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Trained Detection of Buried Mines in SAR
Images via the Deflection Optimal Criterion

Russell B. Cosgrove, Peyman MilanfarSenior Member, and Joel Kositsky

Abstract— In this paper we apply a deflection-optimal
linear-quadratic detector to the detection of buried mines
in images formed by a forward-looking, ground-penetrating,
synthetic aperture radar. The detector is a linear-quadratic
form that maximizes the output signal to noise ratio (deflec-
tion), and its parameters are estimated from a set of training
data. We show that this detector is useful when the signal
to be detected is expected to be stochastic, with an unknown
distribution, and when only a small set of training data is
available to estimate its statistics. The detector structure can
be understood in terms of the singular value decomposition;
the statistical variations of the target signature are modelled
using a compact set of orthogonal “eigenmodes” (or principal
components) of the training data set.

Because only the largest eigenvalues and associated eigen-
vectors contribute, statistical variations that are under-
represented in the training data do not significantly corrupt
the detector performance. The resulting detection algorithm
is tested on data that are not in the training set, which has
been collected at government test sites, and the algorithm
performance is reported.

Index Terms— Deflection, detection, buried mines, auto-
matic target recognition, synthetic aperture radar, training,
principal components.

I. I NTRODUCTION

T HE detection of buried mines is a vexing problem
of broad military and humanitarian concern. For in-

stance, any ground-based mobile armed force is concerned
with the detection and clearing of minefields in its path.
Long after conflicts are settled, the very same minefields
pose a grave hazard to civilian populations who reoccupy
the area of conflict. Indeed, many innocent civilians are
killed or injured each year by land mines that go otherwise
undetected.

In this paper, we present our recent efforts in devel-
oping a framework for the detection of buried mines.
The techniques developed in this paper can be considered
a general class of automatic target detection/recognition
algorithms, and as such are broadly applicable to many
sensor modalities. However, the present work concen-
trates on the case where observations are collected using
a dual-polarization, forward-looking, ground-penetrating,
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synthetic aperture radar (FLGP SAR) sensor [1]. The sensor
in question was developed over the past four years under
the generous support of the US Army’s CERDEC, Fort
Belvoir counter-mine program. The promising performance
of the proposed methods is demonstrated on actual field
data collected during two separate field experiments.

Since the early days of SAR [2], many algorithms have
been developed for post-processing the resulting (com-
plex) SAR imagery, to produce classification of pixels
into regions with specific properties of interest. One class
of algorithms seeks to adaptively model the background
“clutter,” and detect targets as deviations from the model
predictions (e.g., [3], [4], [5], [6], [7], [8]). Another class of
algorithms uses prior knowledge to construct a target sig-
nature, and compares the image under test to the signature
(e.g., [9], [10], [11], [12], [13], [14]). The latter comparison
may be accomplished in a variety of ways, ranging from
optimized neural networks (e.g., [13], [15]), to statistically
optimal likelihood functions (e.g., [16], [14]). Of interest
in our case is whether a mine is buried underground in the
region being imaged. Because the resolution of the FLGP
SAR is sufficient to resolve multiple scattering centers on
mines, we will take the approach of constructing a spatial
target signature using prior knowledge. We will derive a
statistically optimal test statistic using a set of training data
to characterize the target statistics.

In general, construction of a target signature can proceed
either through physics-based modelling, or through use of
training data. Physics-based modelling can provide useful
intuition on target behavior [17], and can be more practical
than constructing a large field experiment to collect training
data. However, physics-based modelling is sensitive to the
specific parameters of the simulations and makes strong,
sometimes unjustified, assumptions about how the targets of
interest truly behave in a real imaging environment. Hence,
quantitative application of a physics-based model requires a
calibration procedure based in training data. Calibrationto
actual sensor data is in itself a challenging and interesting
problem, which we wish to avoid here.

