

Performance Monitoring of Service Level
Agreements for Utility Computing using
the Event Calculus

Andrew D.H. Farrell, David Trastour, Athena Christodoulou
HP Laboratories Bristol
HPL-2004-20
February 16th , 2004*

E-mail: {andrew.farrell, david.trastour, athena.christodoulou}@hp.com

utility
computing,
service- level
agreement,
contract,
performance
monitoring,
contract state
tracking,
event
calculus

Utility Computing (UC) is concerned with the provisioning of
computational resources (compute-power, storage, network
bandwidth), on a per-need basis, to corporate businesses. Service-
level Agreements (SLAs) – contracts between a provider and a
customer - are a sine qua non in the deployment of UC. A crucial
stage in the life-cycle of contracts (such as SLAs) is their automated
performance monitoring at run-time. In this work, we define an
ontology to capture aspects of SLAs that are pertinent to
performance monitoring, and generalise these aspects so that the
ontology may be applicable to other contract domains. The
ontology is formalised as an XML-based language, called CTXML
(contract tracking XML). The semantics for CTXML are presented
in terms of a computational model based on the Event Calculus.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Performance Monitoring of Service-Level Agreements for Utility Computing
using the Event Calculus

Andrew D H Farrell, David Trastour, Athena Christodoulou
HP Labs

Filton Road, Stoke Gifford, Bristol, BS34 8QZ, United Kingdom
{andrew.farrell,david.trastour,athena.christodoulou}@hp.com

Abstract

Utility Computing (UC) is concerned with the provision-
ing of computational resources (compute-power, storage,
network bandwidth), on a per-need basis, to corporate busi-
nesses. Service-level Agreements (SLAs) - contracts be-
tween a provider and a customer - are a sine qua non in
the deployment of UC. A crucial stage in the life-cycle of
contracts (such as SLAs) is their automated performance
monitoring at run-time.

In this work, we define an ontology to capture aspects
of SLAs that are pertinent to performance monitoring, and
generalise these aspects so that the ontology may be appli-
cable to other contract domains. The ontology is formalised
as an XML-based language, called CTXML (contract track-
ing XML). The semantics for CTXML are presented in terms
of a computational model based on the Event Calculus.

1. Introduction
Utility Computing (UC) [11] offers an opportunity to

corporate businesses to maximise the efficiency and effi-
cacy of their IT service provision (both in-house and to cus-
tomers). It will allow them to out-source large areas of their
IT service provision to UC-data centres, which will agree
to provide computational resources, packaged as services
to them.

The levels of service that are agreed between a UC
service-provider and customer are mandated by Quality-
of-Service (QoS) guarantees, written as service-level pred-
icates within Service-Level Agreements (SLAs). SLAs are
essential for formalising the objectives of a UC service, and
to manage expectations [13].

The work that has been realised here has been concerned
with one particular aspect of the life cycle of a contract
(such as an SLA), namely, automated run-time performance
monitoring [6]. In our view, performance monitoring is (at
least) concerned with two functional aspects: (i) Tracking

the effect of events (pertinent to a contract) on contract state
– the contractual (or, normative) relations that hold between
contract parties – and informing interested parties of past,
present and (possible) future contract states; and, (ii) As-
sessing the current state of the contract, in terms of its utility
(that is, worth), and other metrics related to business intel-
ligence [16]. The work presented in this paper is primarily
concerned with the first of these, which is known as auto-
mated contract (state) tracking to distinguish it.

Notably, approaches to automated tracking of contracts,
thus far, can be largely characterised in one of two ways:
(i) As general-purpose reasoning frameworks that (mainly)
have not been applied in actual, deployed systems – some of
which are described in section 7; or (ii) In the case of SLAs,
as being fairly limited in capability [5]. The work presented
here is considered to be distinguished from such approaches
in that: (i) It has been developed in the context of a ‘real-
world’ deployment scenario (namely, SLAs for UC), while
being generalised so to be applicable to other domains; and
(ii) It represents an advance (over many approaches) in what
can be realised regarding performance monitoring for con-
tracts.

This paper is structured as follows. Firstly, (in section
2), the conceptualisation of contracts that has been used in
this work is presented; followed (in section 3) by an ex-
ample contract (namely, an SLA for a UC scenario), used
to ground our discussions. Then, (in sections 4 and 5), a
description of the contract tracking ontology, developed in
this work, and its semantics are given. The paper proceeds
to describe implementation and related work (in sections 6
and 7), and concludes (in section 8).

