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Preface

The success of Group Theory is impressive and extraordinary. It is, perhaps, the
most powerful and influential branch of all Mathematics. Its influence is strongly
felt in almost all scientific and artistic disciplines (in Music, in particular) and
in Mathematics itself. Group Theory extracts the essential characteristics of
diverse situations in which some type of symmetry or transformation appears.
Given a non-empty set, a binary operation is defined on it such that certain
axioms hold, that is, it possesses a structure (the group structure). The concept
of structure, and the concepts related to structure such as isomorphism, play a
decisive role in modern Mathematics.

The general theory of structures is a powerful tool. Whenever someone
proves that his objects of study satisfy the axioms of a certain structure, he
immediately obtains all the valid results of the theory for his objects. There is
no need to prove each one of the results in particular. Indeed, it can be said that
the structures allow the classification of the different branches of Mathematics
(or even the different objects in Music (!)).

The present text is based on the book in Spanish "Teoría de Grupos: un
primer curso" by Emilio Lluis-Puebla, published by the Sociedad Matemática
Mexicana This new text contains the material that corresponds to a course
on the subject that is offered in the Mathematics Department of the Facultad
de Ciencias of the Universidad Nacional Autónoma de México plus optional
introductory material for a basic course on Mathematical Music Theory.

This text follows the approach of other texts by Emilio Lluis-Puebla on Lin-
ear Algebra and Homological Algebra. A modern presentation is chosen, where
the language of commutative diagrams and universal properties, so necessary
in Modern Mathematics, in Physics and Computer Science, among other disci-
plines, is introduced.

This work consists of four chapters. Each section contains a series of prob-
lems that can be solved with creativity by using the content that is presented
there; these problems form a fundamental part of the text. They also are de-
signed with the objective of reinforcing students’ mathematical writing. Through-
out the first three chapters, representative examples (that are not numbered) of

7



8 Preface

applications of Group Theory to Mathematical Music Theory are included for
students who already have some knowledge of Music Theory.

In chapter 4, elaborated by Mariana Montiel, the application of Group The-
ory to Music Theory is presented in detail. Some basic aspects of Mathematical
Music Theory are explained and, in the process, some essential elements of both
areas are given to readers with different backgrounds. For this reason, the ex-
amples follow from some of the outstanding theoretical aspects of the previous
chapters; the musical terms are introduced as they are needed so that a reader
without musical background can understand the essence of how Group Theory is
used to explain certain pre-established musical relations. On the other hand, for
the reader with knowledge of Music Theory only, this chapter provides concrete
elements, as well as motivation, to begin to understand Group Theory.

The last four authors give a special acknowledge for the valuable help in
the English edition to Dr. Flor Aceff-Sánchez who, in spite of her delicate
health, put all her dedication and love in the elaboration of this text with many
mathematical and musical comments. Without her, this text would never have
come to life.

Flor Aceff-Sánchez
Universidad Nacional Autónoma de México

Octavio A. Agustín-Aquino
Universidad de la Cañada

Janine du Plessis
Georgia State University

Emilio Lluis-Puebla
Universidad Nacional Autónoma de México

Mariana Montiel
Georgia State University



Introduction

Mathematics exist from the initial stages of human existence. Practically every
human being is a mathematician in some sense, from those that use mathematics
to those that discover and create new mathematics. Everybody is also, to a
certain extent, a philosopher of mathematics. Indeed, everyone who measures,
recognizes people or things, counts, or says "as clear as two plus two is four"
are mathematicians or philosophers of mathematics. However, only a very small
number of people specialize in creating, teaching, researching or popularizing
mathematics.

Mathematics is a pillar and foundation of our civilization. From the first half
of the XIX century, due to the progress in different areas, mathematical sciences
were unified, and the name of "Mathematics" as a single discipline was justified.
According to the philologist Arrigo Coen, mathema means "erudition", man-
thánein is the infinitive "to learn", the root mendh means, in the passive tense,
"knowledge". In other words, it is the relative to learning. In an implicit sense,
Mathematics means "what is worth learning". It is also said that Mathematics
is "a science par excellence".

However, it can also be said that there are very few people that posses correct
and up-to-date information about the branches and sub-branches of Mathemat-
ics. Children and young adults of our time can have good approximated images
of electrons, galaxies, black holes, the genetic code, etc. Nevertheless, they will
find, with difficulty, mathematical concepts that go beyond the first half of the
XIX century. This is due to the nature of mathematical concepts.

It is a very common belief that a mathematician is a person who carries
out enormous sums of natural numbers during every day of his life. It is also
true that people suppose that a mathematician knows how to add and multiply
natural numbers at a great speed. If we think a little about the concepts that the
majority of people have about mathematicians, we could reach the conclusion
that mathematicians are not necessary, given that a pocket calculator can carry
out this work.

When one asks "what is the difference between a mathematician and an
accountant?", it is considered equivalent to the question "what is the difference
between x and x?". That is, it is supposed that they do the same. If it is
explained that only on rare occasions does a mathematician carry out sums
or multiplications, it seems incredible. It also appears incredible that a great

9



10 Introduction

number of advanced mathematics texts will not usually use numbers bigger than
10, with the exception, perhaps, of the page numbers.

During many years, the emphasis has been on teaching children to learn
multiplication tables, on the calculation of enormous additions, subtractions,
multiplications, divisions and square roots, but of very small numbers (as far as
big numbers, the majority of people have little idea of their magnitude). After,
as teenagers, those that could sum and multiply polynomials were considered
geniuses by their classmates, in possession of a great mathematical talent and
afterwords, if they were lucky, they were taught to add and multiply complex
numbers.

It would seem, then, that a mathematician is a person that passes his life
doing addition and multiplication (of small numbers), something like the person
in charge of the banking aspect of a business. This impression exists in the
majority of people. Nothing further than the truth. Mathematicians are not
those who calculate or do arithmetic operations, but those who invent how to
calculate or do operations. To do Mathematics is to imagine, to create, to
reason.

To be able to count, it was somehow necessary to represent numbers, for
example, with the fingers. Then the abacus embodied a step forward, although
still tied to counting with the fingers, and is still used in some parts of the
planet. Afterwards, the arithmetic machine that was invented by Pascal in 1642
allowed people to carry out addition and subtraction through a very ingenious
system of gears. Today, the pocket calculators allow us to carry out, in seconds,
calculations that would have taken years to do before, and have also allowed us
to get rid of the logarithm tables and the slide rule.

However, in general, the students and graduates of any area will respond to
the question "what is the sum?", or rather "what is addition?", by shrugging
their shoulders, in spite of having spent twelve years doing sums, and that the
sum is a primitive concept. It is also common that when a child, or a young
person or an adult with a professional degree confronts a problem, he does not
know whether to add, subtract, multply or cry.

The concept of binary operation, or law of composition, is one of the oldest in
Mathematics and goes back to the ancient Egyptians and Babylonians [B] who
already had methods to calculate addition and multiplication of positive integers
and positive rational numbers (remember that they did not use the number
system that we use). However, as time went on, mathematicians realized that
the most important aspects were not the tables for adding or multplying certain
"numbers", but the set itself and the binary operation defined on it. The binary
operation, together with certain properties that must be satisfied, gave way to
the fundamental concept of group.

Historically, the concept of binary operation, or law of composition, was
extended in two ways, in which we can only find a certain resemblance with the
numerical cases of the Egyptians and Babylonians [B].The first was by Gauss,
when he studied quadratic forms with integer coefficients, and when he saw that
the law of composition was compatible with particular equivalence classes. The
second culminated in the concept of group, in the Theory of Substitutions (by
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means of the development of the ideas of Lagrange, Vandermonde and Gauss in
the solution of algebraic equations). However, these ideas remained superficial,
with Galois being the real pioneer of Group Theory when he reduced the study
of algebraic equations to the study of the permutation groups associated to
them.

The English mathematicians of the first half of the XIX century isolated the
concept of law of composition and extended the area of Algebra by applying
it to Logic (Boole), vectors and quaternions (Hamilton) and matrices (Cayley).
By the end of the XIX century, Algebra was focused on the study of algebraic
structures, leaving behind the interest for the applications of the solutions to
numerical equations. This orientation gave way to three fundamental trends
[B]:

(i) Number Theory, that emerged from the German mathematicians Dirich-
let, Kummer, Kronecker, Dedekind and Hilbert, based on the work of Gauss.
The concept of field was fundamental.

(ii) The creation of Linear Algebra in England by Sylvester, Clifford; in the
United States by Pierce, Dickson, Wedderburn; and in Germany and France by
Weirstrass, Dedekind, Frobenius, Molien, Laguerre, Cartan.

(iii) Group Theory that, in the beginning, was focused on the study of per-
mutation groups. It was Jordan who developed the work of Galois, Serret and
other predessesors. He introduced the concept of homomorphism and was the
first to study infinite groups. Later, Lie, Klein and Poincaré developed these
studies considerably. Finally, it was seen that the fundamental and essential
idea of group lay in its law of composition, or binary operation, and not in the
nature of its objects.

The success of Group Theory is impressive and extraordinary. It suffices to
mention its influence in almost all of Mathematics and in other areas of knowl-
edge. The examples given in 1.1 could leave the non-mathematician perplex,
with a false idea about the hobbies that mathematicians create, consisting of
combining "numbers" in a strange perverse way. However, the examples con-
sidered in this section are vitally important for Number Theory (the number
3 can be replaced by any natural number n - if n = 12 we obtain clock arith-
metic - or by a prime number p, obtaining important concepts and results), for
Group Theory itself (dihedral or symmetric groups) or for Music, in relation to
the chromatic scale. By observing this, it can be seen that what really is done
in Group Theory, is extract the essential aspects from these examples, that is,
given a non-empty set, we define a binary operation on it, such that certain
axioms, postulates or properties hold, in other words, they possess a structure
(the group structure). There exist several concepts linked to that of structure,
one of the most important being isomorphism.

The concept of structure and those concepts related to it, such as isomor-
phism, play a decisive role in contemporary Mathematics. The general theories
of the important structures are very powerful tools. Whenever someone proves
that his objects of study satisfy the axioms of a certain structure, he imme-
diately obtains all the valid results of the theory for his objects. There is no
need to prove each one of the results in particular. One use of structures and
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isomorphisms made in modern Mathematics is the classification of its different
branches (the nature of the objects is not important, the essential aspect are
their relations to each other).

In the Middle Ages, Mathematics was classified as Arithmetic, Music, Geo-
metry and Astronomy, which composed the Quadrivium. Afterwards, and until
the middle of the XIX century, the branches of Mathematics were distinguished
by the objects they studied, for example, Arithmetic, Algebra, Analytic Geom-
etry, Analysis, with some subdivisions. It was as if we said that, given that bats
and eagles fly, they must both be birds. We now can see beyond the surface
and extract the underlying structures from the mere appearance.

Currently there are 63 branches of mathematics with over 5000 sub-classifica-
tions. Among them are Algebraic Topology (composite structures), Homological
Algebra (purification of the interaction between Algebra and Topology, created
in the fifties), and Algebraic K-Theory (one of the most recent branches, created
in the seventies).

The idea of the connection between Mathematics and Music has been present
historically and the scope of this connection has been broadened significatively
since it was made explicit, for the first time, by Pythagoras of Samos. Chapter
4 presents a facet of the modern development of Mathematical Music Theory,
based in its transformational nature. In this context, Group Theory plays the
role of protagonist.

The foundations of this application can be attributed, in particular, to David
Lewin, who developed Transformational Theory and gave rise to a new form of
music theory, designed for the analysis of modern music. This new theory is
known as Neo-Riemannian Theory.

Neo-Riemannian Theory is inspired in the work of the German musical theo-
rist Hugo Riemann, who contributed to the effort to establish relations between
tones and intervals. The need of this change arose from the industrial, political
and social changes that ocurred during the XIX century. It was inevitable that
they would exercise an important effect on the music of that time, and these
changes were frequently expressed by means of bold modulations, innovative
chord progressions, dissonance and resolutions and, in general, much less prepa-
ration for abrupt changes. These radical transformations gave rise, in music,
to postromanticism and, finally, to atonality. Naturally, tonal theory in music
could not explain these developments, and new tools had to be contructed to an-
alyze and explain the evolution of this music; thus the birth of Neo-Riemannian
Theory.

