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Trained Detection of Buried Mines in SAR
Images via the Deflection Optimal Criterion

Russell B. Cosgrove, Peyman Milanfdenior Memberand Joel Kositsky

Abstract—In this paper we apply a deflection-optimal synthetic aperture radar (FLGP SAR) sensor [1]. The sensor
linear-quadratic detector to the detection of buried mines in question was developed over the past four years under
in images formed by a forward-looking, ground-penetrating, the generous support of the US Army’s CERDEC, Fort
synthetic aperture radar. The detector is a linear-quadratic Belvoi - Th . f '
form that maximizes the output signal to noise ratio (deflec- elvoir counter-mine progrgm. € promising per ormanpe
tion), and its parameters are estimated from a set of training Of the proposed methods is demonstrated on actual field
data. We show that this detector is useful when the signal data collected during two separate field experiments.
to be detected is expected to be stochastic, with an unknown  Since the early days of SAR [2], many algorithms have
distribution, and when only a small set of training data is been developed for post-processing the resulting (com-

available to estimate its statistics. The detector structure can | SAR i t d lassificati f pixel
be understood in terms of the singular value decomposition; plex) Imagery, 1o produce classification of pIxels

the statistical variations of the target signature are modelled INt0 regions with specific properties of interest. One class

using a compact set of orthogonal “eigenmodes” (or principal of algorithms seeks to adaptively model the background

components) of the training data set. _ ~ “clutter,” and detect targets as deviations from the model
Because only the largest eigenvalues and associated e'ge“predictions (e.g., [3], [4], [5], [6], [7], [8]). Another aks of

vectors contribute, statistical variations that are under- algorithms uses bprior knowledae to construct a target sia-
represented in the training data do not significantly corrupt 9 P g g 9

the detector performance. The resulting detection algorithm Nature, and compares the image under test to the signature
is tested on data that are not in the training set, which has (e.g., [9], [10], [11], [12], [13], [14]). The latter compiabn
been collected at government test sites, and the algorithm may be accomplished in a variety of ways, ranging from
performance is reported. optimized neural networks (e.g., [13], [15]), to statiatiy
Index Terms— Deflection, detection, buried mines, auto- optimal likelihood functions (e.g., [16], [14]). Of intest
matic target recognition, synthetic aperture radar, training, in our case is whether a mine is buried underground in the
principal components. region being imaged. Because the resolution of the FLGP
SAR is sufficient to resolve multiple scattering centers on
. INTRODUCTION mines, we will take the approach of constructing a spatial
. . . . . target signature using prior knowledge. We will derive a
HE detection of buried mines is a vexing pmble.mstatistically optimal test statistic using a set of tragnitata

of broad military and humanitarian concern. For mfo?fharacterize the target statistics.

stance, any ground-based mobile armed force is concerne - .
n general, construction of a target signature can proceed

with the detection and clearing of minefields in its path.ither through physics-based modelling, or through use of

ngg :fti;\?g'ggzz daf[i iﬁtgﬂ tzeu\ll:tr%nssa;nvﬁor?gfgg faining data. Physics-based modelling can provide useful
P 9 . popu - Mtuition on target behavior [17], and can be more practical
the area of conflict. Indeed, many innocent civilians a

r . ' : "
. . . Ran constructing a large field experiment to collect tragni
killed or injured each year by land mines that go OtherW'S(?ata. However, physics-based modelling is sensitive to the

undetected. pecific parameters of the simulations and makes strong,

I'n this paper, we present our repent effort.s n d.evez'ometimes unjustified, assumptions about how the targets of
oping a framework for the detection of buried mines

The techni develoned in thi b » interest truly behave in a real imaging environment. Hence,
€ techniques developed In this paper can be COnSIAegfl \iiiative application of a physics-based model reguare
a general class of automatic target detection/recogniti 0

lqorith d h broad| licable t libration procedure based in training data. Calibratmn
algorithms, anc as such are broadly applicable 10 Malyy o sensor data is in itself a challenging and intergstin

nsor m lities. However, th resent work ncen- . . .
SEnso odalities owever, the present work conce roblem, which we wish to avoid here.

