
Reprint: Proc. 8th Aust. Conf. on Neural Networks, Melb. 1997, pp 181{185 1On The Pairing Of The Softmax Activation AndCross{Entropy Penalty Functions And TheDerivation Of The Softmax Activation FunctionR. A. Dunne� & N. A. CampbellyAbstractIt is suggested in the literature [2, 1] that there is a nat-ural pairing between the softmax activation functionand the cross{entropy penalty function. We clarify areason for this pairing and give an improved deriva-tion of the softmax activation function. In addition,we empirically compare some penalty/activation func-tion pairs.1 IntroductionThe standard MLP model with two layers of adjustableparameters, p inputs, h hidden layer units and q out-put units, and no skip{ or intra{layer connections, isdescribed bymlp(xi;�;
) = fq(�[1; ffh(
xi)gt]t);where � (of size q � h + 1) and 
 (of size h � p + 1)are the two matrices of adjustable parameters andfh : Rh ! (0; 1)h applies the same 1{variable \squash-ing" function to each of its coordinates. We takethe \squashing" function to be the standard sigmoidf1(x) = 1=f1 + exp(�x)g.We also have a set of training data T = fxn; tngNn=1,where each xn is a feature vector of length p, aug-mented by the addition of a 1 in the �rst coordinateposition1, and tn is an encoding of the class label asa target vector of length q. tnk is then the (n; k)thelement of the target matrix.For convenience we write y = 
x and y� =(1; ffh(y1; : : : ; yh)gt)t, the y vector being an argumentto the function fh, augmented by a 1 in the �rst coor-dinate position. This now forms the data input to thenext, and in this case �nal, layer of the network. Sowe have z = � y� andmlp(x;�;
) = z� = fq(z) = fq(�[1; ffh(
x)gt]t):�Rob Dunne is at the Victoria University of Technology, Vic-toria, Australia, email: dunne@matilda.vut.edu.auyNorm Campbell is a Senior Principal Research Scientist atthe CSIRO Mathematical and Information Sciences, WesternAustralia.1The 1 supplies what is known as the \bias", which in someformulations of the MLP is supplied internally by the unit itself.

fq will be either the logistic activation function, likefh, or the softmax activation function,fq(k) = z�k = exp(zk)Pk1 exp(zk1) :We consider two penalty functions. One is the leastsquares penalty function�l = NXn=1 qXk=11=2(tnk � z�nk)2;and the other is the cross{entropy penalty function�c = NXn=1 qXk=1 tnk log( tnkz�nk ):Fitting the MLP model involves minimizing �, forwhich the derivatives with respect to the weights �and 
 are generally required. In the standard imple-mentation these weights are initially assigned randomvalues, chosen uniformly from a small interval, often(�1; 1).2 The \Natural" Pairing and �kWe consider the case where z�k is given by the softmaxactivation function and �c is the cross{entropy activa-tion function. Then@�c@zk = qXk1=1 @�c@z�k1 @z�k1@zk= qXk1=1 �tk1z�k1 (z�k1�k;k1 � z�kz�k1)= qXk1=1�tk1(�k;k1 � z�k)= qXk1=1(tk1z�k � �k;k1tk1)= qXk1=1 tk1! z�k � tk (1)=�k say.