2. Contracts conceptualised
It is a useful abstraction to consider that contracts (such

as SLAs) are comprised of norms. A norm may be defined
as: “a principle of right action binding upon the members
of a group and serving to guide, control, or regulate proper
and acceptable behaviour” [1].

In our work, we consider norms to be templates, which
can be instantiated to yield (normative) relations that hold
between contract parties. An example might be the norm:
‘a service consumer is obliged to pay for service provision’.
When instantiated, it yields a relation that now holds be-
tween a service consumer and provider – that is, that the
consumer is obliged to pay for service provision. In time,
the norm may be instantiated again, creating a further re-
lation. In fact, it may be that the first relation still persists
(i.e., the consumer is yet to fulfil their original obligation
to pay), meaning that there is now more than one relation
pertaining to the same norm.

In this presentation, it will be assumed that at most one
relation pertaining to a norm may exist at any time. This is
for convenience; the general case is treated in [7]. For sim-
plicity, the existence of a relation pertaining to a norm will
be described as the norm being active, and the lack of an
extant relation will be described as the norm being inactive.

Crucially, it is considered here that: (i) a contract ex-
presses norms between contract parties, whereby the actual
state of the contract at any time is determined by which
norms are active; (ii) norms within a contract will define
the effects on the contract state of events that are presented
to the contract (contract events).

3 Example Contract
In this paper, we use the following Mail Service UC SLA

in order to ground our discussions.
• The Service Provider (SP) will provide a mail service

to the Service Consumer (SC), which includes a mail-
box with a quota ofs GBytes. SC will be charged a
fixed monthly fee of$s×c0 for the service.

• Wheneveru>s, whereu is the mailbox utilisation in
GBytes, SP will charge SC$c1 for each GByte overs,
calculated daily, untilu<=s

• Wheneveru>s+e, wheree is a level of tolerance in
GBytes, SC will not be able to receive emails.

• In the case that the mail service is unavailable, SP is
obliged to restore it withintrecover minutes. SP will
pay $precover for every trecover minutes that it is un-
available. SP is obliged to pay any penalties to SC
within a month of their accruement.

• All billing of SC occurs monthly, and SC is given a
month thereafter to pay. If SC fails to pay within
the given time, SP may terminate the mailbox service
without notice.

4 Contract Tracking Ontology
Figure 1 presents the contract tracking ontology that

has been devised in this work. The ontology has also
been formalised as an XML-based contract language, called
CTXML(contracttrackingXML).

contract
1 -contract���������)

contract norm

1. . .* -norms

1. . .* -norms

?
contract parameter

0. . .* -parameters

PPPPPPPPPq
contract variable

0. . .* -variables

timer

0..1 -timer
?

contractual statement

0..* -effects

XXXXXXXXXXXXz

1 -effect

contract action

1..* -actions

�
�

�	

Figure 1. Contract Tracking Ontology

With reference to the figure, a contract is conceived as
consisting of one or more contract norms, as well as zero or
more contract parameters – which allow for the customisa-
tion of a contract for a particular instantiation context – and
zero or more contract variables – which are used to main-
tain live, numerical contract state (their use is normative in
that it is agreed by all parties when the contract is signed).

A contract norm may be considered as corresponding
to one of many (Holfeldian-inspired) normative concepts,
including (non-exhaustively): obligation, privilege, entitle-
ment or power (see [7]). A contract norm will usually spec-
ify one or more of the following:
• One or more contractual statements, which define the

effect of contract events (pertaining to the norm) on the
contract. It is considered that a norm istriggeredby a
contract event that pertains to it.

• A timer for the norm, which is possibly recurrent.
• One or more parameters. That is, a contract norm may

be parameterised, whereby a contract event that per-
tains to the norm may pass data to the contractual state-
ments contained within the norm.

In our work, we have considered the following concep-
tualisations of contract norms to be useful for the represen-
tation of contracts:

• Contract management norms, of which we define two
types: Periodic and Event

• Obligation norms
• Privilege norms

In turn, contract management norms (CMNs) represent
the principal means of defining the effects of contract events
on contract state. They contain a single contractual state-
ment which is executed when the norm is triggered. Note
that a CMN will either be conceptualised as an event CMN,
or a periodic CMN. An event CMN is triggered by an exter-
nal event. Contrastingly, a periodic CMN describes a (pos-
sibly recurring) timer which triggers the norm.