While Riemann was fundamentally interested in substituting the existing
system of chord labelling and musical events at the time, Lewin saw the potential
of these labels to describe the movement between these musical events. Lewin’s
work takes form in his extensive contribution to the definition of the operations
that describe musical movement (that is,Transformational Theory) and, going
even further, he applied Group Theory to Music. These sets of transformation
not only form groups, but they are isomophic to each other and to the dihedral
group. What’s more, they satisfy several properties that allow us to conclude
that duality exists.
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Some people think that Mathematics is only a game that interests the intel-
lect in a detached, cold way. Poincaré affirmed that this way of thinking does
not take into account the sensation of mathematical beauty, of the harmony
of numbers and shapes, as well as geometric elegance. There is, certainly, a
sensation of aesthetic pleasure that every real mathematician has felt and, of
course, belongs to the category of sensitive emotions. The beauty and elegance
of Mathematics consists of all the elements harmonically displayed such that
our mind can embrace their totality while maintaining, at the same time, their
details.

This harmony, continues Poincaré, is an immediate satisfaction of our aes-
thetic needs, and a help that sustains and guides the mind. At the same time,
by placing an ordered totality in our sight, we can make out a mathematical
law, or truth. This is the aesthetic sensitivity that plays the role of a delicate
filter, which, Poincaré concludes, explains why the person that does not have
will never be a true creator.

For the authors of this text, Mathematics is one of the Fine Arts, the purest
of them, that has the gift of being the most precise, and the precision of the
Sciences.





Chapter 1

1.1 Binary Operations

In this section we present one of the oldest concepts in Mathematics, the binary
operation or law of composition. We will also see to what extent certain "popular
sayings", for example "as clear as two plus two is four" and "the order of the
factors does not change the product", are true.

We will review some elementary concepts.
First, recall the set of integers.

Z = {...− 5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, ...}

Second, ask yourself: - how are two sets "properly" related”? Let A and B
be two arbitrary sets. We say that f : A −→ B is a function of A to B if, to
each element of A, we associate a unique element of B.

For example, if A = {a, b, c} and B = {p, q, r, s} then f : A −→ B given by
the following association

a �−→ p
b �−→ q
c �−→ r

is a function, while the association

a �−→ p
a �−→ q
b �−→ q
c �−→ r

is not a function, given that we do not associate to an object A a unique element
of B, ( p and q are associated to a ). The sets A and B are called, respectively,
the domain and the codomain of the function f .

15
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The subset of the codomain that consists of those elements associated to the
domain is called the range of f . Thus, in the previous function, the range of f
is the set {p, q, r}; the element s of B is not in the range of f, that is, it is not
the image of any element of A under f .

We use the following notation to denote the images of the elements of A
under f :

f : A −→ B
a �−→ f(a) = p
b �−→ f(b) = q
c �−→ f(c) = r

Third: consider the Cartesian product of a set A, denoted by A × A, that
consists of all ordered pairs of elements of A, that is,

A×A = {(a, b)|a, b ∈ A}

Now we can define the important concept of binary operation, or law of
composition. Let G be a non-empty set. A binary operation or law of
composition on G is a function f : G×G −→ G where (x, y) �−→ f(x, y).

It is obvious that we can denote a function with any symbol, for example
f, g, h,�,�,♣,♥,×,⊗, ∗, etc. Hence, in Z, we can have a binary operation

f : Z× Z −→ Z
(x, y) �−→ f(x, y)

and, by abuse or convenience of notation, we can denote f(x, y) as xfy. For
example, (3, 2) �−→ f(3, 2) = 3f2.

If the binary operation f is denoted as + (the usual sum in Z) then (3, 2) �−→
+(3, 2) = 3+2 is equal to 5. If the binary operation f is denoted as · (the usual
multiplication in Z), then (3, 2) �−→ ·(3, 2) = 3 · 2 is equal to 6. Observe that a
binary operation is defined on a non-empty set G.

1.1 Example. Define a set in the following way: consider three boxes and
distribute the integers in each box in an ordered way:

...
...

...
−6 −5 −4
−3 −2 −1
0 1 2
3 4 5
6 7 8
9 10 11
...

...
...

[0] [1] [2]
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We will denote the boxes as follows: the first one as [0] because it contains
zero, (or 0 + 3Z, that is, the multiples of 3), the second [1] because it contains
the number one (or 1 + 3Z, that is, all multples of 3 plus 1), and the third
box [2] because it contains the number two (or 2 + 3Z, that is, all multiples of
3 plus 2). We will assign the number 0 to the box [0] , because its elements
have a remainder of 0 when divided by 3; analogously, we assign the number
1 to the box [1], and the number 2 to the box [2] , given that their elements
have remainders 1 and 2 respectively when divided by 3. Consider the set
Z3 = {0, 1, 2} called the complete set of remainders module 3, because
when dividing by 3 we get remainders 0, 1 or 2. Define a binary operation that
could be denoted by f, g, h,�,�,♣,♥,×,⊗, ∗, etc; we choose +. Thus,

+ : Z3 × Z3 −→ Z3

with

(1, 1) �−→ +(1, 1) = 1 + 1 = 2

(0, 1) �−→ +(0, 1) = 0 + 1 = 1

(1, 0) �−→ +(1, 0) = 1 + 0 = 1

(2, 1) �−→ +(2, 1) = 2 + 1 = 0

(2, 2) �−→ +(2, 2) = 2 + 2 = 1

We write its addition table:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Let us examine another

1.2 Example. Consider the complete set of remainders modulo 5, that is, the
possible remainders obtained by dividing any number by 5, which we will denote
as Z5 = {0, 1, 2, 3, 4}. Draw the boxes. Define a binary operation on Z5

· : Z5 × Z5 −→ Z5

in the following way:

(2, 2) �−→ ·(2, 2) = 2·2 = 4
(2, 1) �−→ ·(2, 1) = 2·1 = 2
(2, 3) �−→ ·(2, 3) = 2·3 = 1
(3, 4) �−→ ·(3, 4) = 3·4 = 2
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Figure 1.1: The chromatic scale

Figure 1.2: The C major (left) and F major (right) scales

Example. In Mathematical Music Theory it is very useful to interpret the
chromatic equal tempered scale (figure 1.1) as the group Z12, with the associa-
tions

C �→ 0,C♯ �→ 1,D �→ 2,D♯ �→ 3,

E �→ 4,F �→ 5,F♯ �→ 6,G �→ 7,

G♯ �→ 8,A �→ 9,A♯ �→ 10,B �→ 11,

if we are interested in the pitch of a note1 without taking into account the
octave2 in which it is found.

This way it is easy to transpose melodies, scales or chords. For example,
the C-major scale {C,D,E,F,G,A,B} = {0, 2, 4, 5, 7, 9, 11} can be transposed
to the scale of F-major (figure 1.2) by adding 5 to each note. Explicitly, we have

{0 + 5, 2 + 5, 4 + 5, 5 + 5, 7 + 5, 9 + 5, 11 + 5}
= {5, 7, 9, 10, 0, 2, 4} = {F,G,A,A♯,C,D,E}.

It is common to hear the saying "as clear as two plus two is four". However,
as we have seen in the previous examples, 2+2 = 1, 2+1 = 0, 2·3 = 1, 3·4 = 2,
etc. and clearly 2 + 2 �= 4. In the previous examples we have considered the
sets Z3 and Z5 on which we have defined a “sum” or binary operation. The

1Pitch is the perception that one has of the frequency of a sound. Fixed pitches are chosen
in Music, so that they can be composed, such as in the case of the ones that make up the
equal tempered scale. See chapter 4, section 1.

2An octave is the distance (or interval) that is percieved between a note and another with
double (or half) its frequency. See chapter 4, section1.
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usual sum in the natural and integer numbers is a binary operation, as is the
multiplication defined on these sets. These are the binary operations considered
in the saying. In the first years of school a special emphasis is made on the
algorithms for adding and multiplying natural numbers(i.e. in the procedure or
manner of adding and multplying these numbers). After several years emphasis
is made on adding and multiplying integers, and on multiplying and dividing
polynomials. In general, when one "adds", the set on which the binary operation
is defined must always be specified.

It is also common to hear the saying that "the order of the factors does not
change the product”. Wll this always be true?

1.3 Example. Consider the set ∆3 of the rigid movements of the equilateral
triangle with vertices A,B,C, that is, the rotations about the baricenters of
0◦, 120◦ and 240◦ and the reflections about the medians. Denote these rigid
movements in the following way:

0 = [ABC/ABC], 1 = [ABC/BCA], 2 = [ABC/CAB]

3 = [ABC/ACB], 4 = [ABC/CBA], 5 = [ABC/BAC]

The elements 0, 1 and 2 correspond to the rotations. The elements 3, 4 and 5
correspond to the reflections. Define a binary operation ◦ on ∆3:

◦ : ∆3 ×∆3 −→ ∆3
(x, y) �−→ ◦(x, y) = x ◦ y

Calculate:
[ABC/BCA] ◦ [ABC/BCA] = [ABC/CAB]

that is
(1, 1)�−→◦(1, 1) = 1◦1 = 2.

[ABC/CAB] ◦ [ABC/ACB] = [ABC/BAC]
that is

(2, 3)�−→ ◦ (2, 3) = 2 ◦ 3 = 5.
[ABC/ACB] ◦ [ABC/CAB] = [ABC/CBA]

that is
(3, 2)�−→ ◦ (3, 2) = 3 ◦ 2 = 4.

Observe that
2 ◦ 3 �= 3 ◦ 2.

Now, 2 + 2 = 4 and 2 ◦ 3 = 3 ◦ 2?

The concept of binary operation, or law of composition, is one of the oldest
in Mathematics and goes back to the ancient Egyptians and Babylonians who
already had methods to calculate addition and multiplication of positive integers
and positive rational numbers (recall that they did not use the number system
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that we use). However, as time went on, mathematicians realized that the
most important aspects were not the tables for adding or multplying certain
"numbers", but the set itself and the binary operation defined on it. The binary
operation, together with certain properties that must be satisfied, gave way to
the fundamental concept of group.

We will say, in an informal manner that later on we will make precise, that a
group is a non-empty set G together with a binary operation f : G×G −→ G,
denoted (G, f) which is associative, has an identity element and each member of
the set has an inverse. The image of (x, y) inGwill be denoted (x, y) �−→ f(x, y).
By abuse, or convenience of notation we will denote f(x, y) as xfy and call it
the composition of x and y.

It is easy to show (see the problems below) that the sets Z3, Z5 and ∆3 with
their respective binary operation, have a group structure. As can be seen in the
case of (∆3, ◦), the group concept is closely linked to the concept of symmetry.
The previous examples show some sets that posees a group structure, and how
varied these can be.

We can define functions f : G −→ G, g : G2 = G×G −→ G, h : G×G×G −→
G or j : Gn = G×...×G −→ G producing unary operations, binary, ternary
or n-ary. The null operation is the function i : {e} −→ G.

An algebraic structure or algebraic system is a set C together with one
or more n-ary operations. In the following section we will define some of them.

1.4 Definition. Consider H, a subset of a group (G, ◦). We say that H
es stable or closed with respect to the binary operation if x ◦ y ∈ H, for all
elements x, y ∈ H. Observe that the restriction of ◦ to a stable or closed subset
H provides a binary operation for H called the induced binary operation. .

Problems

1.1 Construct a table that represents the multiplication of all the elements of
Z3.

1.2 Construct a table that represents the sum of all the elements of Z5.

1.3 Construct a table that represents the multiplication of all the elements of
Z5.

1.4 Show that ∆3 with the binary operation defined in the Example 1.3 is a
group.

1.5 Let Σ3 be the set of all the permutations of 1, 2, 3. Calculate the number
of elements in Σ3. Define a binary operation on Σ3 and construct its table.
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1.6 Let Σn be the set of all permutations of a set with n elements. Calculate
the number of elements of Σn.