The approach we take is motivated by the fact that we
can, in many instances, have access to training data from
the sensor in question. In the particular case of the FLGP
SAR, several field experiments were carefully planned and
carried out so as to collect a statistically significant number
of realizations of images of several types of mines buried
in a variety of soil types and depths [1]. We construct
a “learned” statistical model of the buried target from
data that are collected under conditions that are extremely
difficult, if not impossible, to model theoretically. Our
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learned model of the target signature is constructed by
considering a low-dimensional approximation of a target-
plus-clutter covariance matrix computed from a limited set
of training data.

The detector we apply is optimal in the sense that
it maximizes the generalized signal-to-noise ratio at its
output, otherwise known as the deflection [22]. In the
present scenario, the deflection can be thought of a measure
of the separation of the probability density functions (PDFs)
associated with the presence or absence of targets (mines)
in a SAR image. The optimal test statistic from the point
of view of probability of detection versus probability of
false alarm is determined by the Neyman-Pearson criterion
to be the likelihood ratiop(x;H1)/p(x;H0) [18], where
p(x;H1) and p(x;H0) are the PDFs associated with the
presence and absence of targets, respectively. We find
below that application of the Neyman-Pearson criterion
is impractical in the present scenario since in general no
PDF is available underH1, where instead only a limited
set of training data may be available. We show that the
deflection-optimal detector is an appropriate substitute,as
it produces an effective detector structure that can be
constructed with limited knowledge of the PDFs, and with
even a few training samples. While the deflection optimal
detector has been studied extensively before, its use in the
presence of training data, we believe, is novel and of great
practical importance. This extended use of the deflection-
based framework, and its application to the detection of
targets in SAR images form the core contribution of this
paper.

The study of detectors that maximize the deflection
actually predates the likelihood ratio theory. Baker [19]
derived the deflection optimal detector for Gaussian statis-
tics. Chevalier and Picinbono [20] derived the general
deflection-optimal linear-quadratic detector for complex
data. An application to cellular mobile communications is
given by Shikh-Bahaei [21]. The deflection-optimal linear-
quadratic detector ([22], [23], [21]) is known to be useful
when the statistics are not Gaussian ([22], [23], [21]), since
its parameters can be computed using only the moments
through fourth order. A general discussion on the deflection
as a performance criterion can be found in [23].

The FLGP SAR has been designed and built at SRI
International. Field tests of the radar have been conductedat
various government test sites, consisting of dirt and gravel
lanes with mines buried at depths ranging from near-zero
to 15 cm. This paper will focus on type TM-62M metal
antitank mines, of which there were between 20 and 44
per lane.

The organization of the paper is as follows. In Section II,
the deflection optimal detector is presented. In Section III
we describe the characteristics of the FLGP SAR, and of
imaged mines, and describe how to define a feature vector
for input to the detector. In Section IV we apply the results
of Sections II, and present the detection performance on
a complementary test data set which does not include the
training data. Concluding remarks are given in Section V.

II. STATISTICAL DETECTION THEORY

Statistical detection theory provides a framework for
deciding among a set of mutually exclusive hypotheses
regarding a set of data. We will consider a decision between
the H0 hypothesis, that the data consist of random noisee

(clutter); and theH1 hypothesis, that the data consists of
noisee plus an unknown signals. In the classical setting
(see section II.A below), probability density functions for
the data under both hypotheses are assumed to be known
(at least to within some parameters). In our proposed
framework however, we do not impose this structure on the
data under theH1 hypothesis. Instead, the (first and second
order) statistics of the data under theH1 hypothesis will be
characterized by the training data{x̃1, x̃2, · · · , x̃N}, and
we will use only this statistical characterization to develop
an effective detector. To simplify the exposition, we assume
that e has mean zero and covarianceI (the identity). In
practice, the clutter meanµ0 and covarianceC0 can be
estimated from either training data, or from the image under
test 1, and a pre-whitening step must be applied to arrive
at the white noise assumption we make here.