An obligation norm is concerned with an obligation that
bears on a party to perform one or more (non-contractual)
actions. It will typically contain a contractual statement that
specifies the effects on the contract in case of violation of
the obligation norm, and a contractual statement that spec-
ifies the effects on the contract in case of fulfilment of the
norm. It is considered that such a norm is triggered by vi-
olation and fulfilment events. An obligation norm will also
specify a timer for the actions associated with the obliga-
tion to be performed by the pertinent party. Like a CMN, an
obligation norm may be parameterised.

A privilege norm is concerned with (non-contractual) ac-
tions that a party is permitted to perform. It is considered
illegal behaviour for a party to carry out a (non-contractual)
action for which it does not have the privilege. (As a conse-
quence, there does not exist a need for explicit prohibition
norms). Furthermore, a privilege norm is considered to be
a vested privilege in that other parties undertake that they
will not attempt to prevent the bearer of the privilege from
exercising it.

Examples of these norms represented inCTXML for the
Mail Service SLA (introduced in section 3) are now pre-
sented. Note that, in the sequel, contract events take the
form: (norm, qualification, parameters) , where the first ar-
gument is the unique pertaining norm, the second argument
is a qualification for the event – which names the contrac-
tual statement in the norm to be executed, and the third ar-
gument is a list of event parameters that are passed on to the
contractual statement.
• A periodic CMN, pcmn3, defining its (recurrent) timer

as being specified by thepcnm3timer timer clause;
and specifying its (single) contractual statement to
be: pcmn3timeout which is executed whenever(pcmn3,
timeout, []) contract events occur. These events are
generated internally according topcnm3timer .
<contractnorm id="pcmn3" timer="pcnm3timer">

<csref name="timeout" id="pcmn3timeout"/>
</contractnorm>

This norm in part facilitates: “SP will pay$precover

for everytrecover minutes that it is unavailable” in the
example SLA.

• An event CMN,ecmn1, specifying a single contractual
statement:ecmn1trigger which is executed whenever
(ecmn1, trigger, [Charge]) contract events occur; and
denoting that it is parameterised with a single parame-
ter: Charge .
<contractnorm id="ecmn1">

<csref name="trigger" id="ecmn1trigger"/>
<para name="Charge"/>

</contractnorm>

This norm in part facilitates: “SP will charge SC$c1

for each GByte overs, calculated daily, untilu<=s” in
the example SLA.

• An obligation norm,o2, defining its (one-off) timer
as being specified by theo2timer timer clause; con-
tractual statements for non-fulfilment (violation) and
fulfilment of the obligation within the time specified
by o2timer as being specified by theo2violation and

o2fulfilment contractual statements, respectively – ex-
ecuted in response to(o2, violation, [Charge]) and
(o2, fulfilment, [Charge]) contract events; and denot-
ing that it is parameterised with a single parameter:
Charge .
<contractnorm id="o2" timer="o2timer">

<csref name="violation" id="o2violation"/>
<csref name="fulfilment" id="o2fulfilment"/>
<para name ="Charge"/>

</contractnorm>

This norm in part facilitates: “SP is obliged to pay any
penalties to SC within a month of their accruement” in
the example SLA.

• A privilege norm,p1.
<contractnorm id="p1"/>

This norm in part facilitates: “If SC fails to pay within
the given time, SP may terminate the mailbox service
without notice” in the example SLA.

A timer clause is used to specify (a recurrent, or one-
off) timer for periodic CMNs and obligation norms. Such a
clause consists of one or morerun clauses, which each spec-
ify a certain number of iterations of a particular timer dura-
tion. If the number of iterations is not explicitly specified
(as in the example below), the run is considered to beindef-
initely recurring according to the specified timer duration.
An example of such a clause is now given, from theCTXML
representation of the Mail Service SLA, for the timer used
for contract norms:pcmn1 andpcmn2. Here, the clause sim-
ply says that the timer will be indefinitely recurring with a
period of 1 month.
<timer id="pcmn1pcmn2timer">

<run><dur val="P1M"/></run>
</timer>

This clause in part facilitates: “SP will pay$precover for
everytrecover minutes that it is unavailable” in the example
SLA.

A contractual statement clause comprises a list of con-
tract actions, which are actions to be performed on the con-
tract, in response to contract events. A contract action may
be one of the following clauses (where the first three are
considered to be atomic contract actions):

• activate – activates contract norm:norm . In CTXML:
<activate id="norm" > activation parameters</activate >

• deactivate– deactivates contract norm:norm . In CTXML:
<deactivate id="norm"/ >

• assign – assigns a numerical value, given by
expr, to contract variable cvar . In CTXML:
<assign id="cvar"> expr </assign >

• ifcond – specifies a conditional contract action. In
CTXML: <ifcond then="..." else="..."/ >

An example of a contractual statement, with associated
contract actions, represented inCTXML for the Mail Ser-
vice SLA is now presented.