1.7 Construct a table that represents the sum of all the elements of Z6 and
compare it with the tables Σ3 and ∆3. Observe that the tables of Σ3 and ∆3
are the same, except for the names and order of the elements. Show that these
last two are groups and establish a bijective function between their elements.
Observe that the table for Z6 allows you to show that it is a group, but that it
is totally different from the other two.
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1.2 Algebraic Structures

In this section we will define several algebraic structures, some of which already
have been implicitly studied. The idea is to present a brief panorama of some
of the algebraic structures (not the specific study of the category of groups),
thereby situating the reader in a better position to understand the objects of
study of Group Theory. We will suppose that the reader knows the foundations
of Linear Algebra as in [Ll2] and we will use the same notation as used in that
source.

Let (V,+, µ) be a vector space over a fieldK , as is defined in Linear Algebra.
If we eliminate the scalar multiplication µ what remains is a set with a binary
operation +, in which the four usual axioms hold. Then we say that (V,+)
is a commutative group under +. Formally, with this notation and in
this context (in the next section we will give another, more general, definition
of group) we repeat the definition of group given in the previous section, to
connect it with the study of vector spaces.

2.1 Definition. A group is a pair (G,+) where G is a non-empty set and

+: G×G→ G

is a binary operation
(u, v) �−→ +(u, v)

and where, by convenience or abuse of notation we write

+(u, v) = u+ v

such that
(i) +(+(u, v), w) = +(u,+(v,w)), that is, (u+ v) +w = u+ (v +w)
(ii) there exists an element O ∈ G, called the identity element, such that

+(v,O) = v +O = v
(iii) for every v ∈ G there exists an element, called inverse, denoted by −v,

such that +(v,−v) = v + (−v) = O.

We say that a group is commutative if it also satisfies
(iv) +(u, v) = +(v, u) that is, u+ v = v + u.

If in the previous definition we consider a set E with a binary operation +
where none of the conditions hold, we say that (E,+) is amagma (or grupoid).

If in the previous definition we consider a set S with a binary operation +
where (i) holds, we say that (S,+) is a semigroup.

If in definition 2.1 we also consider a set M with a binary operation + in
which (i) and (ii) hold, we say that (M,+) is a monoid.
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2.2 Example. The set N of natural numbers with the usual sum is a semigroup
but not a monoid because it has no identity element. (Z,+) and (Zn,+) (with
n ∈ N) are commutative monoids under the “sum” and (N, ·), (Z, ·) and (Zn, ·)
are "multiplicative” monoids..

2.3 Example. The reader can prove that (Z,+), (nZ,+), n ∈ Z, (Q,+), (Q∗ =
Q−{0}, ·), (R,+), (R∗ = R−{0}, ·), (C,+), (C∗ = C−{0}, ·), (Zn,+), (∆3, ◦),
(Σ3, ◦), (Σn, ◦), (MnK,+), whereMnK denotes the square matrices with n×n
coefficients in a field K, (GLnK,+) and (GLnK, ·), where GLnK denotes the
square invertible matrices of dimension n×n (n ∈ N) with coefficients in a field
K, are groups (with the usual binary operations in each one of them).

Example. Composers frequently take a theme and apply different symmetries
to it, to give variety to a musical creation.

Three common procedures are the inversion (Is) respect to the pitch s,
the retrograde (R) and the retrograde with inversion (RIs). To fix ideas
we define, provisionally, an n-motive as a sequence {xi}ni=1 with xi ∈ Z12
for evey i (taking into account the identification that we saw in the previous
section). We denote as T (n) the set of all n-motives. We define the inversion,
the retrogadation and the retrograde with inversion as

Is : T (n) �→ T (n),
{xi}ni=1 �→ {yi = 2s− xi}ni=1,

R : T (n) �→ T (n),
{xi}ni=1 �→ {yi = xn−i+1}ni=1,

and

RIs : T (n) �→ T (n),
{xi}ni=1 �→ {yi = 2s− xn−i+1}ni=1.

Let s be a fixed pitch in the equal-tempered scale and {xi}ni=1 ∈ T (n). We
see that

Is ◦ Is({xi}ni=1) = Is(yi = {2s− xi}ni=1)
= {wi = 2s− (2s− xi)}ni=1
= {wi = 2s− 2s+ xi}ni=1
= {wi = xi}ni=1 = {xi}ni=1,

that is, Is ◦ Is = idT (n). In a similar way

R ◦R({xi}ni=1) = R({yi = xn−i+1}ni=1)
= {wi = yn−i+1}ni=1
= {wi = xn−(n−i+1)+1)}ni=1
= {wi = xn−n+i−1+1}ni=1
= {wi = xi}ni=1 = {xi}ni=1
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which indicates that R ◦R = idT (n). Finally,

Is ◦R({xi}ni=1) = Is({yi = xn−i+1}ni=1)
= {wi = 2s− yi}ni=1
= {wi = 2s− xn−i+1}ni=1 = IRs
= {wi = yn−i+1}ni=1
= R({yi = 2s− xi}ni=1) = R ◦ Is({xi}ni=1)

from where it can be concluded that

Is ◦R = IRs = R ◦ Is,

and also implies that

IRs ◦ IRs = (R ◦ Is) ◦ (Is ◦R)
= R ◦ (Is ◦ (Is ◦R))
= R ◦ ((Is ◦ Is) ◦R)
= R ◦ (idT (n) ◦R)
= R ◦R
= idT (n).

the previous development shows that the composition of functions, when
restricted to the subset

ST s = {Is, R, IRs, idT (n)}

of the set of transformations of T (n) to itselfis closed. As the composition of
functions is associative, it can be seen that (ST s, ◦) is a group, whose identity
is idT (n) and the inverses of Is, R and IRs are themselves.

For example, we can take the 5-motive

{x1 = A = 9, x2 = G = 7, x3 = F = 5, x4 = E = 4, x5 = G = 7}

that appears in the 29th bar of Fugue 6 in D minor from the first book of “Das
Wohltemperierte Klavier” by J. S. Bach. If we invert it respect to the pitch
G = 7 (recalling that 2 · 7 = 14 = 2), obtenemos

{y1 = 2− x1 = 5, y2 = 2− x2 = 7,
y3 = 2− x3 = 9, y4 = 2− x4 = 10, y5 = 2− x5 = 7}

which is
{y1 = F, y2 = G, y3 = A, y4 = B♭, y5 = G};

and is found in bar 33.
If we use retrogade, the resulting motive is {y1 = G, y2 = E, y3 = F, y4 =

G, y5 = A} (it is just the original, but backwards) that appears between bars 7



1.2 Algebraic Structures 25

Figure 1.3: Motive with symmetries

Figure 1.4: Geometric representation of the symmetries

and 8. If we apply a retrograde with inversion we obtain {y1 = G, y2 = B♭, y3 =
A, y4 = G, y5 = F}. A transposition of this set is seen in bar 36 of the work.

The transformations of the motive can be seen in the figure where ??, a)
is the original motive b) is its inversion with respect to G, c) is its retrograde
and d) is its retrograde with inversion with respect to G. A more geometric
presentation of Bach’s motives is seen in the figure ??.

recall that we denote the binary operation on a set with any symbol, for
example +, ∗, ◦, ⋄, ⋆, θ, •,△, etc, which is what we will do from here on. We say
the the order of a group (G, ·) is the number of elements of the set G and we
will denote it with o(G) or with |G| indistinctly. Thus, the ways to write this
are, for example: (Zn,+) has order n, o(∆3, ◦) = 6, |Σ3| = 6, o(Σn) = n!. If |G|
is infinite (finite) we say that G es infinite (finite). Then, Z is infinite (forms an
infinite group under the usual sum).
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To relate two groups it is necessary to define a function that preserves the
group structure.

2.4 Definition. Let (G, ⋄) and (G′, ⋆) be two groups. A homomorphism of
groups is a function f : G→ G′ such that f(u ⋄ v) = f(u) ⋆ f(v).

Example. Consider the set of functions

T = {et : t ∈ Z12}

where we define

et : Z12 → Z12,

a �→ a+ t.

Then (T, ◦) is a group, where ◦ is the composition of functions. This group
is isomorphic to (Z12,+), under the isomorphism

φ : Z12 → T,

x �→ ex.

Indeed,
φ(x+ y) = ex+y = ex ◦ ey = φ(x) ◦ φ(y);

we leave it to the reader to show that φ is bijective and that its inverse is also
a homomorphism.

From the musical point of view, T is the group of all transpositions, and this
shows that it is isomorphic to the equal tempered chromatic scale. For more
details about transpositions, see chapter 4, section 4.2.

Now, we will recall the definition of action and define the concept of a group
with operators:

2.5 Definition. Let Ω and A be two sets. An action of Ω on A is a function
of Ω×A on the set A.

2.6 Definition. Let Ω be a set. A group (G, ·) together with an action on Ω
in (G, ·)

◦ : Ω×G −→ G,
(α, x) �→ ◦(α, x) = α ◦ x = xα,

that is distributive with respect to the composition law of (G, ·) is called a
group with operators in Ω.

Example. Let GL(Z12) = {1, 5, 7, 11} ⊆ Z12 (the elements of Z12 with multi-
plicative inverse). If G = (Z12,+), then by defining the action

◦ : GL(Z12)× Z12 → Z12

(u, x) �→ ux
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we get Z12 as a group with operators on GL(Z12). Indeed,

◦(u, x+ y) = u(x+ y) = ux+ uy = ◦(u, x) + ◦(u, y).

The set of operators is, in fact, a group under multiplication in Z12. Re-
call that Z12 can be interpreted as the equal tempered scale modulo octaves
and, for this reason, these operators are very important. They can be used to
classify chords, scales or motives, by considering those that are transformed ac-
cording to GL(Z12) as equivalent, and this has musical meaning. For example,
if 11 ∈ GL(Z12) acts on Z12 it inverts the pitches, a very useful operation in
counterpoint and in the manipulation of motives.

The distributive law can be expressed as

(xy)α = xαyα

i.e.,
(α, xy) �−→ ◦(α, xy) = α ◦ (xy) = (α ◦ x)(α ◦ y).

2.7 Observation. In a group G with operators in Ω, each element of Ω (called
operator) defines an endomorphism (i.e.a homomorphism from G −→ G) of
the group G. Considere Ω = Z and for x ∈ G, n ∈ Z define

◦ : Z×G −→ G,
(n, x) �→ n ◦ x = xn.

If G is abelian, we have

n(xy) = (xy)n = xnyn = (nx)(ny).

Hence, every abelian group G can be seen as a group with operators in Z.

2.8 Definition. A ring is a triple (Λ,+, ·) where Λ is a set, + and · are binary
operations such that

(i) (Λ,+) is a commutative group,
(ii) (Λ, ·) is a semigroup,
(iii) u(v +w) = uv + uw and (u+ v)w = uw + vw.

The reader can show that (Z,+, ·), (Zn,+, ·),(Q,+, ·), (R,+, ·),
(MnK,+, ·), (K,+, ·),(K[x],+, ·), (C,+, ·) are rings.

If a ring (Λ,+, ·) satisfies:
(iv) (Λ, ·) is a commutative semigroup, then (Λ,+, ·) is called a commuta-

tive ring.

If (Λ, ·) is monoid, we say that (Λ,+, ·) is a ring with identity or a unit
ring.
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Recall that if the product of two elements different from zero of a ring Λ
yields the zero element of the ring, then these two elements are caller zero
divisors. If the ring (∆,+, ·) with 1 �= 0 does not have zero divisors, it is called
an integral domain. If an integral domain has a multiplicative inverse for
every non-zero element, it is called a division ring.

Finally, a field is a commutative division ring.

How do we relate two rings? Through functions that preserve the ring struc-
ture. If (Λ, ⋄, ⋆) and (Λ′,+, ·) are rings, a ring homomorphism is a function
that is a homomorphism on the commutative group of Λ into the commutative
group of Λ′ and that is also a homomorphism of semigroups of Λ into semigroups
of Λ′, that is,

f(u ⋄ v) = f(u) + f(v) and f(u ⋆ v) = f(u) · f(v).

If we consider a commutative ring with identity, (Λ,+, ·), instead of a fieldK,
when defining a vector space, we obtain an algebraic structure called a (left) Λ-
module . Then, as a particular case of the Λ-modules we have the K-modules,
i.e. the vector spaces over a field K.