The hypotheses can thus be summarized as

H1 : x = s + e,

H0 : x = e,

where we assume that the cluttere is a stochastic variable
distributed as a complex Gaussian with zero mean and
covarianceI (i.e. e ∼ CN (0, I)). As for the statistics of the
datas+e under theH1 hypothesis, we consider the signal
from the mine to be a deterministic signature measured
through a random medium (due to being buried) and we
do not attempt to characterize it specifically by way of a
model. Instead, we use the training set{x̃1, x̃2, · · · , x̃N}
to characterize the mean and covariance of the data under
theH1 hypothesis only. This information will suffice in the
development of the detection algorithm we propose.

A. The Classical Neyman-Pearson Detector

For the sake of completeness and to establish a frame
of reference against classical methods, consider the case
when the PDFs can be associated with both theH1 and
H0 hypotheses. In this case, the Neyman-Pearson theorem
[18] determines the optimal test statistic, yielding the
highest probability of detection for a given probability of
false alarm. The Neyman-Pearson (NP) theorem yields the
likelihood ratio test

L(x) =
p(x; H1)

p(x; H0)

>
< γ, (1)

where p(x; H1) and p(x; H0) are the PDFs under the
H1 and H0 hypotheses, respectively, andγ is a threshold
chosen to achieve the desired probability of false alarm. As

1The former option is certainly more desirable, but the latter can also
be effective if care is taken to ensure that the estimates are not corrupted
by any target-bearing pixels. A procedure for estimating theclutter mean
and covariance matrix from training data, or from a given imageunder
test, has been described in the [27]
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the logarithm applied toL is a monotonic function, the log-
likelihood functionlog(L(x)) is an alternative test statistic
with the same performance.

By assuming a (complex) Gaussian PDFCN (µ,C + I)
for the H1 hypothesis, and recalling from (1) thate ∼
CN (0, I), the log-likelihood function is given by

TNP (x) = −(x − µ)H(C + I)−1(x − µ) + x
H
x, (2)

whereµ is the mean of the signals, C is the covariance
matrix of the signals, and the superscriptH denotes the
conjugate transpose operation.

If the parametersµ and C are unknown (the case of
interest to us), then the above detector structure can not
be immediately useful. But there do exist some well-
known approach to this problem. On the one hand, we
can assume a prior on these parameters, and integrate
them out. This approach is quite difficult as it requires
the calculation of complicated multidimensional integrals.
Alternatively, one can estimate the unknown parameters,
(say using the Maximum Likelihood (ML) principle), and
use the estimated values in the NP test.

Taking the latter view, commonly known as theGen-
eralized Likelihoodapproach, we can attempt to apply
the Neyman-Pearson detector (2) to our mine detection
problem by first computing Maximum Likelihood (ML)
estimates ofµ and the matrixC from the training data.
Assuming a known distribution for the underlying data
underH1, this approach is attractive, but in some instances
impractical.

First, while the clutter statistics may arguably be mod-
elled as complex Gaussian after the whitening process,
the variations in the signal statistics, owing to the compli-
cated underlying physical phenomena, can not be reliably
modelled (certainly not using a Gaussian PDF). Even if
such a PDF is assumed for the data underH1, from a
relatively small set of training data we can only hope to
accurately estimate a low-rank approximation to the matrix
C. This can be particularly problematic since, as (2) shows,
the matrixC indeed appears in inverted form. With these
observations, we conclude that the Generalized Likelihood
approach is not suitable directly, and in this paper we
suggest an alternative approach.

B. Deflection-Optimal Detector

Detector performance, in terms of probability of detec-
tion versus probability of false alarm, is a measure of the
separation between the PDFs associated with theH1 and
H0 hypotheses. The Neyman-Pearson detector (2), which is
a linear-quadratic form for Gaussian data, maximizes this
measure. However, under some circumstances such as the
present application, at worst one can not assume knowledge
of the PDF for the data underH1; and at best, the estimation
of the parameters of such a PDF from a small set of training
data can be very difficult. We seek a practical solution to
the detection problem when the PDF is unknown underH1

and when a relatively small training data set is available.
We consider an alternative criterion calleddeflection for
determining the parameters of a linear-quadratic detector.

This criterion maximizes a reliable measure of the separa-
tion between the two hypotheses, and is analogous to the
SNR at the output of the detector. Although this measure
is not in general optimal with respect to probability of
detection versus probability of false alarm, it does coincide
with the optimal Neyman-Pearson criterion when the signal
is known to be deterministic.