<contractualstmt id="pcmn1timeout">
<ifcond then="ifcond1then">

<gt><value id="vPenalty"/><num val="0"/></gt>
</ifcond>

</contractualstmt>

<contractualstmt id="ifcond1then">
<activate id="o2">

<apara name="Charge"><value id="vPenalty"/></apara>
</activate>
<assign id="vPenalty"><num val="0"/></assign>

</contractualstmt>

Here, thepcnm1timeout contractual statement consists of
a single contract action – anifcond . Theifcond action spec-
ifies a contractual statement,ifcond1then , to be performed
if the condition of theifcond holds. (It is possible forifcond

actions to also specify a contractual statement to be per-
formed if the condition does not hold). The condition of the
ifcond , in the example, stipulates contract variablevPenalty

be greater than0. The ifcond1then contractual statement
consists of a couple of contract actions – anactivate ac-
tion (for activating parameterised obligation normo2 with
activation parameterCharge assigned to the current value of
contract variablevPenalty), and anassign action (for reset-
ting the value of the contract variable).

Finally, a contract may specify a list of initialising opera-
tions (itself a contractual statement – constrained to contain
just activate operations) which are carried out on the con-
tract when it is instantiated. Note that all contract norms
are inactive, by default. As such, any norm that is required
to be initially active should have a correspondingactivate

operation specified in this list.

4.1 Specialisation to SLA context
It useful to explicate an additional concept, which has

been utilised within this work, that is specific to the context
of representing SLAs. The concept is a service-level norm
(SLN), which is a variation of an event CMN. An SLN per-
tains to a level of service, which is agreed between parties
when the containing SLA is negotiated. A ‘service level
predicate’, corresponding to the SLN, defines the level of
service that must be upheld throughout the lifetime of the
SLA.

In terms of the contract tracking ontology, an SLN de-
fines up to two contractual statements. One that specifies
contract actions that are to be performed in case of viola-
tion of the (service level predicate pertaining to the) SLN,
and another that specifies contract actions that are to be per-
formed in case of restoration of the SLN. It is considered
that such a norm is triggered by violation and restoration
contract events.

An example of an SLN represented in the Mail Ser-
vice SLA is now presented, where it is triggered by(sln1,

violation,) and(sln1, restoration,) contract events.
<contractnorm id="sln1">

<csref name="violation" id="sln1viol"/>
<csref name="restoration" id="sln1rest"/>

</contractnorm>

This clause in part facilitates: “The Service Provider. . .a
mail-storage facility of up tos GBytes” and “In the case of
unavailability of the mail service. . .” in the example SLA.

5 Semantics
The semantics attributed to the contract tracking ontol-

ogy are presented in terms of how the execution of con-
tractual statements, in response to contract events, changes
the state of the contract. This is achieved by describing the
computational model for determining the state of norms, in
the context of a narrative of contract events, according to
the contractual statements contained within a contract. The
computational model that is described here is inspired by
the Event Calculus (EC) [12].

5.1 Event Calculus overview

There are many variations on the Event Calculus (EC).
In the sequel, we define an XML formalisation of a simpli-
fied form of the version described in [17], calledecXML.
In this formalisation, contract events, which take the form:
(norm,qualification,parameters) , are written as: <event

id="(norm,qualification)"> parameters</event> .
A contract inecXMLis a conjunction of:

• A finite set ofinitially clauses of the form:
<initially>

<fluent id=" F">...</fluent>
</initially>

meaning that (boolean) fluentF holds initially. (A flu-
ent is a property of a domain which can be attributed
a value, where the value of the fluent is able to change
over time). Multi-valued fluents are assigned an initial
value using similar clauses.

• A finite set ofhappensclauses of the form:
<happens time=" T">

<event ...>...</event>
</happens>

meaning that the given event happened at timeT

• A finite set ofinitiates clauses of the form:
<initiates>

<event ...>...</event>
<fluent id=" F">...</fluent>
condition

</initiates>

meaning that the given event initiates fluentF if condition

holds. Similar clauses can be written giving how multi-
valued fluents are initiated.

• A finite set ofterminates clauses of the form:
<terminates>

<event ...>...</event>
<fluent id=" F">...</fluent>
condition

</terminates>

meaning that the given event terminates fluentF if con-

dition holds. Similar clauses can be written giving how
multi-valued fluents are terminated.