Reprint: Proc. 8th Aust. Conf. on Neural Networks, Melb. 1997, pp 181{185 2Hence, for �jk 2 � we can write@�c@�jk = qXk1=1 @�c@z�k1 @z�k1@zk @zk@�jk=�k @zk@�jkand we can go on to calculate the derivatives of theother layers of the MLP.As Pqk1=1 tk1 will in general sum to one, Bishopgives (1) as (z�k � tk). He suggests that as:� linear output units and a least squares penaltyfunction;� a two{class cross{entropy penalty function and alogistic activation function; and� a multi{class cross{entropy penalty function anda softmax activation functionall give the same �k = z�k � tk, there is a naturalpairing of activation functions and penalty functions.When we use the natural pairing, we will always have�k = z�k � tk.However, it is easy to show that if we have a multi{class cross{entropy penalty function and a logistic ac-tivation function, we get the same �k term. Takingz�k to be the output from a logistic activation function,we have @�c@zk = qXk1=1 @�c@z�k1 @z�k1@zk= qXk1=1 �tk1z�k1 @z�k1@zkbut as @z�k1@zk = 0 if k1 6= k@�c@zk =�tk1z�k1 @z�k@zkand as @z�k@zk = z�k � (z�k)2@�c@zk =z�k � tk=�kand we have the same �k term as before.Unfortunately, the logistic activation functionpaired with the cross{entropy penalty term is not sen-sible. To see why, we plot the cross{entropy and leastsquares penalty functions (�gures 1 and 2) for t andz� in the region [0; 1]2. For the least squares function,we can see that � has a minimum value of 0 when-ever z� = t. However, for the cross entropy error

function, we have a minimum of �e�1 at the point(z�; t) = (1; e�1) and, for a given non{zero target tk,the function is minimized when z�k = 1. Hence theMLP will be returning 1 for all classes and thus onlythe additional constraint that Pk z�k = 1 makes thesoftmax activation function usable.We can also consider pairing the least squarespenalty function with the softmax activation function.Table 1 shows the �k term for each of the possibil-ities. We note that the combination of least squaresand softmax gives a more complex �k.Note that a combination of logistic outputs with aleast{squares penalty function gives unbiased estima-tors of the posterior probability of class membership,P (CjX), given that the MLP is of su�cient power tomodel the posterior probability to an arbitrary accu-racy. Hence we have the asymptotic property that theoutputs from a multi{classMLP with least squares andlogistic functions will also sum to one. However, somesimple experiments show that this convergence is tooslow to be useful for reasonable sample sizes.3 The Softmax Activation Func-tionThe softmax activation function ensures thatPk z�k =1, which is desirable in a 1 of q classi�cation, and allowsus to use the cross{entropy error function. However,by modeling P (xjC) we can give a better justi�cationfor the use of softmax activation function.For a classi�cation scheme using the samplingparadigm [7, 5], P (Ci j x) is modeled asP (Ci j x) = P (x j Ci)P (Ci)P (x)using Bayes' rule.For a two{class problem, this becomesP (C1 j x) =P (x j C1)P (C1)P (x)= P (x j C1)P (C1)P (xjC1)P (C1) + P (xjC2)P (C2)which we can write as= 11 + expn� log hP (xjC1)P (xjC2)i� log hP (C1)P (C2)io :(2)Now if we are discriminating between two classes,with labels C1 and C2, and if we are making some dis-tributional assumptions about P (x j Ci), it is a stan-dard procedure to base the test on the likelihood ratio,LR = P (C1 j x)P (C2 j x) :



Reprint: Proc. 8th Aust. Conf. on Neural Networks, Melb. 1997, pp 181{185 3For computational reasons, we take minus the log ofthe likelihood and maximize this with respect to theparameters of the distribution P (x j Ci).L =� log(LR)=� log�P (x j C1)P (x j C2 � � log �P (C1)P (C2 � :[5] comments that this mathematical step (2) willonly be useful if the log likelihood has some convenientand tractable form.However, if we start o� with multiple classes and as-sume that P (XjCj) is a distribution from the exponen-tial family of distributions2, parameterized by (�j ;  ),we can derive the softmax activation function directly.Note that the distributions are assumed to have a com-mon scale  .P (CkjX) = P (XjCk)P (Ck)qXj=1P (XjCj)P (Cj) := P (Xj�k;  )P (Ck)qXj=1P (Xj�j ;  )P (Cj)= exp��TkX � b(�k)a( ) + c(X; )�P (Ck)qXj=1 exp( �Tj X � b(�j)a( ) + c(X; ))P (Cj)= exp ��TkX � b(�k) + log[P (Ck)]	qXj=1 exp��Tj X � b(�j) + log[P (Cj)]	 (3)Note that �TkX � b(�k)+ log[P (Ck)] is a linear com-bination of the variables with an o�set or bias termand that (3) is the softmax activation function. Thisshows that modeling the posterior as a softmax func-tion is invariant to a family of classi�cation problemswhere the distributions are drawn from the same ex-ponential family with equal scale parameters.The logistic activation function is then recovered asa special case of softmax.4 A Comparison of LeastSquares and Cross{EntropyThis still leaves us with three possible estimators toconsider:2The exponential family of distributions includes the bino-mial, Poisson, negative binomial, gamma, Gaussian, uniform,geometric, exponential etc. See [8] [6], for a discussion of someof the properties.

