Reprint: Proc. 8" Aust. Conf. on Neural Networks, Melb. 1997, pp 181-185 1

On The Pairing Of The Softmax Activation And
Cross—Entropy Penalty Functions And The
Derivation Of The Softmax Activation Function

R. A. Dunne* & N. A. Campbell

Abstract

It is suggested in the literature [2, 1] that there is a nat-
ural pairing between the softmax activation function
and the cross—entropy penalty function. We clarify a
reason for this pairing and give an improved deriva-
tion of the softmax activation function. In addition,
we empirically compare some penalty /activation func-
tion pairs.

1 Introduction

The standard MLP model with two layers of adjustable
parameters, p inputs, A hidden layer units and ¢ out-
put units, and no skip— or intra—layer connections, is

described by

mlp(z;, T, Q) = fo(T[L, {fn(Qx:)}']"),

where T (of size ¢ x A+ 1) and Q (of size h x p+ 1)
are the two matrices of adjustable parameters and
fn o R" — (0,1)" applies the same 1-variable “squash-
ing” function to each of its coordinates. We take
the “squashing” function to be the standard sigmoid
fil@) = 1/{1 + exp(—a)}.

We also have a set of training data 7' = {z,,,t, }\_,,
where each z, is a feature vector of length p, aug-
mented by the addition of a 1 in the first coordinate
position', and ¢, is an encoding of the class label as
a target vector of length ¢q. t,x is then the (n, k)"
element of the target matrix.

For convenience we write y = Qua and yx =
(1, {fn(y1, .. ,yn)}")t, the y vector being an argument
to the function fp, augmented by a 1 in the first coor-
dinate position. This now forms the data input to the
next, and in this case final, layer of the network. So
we have z = T y* and

mlp(e, T, Q) = 2% = fy(2) = fo(Y[L, {Fa(Q2)}']).
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I The 1 supplies what is known as the “bias”, which in some
formulations of the MLP is supplied internally by the unit itself.

fq will be either the logistic activation function, like
fn, or the softmax activation function,

exp(zy)

2ok, eXP(2k,)

We consider two penalty functions. One is the least
squares penalty function

N g
p= 30D 120tk — 2,

n=1k=1

fo(k) =z, =

and the other is the cross—entropy penalty function

N g
Pec = Zztnk IOg(

n=1k=1

thk
)
an

Fitting the MLP model involves minimizing p, for
which the derivatives with respect to the weights T
and €2 are generally required. In the standard imple-
mentation these weights are initially assigned random
values, chosen uniformly from a small interval, often

(—1,1).

2 The “Natural” Pairing and A,

We consider the case where 2} is given by the softmax
activation function and p. is the cross—entropy activa-
tion function. Then
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Hence, for v;r € T we can write

apc _ L 3Pc 3221 Jzy
8Ujk -

1 8221 8Zk 8Ujk

8Zk
8Ujk

k1

:Ak‘

and we can go on to calculate the derivatives of the
other layers of the MLP.

As 221:1 tr, will in general sum to one, Bishop
gives (1) as (27 — tx). He suggests that as:

e linear output units and a least squares penalty
function;

e a two—class cross—entropy penalty function and a
logistic activation function; and

e a multi—class cross—entropy penalty function and
a softmax activation function

all give the same Ap = z; — 1, there is a natural
pairing of activation functions and penalty functions.
When we use the natural pairing, we will always have
Ak = ZZ — tk.

However, it is easy to show that if we have a multi—
class cross—entropy penalty function and a logistic ac-
tivation function, we get the same Ay term. Taking
2} to be the output from a logistic activation function,
we have

Ipe _ Zq: Ipe 3221
Oz = 6,221 Oz
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and we have the same Ay term as before.
Unfortunately, the logistic activation function
paired with the cross—entropy penalty term is not sen-
sible. To see why, we plot the cross—entropy and least
squares penalty functions (figures 1 and 2) for ¢ and
z* in the region [0, 1]2. For the least squares function,
we can see that p has a minimum value of 0 when-
ever z* = t. However, for the cross entropy error

function, we have a minimum of —e™! at the point

(2*,t) = (1,e7!) and, for a given non-zero target t;,
the function is minimized when 2} = 1. Hence the
MLP will be returning 1 for all classes and thus only
the additional constraint that 3, 2z} = 1 makes the
softmax activation function usable.

We can also consider pairing the least squares
penalty function with the softmax activation function.
Table 1 shows the Aj; term for each of the possibil-
ities. We note that the combination of least squares
and softmax gives a more complex Ag.