Additionally the following axioms (for which a full
XML formalisation is neither necessary nor appropriate) are
also defined forecXML:

• holds(F,T) if initiated(F,T1,T) and not terminated(F,T1,T)

meaning that fluentF holds at timeT if fluent F is ini-
tiated at timeT1 before, or at, timeT and it is not ter-
minated at a time later thanT1 but before, or at, timeT.
A similar axiom exists for multi-valued fluents.Note
that it is theholdsaxioms which provide the means for
querying the state of a contract at any time, and thus
which realise the primary purpose of applying an EC-
based semantics.

• initiated(F,0,) if

<initially>
<fluent id=" F">...</fluent>

</initially>

meaning that fluentF is initiated at time0 if fluent F

holds initially (as determined by any extantecXML
<initially > clause forF in the contract). A similar
axiom exists for multi-valued fluents.

• initiated(F,T1,T) if happens(E,T1) and T≥T1>0 and

<initiates>
<event ...>...</event>
<fluent id=" F">...</fluent>
...

</initiates>

meaning that fluentF is initiated at timeT1 before, or
at, timeT, and greater than0, if an eventE happens atT1

and E initiatesF (as determined by any extantecXML
<initiates > clauses forF in the contract). A similar
axiom exists for multi-valued fluents.

• terminated(F,T1,T) if happens(E,T2) and T≥T2>T1 and

<terminates>
<event ...>...</event>
<fluent id=" F">...</fluent>
...

</terminates>

meaning that fluentF is terminated at timeT2 later than
T1 and before, or at, timeT if an eventE happens at
T2 and E terminatesF (as determined by any extant
ecXML<terminates > clauses forF in the contract). A
similar axiom exists for multi-valued fluents.

5.2 Event Calculus based semantics

As stated, the Event Calculus (EC) is used to provide
a computational model forCTXMLcontractual statements.
This is achieved by defining a mapping between contrac-
tual statements and expressions in EC. Note that, a contrac-
tual statement will have a distinct mapping for each contract
norm to which it pertains.

Recall from section 4 that a contractual statement con-
sists of the following types of contract actions:activate,

deactivate, assign, and ifcond . The mapping for the first
three contract actions – the atomic actions – is now pre-
sented.

• <activate id="norm" >activationparameters</activate > is
mapped to:

<initiates>
<event id="(pnorm,qualification)"/>
<fluent id="norm"> activation˙parameters</fluent>

</initiates>

where (pnorm,qualification) is the event name
that triggers the contractual statement with id:
qualification within contract norm: pnorm and
norm is the norm activated with the givenactiva-
tion parameters.

• <deactivate id="norm"/ > is mapped to:
<terminates>

<event id="(pnorm,qualification)"/>
<fluent id="norm"/>

</terminates>

wherenorm is the norm deactivated.
• <assign id="cvar"> expr</assign > is mapped to:

<initiates>
<event id="(pnorm,qualification)"/>
<mvfluent id="cvar"> expr</mvfluent>

</initiates>

wherecvar is the contract variable assigned toexpr.

Ifcond actions conceptually take the form:∆ → θthen :

θelse. ∆ is a boolean condition on the state of norms (in-
active or active) in the contract and contract events.θthen

is a contractual statement that is executed should the con-
dition hold when theifcond is executed.θelse is a contrac-
tual statement that is executed if the condition fails to hold.
In mappingifcond actions to EC,∆ becomes an additional
condition placed on each contract action inθthen; and not

∆ becomes an additional condition placed on each contract
action in θelse. Generally speaking, there may be an arbi-
trary nesting to anifcond action meaning that any atomic
activate , deactivate , or assign actions specified within may
be subject to a number of boolean conditions:Π1, . . . , Πn,
where for any boolean condition∆i within an ifcond , Πi

represents either∆i or not ∆i.
An <activate id="norm" >activationparameters</activate >

contract action specified within anifcond is mapped to:
<initiates>

<event id="(pnorm,qualification)"/>
<fluent id="norm"> activation˙parameters</fluent>
condition

</initiates>

Here an additionalcondition clause specifies that the
contract action will only be applied ifΠ1, . . . , Πn all hold.
Other atomic actions similarly have an additionalcondition
clause when mapped.

Examples of such mappings for the Mail Service SLA
are now presented.

• A violation event forsln1 initiates (or activates)pcmn3,
and terminates (or deactivates)sln1 ok .