gageusmonofgﬁz;zzi V\:‘Zf\/rvzrzlblf)e()rllliiuonsrgﬁ dcoierlcetﬁdtiUS?anhe approach we take is motivated by the fact that we
P ' 9.9 P 8 can, in many instances, have access to training data from
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was supported by the US Army CERDEC NVESD counter-mine prograrfSAR, several field experiments were carefully planned and
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learned model of the target signature is constructed by [l. STATISTICAL DETECTION THEORY
considering a low-dimensional approximation of a target- Statistical detection theory provides a framework for

plus-clutter covariance matrix computed from a limited S%teciding among a set of mutually exclusive hypotheses

of training data. regarding a set of data. We will consider a decision between
The detector we apply is optimal in the sense th#éfe Hy hypothesis, that the data consist of random neise

it maximizes the generalized signal-to-noise ratio at i(glutter); and theH; hypothesis, that the data consists of

output, otherwise known as the deflection [22]. In theoisee plus an unknown signa. In the classical setting

present scenario, the deflection can be thought of a meas{s®e section IIl.A below), probability density functions fo

of the separation of the probability density functions (BPFthe data under both hypotheses are assumed to be known

associated with the presence or absence of targets (min@s) least to within some parameters). In our proposed

in a SAR image. The optimal test statistic from the poirftamework however, we do not impose this structure on the

of view of probability of detection versus probability ofdata under théf; hypothesis. Instead, the (first and second

false alarm is determined by the Neyman-Pearson criteriorder) statistics of the data under the hypothesis will be

to be the likelihood ratiop(x; Hy)/p(x; Hy) [18], where characterized by the training datx;, %o, ---, Xy}, and

p(x; Hy) and p(x; Hy) are the PDFs associated with theve will use only this statistical characterization to deyel

presence and absence of targets, respectively. We fandeffective detector. To simplify the exposition, we assum

below that application of the Neyman-Pearson critericthat e has mean zero and covarianEgthe identity). In

is impractical in the present scenario since in general poactice, the clutter meapo and covarianceC, can be

PDF is available undef, where instead only a limited estimated from either training data, or from the image under

set of training data may be available. We show that thest!, and a pre-whitening step must be applied to arrive

deflection-optimal detector is an appropriate substitage, at the white noise assumption we make here.

it produces an effective detector structure that can beThe hypotheses can thus be summarized as

constructed with limited knowledge of the PDFs, and with

even a few training samples. While the deflection optimal

detector has been studied extensively before, its use in the Hy: x = e,

presence of training data, we believe, is novel and of grea that the cluttei tochasti bl
practical importance. This extended use of the deflectiog_- ere we assume that the CIUtiers a stochastic varable

based framework, and its application to the detection fSt”bUted as a complex Gaussian with zero mean and

targets in SAR images form the core contribution of thigovarlancd (i.e.e ~ CA(0,1)). As for the statistics of _the
paper. atas + e under theH; hypothesis, we consider the signal

from the mine to be a deterministic signature measured
The Study Of deteCIOI’S that maXimiZe the deﬂectioﬂhrough a random medium (due to being buried) and we

actually predates the likelihood ratio theory. Baker [1%o not attempt to characterize it specifically by way of a

derived the deflection optimal detector for Gaussian statigiodel. Instead, we use the training §&t, Xy, -, Xy}

tics. Chevalier and Picinbono [20] derived the generg characterize the mean and covariance of the data under

deflection-optimal linear-quadratic detector for complehe H, hypothesis only. This information will suffice in the

data. An application to cellular mobile communications iaevek)pment of the detection a|gorithm we propose.
given by Shikh-Bahaei [21]. The deflection-optimal linear-

qguadratic detector ([22], [23], [21]) is known to be useful .