The generalized signal-to-noise ratio at the output of the
detectorT , otherwise known as the generalized deflection
[22], [28], is defined as

d =
(E1(T ) − E0(T ))2

γVar0(T ) + (1 − γ)Var1(T )
, (3)

whereEi(T ) andVari(T ) are the mean and variance ofT
under theHi hypothesis. In this paper, we use a specialized
version of the above definition whereγ = 1. The resulting
measure is referred to as simplydeflection[22] from now
on. Having set whenγ = 1, the deflection optimal detector
is then defined as the detector that maximizes (3).

For the complex linear-quadratic form

T (x) = x
H
Ax + x

H
b + b

H
x, (4)

which should be compared with (2), the Hermitian matrix
A and the vectorb that maximize the deflectiond can be
found from [20]. We specialize the results in [20] for the
present case where we assumex = e ∼ CN (0, I) under
H0. Furthermore, if under theH1 hypothesis, we assume
only the momentsE1(x) = µ, and Cov1(x) = C+ I to be
given, we obtain

Td(x) = x
H(C + µµ

H)x + x
H

µ + µ
H
x. (5)

where

b = E1(x) = µ, and A = E1(xx
H) − I = C + µµ

H ,
(6)

A key idea explored and used in this paper is that
the deflection optimal detector is advantageous for two
complementary reasons. First, it is well defined when no
specific PDF is available underH1. Second, when a small
number of training samples is given, the deflection-based
detector involves the unknown detector parameters more
directly. Namely, a comparison of (5) to (2) reveals that
unlike the NP test statistic, the deflection approach does
not involve the inversion of the matrixC. In either case,
of course, the detector parameters are unknown, and must
be estimated from training data. However, the parameters
A and b of the deflection-based detector can be estimate
from the training data even if only a few training samples
are available, as we demonstrate below. The same can not
be said of the alternative approach. In Section IV-A we will
describe specifically how we estimate these parameters to
form the ”learned” detector based on the deflection criterion
in a practical mine detection scenario.

III. B URIED M INES IN SAR IMAGES AND CHOICE OF A

FEATURE VECTOR

To apply the algorithm to detecting buried mines (of
approximately known size) in SAR images we must decide
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what image features (derived from the pixels) to provide
as inputs to the detector. An obvious choice is to directly
use the pixels in a mine-sized region of the image (an
image chip). The full image can then be scanned pixel
by pixel, taking the input data from the chip centered on
the current pixel. (If desired, a prescreener can be used to
reduce the search region (see, e.g., [9]).) For reasons to be
explained below, only the pixels in a one-dimensional range
cut through the current pixel will be used as input data. We
will refer to these collections of data from one-dimensional
cuts as feature vectors below.

A. Image Characteristics

The SAR technique involves a coherent combination of
radar returns from a large number of closely spaced looks
at the scene to be imaged. In our experiment, the radar
is mounted on a van, and driven down the test lane, with
periodic stops to collect data. The collection geometry is
shown in Fig. 1. At each stop, the antennas are scanned
through 72 horizontal positions, transverse to the lane,
across the top of the van. A SAR image is formed from
the 72 data sets, using a filtered backprojection method
algorithm, a standard SAR imaging algorithm [24]. Sepa-
rate complex valued images are formed in the horizontal
(HH) and vertical (VV) polarization modes. A sample (HH
polarization magnitude) image containing three mines is
shown in Fig. 2.

The resolution of the images formed in this way is about
10 cm in the range direction (down the lane), and 40
cm in the cross-range direction (although the latter is a
function of range). The low cross-range resolution arises
because the distance traversed by the antennas when they
scan across the top of the van is limited to the width
of the van. The range resolution depends on the system
bandwidth. The hardware is a stepped frequency design,
capable of operating from about 300 MHz to 3 GHz.
However, experimentation has shown that the mines are
most easily detected in the 300 MHz to 1.9 GHz range.
Only data in this range have been used to make the images,
and this limits the range resolution.