� least{squares and the logistic activation function;� least{squares and the softmax activation function;� cross entropy and the softmax activation function.The justi�cations for using these particular penaltyfunctions are quite disparate. Both have been shownto result in z�k approximating P (Ckjx) when used withthe \one of q" target encoding. Least squares is jus-ti�ed on the basis of the Gauss{Markov theorem orintuitively, while cross{entropy is derived as a maxi-mum likelihood (ML) estimator by modeling tnk as aBernoulli random variable. This gives us the resultthat, with some regularity conditions, if there existsan unbiased estimator which attains the Cram�er{Raominimum variance bound, then the ML estimator co-incides with it. This does not seem very helpful withan MLP model, as the point estimate of the posteriorprobability P (Cjx) can only be shown to be unbiasedwhen there are an arbitrary number of hidden{layerunits [4]. The practice with very 
exible models likethe MLP is to introduce some bias in order to reducethe variance of the estimates [3]. In addition, the prop-erties of Fisher e�ciency that many ML estimatorshave has to be shown in each particular case [8].Why then would we use one estimator rather thananother? In particular, we would like to know how fastz�k converges to P (Ckjx) (is it useful for reasonable{sized samples?) and how variable the two estimatesare. There appears to be little guidance in the litera-ture on these questions.4.1 An ExperimentIn the absence of any theoretical guidance, we con-sider a simple simulation. We take 100 observationsfrom each of four Gaussian classes with means at thefour symmetric points f�1;�1g and unit variances andconduct 100 trials, generating independent samples forthe training and testing cycles.We consider two aspects here. One is the accuracyof the estimates of P (Cjx) and the other is the class{conditional error rates. The accuracy of P (Cjx) canbe measured by the integrated di�erence between theestimated posterior probabilities and the exact proba-bilities vuut 4Xi=1 Z (P̂ (Cijx)� P (Cijx))2dx: (4)We can calculate P (Cijx) as the distributions areknown. We approximate (4) byvuut 4Xi=1 1N NXn=1fP̂ (Cijxn)� P (Cijxn)g2;



Reprint: Proc. 8th Aust. Conf. on Neural Networks, Melb. 1997, pp 181{185 4this will only give a poor approximation but, as we arecomparing the three estimators on the same data, thiswill allow us to rank them.We can see from table 2 that the estimators areranked, from worst to best, in the order:1. logistic activation function and least squares;2. softmax activation function and least squares;3. softmax activation function and cross-entropy.It would appear that the improvement is due to boththe activation function and the penalty function. Wenext calculated the class{conditional error rates usingthe known distributions (table 3), and the empiricalresults (tables 4, 5 and 6). It can be clearly seen (byinspection or by a summary of the tables such as thetrace) that the estimators are again ranked in the sameorder.It would appear that even for a reasonably largesample (400 observations in 4 classes), the combina-tion of the softmax activation function and the crossentropy penalty function gives the more accurate re-sult.5 ConclusionWe note that within the framework of function approx-imation [4], all that is required to show that the MLPis a universal approximator is that the activation func-tions be smooth, bounded, monotonic nonlinearities.However, it appears that modeling P (xjC) as an ex-ponential family distribution, and the target values asa Bernoulli random variable, thus recovering the soft-max activation function and the cross{entropy penaltyfunction, leads to more accurate results.While the experiment described here is no substi-tute for a theoretical understanding of the propertiesof the three estimators, it does suggest that a prob-abilistic approach to the MLP model yields more ac-curate results. That this should be so in the case ofthe estimates of P (Cijx) is not surprising, as the logis-tic outputs fail to sum to one in some regions of thefeature space. However, it is more surprising that theclassi�cation accuracy is also improved with the cross{entropy penalty function and the softmax function.References[1] Christopher M. Bishop. Neural Networks for Pat-tern Recognition. Oxford University Press, 1995.[2] J. S. Bridle. Training stochastic model recognitionalgorithms as networks can lead to maximum mu-tual information estimation of parameters. In D. S.Touretzky, editor, Advances in Neural Information