when the statistics are not Gaussian ([22], [23], [21])csin A- The Classical Neyman-Pearson Detector

its parameters can be computed using only the momentd-or the sake of completeness and to establish a frame
through fourth order. A general discussion on the deflecti@i reference against classical methods, consider the case
as a performance criterion can be found in [23]. when the PDFs can be associated with both theand

The FLGP SAR has been designed and built at Sfo hypotheses. In this case, the Neyman-Pearson theorem
International. Field tests of the radar have been condwtted18] determines the optimal test statistic, yielding the

various government test sites, consisting of dirt and graJdighest probability of detection for a given probability of
lanes with mines buried at depths ranging from near-zefdS€ alarm. The Neyman-Pearson (NP) theorem yields the

to 15 cm. This paper will focus on type TM-62M metalikelihood ratio test
antitank mines, of which there were between 20 and 44 p(x; Hy) >
L(x) = 0 Ho) <7, (1)

per lane.

The organization of the paper is as follows. In Section lyhere p(x; H,) and p(x; Hy) are the PDFs under the
the deflection optimal detector is presented. In Section Iff, and H, hypotheses, respectively, andis a threshold
we describe the characteristics of the FLGP SAR, and ghosen to achieve the desired probability of false alarm. As
imaged mines, and describe how to define a feature vector
for input to the detector. In Section IV we apply the results 1The former option is certainly more desirable, but the latger also

of Sections Il, and present the detection performance Bp effective if care is taken to ensure that the estimates @treanrupted
! ny target-bearing pixels. A procedure for estimatingdlaéter mean

. . al
a qo_mplementary teSt_data set which d(_)es n_Ot 'nCll_Jde 'ETV% covariance maitrix from training data, or from a given imageder
training data. Concluding remarks are given in Section Mest, has been described in the [27]

Hi: x = s+e,
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the logarithm applied td. is a monotonic function, the log- This criterion maximizes a reliable measure of the separa-
likelihood functionlog(L(x)) is an alternative test statistiction between the two hypotheses, and is analogous to the
with the same performance. SNR at the output of the detector. Although this measure

By assuming a (complex) Gaussian PDK (1, C+ 1) is not in general optimal with respect to probability of
for the H; hypothesis, and recalling from (1) that ~ detection versus probability of false alarm, it does caleci
CN(0,1), the log-likelihood function is given by with the optimal Neyman-Pearson criterion when the signal

H -1 H is known to be deterministic.

Typ(x) = —(x—p)"(C+D) ™ (x—p)+x7x, (2 The generalized signal-to-noise ratio at the output of the
where i is the mean of the signal, C is the covariance detectorT’, otherwise known as the generalized deflection
matrix of the signals, and the superscriptf denotes the [22], [28], is defined as
COI?Lsﬁztf);:grrfeqtz\:;osri;agoge unknown (the case of = (BL(T) — Bo(T))"
interest to us), then the above detector structure can not YVaro(T) + (1 = 7)Vary(T)
be immediately useful. But there do exist some welwhereE;(T) andVar,;(T') are the mean and variance Bf
known approach to this problem. On the one hand, vihder the; hypothesis. In this paper, we use a specialized
can assume a prior on these parameters, and integiéEsion of the above definition where= 1. The resulting
them out. This approach is quite difficult as it requiregneasure is referred to as simplgflection[22] from now
the calculation of complicated multidimensional integral On. Having set whery = 1, the deflection optimal detector
Alternatively, one can estimate the unknown parametet§,then defined as the detector that maximizes (3).