B. Mine Signature

Physics-based simulations (e.g., [17]) have shown that
buried mines should exhibit a “double humped” radar sig-
nature in the range direction. Fig. 3 shows a simulated range
cut generated using the physical optics approximation, for
both the HH and VV polarizations. Fig. 4 shows range
cuts through image chips for three different mines (of the
same type), with the HH and VV polarized images stacked
back to back. (The mine diameter is about 30 cm, and the
images have been oversampled to 2 cm range bins.) The
double humped signature is evident in the data.

However, Fig. 4 also shows considerable variation in
the mine signature. The variation can be explained by
several sources. First, a phase randomization process occurs
when the signal is transmitted through the rough air–ground
interface [17]. Another source of this variation is the inexact
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Fig. 4. Range cuts through imaged mines, for horizontally and vertically
polarized radiation. The magnitude of the complex image is plotted.

positioning in both depth and angle of the buried mines
(even those of the same type). Due to these variations,
under theH1 hypothesis, we regard the mine signature
as a deterministic physical signature which is transmitted
through a random medium and measured subject to further
additive noise at the sensor. With this in mind we will use
a set of training data to characterize the statistics under the
H1 hypothesis in Section IV.

Because the cross-range resolution of the radar is only
about 40 cm, there is little observable cross-range structure
in the mine images. In fact, even the known diameter of
the mine does not provide a clearly identifiable feature,
because any focused target will appear at least as wide as
the cross-range resolution. For this reason, we will use a
one-dimensional range cut through the image chip, which
we will call a feature vector, as the input to our detector
(instead of the full two-dimensional image chip). A range
cut will contain the double hump mine signature, which
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Fig. 2. Sample of horizontally polarized raw image. Three minesare readily visible at 15, 20, and 25 m.

appears to be the distinguishing feature of a buried mine in
a SAR image, and will result in a computationally simpler
detection framework2.

C. Combination of Polarizations

The clutter return is at least partially uncorrelated across
polarizations, while the return from a buried mine is well
correlated. Therefore, using both polarizations should allow
better discrimination between mine and clutter.

To use both polarizations we simply append the range
cut from the VV channel to the range cut from the HH
channel, as shown in Fig. 5. By applying the results of
Section II we obtain the deflection-optimal fusion of the
available data from both polarizations HH and VV.

As a preview, we mention here that the standard al-
gorithm for combining radar data collected with different
polarizations is the polarimetric whitening filter (PWF)
[5]. Polarimetric whitening essentially combines the two
polarizations by applying a cross-polarization whitening
step followed by a quadratic form which does not use any
information about the target signature. The performance of

2Note that even though we do not employ a cross-range signature, it
is still important to have the (limited) cross-range resolution provided by
the synthetic aperture. The focusing obtained from the synthetic aperature
concentrates the target energy into a small region of the image. If this
energy were spread out across the whole cross range of the image, it
would be almost indistinguishable from the clutter.
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Fig. 5. Illustration of extraction of a feature vectorx. In the application
N is 28.

the PWF method is used as a benchmark against which our
proposed algorithm can be compared.

IV. F IELD TEST

A. Application of Algorithm

As mentioned earlier, buried mine detection field tests
have been performed at two government test sites. These
sites provide three distinct soil conditions: The soil at site
one is dry and sandy, while site two has two test lanes, one
of gravel, and the other of heavy clay soil. Conditions were
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Fig. 6. First six eigenvectors for10 cm deep mines at site one.

wet in both lanes at site two due to recent rains, although,
of course, the gravel provided more drainage than the clay.
At each site, mines were buried at four depths: slightly
below flush,5 cm, 10 cm, and15 cm deep.

For each of the three soil types, a set of training mines
was chosen and used to form estimatesÂ and b̂ of the
deflection optimal detector parameters (details below). At
site one, the training mines were chosen to be the10
cm deep mines, and the algorithm was tested on mines
buried at the three remaining depths. This10 cm depth was
chosen for training because it was the intermediate depth
between deep and shallow mines. At site two, the training
mines were chosen to be the flush buried mines instead
(due to practical constraints on identifying and labelling
the training data in this lower SNR environment), and again
the algorithm was tested on mines buried at the remaining
depths. Below, as a specific example, we will consider the
case of site one.