Many of the results for vector spaces are valid for Λ-modules, it is enough
to take K = Λ, a commutative ring with an identity element. In particular,
we relate two Λ-modules by means of a homomorphism of Λ-modules. Λ-
modules are generalizations of the concepts of commutative group and vector
space, and they are the objects of study of Homological Algebra (see [Ll1]).
Imitating vector spaces, if a Λ-module has a basis, we call it a free Λ-module
. Not every Λ-module has a basis, that is, not every Λ-module is free, but every
vector space or K-module is free, that is, it has a basis. We say that a Λ-module
is projective if it is the sumand of the direct sum of a free module, and it is
finitely generated if it has a finite set of generators.

Example. The cartesian product I = Z12 × Z12 can be seen as the set of all
equal tempered counterpoint intervals: the first component represents the
"base" pitch of the interval and the second its "length". For example, the pair
(0, 0) represents the zero interval (or octave, there is no difference) with base
pitch C, whereas the pair (2, 7) represents an ascending fifth over D (or, also, a
descending fourth over D)3 .

We can define a sum on this set

+ : I × I → I,
((a, b), (c, d)) �→ (a+ c, b+ d).

3This ambiguity is resolved by giving an orientation to the counterpoint interval ξ ∈ I ,
that is, + if it is ascending and − if it is descending, and it is written (ξ,+) or (ξ,−). If it is
not specified, it is understood that the orientation is ascending.
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and a multiplication by a scalar

· : Z12 × I → I,
(k, (c, d)) �→ (kc, kd).

that converts it into a Z12-module. These operations have a musicological mean-
ing. For example, multiplication by the scalar −1 = 11 ∈ Z12 is equivalent to
inverting the intervals and reflecting the base point with respect to the pitch
C. To sum (c, 0) to any element of the form (a, b) is equivalent to transposing
the base pitch a by c units, but preserving the distance of the interval. Such
procedures are common in counterpoint.

An algebra over Λ (Λ is a commutative ring with identity) is a set A that
is simultaneously a ring and a Λ-module. That is, an algebra (A,+, µ, ·) is a
Λ-module with another binary operation called multiplicación with the extra
condition that makes the binary operation and the scalar multiplication com-
patible, which is the following:

(λu+ λ′v)w = λ(uw) + λ′(vw)
w(λu+ λ′v) = λ(wu) + λ′(wv) for λ, λ′ ∈ Λ;u, v, w ∈ A

In particular we see that (λu)v = λ(uv) = u(λv), thus λuv is a well defined
element of A. We leave it to the reader to provide the definition of a homorphism
of algebras, and to recognize several examples of well known algebras that have
been implicitly introduced..

Example. We can define a multiplication on I in the following way:

∗ : I × I → I,
((a, b), (c, d)) �→ (ac, ad+ bc).

This way (I,+, ·, ∗) is transformed into an algebra on Z12 because, on the
one hand,

((a, b) + (c, d)) ∗ (u, v) = (a+ c, b+ d) ∗ (u, v)
= ((a+ c)u, (a+ c)v + (b+ d)u)

= (au+ cu, av + cv + bu+ du)

= (au, av + bu) + (cu, cv + du)

= (a, b) ∗ (u, v) + (c, d) ∗ (u, v),

and, on the other

(u, v) ∗ ((a, b) + (c, d)) = (u, v) ∗ (a+ c, b+ d)
= (u(a+ c), u(b+ d) + v(a+ c))

= (ua+ uc, ub+ ud+ va+ vc)

= (ua, va+ ub) + (uc, ud+ cv)

= (u, v)(a, b) + (u, v)(c, d)
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Figure 1.5: Multiplication of the descending interval ((2, 7),−) by (−1, 2) to
obtain ((10, 9),+).

and also

(k · (a, b)) ∗ (u, v) = (ka, kb) ∗ (u, v)
= (kau, kav + kbu)

= k(au, av + bu) = k · ((a, b) ∗ (u, v)).

This multiplication is meaningful from the musicological point of view. To
show why, we first define the functions

α+ : I �→ Z12,

(x, y) �→ x+ y,

and

α− : I �→ Z12,

(x, y) �→ x− y.

Given a counterpoint interval (x, y) ∈ I, the functions α+ and α− allow
us to recover the “endpoint” of the interval, depending on the orientation. For
example, if ((7, 7),+) is the ascending fifth over G, we can obtain the “endpoint”
by summing the "length" of the interval to the base pitch.

α+(7, 7) = 7 + 7 = 2

that is, the pitch D. Now, if ((2, 7),−) is the descending fifth over D, the “end-
point” results from subtracting the "length" of the interval from the base pitch.

α−(2, 7) = 2− 7 = 7,

which is the pitch G.
We observe that

α+((−1, 2) ∗ (x, y)) = α+(−x, 2x− y)
= −x+ (2x− y)
= x− y = α−(x, y).
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this relation, in musical terms, tells us that, if we have a descending counter-
point interval ((x, y),−) with endpoint x−y, we can change it for the ascending
counterpoint interval

((−1, 2) ∗ (x, y),+) = ((−x, 2x− y),+)

if we are intereseted in preserving its “endpoint”. For example, we change the
descending fifth over D ((2, 7),−) for

((−1, 2) ∗ (2, 7),+) = ((−2, 4− 7),+) = ((10, 9),+),

which is the ascending major sixth over A♯. Both counterpoint intervals have
the pitch G as their “endpoint” (figure ??).

The previous development is important in counterpoint where, in general,
it is required that the intervals between two voices have the same orientation
(whether ascending or descending). If they have opposite directions at some
point (as when the voices cross), we can change the orientation of some intervals
through multiplication by (−1, 2) until they are uniform, but maintaining one
of the voices as invariant.

For more details about the musicological meaning of I ,seen as a Z12-algebra
and its applications to counterpoint, consult [M], part VII.

If conditions are imposed on the multiplication of an algebra we can obtain
commutative algebras, associative algebras, algebras with identity.

A associative algebra with identity, such that every element different from
zero is invertible, is called a division algebra.

2.9 Example. (MnK,+, ·, µ), where MnK denotes the n× n square matrices
with coefficients in a field K (µ denotes the scalar multiplication) is an algebra,
the same as (K,+, ·, µ) and (K[x],+, ·, µ).

We define a graduated algebra as a sequence A = (A0, A1, A2, ...) of alge-
bras Ai, one for each index i ∈ N .

For those who have studied, in an elementary Linear Algebra, or Multilinear
Algebra course, recall the following concepts from Multilinear Algebra (as in
[Ll2]), that are not requisites for this text.

2.10 Example. Let T k(V ) = ⊗kV = V ⊗K · · · ⊗K V be the tensorial product
of a vector space V on the field K, k times. We call T k(V ) the tensor space
of degree k of V . If we define a multiplication

· : T kV × T lV → T k+lV as

(u1 ⊗ ...⊗ uk) · (v1 ⊗ ...⊗ vl) = u1 ⊗ ...⊗ uk ⊗ v1 ⊗ ...⊗ vl

we obtain a graduated algebra (where we define T 0V = K and T 1V = V )
TV = (K,V, T 2V, T 3V, T 4V, . . .) called the tensor algebra of V .
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2.11 Example. Let
∧k V = V ∧ ... ∧ V be the exterior product of a vector

space V over a field K, k times. We consider the exterior multiplication defined
as

∧ :
k∧
V ×

l∧
V →

k+l∧
V.

Then we have a graduated algebra

∧
V = (K,V,

2∧
V,

3∧
V, . . .)

called exterior algebra or Grassmann algebra of V .

Problems

2.1 Prove that the sets in Example 2.2 , with their respective binary operations
are, indeed, monoids.

2.2 Prove that the sets in Example 2.3 , with their respective binary operations
are, indeed, groups.

2.3 Prove that the sets in Example 2.9 , with their respective binary operations
are, indeed, algebras.

2.4 Prove that the complex numbers, under multiplication, form a monoid.
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1.3 Elementary Properties

In this section we present some elementary properties of groups. To the par-
ticular case of Group Theory, what was mentioned previously in general terms
will be applied; that is, every time a property is proved for a set with a binary
operation that satisfies the group axioms, this property is immediately valid for
all sets that satisfy the group axioms.

Consider a group (G, ·). If x and y are elements of G, we denote x · y as xy,
to simplify the notation. Let e be the identity element of G. With this notation,
the generalized definition of group, that was promised in the previous section,
is:

A group is a pair (G, ·) where G is a non-empty set and

· : G×G→ G

is a binary operation
(x, y) �−→ ·(x, y)

where, by abuse or convenience of notation, we write

·(x, y) = x · y = xy

such that
(i) (xy)z = x(yz); x, y, z ∈ G.
(ii) there exists an element e ∈ G such that ey = y, for every y ∈ G.
(iii) for every y ∈ G there exists an element, denoted y−1, such that (y−1)y =

e.

We say that a group is commutative or abelian if it also satisfies
(iv) xy = yx, for every x, y ∈ G, that is, its binary operation is commutative.

If the group is abelian, it is usual to denote its binary operation with the +
sign.

We can understand the concept of group as a special case of groups with
operators in ∅ (and as an action, the only one possible of ∅ on G).

The element e will be called the left identity element or simply left
identity of x and y−1will be called the left inverse of y. Analogously, we have
a right identity element and a right inverse. When the binary operation’s
notation is clear, frequently it is omitted and the group (G, ·) is designated as
G.

We will see that, in our definition of group, the stipulation of a left identity
element and a left inverse implies the existence of a right identity and right
inverse.
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3.1 Proposition. In a group (G, ·), if an element is a left inverse it is also a
right inverse. If e is a left identity, then it is a right identity.
Proof. Consider x−1x = e for any element x ∈ G. Consider the left inverse
element of x−1, that is, (x−1)−1x−1 = e. Then

xx−1 = e(xx−1) = ((x−1)−1x−1)(xx−1) = (x−1)−1ex−1 = (x−1)−1x−1 = e.

Hence x−1 is a right inverse of x. Now, for any element x, consider the
equalities

xe = x(x−1x) = (xx−1)x = ex = x.

Thus e is a right identity.�

We say that e is the identity element of a group G if e is a left or right
identity element and we talk about the inverse of an element if its left or right
inverse exist.

We will now see some elementary properties:

3.2 Proposition. The identity element e of a group G is unique.
Proof. Let e′ be another identity element such that e′e = e. As e is also an
identity, then e′e = e′. Thus e = e′.�

3.3 Proposition. If xy = xz in a group G, then y = z. Analogously, yx = zx,
then y = z.
Proof. If xy = xz, then x−1(xy) = x−1(xz). By associativity, (x−1x)y =
(x−1x)z. Hence, ey = ez and, finally, y = z. If yx = zx, then y = z, which can
be proved in the same way.�

3.4 Proposition. In an arbitrary group G, the inverse of any element is unique.
Proof. Let x′ be another inverse element of the element x. Then, x′x = e. We
also know that x−1x = e. Thus, x′x = x−1x = e. By the previous proposition,
x′ = x−1.�

3.5 Proposition. In an arbitrary group G, if x, y ∈ G, the equations xa = y
and bx = y have a unique solution in G.
Proof. Let x(x−1y) = (xx−1)y = ey = y. Hence, a = x−1y is a solution
to xa = y. Suppose that there are two solutions, xa = y and xa′ = y. Then
xa = xa′, and a = a′. Analogously for the other case.�

3.6 Proposition. Let G be a group. For any elements x, y in G

(xy)−1 = y−1x−1.

Proof. As

(xy)(y−1x−1) = x(yy−1)x−1 = xx−1 = e,

(y−1x−1)(xy) = y−1(x−1x)y = y−1y = e
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then (xy)−1 = y−1x−1.�

Recall the definition of group homomorphism from the previous section with
the following notation: Let (G,+) and (G′, ·) be two groups. A group homo-
morphism is a function f : G→ G′ such that f(u+ v) = f(u) · f(v).

Some examples follow.