(say using the Maximum Likelihood (ML) principle), and For the complex linear-quadratic form
use the estimated values in the NP test. H H H

Taking the latter view, commonly known as tligen- T(x) =x"Ax+x7b+b7x, “)
eralized Likelihoodapproach, we can attempt to applywhich should be compared with (2), the Hermitian matrix
the Neyman-Pearson detector (2) to our mine detectign and the vectob that maximize the deflectiod can be
problem by first computing Maximum Likelihood (ML) found from [20]. We specialize the results in [20] for the
estimates ofu and the matrixC from the training data. present case where we assume= e ~ CA/(0,I) under
Assuming a known distribution for the underlying datad,. Furthermore, if under thé/; hypothesis, we assume
underH1, this approach is attractive, but in some instancesmly the momentss; (x) = u, and Coy(x) = C+1to be

®3)

impractical. given, we obtain
First, while the clutter statistics may arguably be mod-
elled as complex Gaussian after the whitening process,  Ty(x) = x7(C + ppu™)x + x"p+ px.  (5)

the variations in the signal statistics, owing to the compli h

cated underlying physical phenomena, can not be reIiatWy ere

modelled (certainly not using a Gaussian PDF). Even ib = F;(x) = p, and A = By (xx) —1=C + pp”,

such a PDF is assumed for the data undgr, from a (6)
relatively small set of training data we can only hope to A key idea explored and used in this paper is that
accurately estimate a low-rank approximation to the matrike deflection optimal detector is advantageous for two
C. This can be particularly problematic since, as (2) showsomplementary reasons. First, it is well defined when no
the matrixC indeed appears in inverted form. With thesgpecific PDF is available undéf;. Second, when a small
observations, we conclude that the Generalized Likelihoedimber of training samples is given, the deflection-based
approach is not suitable directly, and in this paper wgetector involves the unknown detector parameters more

suggest an alternative approach. directly. Namely, a comparison of (5) to (2) reveals that
unlike the NP test statistic, the deflection approach does
B. Deflection-Optimal Detector not involve the inversion of the matri&. In either case,

Detector performance, in terms of probability of dete2f course, the detector parameters are unknown, and must

tion versus probability of false alarm, is a measure of ttﬁe estimated from trammg data. However, the parameters
separation between the PDFs associated withHheand A andb of the deflection-based detector can be estimate
H, hypotheses. The Neyman-Pearson detector (2), whicH[@™M the training data even if only a few training samples
a linear-quadratic form for Gaussian data, maximizes thf&® available, as we demonstrate below. The same can not

measure. However, under some circumstances such as ﬁesa?d of the g!ternative approac_h. In Section IV-A we wil
present application, at worst one can not assume knowlef Cr'r?e,,fpec'f'g??jy how V\ée es(';lmati tr:jes%le parameters to
of the PDF for the data undéf; ; and at best, the estimation rm the “learne etector based on the deflection criterio

of the parameters of such a PDF from a small set of trainir"@ a practical mine detection scenario.
data can be very difficult. We seek a practical solution to

the detection problem when the PDF is unknown under !!l. BURIED MINES IN SAR IMAGES AND CHOICE OF A
and when a relatively small training data set is available. FEATURE VECTOR
We consider an alternative criterion calleeflectionfor To apply the algorithm to detecting buried mines (of

determining the parameters of a linear-quadratic detectapproximately known size) in SAR images we must decide
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what image features (derived from the pixels) to provid depth =5 cm; o, =0.001 S/m
as inputs to the detector. An obvious choice is to direct 10 — W
use the pixels in a mine-sized region of the image (¢ ol —~ HH |

image chip). The full image can then be scanned pix
by pixel, taking the input data from the chip centered o
the current pixel. (If desired, a prescreener can be used 7t
reduce the search region (see, e.g., [9]).) For reasons to __

explained below, only the pixels in a one-dimensional rang§ o
cut through the current pixel will be used as input data. Ws 5+

e

<

will refer to these collections of data from one-dimension: %4
w4k
cuts as feature vectors below.