Note that a combination of logistic outputs with a
least—squares penalty function gives unbiased estima-
tors of the posterior probability of class membership,
P(C|X), given that the MLP is of sufficient power to
model the posterior probability to an arbitrary accu-
racy. Hence we have the asymptotic property that the
outputs from a multi—class MLP with least squares and
logistic functions will also sum to one. However, some
simple experiments show that this convergence is too
slow to be useful for reasonable sample sizes.

3 The Softmax Activation Func-
tion

The softmax activation function ensures that )", z; =
1, which is desirable in a 1 of ¢ classification, and allows
us to use the cross—entropy error function. However,
by modeling P(z|C) we can give a better justification
for the use of softmax activation function.

For a classification scheme using the sampling

paradigm [7, 5], P(C; | #) is modeled as
Pz | C;)P(Cy)
P(C; = —V

€110y = HELC

using Bayes’ rule.
For a two—class problem, this becomes

_ Pz | C1)P(Ch)
P(z|C1)P(C1) 4 P(2|Ch) P(Ch)

which we can write as

B 1
1 oxp {log [5ge] —tos [5ie3]

(2)

Now if we are discriminating between two classes,
with labels C7 and Cs, and if we are making some dis-
tributional assumptions about P(z | C}), it is a stan-
dard procedure to base the test on the likelihood ratio,

_ PG )

LR=— .
P(Cy | 2)
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For computational reasons, we take minus the log of
the likelihood and maximize this with respect to the
parameters of the distribution P(x | C}).

£ = — log(LR)
S bl R e |

[5] comments that this mathematical step (2) will
only be useful if the log likelihood has some convenient
and tractable form.

However, if we start off with multiple classes and as-
sume that P(X|C};) is a distribution from the exponen-
tial family of distributions?, parameterized by (6;, 1),
we can derive the softmax activation function directly.
Note that the distributions are assumed to have a com-
mon scale .

P(X[Ck)P(Cr)

Zq:P(XWj)P(Cj)

_]:;(XI%, ¥) P(Ck)
Zq:P(XWM/))P(Cj)

. {%x—u@)
a(t)

P(CyX) =

Zexp {HfX —b(6;) + log[P(Cj)]}

j=1

Note that 67 X —b(6x) +log[P(Cy)] is a linear com-
bination of the variables with an offset or bias term
and that (3) is the softmax activation function. This
shows that modeling the posterior as a softmax func-
tion is invariant to a family of classification problems
where the distributions are drawn from the same ex-
ponential family with equal scale parameters.

The logistic activation function is then recovered as
a special case of softmax.

4 A Comparison of Least
Squares and Cross—Entropy

This still leaves us with three possible estimators to
consider:

2The exponential family of distributions includes the bino-
mial, Poisson, negative binomial, gamma, Gaussian, uniform,
geometric, exponential etc. See [8] [6], for a discussion of some
of the properties.

e least—squares and the logistic activation function;
e least—squares and the softmax activation function;
e cross entropy and the softmax activation function.

The justifications for using these particular penalty
functions are quite disparate. Both have been shown
to result in z} approximating P(Cy|z) when used with
the “one of q” target encoding. Least squares is jus-
tified on the basis of the Gauss—Markov theorem or
intuitively, while cross—entropy is derived as a maxi-
mum likelihood (ML) estimator by modeling ¢, as a
Bernoulli random variable. This gives us the result
that, with some regularity conditions, if there exists
an unbiased estimator which attains the Cramér—Rao
minimum variance bound, then the ML estimator co-
incides with it. This does not seem very helpful with
an MLP model, as the point estimate of the posterior
probability P(C'|#) can only be shown to be unbiased
when there are an arbitrary number of hidden—layer
units [4]. The practice with very flexible models like
the MLP is to introduce some bias in order to reduce
the variance of the estimates [3]. In addition, the prop-
erties of Fisher efficiency that many ML estimators
have has to be shown in each particular case [8].

Why then would we use one estimator rather than
another? In particular, we would like to know how fast
zf converges to P(Cklz) (is it useful for reasonable-
sized samples?) and how variable the two estimates
are. There appears to be little guidance in the litera-
ture on these questions.

4.1 An Experiment

In the absence of any theoretical guidance, we con-
sider a simple simulation. We take 100 observations
from each of four Gaussian classes with means at the
four symmetric points {£1, &1} and unit variances and
conduct 100 trials, generating independent samples for
the training and testing cycles.