<initiates>
<event id="(sln1,violation)"/>
<fluent id="pcmn3"/>

</initiates>
<terminates>

<event id="(sln1,violation)"/>
<fluent id="sln1_ok"/>

</terminates>

State name Characterisation

sNormal -p1, -p2, +sln1 ok

sUnavailable -sln1 ok

sRefuseRecMail +p2

sSCToPay +o3

sSPToPay +o2

sTerminable +p1

Table 1. Definition of (equivalence classes for)
states

• A timeout event forpcnm1 initiates the assignment
of (contract variable)vPenalty to 0 if the condition
vPenalty greater than 0 holds.

<initiates>
<event id="(pcnm1,timeout)"/>
<mvfluent id="vPenalty">

<num val="0"/>
</mvfluent>
<gt><value id="vPenalty"/><num val="0"/></gt>

</initiates>

The mapping of the (possibly extant) contractual state-
ment containing initialising operations for the contract
(which is constrained to contain onlyactivate is simply
(wherenorm is the norm activated):

<activate id="norm" >activationparameters</activate > is
mapped to:

<initially>
<fluent id="norm"> activationparameters</fluent>

</initially>

Also, there is a mapping associated with the initialisa-
tion of contract variables inCTXML, thus (wherecvar is the
contract variable assigned):

<contractvar id="cvar"> expr</contractvar > is mapped
to:

<initially>
<mvfluent id="cvar"> expr</mvfluent>

</initially>

Finally, there are other aspects ofCTXML, such as timer
clauses, that have mappings toecXMLthat are not presented
here for reasons of brevity.

6 Implementation
The Event Calculus-based computational model defined

here has been implemented in two ways. Both implemen-
tations provide a query-interpreter for determining, at run-
time, the state of contracts. Components outside the rep-
resentation of the contract will post contract events via the
query-interpreter, and be informed of (and be able to query
the contract for) information relating to contract state.

• A comprehensive Prolog (Sicstus v3.10.1) implemen-
tation of a query-interpreter for querying contracts
written in a Prolog version ofecXML

Event narrative Activates Deactivates State History

(norm, qualification,

parameters)

<contract initiation> sln1 ok . . . sNormal

(sln1,violation,[]) pcmn3, o1 sln1 ok sUnavailable

(sln1,restoration,[]) sln1 ok pcmn3 sNormal

(ecmn2,trigger,[true]) p2 sRefuseRecMail

(ecmn2,trigger,[false]) p2 sNormal

(pcmn1,timeout,[]) o2,o3 sNormal,

(pcmn2,timeout,[]) sSCToPay

sSPToPay

(o2,fulfilment,[$12.90]) o2 sNormal

sSCToPay

(o3,timeout,[$20.50]) p1 o3 sTerminable

Table 2. State History of SLA

• A comprehensive Java implementation of a query-
interpreter for querying contracts written in either
ecXML or the higher-levelCTXML

Part of the API supported by these implementations is
now presented.

• void get output events(Es,T) – gets, Es, the output
events that the contract generates at timeT

• void get states(S) – gets,S, the possible states of the
contract; andvoid get state history(H,T) – gets,H, a
history of states that the contract has been in, up to and
including timeT

• boolean active at(N,T) – gives whether a norm,N,
holds at a timeT; anddouble value at(V,T) – gives the
value of a contract variable,V, at timeT

• void add events(Es) – used to add an event nar-
rative, Es, specified in ecXML, to the contract;
void add future events(Es, T) – used to add a fu-
ture event narrative,Es, to the contract; andvoid

delete future asserted events() – used to remove all
future events

Additionally, there is a means, provided for by the con-
tract tracking ontology of defining equivalence classes
for collections of contract states. It is the names
of these equivalence classes that procedures such as
get state history/2 return for names of states. Notably, it
is also possible to query possible future states by asserting
the occurrence of future events (usingadd future events/2)
and querying the resulting state. This is extremely useful in
the SLA context, for calculating the utility (that is, worth)
to the service provider of possible future service provisions
[16], for instance.

6.1 Example Querying

In tables 1 and 2, a brief example of querying is shown
using get state history/2 . Firstly, in table 1, the equiva-
lence classes for states that have been defined over the Mail
Service SLA are shown. In the table, the definition of a
particular state is characterised by which norms are active
(prefixed with a ‘+’) and which norms are inactive (prefixed
with a ‘-’).

Using this information, and looking at table 2, it
is possible to see that the information returned by
get state history/2 is appropriate according to the event
narrative and its consequences in terms of norms activated
and deactivated.