8

3,
A. Image Characteristics 2r

The SAR technique involves a coherent combination « 1+
radar returns from a large number of closely spaced loo 0 ‘
at the scene to be imaged. In our experiment, the rac 0 2 4 6 8 10
is mounted on a van, and driven down the test lane, wiu: time (ns)
periodic stops to collect data. The collection geometry if?g. 3. Magnitudes of simulated mine reflection signatureshfmizon-
shown in Fig. 1. At each stop, the antennas are scannely (dashed) and vertically (solid) polarized radars.
through 72 horizontal positions, transverse to the lane,
across the top of the van. A SAR image is formed from
the 72 data sets, using a filtered backprojection method
algorithm, a standard SAR imaging algorithm [24]. Sepa-
rate complex valued images are formed in the horizontal
(HH) and vertical (VV) polarization modes. A sample (HH
polarization magnitude) image containing three mines is
shown in Fig. 2.

The resolution of the images formed in this way is about
10 cm in the range direction (down the lane), and 40
cm in the cross-range direction (although the latter is a
function of range). The low cross-range resolution arises W
because the distance traversed by the antennas when they < HH >"-’ < Vv >
scan across the top of the van is limited to the width ‘ : :
of the van. The range resolution depends on the system
bandwidth. The hardware is a stepped frequency design,
capable of operating from about 300 MHz to 3 GHZFig. 4. Range cuts through imaged mines, for horizontally artically
However, experimentation has shown that the mines agr@arized radiation. The magnitude of the complex image isteuot
most easily detected in the 300 MHz to 1.9 GHz range.

Only data in this range have been used to make the images,
and this limits the range resolution.

Signal Strength

10 20 30 40 50 60
Pixel #

positioning in both depth and angle of the buried mines
(even those of the same type). Due to these variations,
B. Mine Signature under the H; hypothesis, we regard the mine signature
Physics-based simulations (e.g., [17]) have shown thag a deterministic physical signature which is transmitted
buried mines should exhibit a “double humped” radar sighrough a random medium and measured subject to further
nature in the range direction. Fig. 3 shows a simulated rangdditive noise at the sensor. With this in mind we will use
cut generated using the physical optics approximation, farset of training data to characterize the statistics urfder t
both the HH and VV polarizations. Fig. 4 shows rangél: hypothesis in Section IV.
cuts through image chips for three different mines (of the Because the cross-range resolution of the radar is only
same type), with the HH and VV polarized images stackexbout 40 cm, there is little observable cross-range streictu
back to back. (The mine diameter is about 30 cm, and tirethe mine images. In fact, even the known diameter of
images have been oversampled to 2 cm range bins.) Tthe mine does not provide a clearly identifiable feature,
double humped signature is evident in the data. because any focused target will appear at least as wide as
However, Fig. 4 also shows considerable variation ithe cross-range resolution. For this reason, we will use a
the mine signature. The variation can be explained mne-dimensional range cut through the image chip, which
several sources. First, a phase randomization processsocee will call a feature vector, as the input to our detector
when the signal is transmitted through the rough air—grourfidistead of the full two-dimensional image chip). A range
interface [17]. Another source of this variation is the iaeix cut will contain the double hump mine signature, which
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Fesolution Cell

10 cm x 40 cm

Ll
Q
[uy

Collection Geometry

1
N

Cross Range (m)
N o

Fig. 2. Sample of horizontally polarized raw image. Three maesreadily visible at 15, 20, and 25 m.

appears to be the distinguishing feature of a buried mine in [n,]
a SAR image, and will result in a computationally simpler H
detection framework N
. . . . Include H.