Using theH1 training set3 S1 = {x̃1, x̃2, · · · , x̃N}, we

3We note that naturally, this training data was pre-whitenedby the
clutter covariance matrix, estimated fromH0 training data, prior to the
estimation of the parameters of the detector.

form the estimates ofA andb as

Â =
1

N − 1

(
N∑

i=1

x̃ix̃
H
i

)
− I (7)

b̂ =
1

N

N∑

i=1

x̃i. (8)

It is worth mentioning here that this procedure for es-
timating A is not without risk. Namely, it is possible
that the estimate should fail to be positive definite. In
our experience in this particular case, the estimator never
produced a negative-definite result. However, it is possible,
but rather more complicated, to find better estimators for
A by constraining the estimate to be positive definite. This
important and nontrivial issue should be kept in mind, and
more robust procedures for the estimation of the mean and
covariance matrix [29] should be studied and applied within
the context of any particular application.

With the above estimates in hand, we can write the
detector structure by considering an eigen-decomposition
of Â as follows. Let

Â = UΣU
H =

M∑

j=1

σj uju
H
j (9)

whereM is the dimension of the feature vector, and where
we assume the eigenvaluesσ1 ≥ σ2 ≥ · · · ≥ σM > 0, are
ordered.

The deflection optimal detector derived from the training
data can then be written as

Td(x) =

M∑

j=1

σjx
H
uju

H
j x + x

H
b̂ + b̂

H
x (10)

=
M∑

j=1

σj |x
H
uj |

2 + 2Re
(
x

H
b̂

)
(11)

The above formulation shows one informative interpreta-
tion of this detector. Specifically, the eigen-decomposition
of the estimatedÂ amount to performing a principal
components analysis on the set of training dataS1. The
principal components then essentially identify a signal
subspace, and (and at least the first term of) the detector
measures a weighted sum of the projection of any given
data vectorx onto the subspace basis vectors.

An advantage of viewing the detector this way is that
we may also consider a low-rank approximation toÂ if
the estimated eigenvaluesσj are dominated by the first
few largest ones. In effect, considering such a low-rank
approximation is equivalent to retaining only the first few
dominant principal components. This can lead to a more
computationally efficient detector structure, while eliminat-
ing the effect of some possibly spurious and insignificant
variations observed in the target signature measured in the
training setS1. Furthermore, the dominant principal com-
ponents provide a least squares optimal [14] representation
of essentially all possible variations in which a mine has
appeared in the radar training images.

We found the above low dimensional approximation
approach to be very attractive in practice. To be more
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specific, considering the eigen-decompoition ofÂ, we
implemented

Td =

M ′∑

j=1

σj |x
H
uj |

2 + 2Re
(
x

H
b̂

)
(12)

where M ′ is much smaller than the dimension of the
feature vector (M = 56 in this case). Specifically, we
found the ratioσj/σ1 of the six largest eigenvalues (j =
1, · · · , 6) to the maximum eigenvalue to be approximately
1, 0.089, 0.075, 0.028, 0.019, 0.014, respectively. (The
corresponding eigenvectors are shown in Fig. 6.) Hence,
we concluded that the first two or three eigenvalues, and
the corresponding eigenvectors, ofÂ were dominant (i.e.
we pickedM ′ = 2 or 3).

We note that the structure of the first three dominant
eigenvectors indicates that they should be sufficient to
represent the signature of a buried mine in the training set
accurately. Indeed, the very first eigenvector is an excellent
candidate by itself.