7 Related Work
There have been many diverse research contributions

that have utilised the Event Calculus (EC) for the purpose
of reasoning over the effects of events on a logic theory.
Those closest to the topics of this paper include the follow-
ing. In [3], Artikis describes the effective representation
in EC of: a variation on the Contract-Net protocol, an ar-
gumentation protocol based on Brewka’s reconstruction of
Rescher’s Theory of Formal Disputation (RTFD), and the
NetBill protocol. In [4], Bandara and colleagues develop
methods for performing analysis and refinement of policy
specifications. To this end, they formalise an EC-based no-
tation for representing both policy and system behaviour
specifications. In [9], Firozabadi and colleagues develop
an EC-based framework for issuing privileges to agents in a
community, through ‘declaration’ and ‘revocation’ author-
ity certificates. It makes a distinction between the time a
certificate is issued, or revoked, and the time for which the
associated privilege is created, or discharged, enabling cer-
tificates to have prospective and retrospective effects.

There has been a good deal of research concerning the
representation of contracts for the purpose of reasoning
over, and monitoring, them at run-time. In [6] Daskalop-
ulu discusses the use of Petri-nets for contract monitoring,
and assessing contract performance. Their approach is best
suited for contracts which can naturally be expressed as pro-
tocols. In [15] Milosevic and colleagues attempt to identify
the scope for automated management of e-contracts; includ-
ing: contract drafting, negotiation and monitoring.

In [2], Abrahams defines the EDEE architecture (E-
commerce application Development and Execution Envi-
ronment). Abrahams proposesEvent-Condition Obligation
rules for handling occurrences.Prima facieobligations are
derived from the rules, where subsequent obligation choice
decides which of these apply, and action choice decides
which of those that apply will be fulfilled.

In [10], Grosof and colleagues have sought to address the
representation of business rules for e-commerce contracts.

For this purpose, they have developed the SWEET (Seman-
tic WEb Enabling Technology) toolkit, which enables com-
munication of, and inference for, e-business rules written in
RuleML extended with Situated Courteous Logic Program-
ming. The approach of Grosof and colleagues, has some
similarities to our work. For instance, our approach is ca-
pable of facilitating conflict resolution in the way described
by Grosof [10]. Furthermore, ‘procedural attachment’ [10]
is realised here in a simple, but effective, way.

It is worth noting that, in the work of Grosof and col-
leagues, a sharp distinction is made between “the represen-
tational mechanism for communicating contract rules, and
the actual rule execution mechanisms employed by partic-
ipating agents. Our concern here is with the former. . .”
[10]. Here there is a significant difference their approach
and that employed here. We are very much concerned with
the actual execution mechanisms of agents in considering
how they might maintain live representations of contracts.
Such a concern demands the use of a computational model
that can effectively track the state of a contract over time – a
facility that is (ostensibly) lacking in the work of Grosof. In
fact, Grosof’s work would apparently dovetail nicely with
that of Leite and colleagues [14] who have suggested update
semantics forgeneralised logic programs.The evolution of
contract state would be manifested as a progression of logic
programs, where the state of a contract at any particular
time would be given by the (stable model or well-founded)
semantics of the individual logic program most recent to
that time. Contract events would be processed as program
updates, expressed using the update language specified by
Leite. In the approach presented here, the Event Calculus is
used in order to facilitate reasoning of contracts over time.

8 Conclusions
In this work, we have proposed an ontology, formalised

as an XML-based language,CTXML, to facilitate the auto-
mated tracking of contract state (that is, the active contract
norms that hold between contract parties).

We have used the Event Calculus to provide a computa-
tional model forCTXML. An inherent desirability of such
an approach is that it removes any rigid coupling that might
otherwise be introduced between the ontology and its im-
plementation. That is, with this approach, we implement
generic state tracking, through EC, as a separate component
to supporting the particular ontologies defined here. This
means that for any ontology that would naturally lend itself
to having an EC-based semantics (namely, any for which
state tracking would be part of the desired reasoning us-
ing the ontology), the same state tracking component can
be used. This approach thus promotes the simple support
of multiple contract languages. In fact, for each distinct
contract language that would be supported by our imple-
mentation, only a component that parses contracts written

in such a language would need to be written. Such compo-
nents would output an internalised version ofecXML, as do
the parsing components that have been written forecXML
andCTXML.