C. Combination of Polarizations N Pixel Cut Vdata | N[ = X

The clutter return is at least partially uncorrelated asros — |V
polarizations, while the return from a buried mine is well M Vj
correlated. Therefore, using both polarizations shouthal H' .
better discrimination between mine and clutter. : vy

To use both polarizations we simply append the range
cut from the VV channel to the range cut from the HH Hy
channel, as shown in Fig. 5. By applying the results of
Section Il we obtain the deflection-optimal fusion of theig. 5. Illustration of extraction of a feature vecter In the application
available data from both polarizations HH and VV. N is 28.
As a preview, we mention here that the standard al-
gorithm for combining radar data collected with different
polarizations is the polarimetric whitening filter (PWF)the PWF method is used as a benchmark against which our
[5]. Polarimetric whitening essentially combines the tw@roposed algorithm can be compared.
polarizations by applying a cross-polarization whitening
step followed by a quadratic form which does not use any IV. FIELD TEST
information about the target signature. The performance gf Application of Algorithm

2Note that even though we do not employ a cross-range signature As mentioned earlier, buried mine detection field tests
is still important to have the (limited) cross-range resolutprovided by have been performed at two government test sites. These
the synthetic aperture. The focusing obtained from thehgfitt aperature gjteg provide three distinct soil conditions: The soil & si
concentrates the target energy into a small region of the imidghis . . .
energy were spread out across the whole cross range of thee,intag one s dry and Sandy* while site two has two test lanes, one
would be almost indistinguishable from the clutter. of gravel, and the other of heavy clay soil. Conditions were
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0.35 Eigenvectors 1, 2, and 3 form the estimates oA andb as
. R ) B
0.3 A = N_1 (Z Xixf{> -1 (7)
i=1
0.25 1 R X
b = — X;. 8
0.2 N & ®)
0.15 It is worth mentioning here that this procedure for es-
timating A is not without risk. Namely, it is possible
0.1 that the estimate should fail to be positive definite. In
%, 0.05 our experience in this particular case, the estimator never
S produced a negative-definite result. However, it is possibl
& 0 but rather more complicated, to find better estimators for
© A by constraining the estimate to be positive definite. This
5 important and nontrivial issue should be kept in mind, and
g more robust procedures for the estimation of the mean and
Q 0.35 covariance matrix [29] should be studied and applied within
T 0.3 the gontext of any part.icular application. .
g v With the above estimates in hand, we can write the
2 025! detector structure by considering an eigen-decomposition
of A as follows. Let
0.2 M
0.15 A =USU" = Zlaj u;uf (9)
=
0.1 where M is the dimension of the feature vector, and where
we assume the eigenvalues > o2 > --- > o > 0, are
0.05
ordered.
0 The deflection optimal detector derived from the training
data can then be written as
Pixel # M L
Ti(x) = Z crijujufx +xb +bfx  (10)

Fig. 6. First six eigenvectors for0 cm deep mines at site one. i=1

M
= Yok w2+ 2Re(xb) (A1)
j=1

wet in both lanes at site two due to recent rains, although,
of course, the gravel provided more drainage than the cla)
At each site, mines were buried at four depths: slightl
below flush,5 cm, 10 cm, and15 cm deep.

For each of the three soil types, a set of training min
was chosen and used to form estimafesand b of the

The above formulation shows one informative interpreta-
n of this detector. Specifically, the eigen-decompoaiti

f the estimatedA amount to performing a principal
components analysis on the set of training d&ta The
?ﬁincipal components then essentially identify a signal

. . . ubspace, and (and at least the first term of) the detector
deflection optimal detector parameters (details below). Al o oo o weighted sum of the projection of any given

site one, th_e training mines were chosen to be Ihe_ data vectorx onto the subspace basis vectors.
cm deep mines, and the algorithm was tested on mines

. S An advantage of viewing the detector this way is that
buried at the thr(_ae remaining fjepths. Tmm dept_h Was e may also consider a low-rank approximation Aoif
chosen for training because it was the intermediate de