3.7 Example. Let G = R3 and G′ = R with the usual sum. We define
f : G → G′ by the rule f(x, y, z) = 8x − 4y + 4z. We will show that f is a
homomorphism. As

f((x1, y1, z1) + (x2, y2, z2)) = f(x1 + x2, y1 + y2, z1 + z2)

= 8(x1 + x2)− 4(y1 + y2) + 4(z1 + z2) y
f(x1, y1, z1) + f(x2, y2, z2) = (8x1,−4y1 + 4z1) + (8x2 − 4y2 + 4z2),

f is a homomorphism.

3.8 Proposition. Let f : G → G′ be a homomorphism of groups. If e is an
identity element of G then f(e) = e′ is the identity of G′.
Proof. Consider e′f(x) = f(x) = f(ex) = f(e)f(x). Multiplying both sides by
the inverse of f(x) we obtain e′f(x)f(x)−1 = f(e)f(x)f(x)−1. Then e′ = e′e′ =
f(e)e′ = f(e). Thus e′ = f(e).�

3.9 Example. Let G = G′ = R2. We define f : G → G′ by f(x, y) =
(x+8, y+2). As f(0, 0) = (8, 2) �= (0, 0), f is not a homomorphism, because all
group homomorphisms send the identity element in the domain to the identity
element in the codomain.

3.10 Proposition. The composition of two group homomorphisms is a group
homomorphism.
Proof. Let f : G′ → G and g : G → G′′ be group homomorphisms. Then
(g ◦f)(x+y) = g(f(x+y)) = g(f(x)+f(y)) = g(f(x))+g(f(y)) = (g ◦f)(x)+
(g ◦ f)(y). Hence (g ◦ f) is a homomorphism.�

3.11 Definition. Let f : G → G′ be a group homomorphism. We say that

f es un isomorphism, and write f : G
∼=→ G′ if there exists a homomorphism

g : G′ → G such that g ◦ f = 1G and f ◦ g = 1G′ .

It is easy to show (Problem 3.13) that, if g exists, it is determined uniquely;
We denote it by f−1 and it is called the inverse of f . Hence, f : G→ G′ is an
isomorphism if and only if it is bijective. We say that two groups G and G′ are

isomorphic if there exists an isomorphism f : G
∼=→ G′ and we write G ∼= G′.

3.12 Definition. Let f : G → G′ be a group homomorphism. The kernel of
f , denoted as ker f , is the set of all elements x ∈ G such that f(x) = e′ where
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e′ denotes the identity of G′. The image of f , denoted im f , is the set { f(x) :
x ∈ G}.

If in the definition of homomorphism ker f = {e} we say that f is a
monomorphism and we denote it by f : G  G′; if im f = G′ we say
that f is an epimorphism and we denote it by f : G ։ G′ and if f is such
that ker f = {e} and im f = G′ then we say that f is an isomorphism. In
other words, f is a monomorphism when it is injective; it is an epimorphism
when it is surjective (onto), and it is an isomorphism when it is bijective (Prob-
lem 3.13). A homorphism f : G→ G will be called an endomorphism and, if
f is bijective, we will call it an automorphism.

3.13 Proposition. Let f : G′ → G, g : G→ G′′ be two group homomorphisms
and h = g ◦ f the composition of the two. Then, (i) if h is a monomorphism,
f is a monomorphism, and (ii) if h is an epimorphsm, g is an epimorphism.
Proof. (i) Suppose that h is a monomorphism. If f(x) = f(y) then h(x) =
g(f(x)) = g(f(y)) = h(y). As h is a monomorphism, x = y. Hence f is a
monomorphism. (ii) Suppose that h is an epimorphism. Then h(G′) = G′′.
Thus, G′′ = h(G′) = g(f(G′)) ⊂ g(G) ⊂ G′′. Hence, g(G) = G′′.�

We say that a homomorphism f : G → G′ is trivial if f(x) = e′ for every
x ∈ G. That is, im f = {e′}. If f is trivial, we denote it as O (see Problem
3.9). Thus f = O if and only if ker f = G.

Now we will study those subsets of a group which are, also, groups them-
selves.

3.14 Definition. We say that a subset H of (G, ·) is a subgroup of G if H is
a stable group, that is, if H is closed under the induced binary operation. We
denote this as H < G.

We will see a result that provides a way of showing that a subset of a group
is a subgroup.

3.15 Proposition. A subset H of (G, ·) is a subgroup of G if and only if the
following three conditions are satisfied:

(i) H is stable or closed under ·.
(ii) the identity element e of G is in H.
(iii) if x ∈ H, then x−1 ∈ H.

Proof. See Problem 3.4.�

3.16 Example. (Z,+) is a subgroupo of (R,+). (Q+, ·) is a subgroup of
(R+, ·). (Q,+) is also a subgroup of (R,+), (R,+) is a subgroup of (C,+) and
(2Z,+) is a subgroup of (Z,+).

3.17 Example. Let (G, ·) be a group. Both G and {e} are subgroups of (G, ·),
called improper subgroups . All other subgroups are called proper. The
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subgroup {e} is called the trivial subgroup and it is usual to denote it, by
abuse of notation, only by e where e can also be denoted as 0 or 1 or any other
notation that represents the identity element of the group under consideration.

3.18 Proposition. The intersection of subgroups of G is a subgroup of G.
Proof. Let {Hi}i∈I be a collection of subgroups of G, indexed by a set I of
indices. We take x, y ∈ ∩iHi. As ∩iHi ⊂ Hi for every i, we see that x, y ∈ Hi.
As Hi is a subgroup of G, x+ y ∈ Hi, e ∈ Hi, x

−1 ∈ Hi for every i ∈ I. Hence,
x+ y ∈ ∩Hi, e ∈ ∩Hi, x

−1 ∈ ∩Hi.�

3.19 Proposition. Let f : G → G′ be a homomorphism of groups. Then, if
H is a subgroup of G, f(H) is subgroup of G′ and if H ′is a subgroup of G′,
f−1(H′) is a subgroup of G.
Proof. We will show that f(H) = {f(x)|x ∈ H} is a subgroup of G′. Let
v,w ∈ f(H); Then there exist x, y ∈ H such that f(x) = v, f(y) = w. As H
is a subgroup of G, x + y ∈ H. As f is a homomorphism, f(e) = e′ ∈ f(H),
v + w = f(x) + f(y) = f(x + y) ∈ f(H). If x ∈ H then f(x) ∈ f(H). As H
is a subgroup of G, x−1 ∈ H. Then (Problem 3.18) f(x−1) = f(x)−1 ∈ f(H).
Hence, f(H) is a subgroup of G′.

Now, we will see that f−1(H ′) = {x ∈ G|f(x) ∈ H ′} is a subgroup of G.
Let x, y ∈ f−1(H ′), then f(x) and f(y) are in H′. As H′ is a subgroup of G′

and f is a homomorphism, f(x + y) = f(x) + f(y) ∈ H ′ and f(e) = e′ ∈ H′.
Given that f(x) ∈ H ′, as f(x)−1 = f(x−1) , f(x)−1 ∈ H ′. Hence f−1(H′) is a
subgroup of G.�

Observe that in the previous Proposition the inverse image is a subgroup of
the domain, although there is not necessarily an inverse function f−1 for f . The
inverse image of {e′} is the kernel of f and the inverse image of any subgroup
contains the kernel of f .

3.20 Corollary. Let f : G → G′ be a group homomorphism. Then im f is a
subgroup of G′ and ker f is a subgroup of G.
Proof. Immediate from the previous proposition taking H = G and H′ = e′.�

We will denote as Hom(X,Y ) the set of homomorphisms of an abelian group
X in an abelian group Y . Let f, g : X −→ Y be homomorphisms of abelian
groups and define f + g : X −→ Y by (f + g)(x) = f(x) + g(x). It is easy to
show that this definition makes Hom(X,Y ) an abelian group, (Problem 3.21).

Let ψ : Y ′ −→ Y be a homomorphism of abelian groups and (X
f−→ Y ′)

an element of Hom(X,Y ′). We associate a homomorphism (X
g−→ Y ) ∈

Hom(X,Y ) to f by means of a function

ψ∗ = Hom(X,ψ) : Hom(X,Y
′) −→ Hom(X,Y )

given by ψ∗(f) = ψ◦f . Hence ψ∗ is a homomorphism of abelian groups (Problem
3.22), called the homomorphism induced by ψ.
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Let ϕ : X′ −→ X be a homomorphism of abelian groups and (X
g−→ Y ) ∈

Hom(X,Y ). We associate a homomorphism (X′ f−→ Y ) ∈ Hom(X′, Y ) to g by
means of a function

ϕ∗ = Hom(ϕ, Y ): Hom(X,Y ) −→ (X′, Y )

given by ϕ∗(g) = g◦ϕ. Then ϕ∗ is a homomorphism of abelian groups (Problema
3.23), called the homomorphism induced by ϕ.

Let ψ : Y ′ −→ Y and ψ′ : Y −→ Y ′′ be homomorphisms of abelian groups
andX an abelian group. If 1Y : Y −→ Y is the identity, then 1Y∗ : Hom(X,Y ) −→
Hom(X,Y ) is the identity of Hom(X,Y ), and (ψ′ ◦ ψ)∗ = ψ′∗ ◦ ψ∗. (Problem
3.24). We can visualize this by the following diagram:

X
f−→ Y ′′ ∈ Hom (X,Y ′)

‖ ↓ ψ ↓ ψ∗(
X

g−→ Y
)

1Y ∈ Hom (X,Y ) 1Y∗ ψ′∗ ◦ ψ∗

‖ ↓ ψ′ ↓ ψ∗
X

h−→ Y ′′ ∈ Hom
(
X,Y ′

′
)

Let ϕ : X′ −→ X and ϕ′ : X −→ X ′′ be homomorphisms of abelian groups
and Y an abelian group. If 1X : X −→ X is the identity, then 1∗X : Hom(X,Y )→
Hom(X,Y ) is the identity of Hom(X,Y ), and (ϕ′ ◦ ϕ)∗ = ϕ∗ ◦ ϕ′∗. (Problem
3.25). We can visualize this by the following diagram:

X
f−→ Y ′′ ∈ Hom (X,Y ′)

↓ ϕ ‖ ϕ∗ ↑
1X

(
X

g−→ Y
)

∈ Hom (X,Y ) 1X∗
(ϕ ◦ ϕ′)∗

↓ ϕ′ ‖ ϕ∗ ↑
X

h−→ Y ′′ ∈ Hom
(
X,Y ′

′
)

Problems

3.1 Using additive notation, write the definition of commutative group, and
write the elementary properties that they possess (and that are given at the
beginning of this section).

3.2 Show that (x−1)−1 = x and that e−1 = e.

3.3 Show that if xy = yx in a group G then (xy)n = xnyn.
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3.4 Show Proposition 3.15.

3.5 Show that there are two groups that have 4 elementos, write their tables,
find their subgroups and their diagram of subgroups. One is Z4 and the other
is known as the Klein 4-group, denoted with the letter V .

3.6 Prove the statements in Example 3.16.

3.7 The group of symmetries of a regular polygon of n sides is called dihedral
group of degree n, denoted Dn. Write the multiplication tables for D3 and D4.
Determine the order of Dn.

3.8 Let G = G′ = Kn where K is a field. Show that f : G → G′ given by
f(u1, . . . , un) = (u1, u2, . . . , un−1, 0) is a homomorphism.

3.9 Let G be a group. Show that the function 1G : G → G and the functions
OG : G → G given by 1G(x) = x and OG(x) = O for every x ∈ G, are homo-
morphisms. 1G is called the identity homomorphism on G and OG is called
the trivial homomorphism.

3.10 Verify which functions are homomorphisms and which are not:
(i) f : Kn → Km, f(x) = Ax where A an m× n matrix with elements in a

field K.
(ii) f : K2 → K2, f(x, y) = (4y, 0).
(iii) f : K3 → K3, f(x, y, z) = (−z, x, y).
(iv) f : K2 → K2, f(x, y) = (x2, 2y).
(v) f : K5 → K4, f(u, v, x, y, z) = (2uy, 3xz, 0, 4u).
(vi) f : K3 → K3, f(x, y, z) = (x+ 2, y + 2, z + 2).

3.11 Establish, if possible, nontrivial homomorphisms for the following cases:
(i) 1 −→ Z2.

(ii) Z2
×2−→ Z4.