We consider two aspects here. One is the accuracy
of the estimates of P(C'|x) and the other is the class—
conditional error rates. The accuracy of P(C|z) can
be measured by the integrated difference between the
estimated posterior probabilities and the exact proba-
bilities

S [ - PGl @

We can calculate P(Cs|z) as the distributions are
known. We approximate (4) by
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this will only give a poor approximation but, as we are
comparing the three estimators on the same data, this
will allow us to rank them.

We can see from table 2 that the estimators are
ranked, from worst to best, in the order:

1. logistic activation function and least squares;
2. softmax activation function and least squares;
3. softmax activation function and cross-entropy.

It would appear that the improvement is due to both
the activation function and the penalty function. We
next calculated the class—conditional error rates using
the known distributions (table 3), and the empirical
results (tables 4, 5 and 6). Tt can be clearly seen (by
inspection or by a summary of the tables such as the
trace) that the estimators are again ranked in the same
order.

It would appear that even for a reasonably large
sample (400 observations in 4 classes), the combina-
tion of the softmax activation function and the cross
entropy penalty function gives the more accurate re-
sult.

5 Conclusion

We note that within the framework of function approx-
imation [4], all that is required to show that the MLP
1s a universal approximator is that the activation func-
tions be smooth, bounded, monotonic nonlinearities.
However, it appears that modeling P(x|C) as an ex-
ponential family distribution, and the target values as
a Bernoulli random variable, thus recovering the soft-
max activation function and the cross—entropy penalty
function, leads to more accurate results.

While the experiment described here is no substi-
tute for a theoretical understanding of the properties
of the three estimators, it does suggest that a prob-
abilistic approach to the MLP model yields more ac-
curate results. That this should be so in the case of
the estimates of P(Cj|#) is not surprising, as the logis-
tic outputs fail to sum to one in some regions of the
feature space. However, it 1s more surprising that the
classification accuracy is also improved with the cross—
entropy penalty function and the softmax function.
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least—squares cross-entropy
logistic | (2} —tx)(zf — (25)?) zE =ty

() = tzy -
softmax =t

2 (X, iz, — (35,)%) Rt

Table 1: Ay for various pairings of penalty and activa-
tion functions.

estimator variance
logistic  activation
function and least

squares
softmax activation

mean

4.621323 | 0.3146437

4.003461 | 0.2315692

function and least

squares
softmax activation

function and cross-
entropy

3.936804 | 0.1958714.

Table 2: A comparison of the estimates of the quantity
4 for the three estimators.
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1 2 3 4 ]
0.7079 [ 0.1335 | 0.1335 | 0.0252
0.1335 | 0.7079 | 0.0252 | 0.1335
0.1335 | 0.0252 | 0.7079 | 0.1335
0.0252 | 0.1335 | 0.1335 | 0.7079

N N

Table 3: The Bayesian class—conditional classification
rates. The true class is shown down the side of the
table and the ascribed class across the top of the table.

1 2 3 4
0.7001 | 0.1387 | 0.1336 | 0.0276
0.1450 | 0.6824 | 0.0243 | 0.1483
0.1350 | 0.0289 | 0.6999 | 0.1362
0.0344 | 0.1383 | 0.1398 | 0.6875

N N

Table 4: The class—conditional classification rates for
the least squares error function and the logistic activa-
tion function. The true class is shown down the side of

the table and the ascribed class across the top of the
table.

1 2 3 4 ]
0.7046 | 0.1376 | 0.1318 | 0.0260
0.1333 | 0.6981 | 0.0246 | 0.1440
0.1302 | 0.0265 | 0.7055 | 0.1378
0.0297 | 0.1343 | 0.1335 | 0.7025

N

Table 5: The class—conditional classification rates for
the cross—entropy penalty function and the softmax ac-
tivation function. The true class is shown down the

side of the table and the ascribed class across the top
of the table.

1 2 3 4
0.7068 | 0.1397 | 0.1274 | 0.0261
0.1373 | 0.6958 | 0.0241 | 0.1428
0.1310 | 0.0261 | 0.7039 | 0.1390
0.0317 | 0.1349 | 0.1324 | 0.7010

N N

Table 6: The class—conditional classification rates for
the least squares penalty function and the softmax ac-
tivation function. The true class is shown down the

side of the table and the ascribed class across the top
of the table.
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Figure 1: The cross—entropy penalty function p =
tlog(t/z). The function has a minimum of —e~?! at
the point (z*,t) = (1,e~!) and, for a given non-zero
target iy, the function is minimized when 2 = 1.
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Figure 2: The least squares penalty function p = %(t —
z)? has a minimum value of 0 when z = t.