; . : RH% estimated eigenvalues; are dominated by the first
between deep and shallow mines. At site two, the tramn;%f/ largest ones. In effect, considering such a low-rank

n;mesi[ were fholsen tot b_e tthe ﬂ'f'jh ?ur_led ml(r;elsblnﬁ_te proximation is equivalent to retaining only the first few
(due to practical constraints on identifying and labe NYominant principal components. This can lead to a more

he aloorith d . buried h ; ,Ebmputationally efficient detector structure, while el
the algorithm was tested on mines buried at the remaini the effect of some possibly spurious and insignificant

depths. Below, as a specific example, we will consider tr\‘/"é‘lriations observed in the target signature measured in the

case.of site one. o o R training setS;. Furthermore, the dominant principal com-
Using theH, training set S1 = {x1, Xa, ---, Xn'}, We ponents provide a least squares optimal [14] representatio
of essentially all possible variations in which a mine has
appeared in the radar training images.
SWe note that naturally, this training data was pre-whitebgdthe p\[/)V f d th b | gd' 9 . | . .
clutter covariance matrix, estimated froffiy training data, prior to the e found the above OW_ |n_1enS|0na_1 approximation
estimation of the parameters of the detector. approach to be very attractive in practice. To be more
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specific, considering the eigen-decompoition Af we
implemented

M/
Ty = Zaj|xHuj|2+2Re(xHB>
j=1

12)

where M’ is much smaller than the dimension of the
feature vector {/ 56 in this case). Specifically, we
found the ratioo; /o1 of the six largest eigenvalueg &
1,--+,6) to the maximum eigenvalue to be approximately
1, 0.089, 0.075, 0.028,0.019,0.014, respectively. (The
corresponding eigenvectors are shown in Fig. 6.) Hence
we concluded that the first two or three eigenvalues, an
the corresponding eigenvectors, Af were dominant (i.e.
we pickedM’ = 2 or 3).

We note that the structure of the first three dominani
eigenvectors indicates that they should be sufficient tc
represent the signature of a buried mine in the training se
accurately. Indeed, the very first eigenvector is an exaelle
candidate by itself.

B. Presentation of Results

Receiver operating characteristic (ROC) curves are plot
of the probability of detection versus the probability of
false alarm. ROC curves for the application of the trainec
detector to buried mines not in the training set, imagec
at a range ofl5 m, are shown in Fig. 7. The ROC
curves were compiled using survey data for the buriec
mines (the ground truth). After a detector was appliec
to a given image, a "likelihood map” consisting of the
values of the detector output at each pixel location was
produced. From this (real-valued) image, the peak pixel:
in one meter square boxes around expected mine locatiol
were compiled in histograms, and associated with he
hypothesis. The peak pixélsn one meter square boxes
offset from the expected mine locations were also compilet
into histograms, and associated with thig hypothesis.
As one might expect, it was possible to compile far more
data for the H, hypothesis than for théd; hypothesis.
The probability of detection and probability of false alarm
perm? were computed by stepping a threshold through the
histograms bin by bin, and computing the number of entrie:
above the threshold, divided by the total number of entries
for each histogram. The jumps in some of the curves an
due to the relatively small number of mines in the sample
There werer2 mine images in the sample at site one, and
34 (each, for dirt and gravel) at site tidlhe curves end
at the lowest probability of false alarm, greater than zero
that could be computed given the number of test sample:

For comparison, ROC curves are shown also for the

Probability of detection Probability of detection
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case where the magnitude of horizontally polarized imagegig. 7. ROC curves comparing the deflection optimal processisglts
was thresholded directly, and for the so-called poIarWifh polarimetric whitening, and with the HH polarized imadere, at

metric whitening filter [5] algorithm for combining theg

range ofl5 m. For site one, mines buried just below the surfacem
eep, and 5 cm deep are included. For site two, mines burietin deep,

10 cm deep, and5 cm deep are included. The mines not includéd (

4As observed by a reviewer, using a more stable order statistich as
a high percentile would perhaps be better, though we obdesatisfactory
results with the peak pixel as well.

5Due to the random nature of the ground-air interface, imadeteo
same mine from opposite directions were considered to bendisti

cm deep for site one, and just below the surface for site twerewsed
as training data.
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