(iii) Z4−→Z2.
(iv) Z2 −→ 1.
(v) Z2−→Z2 × Z2.
(vi) Z2 × Z2 −→ Z2.
(vii) Z4−→Z2 × Z2.

3.12 We denote the set of homomorphisms of the group G into the abelian
group G′as Hom(G,G′) . Define f + g : G → G′ as (f + g)(x) = f(x) + g(x),
x ∈ G. Show that (Hom(G,G′),+) is a group.

3.13 Prove that if f : G→ G′ is an isomorphism of groups as in the Definición
3.11, g is determined uniquely and that f is an isomorphism if and only if it is
bijective.
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3.14 Let f : G→ G′ be a bijective group homomorphism. Show that the inverse
function f−1 : G′ → G is also a homomorphism.

3.15 Show Corollary 3.20 without using Proposición 3.19.

3.16 Show that a group homomorphism f : G → G′ is injective if and only if
ker f = {e}.

3.17 In a group G, show that if an element x is idempotent (x · x = x) then
x = e, where e is the identity element of G. Use this to show that under a
group homomorphism, the identity element in the domain is sent, under the
homomorphism, to the identity element in the codomain.

3.18 Let f : G → G′ be a group homomorphism. Show that if x ∈ G then
f(x−1) = f(x)−1.

3.19 Let X,Y and G be abelian groups. We say that f : X × Y → G is a
biadditive function if f(x1 + x2, y) = f(x1, y) + f(x2, y) and f(x, y1 + y2) =
f(x, y1) + f(x, y2) for x, x1, x2 ∈ X, y, y1, y2 ∈ Y. Show that

(i) f(λx, y) = λf(x, y) = f(x, λy) for every x ∈ X,y ∈ Y and λ ∈ Z.
(ii)f is never injective unless X = Y = 0.

3.20 Show that the group (Z[x],+) is isomorphic to the group (Q+, ·).

3.21 Consider Hom(X,Y ) as the set of homomorphisms of the abelian group
X into the abelian groupo Y . Let f, g : X −→ Y be group homomorphisms of
abelian groups and define f + g : X −→ Y by (f + g)(x) = f(x) + g(x). Show
that this definition makes Hom(X,Y ) an abelian group.

3.22 Let ψ : Y ′ −→ Y be a homomorphism of abelian groups and (X
f−→ Y ′) an

element of Hom(X,Y ′). Associate a homomorphism (X
g−→ Y ) ∈ Hom(X,Y )

to f with a function given by

ψ∗ = Hom(X,ψ) : Hom(X,Y
′) −→ Hom(X,Y )

where ψ∗(f) = ψ ◦ f . Show that ψ∗ is a homomorphism of abelian groups.

3.23 Let ϕ : X′ −→ X be a homomorphism of abelian groups and (X
g−→ Y ) ∈

Hom(X,Y ). Associate a homomorphism (X ′ f−→ Y ) ∈ Hom(X ′, Y ) to g with
a function given by (ϕ, Y ): Hom(X,Y ) −→ (X ′, Y ) such that ϕ∗(g) = g ◦ ϕ.
Show that ϕ∗ is a homomorphism of abelian groups.

3.24 Let ψ : Y ′ −→ Y and ψ′ : Y −→ Y ′′ be homomorphisms of abelian groups
and X an abelian group. Show that if 1Y : Y −→ Y is the identity, then
1Y∗ : Hom(X,Y ) −→ Hom(X,Y ) is the identity of Hom(X,Y ), and (ψ′◦ψ)∗ =
ψ′∗ ◦ ψ∗.
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3.25 Let ϕ : X′ −→ X and ϕ′ : X −→ X′′ be homomorphisms of abelian groups
and Y an abelian group. Show that if 1X : X −→ X is the identity, then
1∗X : Hom(X,Y ) −→ Hom(X,Y ) is the identity of Hom(X,Y ), and (ϕ′ ◦ϕ)∗ =
ϕ∗ ◦ ϕ′∗.
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1.4 Cyclic Groups

Consider a multiplicative group (G, ·) and the powers of a fixed element x ∈ G,
that is, {xn|n ∈ Z} where we define x0 = e.

4.1 Proposition. The set {xn|n ∈ Z} denoted (x) is a subgroup of G.
Proof. As xixj = xi+j , the product of two elements of the set is in the set;
thus (x) is closed. As x0 = e, e ∈ (x). Finally, for xn, we consider x−n. Then,
xnx−n = e.�

4.2 Definition. The subgroup (x) will be called the cyclic subgroup of G
generated by one of its elements x and we say that x is a generator of (x). If
(x) = G we say that G is a cyclic group generated by x.

If there does not exist a natural number n for the subgroup (x) such that
xn = e we say that (x) is infinite cyclic. If n is the smallest natural such that
xn = e, then (x) consists of the elements xn−1, ...x1, e = xn and, in this case,
we say that (x) is cyclic group of order n.

4.3 Example. Z and Zn are cyclic groups, the first is infinite, and the second
is finite. 3Z = (3) is also cyclic and, in general, nZ = (n) are infinite cyclic
groups, n ∈ N. Observe that (8) = 8Z <(4) = 4Z <(2) = 2Z.

4.4 Example. (1) = (3) = Z4, (1) = (−1) = Z.

4.5 Proposition. If G is a cyclic group, then it is commutative (abelian).
Proof. Let (x) = G. Then xmxr = xm+r = xr+m = xrxm. Hence G is
commutative (abelian).�

4.6 Definition. Let G be any group and x an element of G. Let r be the
smallest natural number such that xr = e, then we say that x has order r. If
there does not exist a natural number r such that xr = e, we say that x has
infinite order.

When we consider non abelian groups we will usually use the multiplicative
notation and when the groups are abelian we will usually use additive nota-
tion. However, we will use multiplicative notation for cyclic groups (which are
abelian).

We have the following properties (known as the laws of exponents) in mul-
tiplicative notation

xnxm = xn+m, (xn)m = xnm, x−n = (xn)−1

and, in additive notation

nx+mx = (n+m)x,m(nx) = (mn)x, (−n)x = −(nx).
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If a group G is abelian, the following holds

n(x+ y) = nx+ ny.

Observe that (once Problems 4.2 and 4.3 are solved) for each n ∈ N there
is a cyclic group of order n, (n) = nZ. Observe, as well, that if we have two
cyclic groups of order n, when we take their generators, we can find a one-to-one
correspondence with each power of the generator, which means that, essentially,
there is only one cyclic group of order n structurally. In other words, two cyclic
groups of the same order are isomorphic, as we will see below.

4.7 Theorem. Let (G, ·) be a infinite cyclic group. Then the function

h : Z −→ G

given by
n �−→ xn

for a fixed element x of G is an isomorphism of groups.
Proof. h(n+m) = xn+m = xnxm = h(n)h(m), thus h is a homomorphism. If
h(n) = xn = xm = h(m), then n = m. thus h is injective. For every xn ∈ G,
the integer n goes to xn under h. Hence, h is surjective.�

Example. Consider the infinite cyclic subgroup of (R∗, ·) (the nonzero reals
with the usual multiplication) generated by the element

x =
12
√
2 (1.1)

The number x is, by definition, the quotient of the frequencies between a
pitch and another that is a semitone above (see chapter 4, section 1). The
numbers xk (up to multplication by a constant) correspond to the hertzian
frequencies of the pitches used in the music of equal tempered tuning.

By theorem 4.7 we see that (x) is isomorphic to (Z,+). We will abuse of
this isomorphism and associate a pitch to each element of the group (Z,+) or
to the group (Z12,+), as can be seen in section 2 of chapter 3.

In addition, such an isomorphism reflects the way our brain interprets the
musical distances, or intervals (for more details, see chapter 3, section 2 and
chapter 4, section 1).

4.8 Theorem. Every finite cyclic group of order n, with a generator of order
n, is isomorphic to Zn.
Proof. Let G be a cyclic group of order n. Let x be a generator of G such that
xn = e. We define

h : Zn −→ G

given by
[m] �−→ h([m]) = xm.
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Suppose that h([j]) = h([k]), then xj = xk. Hence, xj−k = e. Thus, j − k =
rn and n|j − k. Therefore, [j] = [k] in Zn.We can also suppose that the ker
h = {[j]}. Then h([j]) = e. Hence xj = e = x0. Thus, [j] = [0] in Zn. Therefore,
h is injective. It is easy to see that h is well defined, it is a homomorphism and
it is surjective, (Problem 4.5).�

4.9 Observation. Consider a cyclic group generated by en element x of order
n, and consider q an integer such that n =mq. The different powers of x, say

xq, x2q, x3q, ..., xmq = xn = e,

form a cyclic subgroup of (x) of order m.

Similarly, if N is a nontrivial subgroup of (x) we can take the least positive
integer q such that xq ∈ N. As e = xn = xmq, and m|n, it is clear that N has
m = n/q elements. Finally if o(G) = n, then xj is a generator of G if and only
if (n, j) = 1, (Problem 4.7).

4.10 Example. Consider (Z12,+). The generators of Z12 are the elements j
such that (12, j) = 1, that is, j = 1, 5, 7 and 11. Thus, Z12 = (1) = (5) = (7) =
(11). The possibilities for q and m in 12 = qm are 1 and 12, 2 and 6, 3 and 4, 4
and 3, 6 and 2, 12 and 1 respectively. Hence, the different powers of a generator
x,

x1q, x2q, x3q, ..., xmq = x12 = 0

form a cyclic subgroup of (x) of orderm. If we take x = 1, which makes the calcu-
lations easy, we obtain the powers of 1: For q = 1,m = 12, {11·1, 12·1, 13·1, ..., 112·1 =
112 = 0} which, in additive notation is {1·1, 2·1, 3·1, ..., 12·1 = 0} and we get, ex-
actly (1) = Z12. Analogously, for q = 2,m = 6, we obtain {11·2, 12·2, 13·2, ..., 16·2 =
112 = 0} which, in additive notation is {2 · 1, 4 · 1, 6 · 1, ..., 12 · 1 = 0} =
{2, 4, 6, 8, 10, 0} = (2). For q = 3, m = 4, we get {11·3, 12·3, 13·3, 14·3 = 112 = 0}
which, in additive notation is {3 · 1, 6 · 1, 9 · 1, 12 · 1 = 0} = {3, 6, 9, 0} = (3).
For q = 4, m = 3, we obtain {11·4, 12·4, 13·4 = 112 = 0} which, in additive
notation is {4 · 1, 8 · 1, 12 · 1 = 0} = {4, 8, 0} = (4). For q = 6, m = 2, we get
{11·6, 12·6 = 112 = 0} which, in additive notation, is{6 · 1, 12 · 1 = 0} = {6, 0} =
(6). Finally, for q = 12, m = 1, we get {11·12 = 0} which, in additive notation,
is {12 · 1 = 0} = {0} = (0) = O. Thus we have a subgroup diagram of Z12:

 

Z12 = (1)
� �

(2) (3)
| |
(4) (6)

O
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Problems

4.1 Let h : G −→ G′ be a homomorphism of multiplicative groups. Show that
h(xn) = (h(x))n, n ∈ Z.

4.2 Show that the multiples of Z, nZ with n ∈ Z, are subgroups in Z.

4.3 Show that every subgroup of Z es cyclic.

4.4 Show that any subgroup of a cyclic group is cyclic. Suggestion: use Problem
4.2 for the infinite case, and the observation 4.9 for the finite case.

4.5 Complete the proof of Theorem 4.8.

4.6 Show that there only exists (up to isomorphism) one group of order 1, 2
and 3; 2 groups of order 4 and 2 groups of order 6.

4.7 Let G be a cyclic group of order n generated by por x. Show that xj is a
generator of G if and only if (n, j) = 1.

4.8 Find the subgroups and the diagram of subgroups for (Z18,+), (Z24,+) and
(Z31,+). What do you suspect for (Zp,+) with p prime?
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2.1 Exact Sequences

In this section we will study finite and infinite sequences of group homomor-
phisms.

· · · −→ G′
f−→ G

g−→ G′′ −→ · · ·
We begin with the study of sequences where the kernel of the "outgoing" ho-
momorphism contains the image of the "incoming" homomorphism.