Processing Systems 2. Proceedings of the 1989 Con-ference, pages 211{217, San Mateo, CA, 1990. Mor-gan Kaufmann.[3] Stuart Geman, Elie Bienenstock, and Ren�e Dour-sar. Neural networks and the bias/variancedilemma. Neural Computation, 4(1):1{58, 1992.[4] K. Hornik, M. Sinchcombe, and H. White. Multi-layer feedforward networks are universal approxi-mators. Neural Networks, 2:359{65, 1989.[5] Michael I. Jordan. Why the logistic function?a tutorial on probabilities and neural networks.Computational Cognative Science Technical Re-port 9603, Massachusetts Institute of Technology,August 1995.[6] C. R. Rao. Linear Statistical Inference and ItsApplications. John Wiley & Sons, second edition,1973.[7] B. D. Ripley. Pattern Recognition and Neural Net-works. Cambridge University Press, 1996.[8] S. D. Silvey. Stastical Inference. Chapman andHall, 1975.least{squares cross-entropylogistic (z�k � tk)(z�k � (z�k)2) z�k � tksoftmax (z�k)2 � tkz�k �z�k(Pk1 tk1z�k1 � (z�k1)2) z�k � tkTable 1: �k for various pairings of penalty and activa-tion functions.estimator mean variancelogistic activationfunction and leastsquares 4.621323 0.3146437softmax activationfunction and leastsquares 4.003461 0.2315692softmax activationfunction and cross-entropy 3.936804 0.1958714.Table 2: A comparison of the estimates of the quantity4 for the three estimators.



Reprint: Proc. 8th Aust. Conf. on Neural Networks, Melb. 1997, pp 181{185 51 2 3 41 0.7079 0.1335 0.1335 0.02522 0.1335 0.7079 0.0252 0.13353 0.1335 0.0252 0.7079 0.13354 0.0252 0.1335 0.1335 0.7079Table 3: The Bayesian class{conditional classi�cationrates. The true class is shown down the side of thetable and the ascribed class across the top of the table.1 2 3 41 0.7001 0.1387 0.1336 0.02762 0.1450 0.6824 0.0243 0.14833 0.1350 0.0289 0.6999 0.13624 0.0344 0.1383 0.1398 0.6875Table 4: The class{conditional classi�cation rates forthe least squares error function and the logistic activa-tion function. The true class is shown down the side ofthe table and the ascribed class across the top of thetable. 1 2 3 41 0.7046 0.1376 0.1318 0.02602 0.1333 0.6981 0.0246 0.14403 0.1302 0.0265 0.7055 0.13784 0.0297 0.1343 0.1335 0.7025Table 5: The class{conditional classi�cation rates forthe cross{entropy penalty function and the softmax ac-tivation function. The true class is shown down theside of the table and the ascribed class across the topof the table. 1 2 3 41 0.7068 0.1397 0.1274 0.02612 0.1373 0.6958 0.0241 0.14283 0.1310 0.0261 0.7039 0.13904 0.0317 0.1349 0.1324 0.7010Table 6: The class{conditional classi�cation rates forthe least squares penalty function and the softmax ac-tivation function. The true class is shown down theside of the table and the ascribed class across the topof the table.
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