A comprehensive Java-based implementation of a
generic EC reasoning component, along with query-
interpreters forCTXML andecXMLhave been developed.
The implementation andCTXMLontology have been eval-
uated against tens of SLAs, which are considered to be rep-
resentative for UC. We have found the ontology to be suf-
ficient for facilitating contract tracking (as defined in this
paper) for these SLAs. We have also designed our imple-
mentation to be capable of supporting a high number of con-
tracts simultaneously and to support event narratives with a
very large number of events. We have optimised the imple-
mentation for querying, and have found it to work extremely
efficiently.

In the future, it is our intention to evaluate the sufficiency
of CTXMLat facilitating contract tracking for other sorts of
SLAs, and for contracts from other domains. We also intend
to enhance the functionality supported by our implementa-
tion, in order to make it useful for supporting the calcula-
tion of contract utility [16]. Some of these enhancements
will include:

• Ability to reason over possible future states of a con-
tract, while allowing the contract to be updated accord-
ing to incoming contract events.

• Ability to manageuser-variablesthat a particular con-
tract party may define for the purposes of their own
monitoring. These will not be contract variables as
their use will not have been agreed between contract
parties; in fact, they are unlikely to be transparent to
other parties. These will be defined along with rules
for describing how the values of these variables are up-
dated.

• Ability to manage dynamic addition and deletion of
contract clauses.

• Enhancement of our support of ‘procedural attach-
ment’ [10]. Currently, our implementation will out-
put events pertaining to which norms have been made
active, or inactive, at a particular time, as well as gen-
erating events pertaining to changes in the values of
contract variables. An added desirability is the capa-
bility of specifying rules for generating output events,
such as ‘generate an output event when user-variablex
has a value greater thany’.

References

[1] Merriam-Webster On-line Dictionary (www.m-w.com/cgi-
bin/dictionary).

[2] A. S. Abrahams.Developing And Executing Electronic Com-
merce Applications with Occurrences. PhD thesis, Cam-
bridge University, 2002.

[3] A. Artikis. Executable Specification of Open Norm-
Governed Computational Systems. PhD thesis, Imperial Col-
lege, London, U.K., 2003.

[4] A. K. Bandara, E. C. Lupu, and A. Russo. Using Event Cal-
culus to Formalise Policy Specification and Analysis. InPro-
ceedings of 4th IEEE Workshop on Policies for Distributed
Systems and Networks (Policy 2003), Lake Como, Italy, June
2003.

[5] R. Boreham and M. Morciniec. Contract Monitoring.HP
Labs Technical Report: HPL-2002-265.

[6] A. Daskalopulu. Modelling Legal Contracts as Processes.
11th International Conference and Workshop on Database
and Expert Systems Applications, IEEE C. S. Press, pages
1074–1079, 2000.

[7] A. D. H. Farrell. Logic-based formalisms for the represen-
tation of Service Level Agreements for Utility Computing.
Master’s thesis, Imperial College, London, U.K., 2003.

[8] A. D. H. Farrell, M. J. Sergot, D. Trastour, and
A. Christodoulou. Performance Monitoring of Service-Level
Agreements for Utility Computing using the Event Calculus
and CTXML (Extended version). Available on request.

[9] B. S. Firozabadi, M. Sergot, and O. Bandmann. Using Au-
thority Certificates to Create Management Structures. InPro-
ceedings of Security Protocols, 9th International Workshop,
UK, April 2001.

[10] B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative
Approach to Business Rules in Contracts: Courteous Logic
Programs in XML. In M. P. Wellman, editor,Proceedings
of 1st ACM Conf. on Electronic Commerce (EC-99), Den-
ver, CO, USA, November 1999. ACM Press, New York, NY,
USA.

[11] Hewlett-Packard (www.hp.com). HP Utility Data Centre -
Technical White Paper. October 2001.

[12] R. Kowalski and M. Sergot. A Logic-Based Calculus of
Events.New Generation Computing, 4:67–95, 1986.

[13] J. J. Lee and R. Ben-Natan.Integrating Service Level Agree-
ments: Optimising Your OSS for SLA Delivery. Wiley, New
York, 2002.

[14] J. Leite, J. Alferes, and L. Pereira. Multi-dimensional Dy-
namic Logic Programming. In F. Sadri and K. Satoh, ed-
itors, Proceedings of the CL-2000 Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA’00), July 2000.

[15] O. Marjanovic and Z. Milosevic. Towards Formal Mod-
elling of e-Contracts. InFifth IEEE International Enterprise
Distributed Object Computing Conference, Seattle, USA,
September 2001.

[16] M. Salle and C. Bartolini. Management by Contract.HP
Labs Technical Report: HPL-2003-186.

[17] M. Shanahan.Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia, ISBN:
0262193841. MIT Press, 1997.