1.1 Definition. We say that a sequence of groups

· · · −→ Gi−1
fi−1−→ Gi

fi−→ Gi+1
fi+1−→ · · ·

is semiexact in Gi if im fi−1 ⊂ ker fi. If it is semiexact in each group, we call
it a semiexact sequence.

This definition is equivalent, as we will soon see, to the composition of the
two homomorphisms, the "outgoing" and the "incoming", being the trivial ho-
momorphism. By abuse of notation, we denote the identity element of any group
as e, or sometimes as eGi

to specifiy the identity of the group Gi, and we denote
the trivial morphism as O or “zero”.

1.2 Proposition. A sequence of groups

· · · −→ Gi−1
fi−1−−−→ Gi

fi−→ Gi+1
fi+1−−−→ · · ·

es semiexact in Gi if and only if the composition fi ◦ fi−1 = O.
Proof. Suppose that a sequence is semiexact in Gi. Then im fi−1 ⊂ ker fi.
We see that the composition [fi ◦ fi−1](x) = O(x) = eGi+1

for every x ∈ Gi−1.
As fi−1(x) ∈ im fi−1 ⊂ ker fi, we have fi(fi−1(x)) = eGi+1

= O(x). Thus, as
x is arbitrary, fi ◦ fi−1 = O. Now, suppose fi ◦ fi−1 = O. Let y ∈ im fi−1

47
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be arbitrary. Then there exists an x ∈ Gi−1 such that fi−1(x) = y. Then
fi(y) = fi(fi−1(x)) = O(x) = eGi+1

, and y ∈ f−1i (e) = ker fi. We have shown
that, if y ∈ im fi−1, then y ∈ ker fi for any y. Thus im fi−1 ⊂ ker fi.�

1.3 Definition. We say that a sequence of groups

· · · −→ Gi−1
fi−1−−−→ Gi

fi−→ Gi+1
fi+1−−−→ · · ·

is exact in Gi if it is semiexact and im fi−1 ⊃ ker fi. If it is exact in each
group, we call it an exact sequence.

We will also say that such a sequence is exact in Gi if and only if im fi−1 =
ker fi. Every exact sequence is semiexact, but not every semiexact sequence is
exact. An exact sequence of the form

e −→ G′
f−→ G

g−→ G′′ −→ e

will be called a short exact sequence.

1.4 Example. Consider the sequence

O
h−→ Z2

f=×2−−−−→ Z4
g−→ Z2

k−→ O.

Here, f is given by f(0) = 0 and f(1) = 2; g(0) = g(2) = 0 and g(1) = g(3) =
1. It is easy to show that f and g, defined this way, are group homomorphisms.
It is clear that im h = {0} = ker f , im f = {0, 2} = ker g, and im g = {0, 1} =
ker k. Thus, it is a short exact sequence.

1.5 Example. Consider the sequence

O
h−→ Z2

f−→ Z2 × Z2
g−→ Z2

k−→ O.

Here f is given by f(0) = (0, 0) and f(1) = (1, 0); g(0, 0) = g(1, 0) = 0 and
g(0, 1) = g(1, 1) = 1. It is easy to prove that f and g defined this way are group
homomorphisms. It is clear that im h = {0} = ker f , im f = {(0, 0), (1, 0)} =
ker g, and im g = {0, 1} = ker k. Hence, it is a short exact sequence.

Example. Let M be an R-module (that certainly is a group under addition),
and

Mk =M ⊕M ⊕ · · · ⊕M︸ ︷︷ ︸
k

.

In a first approximation, the musical objects (whether a scale, a chord, a
motif, a rhythm) can be seen as a subset of some appropriate Mk module.
In Mathematical Music Theory, it is very interesting to classify the musical
objects with musical meaning, up to isomorphism, of Mk. For example, how
many different chords or scales are there if we consider all the transpositions as
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equivalent? Or, how many motifs are there if the permutations of their elements
are considered, essentially, as the same motif?

A short exact sequence that is used in the classification of musical objects is

0→M
∆n+1−→ Mn+1 dn+1−→ Mn → 0

where ∆k is the diagonal morphism

∆k :M −→Mk,

m �−→ (m,m, . . . ,m︸ ︷︷ ︸
k

)

and dk+1 the difference morphismfism

dk+1 :M
k+1 −→M,

(m0, . . . ,mk) �−→ (m1 −m0, . . . ,mk −m0).

As ∆n+1(m) = 0 if and only if m = 0, we have ker∆n+1 = 0. Then

dn+1(m0, . . . ,mn) = (m1 −m0, . . . ,mn −m0) = (0, . . . , 0)

if and only if mk = m0 for k = 1, . . . , n. Hence ker dn+1 = im∆n+1. Finally,
dn+1 is surjective, because for any (m1, . . . ,mn) we can see that

dn+1(0,m1, . . . ,mn) = (m1 − 0, . . . ,mn − 0) = (m1, . . . ,mn).

In other words, the im dn+1 =M
n.

Often we elimnate the symbol ◦ from the notation g ◦ f and write, simply,
gf . Consider an exact sequence of groups

H ′ f−→ H
g−→ G

h−→ G′′

with f an epimorphism and h a monomorphism. Then im f = H and kerh = e.
As the sequence is exact, H = im f = ker g and im g = kerh = e; then, g is
the trivial homomorphism. Inversely, if g is the trivial homomorphism, then f
is an epimorphism and h is a monomorphism. Thus, we have

1.6 Proposition. If

H ′ f−→ H
g−→ G

h−→ G′′

is an exact sequence of groups, h is monomorphism if and only if g is trivial; g
is trivial if and only if f is an epimorphism.

So, when we have a short exact sequence as follows

e −→ G′
f−→ G

g−→ G′′ −→ e
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we will write it, indistinctly, as

G′
f
 G

g
։ G′′

where  denotes injective and ։ surjective.

1.7 Definition. Let G, G′, H, H′ be groups, with f , f ′, g, g′ group homomor-
phisms. We say that a diagram

G
f ′−→ H

g′↓ ↓f
G′

g−→ G′′

commutes if f ◦ f ′ = g ◦ g′ : G −→ H ′.

1.8 Proposition. Let G′
f ′

 G
f
։ G′′ and H ′

g′

 H
g
։ H ′′ be two short exact

sequences, and suppose that, in the following commutative diagram

G ′
f ′

 G
f
։ G ′′

↓ h′ ↓ h ↓ h′′

H ′
g ′

 H
g
։ H ′′

two of the three homomorphisms h′, h, h′′ are isomorphisms. Then the third is
also an isomorphism.
Proof. Suppose that h′ and h′′ are isomorphisms. We will show that h is a
monomorfism: let x ∈ kerh; then gh(x) = g(eH) = h′′f(x) = eH′′ . As h′′ is an
isomorphism, then f(x) = eG′′ . Thus there exists an x′ ∈ G′ such that f ′(x′) =
x, because the sequence on top is exact. Then hf ′(x′) = h(x) = eH = g′h′(x′).
As g′h′ is injective, then x′ = eG. Hence, f ′(x′) = x = eG.

Now we will show that h is an epimorphism. Let y ∈ H. As h′′is an
isomorphism, there exists x′′ ∈ G′′ such that g(y) = h′′(x′′). As f is surjective,
there exists z ∈ G such that f(z) = x′′. Hence,

g(y−h(z)) = g(y)−gh(z) = g(y)−h′′f(z) = g(y)−h′′(x′′) = g(y)−g(y) = eH′′ .

Thus, y − h(z) ∈ ker g. As the sequence on the bottom is exact, there exists
y′ ∈ H ′ with g′(y′) = y − h(z). As h′ is an isomorphism, there exists x′ ∈ G′
such that h′(x′) = y′. Thus,

h(f ′(x′) + z) = hf ′(x′) + h(z) = g′h′(x′) + h(z) = g′(y′) + y − g′(y′) = y.

If we define x = f ′(x′) + z, we have h(x) = y. The other two possible cases are
left as an exercise, see Problem 1.6.�

Observe that the previous proposition establishes the isomorphisms only
when there exists a function h : G −→ H compatible with the given isomor-
phisms and the diagram commutes. For example, if we consider the following
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diagram

e −→ Z2
×2−→ Z4 −→ Z2 −→ e

‖ ‖ ‖
e −→ Z2 −→ Z2 × Z2 −→ Z2 −→ e

we know that Z2 × Z2 is not isomorphic to a Z4.

Let {Cn}n∈Z be a family of abelian groups and {∂n : Cn −→ Cn−1}n∈Z a
family of homomorphisms of abelian groups such that ∂n ◦ ∂n+1 = 0. The pair
C = {Cn, ∂n} will be called a chain complex (or chain) , and we write

C : · · · −→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1 −→ · · ·

In other words, a chain complex (or chain) is a descending semiexact se-
quence of abelian groups with indices in Z.

Let C = {Cn, ∂n} and D = {Dn, ∂
′
n} be two chain complexes of abelian

groups. A chain morphism ϕ : C −→ D is a family of group homomorphisms
of abelian groups {ϕn : Cn −→ Dn} such that the squares of the following
diagram commute:

C : · · · ∂n+2−→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ · · ·

↓ ↓ ↓ ↓

D : · · ·
∂′n+2−→ Dn+1

∂′n+1−→ Dn
∂′n−→ Dn−1

∂′n−1−→ · · ·

Problems

1.1 Define appropriate homomorphisms so that, for a prime number p, the
sequences

O −→ Zp −→ Zp2 −→ Zp −→ O

O −→ Z −→ Z −→ Zp −→ O

are short exact.

1.2 Prove that , in an exact sequence of groups,

G′
f−→ G

g−→ G′′
h−→ H

k−→ H′

f is an epimorphism and k is a monomorphism if and only if G′′ = e.

1.3 Prove that if e −→ G −→ e is an exact sequence of groups, then G = e.

1.4 Let

G′
f−→ G

g−→ G′′
h−→ H ′ k−→ H

q−→ H ′′
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be an exact sequence of groups. Show that g, k are trivial homomorphisms if
and only if h is an isomorphism, and h is an isomorphism if and only if f is an
epimorphism and q a monomorphism.

1.5 Prove that if
e −→ H ′ h−→ G −→ e

is an exact sequence of groups then h is an isomorphism.

1.6 Prove the two cases that are left in Proposition 1.8.

1.7 Let {Cn}n∈Z be a family of abelian groups and {δn : Cn −→ Cn+1}n∈Z a
family of homomorphisms of abelian groups such that δn+1 ◦ δn = 0. We will
call the pair C = {Cn, ∂n} a cochain complex (or cochain) and we will write
it as

C : · · · −→ Cn−1
∂n−1−→ Cn

∂n−→ Cn+1
∂n+1−→ · · ·

In other words, a cochain complex (or cochain), is an ascending semiexact se-
quence of abelian groups with indices in Z. Define the concept of morphism
of cochains Ψ : C −→ D.
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2.2 Quotient Groups

Consider the first example of section 1. We distributed the integers in three
boxes, where none of them were in two or more of the boxes, only in one of
them. We labelled the boxes with three labels. We gave a group structure to
the set of boxes by defining a binary operation. The reader verified that, indeed,
we had a commutative group. We will call the boxes cosets and we will call
the group a quotient group. In this case it is the quotient of Z “modulo” 3Z,
which we will denote Z3.

Recall the concept of vector space quotient studied in Linear Algebra (see
[Ll2]) and consider the additive part for the case in which G is an abelian
group and H a subgroup of G, with x ∈ G; we denoted as x + H the set
{x + y|y ∈ H}. These elements, x +H , will be called cosets of H in G. As
0 ∈ H and x = x+ 0 ∈ x +H, each x ∈ G belongs to a coset. It was verified
that any two cosets are either equal, or their intersection is empty (they are
disjoint). The set of all cosets of H in G was denoted as G/H and G/H was
given a group structure by

+: G/H ×G/H → G/H

such that
((x+H), (y +H)) �−→ ((x+ y) +H).

It was also proved that this binary operation is well defined and that it
defines an abelian group structure (the additive part of the vector space) in
G/H. We wil call G/H, the quotient group of G modulo H.

