.01, 0.1)}. TN-MS was
run using different combinations of random initial points in the same search ranges and the same sigmoid gains as in NOVEL.
In TN-MS+NOVEL, NOVEL always started from the best result of TN-MS using the same sigmoid gain when TN-MS was
run. In solving the NetTalk problem, NOVEL used a learning rate of 2, a momentum of 0.1, and a search range of [-1,1]. BP
generated its initial point in the range [-0.5,0.5].
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Table 2: Comparison of the best results obtained by NOVEL and truncated Newton’s algorithm with multi-
starts (TN-MS) for solving four benchmark problems, where the parameters in one method that obtains the
best result may be different from those of another method. Results in bold font are better than or equal to

results obtained by TN-MS.

TN-MS NOVEL TN-MS + NOVEL
Problems | # of | # of Correct % # of Correct % # time Correct % # time CPU time
H.U. | Wts. training | test | restarts || training | test units training [ test units limits
Sonar 2 125 98.1 90.4 454 98.1 94.2 191 98.1 92.3 226 1000 sec
3 187 100 91.3 485 100 92.3 291 100 92.3 315 2000 sec
Vowel 2 55 72.2 50.9 298 72.5 49.1 131 73.5 50.6 203 2 hours
4 99 80.7 56.5 152 82.6 57.8 41 81.2 57.1 168 2 hours
10-parity 5 61 97.2 — 148 98.9 — 51 97.2 — 49 2000 sec
6 73 97.6 — 108 99.8 — 62 97.6 — 44 3000 sec
Pattern-wise BP NOVEL Pattern-wise BP + NOVEL
NetTalk 15 3,476 86.3 70.5 13 87.4 72.7 11 89.0 70.4 11 3 hours
30 6,926 92.9 73.1 9 93.2 72.5 4 94.7 72.3 7 4 hours

On the vowel-recognition problem, Table 2 shows that NOVEL improves in training as compared to
TN-MS, but performs slightly worse in testing when there are two hidden units. TN-MS+NOVEL obtained
designs that are slightly worse than those by NOVEL but better than those by TN-MS.

The next application is based on the 10-parity problem. Using a similar setup as described for the sonar
problem, NOVEL was able to improve the learning results as compared to TN-MS.

In the last application, we have studied the NetTalk problem. Since the number of weights and training
patterns are very large, we have used pattern-wise learning when applying BP (as in the original experiments
by Sejnowski and Rosenberg [7]). By experimenting with different parameter settings of BP, we have found
the best learning result by BP is 86.3% for a 15 hidden-unit network.

In applying NOVEL to solve the NetTalk problem, the number of weights is too large for us to use any
method other than pattern-wise mode in the global-search phase and pattern-wise BP in the local-search
phase. Even so, very few (logical) time units could be simulated, and our designs perform slightly better in
learning but worse in testing when the number of hidden units is 15. To find better designs, we took the
best designs obtained by pattern-wise BP and applied NOVEL for 11 and 7 time units, respectively. Table 2
shows slightly improved learning results but worse testing results. The worse testing results are probably
due to the small number of time units that NOVEL was run.

In short, our experimental results by NOVEL in learning are always better than or equal to those by
TN-MS but occasionally may be slightly worse in testing. This is attributed to the reasons that we did not
have enough time to run NOVEL, and that the solutions found by existing methods are already very good.
In general, improvements of solutions that are close to the global minima are very hard, often requiring
exponential amount of time unless a better search method is used.

6 Conclusions

In this paper, we have applied various global minimization methods to supervised learning of feed-forward
neural networks. The learning of weights in such networks can be treated as a nonlinear continuous mini-
mization problem with rugged terrains. Our goal is to find neural networks with small number of weights
using the same amount of time as in other algorithms, while avoiding the overfitting of weights in large
networks. Our reasoning is that there are many good local minima in the error space of large networks,
hence increasing the chance to find a good local minimum that does not generalize well to test patterns.

We have identified two crucial features of suitable algorithms for solving these problems. (a) Use gradient
information to descend into local minima. Many algorithms have difficulties when the surface is flat, or when
gradients can vary in a large range, or when the terrain is rugged. (b) Escape from a local minimum once
the search gets there. Such mechanisms can be classified into probabilistic and deterministic. The suitability
of a specific strategy is usually problem dependent.
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Different algorithms performs different trade-offs between local search and global search. Algorithms
that focus on either extreme do not work well. These include gradient descent with multi-starts (such as
back-propagation and cascade correlation that focus too much on local search) and covering methods (that
focus too much on global search). A good algorithm generally combines global and local searches, switching
from one to another dynamically depending on run-time information obtained. These include algorithms
based on simulated annealing, evolution, and clustering.

We have examined the pros and cons of various algorithms and have proposed NOVEL, a novel global
minimization method for general nonlinear optimization. NOVEL has a global-search phase that relies
on two counteracting forces: local gradient information that drives the search to a local minimum, and a
deterministic trace that leads the search out of a local minimum once it gets there. The result is an efficient
method that identifies good basins without spending a lot of time in them. Good starting points identified
in the global-search phase are used in the local-search phase in which pure gradient descents are applied.

We have implemented NOVEL using a differential-equation solver as well as a difference-equation solver,
and have shown improved performance for five neural-network benchmark problems. For the two-spiral
problem, we have shown a design with near-perfect classification using four hidden units and 25 weights.
(The best design known today requires nine hidden units and 75 weights.)

Although we have demonstrated the power of NOVEL in solving some neural-network benchmarks, we
still need further study on the applicability of NOVEL to other benchmarks as well as to general non-linear
optimization problems. In particular, we need to study new trace functions that cover the search space from
coarse to fine, their search range, the combination of NOVEL with other local/global search methods, the
relative weights between local descent and affinity to the traveling trace, parallel processing of NOVEL, and
applying NOVEL to solve other application problems.

In short, NOVEL represents a significant advance in the state-of-the-art in supervised learning of feed-
forward neural networks and optimization of general high-dimensional nonlinear continuous functions.
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