B. Presentation of Results

Receiver operating characteristic (ROC) curves are plots
of the probability of detection versus the probability of
false alarm. ROC curves for the application of the trained
detector to buried mines not in the training set, imaged
at a range of15 m, are shown in Fig. 7. The ROC
curves were compiled using survey data for the buried
mines (the ground truth). After a detector was applied
to a given image, a ”likelihood map” consisting of the
values of the detector output at each pixel location was
produced. From this (real-valued) image, the peak pixels
in one meter square boxes around expected mine locations
were compiled in histograms, and associated with theH1

hypothesis. The peak pixels4 in one meter square boxes
offset from the expected mine locations were also compiled
into histograms, and associated with theH0 hypothesis.
As one might expect, it was possible to compile far more
data for theH0 hypothesis than for theH1 hypothesis.
The probability of detection and probability of false alarm
perm2 were computed by stepping a threshold through the
histograms bin by bin, and computing the number of entries
above the threshold, divided by the total number of entries,
for each histogram. The jumps in some of the curves are
due to the relatively small number of mines in the sample.
There were72 mine images in the sample at site one, and
34 (each, for dirt and gravel) at site two5. The curves end
at the lowest probability of false alarm, greater than zero,
that could be computed given the number of test samples.

For comparison, ROC curves are shown also for the
case where the magnitude of horizontally polarized images
was thresholded directly, and for the so-called polari-
metric whitening filter [5] algorithm for combining the

4As observed by a reviewer, using a more stable order statistics such as
a high percentile would perhaps be better, though we observed satisfactory
results with the peak pixel as well.

5Due to the random nature of the ground-air interface, images of the
same mine from opposite directions were considered to be distinct.
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Fig. 7. ROC curves comparing the deflection optimal processingresults
with polarimetric whitening, and with the HH polarized image alone, at
a range of15 m. For site one, mines buried just below the surface,5 cm
deep, and15 cm deep are included. For site two, mines buried5 cm deep,
10 cm deep, and15 cm deep are included. The mines not included (10

cm deep for site one, and just below the surface for site two) were used
as training data.
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horizontally (HH) and vertically (VV) polarized images.
Polarimetric whitening involved performing a linear trans-
formation that decorrelates the clutter across polarizations
(hence the term polarimetric whitening), and then combines
the resulting components using a sum of squares, which
amounts to an energy computation.

Fig. 7 shows that the deflection-optimal detector sig-
nificantly outperforms the standard PWF algorithm and
direct thresholding of the the HH images in all three soil
types. The dry sandy soil at site one gave the best overall
radar performance. The heavy clay soil at site two (which
appeared to have a high moisture content) gave the worst
overall radar performance.

V. CONCLUSION

Based on a limited set of training data, we developed a
framework for the detection of targets against a noise/clutter
background using the deflection-optimal linear-quadratic
detector. A key idea explored and used in this paper is
that the deflection optimal detector is advantageous for two
complementary reasons. First, it is well defined when no
specific PDF is available underH1. Second, when a small
number of training samples is given, the deflection-based
detector involves the unknown detector parameters more
directly in that unlike the NP test statistic, the deflection
approach does not involve the inversion of an estimate of
the signal covariance matrix.

While the methods developed in this paper are more
broadly applicable, the specific case studied here uses
observations collected from a forward-looking, ground-
penetrating, synthetic aperture radar developed by SRI
International. The deflection optimal detector allows the use
of the singular value decomposition applied to collected
training data to model the statistical variations of target
signatures using a small set of spanning basis vectors. The
resulting detection algorithm was tested on a complemen-
tary set of collected data, not in the training set. It was
demonstrated that the proposed approach is effective for the
detection of buried metal mines, realizing detection ratesof
as high as90% for false alarm rates of0.01 per m2.

Several important topics of research remain open. Com-
bining physics-based modelling with collected training
data should provide a more practical and accurate way
to estimate the target statistics. Such a procedure can
involve calibrating the physics-based model to the training
data, and then using the calibrated model to extrapolate
to other soil conditions. Beyond the deflection optimal
detector, there exist other approaches to robust detector
design (e.g., [26]), and these should also be considered.
From a broader perspective, it remains to be seen if the
proposed methods can be extended to apply to the detection
of buried plastic mines. The signature of plastic mines is
significantly weaker than that of metal mines, so a direct
application of the techniques presented here may not be
practical.
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