It was also seen that H is a subgroup of the group G and if y ∈ x+H, then
there exists w ∈ H such that y = x + w. Hence y − x = w ∈ H. Therefore, if
y− x ∈ H then y− x = w ∈ H. Thus y = x+w ∈ x+H , and y− x ∈ H ⇐⇒
−(y − x) = x− y ∈ H ⇐⇒ x ∈ y +H. In synthesis,

y ∈ x+H ⇐⇒ y − x ∈ H ⇐⇒ x ∈ y +H.

Finally, we saw p : G→ G/H given by x �−→ x+H. If x,w ∈ G, then

p(x+w) = (x+w) +H = (x+H) + (w +H) = p(x) + p(w).

Hence, p is a homomorphism called the canonical projection.
All of this was done for vector spaces over a field K. However, recall that

the additive part of a vector space is an abelian group.

What about the non-commutative case? What happens? We will imitate
the previous development and adjust it to the non-commutative context. To
begin, we consider, once again, the first example of section 1. An equivalence
relation called congruence modulo 3 was taken, where x ≡ y (mod 3) if and only
if 3| − x + y, or, in other words, −x + y ∈ 3Z. What we will do, is generalize
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this equivalence relation to non abelian groups, using multiplicative notation as
follows:

2.1 Definition. Consider the subgroup H of a group (G, ·) and elements
x, y ∈ G.We say that x is congruent on the left with y if x−1y ∈ H (that is,
if y = xh for some h ∈ H) and we denote it as x ≡i y (mod H). Analogously,
we say that x is congruent on the right with y if xy−1 ∈ H and we denote
it as x ≡d y (mod H).

Observe that, in the abelian case, the concepts of left and right congruence
coincide, given that x−1y ∈ H if and only if (x−1y)−1 = y−1x = xy−1 ∈ H.

2.2 Proposition. The left and right congruence relations are equivalence re-
lations.
Proof. As x ≡i x (mod H) ⇐⇒ x−1x = e ∈ H, the relation is reflexive.
As x ≡i y (mod H) ⇐⇒ x−1y ∈ H ⇐⇒ (x−1y)−1 ∈ H ⇐⇒ y−1x ∈
H ⇐⇒ y ≡i x (mod H) the relation is symmetric. Finally, if x ≡i y (mod
H) and y ≡i z (mod H) then x−1y ∈ H and y−1z ∈ H. Hence (x−1y)(y−1z) ∈
H ⇐⇒ x−1ez = x−1z ∈ H. Thus x ≡i z (mod H) and the relation is transitive.
Analogously for the right congruence.�

2.3 Proposition. The left and right equivalence clases [x] of the relation
defined can be expressed as

xH = {xh|h ∈ H}

and

Hx = {hx|h ∈ H}

respectively.
Proof. The equivalence classes of any element x of G can be expressed as (using
the symmetry):

[x] = {y ∈ G|y ≡i x (mod H)}
= {y ∈ G|x ≡i y (mod H)}
= {y ∈ G|x−1y = h ∈ H}
= {y ∈ G|y = xh;h ∈ xH}
= {xh|h ∈ H} = xH.

The same is true for the equivalence classes under the relation of right con-
gruence modulo H .�

Observe that a group G is the union of the left or right cosets of H in G.
Similarly, two cosets are either disjoint or the same. We will call the equivalence
clases xH and Hx the left cosets and right cosets respectively..
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Consider the set of all left cosets, and denote it as G/H. We want to give
the set a group structure and make the natural or canonical projection
p : G −→ G/H a homomorphism. This is not always possible, but we will see
what conditions will allow it.

2.4 Definition. We say that a subgroup H of G is normal in G (denoted
H ⊳G) if for every x ∈ G, xHx−1 ⊂ H where xHx−1 = {xhx−1|h ∈ H}.

Given that xHx−1 ⊂ H holds for every element x ∈ G by this definition, in
particular it holds for x−1 ∈ G. Then, x−1Hx ⊂ H. Thus, for every h ∈ H,
h = x(x−1hx)x−1 ∈ xHx−1. Then H ⊂ xHx−1 and xHx−1 = H. From here it
is easy to see that every left coset is a right coset and that xH = Hx for every
x ∈ G (Problema 2.4). We also observe that every subgroup of an abelian group
is normal and that the trivial subgroups are normal in G (Problema 2.5).

2.5 Proposition. A subgroup H of G is normal if and only if (xH)(yH) =
(xy)H for every x, y ∈ G.
Proof. Suppose that H is normal and we take any two elements x, y ∈ G.
It is easy to see that (xH)(yH) = (xyH) Problem 2.9. Now, suppose that
(xH)(yH) = (xy)H for every x, y ∈ G. Let h ∈ H and x ∈ G be arbitrary.
Then

xhx−1 = (xh)(x−1e) ∈ (xH)(x−1H) = eH = H,

and H is normal.�

2.6 Theorem. Let H be a normal subgroup of G. Then G/H is a group with
a binary operation

· : G/H ×G/H −→ G/H

given by

((xH), (yH)) �→ ·((xH), (yH)) = (xH) · (yH) = (xH)(yH) = (xy)H.

In addition, the canonical projection p : G −→ G/H is an epimorphism
whose kernel is H, i.e. ker p = H.
Proof. It is immediate to see that the group axioms hold in G/H with eH = H
as the identity element and x−1H as the inverse of xH. As p(xy) = (xy)H =
(xH)(yH) = p(x)p(y) and p is surjective, then it is an epimorphism. Finally,

ker(p) = {x ∈ G|p(x) = eH = H} =
= {x ∈ G|xH = H} = {x ∈ G|x ∈ H}
= H.�

2.7 Corollary. If H ⊳G then H is the kernel of the homomorphism g from G
into G′ for a group G′, i.e. H = ker(g : G −→ G′) for a group G′.
Proof. As H is normal, then it is the kernel of an epimorphism, as in the
previous theorem.�
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2.8 Proposition. If H = ker(g : G −→ G′) for a group G′ then H ⊳G.
Proof. Let h ∈ H and x ∈ G be arbitrary. Then

g(xhx−1) = g(x)g(h)g(x−1) = g(x)eg(x−1) = g(x)(g(x))−1 = e.

Therefore, xhx−1 ∈ ker(g : G −→ G′) = H.�

By the previous corollary and proposition, the normality condition is neces-
sary, and sufficient, for the concept of quotient group.

2.9 Theorem. (Lagrange) If G is a group of order n and H < G, then
o(H)|o(G).
Proof. As G is the union of its left cosets, the number of elements n of G, is
equal to the product of the number of left cosets r times the number of elements
of each set m = o(H) because the cosets of H has the same number of elements
m (Problem 2.2) and they are either disjoint or equal. Thus, n = rm, that is,
o(H)|o(G).�

The number of left (or right) cosets of a subgroup H < G will be denoted
(G : H) and we will call it the índex of H in G, that is, (G : H) = o(G/H).
By Problem 2.4, the index of H in G does not depend if left or right cosets
are considered, and it can be finite or infinite. Clearly, as each coset has o(H)
elements, (G : H) = o(G)/o(H).

2.10 Corollary. If the order of a group G es prime, then G is cyclic.
Proof. Let p = o(G) and (x) the cyclic subgroup generated by the element
x �= e ∈ G. By the Theorem of Lagrange 2 ≤ o((x)), and o((x))|p. Then,
o((x)) = p , thus (x) = G and G is cyclic.�

From the previous corollary we can infer that there exists one, and only one,
group (up to isomorphism) of prime order.Observe that a group of prime order
cannot have nontrivial proper subgroups. The trivial subgroups G and e are
normal in G. Hence G/G is the trivial group e and G/e is isomorphic to G.
We say that a group G is simple if its only normal subgroups are trivial. The
alternating group An is simple for n ≥ 5 as we will see in the following chapter.

Finally we have the following

2.11 Theorem. Let (x) be a cyclic group generated by x and h : (x) −→ H a
group homomorphism. Then im h = h((x)) is a cyclic subgroup of H.
Proof. Suppose that (x) has order n. If h is a homomorphism and x generates
(x), as h(xr) = [h(x)]r (Problem 2.13), then h(x) generates im h because h(e) =
(h(xn) = [h(x)]n = e.�

Example. The human brain perceives two pitches as essentially identical when
their frequencies have a ratio equal to 2r with r ∈ Z. That is, it “identifies” two
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frequencies u,w ∈ (x) < (R∗, ·) when u−1w ∈ (x12), where x is the real number
given by the equation (??). Indeed,

x12 = (
12
√
2)12 = 2

and u−1w = w
u ∈ (2) = (x12) means that w

u = 2
r for some r ∈ Z.

Given that

h : Z→ (x),

n �→ xn,

defines an isomorphism between Z and (x), the pitches which are essentially
different to the human ear happen to be those whose quotient is

(x)

(x12)
∼= Z

12Z
= Z12;

the reader should verify that, indeed, (x12) ∼= 12Z under the isomorphism h.
This way one justifies the abuse of nomenclature committed when identifying

elements of Z and Z12 with pitches. It is also very useful for defining the concept
of scale in a rigurous manner. A scaleE is a subset of Z (which we see as pitches)
such that

e12(E) = E + 12 = E

that is, x+ 12 ∈ E for every x ∈ E.
The scales are well behaved under the canonical projection p : Z → Z12 =

Z
12Z , in the sense that

p−1(p(E)) = E.

The set p(E) ⊆ Z12 is called the chord of the scale1 . Generally the abuse
of nomenclature is committed when referring to a scale by its chord, as in the
example from Chapter 1, Section 1.

In fact, given a subset S ⊆ Z12, we define a scale as

E = p−1(S);

the reader should prove that this, indeed, defines a scale and that the chord of
this scale is S. For example, the scale that comes from S = Z12 is exactly the
chormatic scale.

Let C = {Cn, ∂n} be a chain complex, or chain. The homology group of
degree nC, Hn(C) is defined as the quotient Hn(C) = ker ∂n/im ∂n+1. That
is, given a chain

C : · · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · ·

we consider the kernel of ∂n, ker ∂n ⊂ Cn, and the image of im ∂n+1 ⊂ Cn, and
we form the quotient ker ∂n/im ∂n+1. Note that C is a semiexact sequence,

1 In chapter 3, section 2, we will see that this is a very appropriate name.
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that is, im ∂n+1 ⊂ ker∂n, and that the quotient Hn(C) = ker ∂n/im ∂n+1
measures the inexactness of C. Indeed, if C is exact, then im ∂n+1 = ker∂n
and Hn(C) = 0.

The elements of Cn are known as chains of degree n, and the homomor-
phisms ∂n are called diferentials or boundary operators . The elements
of the kernel of ∂n are called cycles of degree n, denoted as Zn(C) and the
elements of the image of ∂n+1 are called boundaries of degree n, denoted as
Bn(C). Thus, Hn(C) = Zn(C)/Bn(C).

We say that two elements of Hn(C) are homologous if they belong to the
same coset. The element of Hn(C), determined by the cycle c of degree n, is
called the homology class of c and is denoted by [c]. Then, for each n ∈ Z,
we define a homology group Hn(C). We call H∗(C) = {Hn(C)} the homology
of the chain C.

Problems

2.1 Prove that the right congruence relation is an equivalence relation.

2.2 Show that all the cosets of a subgroupH of a groupG have the same number
of elements, that is o(xH) = o(H) = o(Hx) for every x ∈ G.

2.3 Find all the cosets of the subgroup H = {0, 3} of ∆3 of the rigid movements
of the equilateral triangle.

2.4 Show that if xHx−1 = H, every left coset is a right coset and that xH = Hx
for every x ∈ G. Deduce that this implies that, for every x ∈ G, xHx−1 ⊂ H.

2.5 Prove that every subgroup of an abelian group is normal.

2.6 Prove that under a group homomorphism the homomorphic image of a
normal subgroup is normal.

2.7 Prove that under a homomorphism, the inverse image of a normal subgroup
is a normal subgroup in the domain.

2.8 Show that a group G is the union of its left or right cosets of H in G and
that two cosets are either disjoint or equal.

2.9 Verify that (xH)(yH) = (xyH) in proof 2.5.

2.10 Prove that the order of an element x of a finite group G divides the order
of the group.

2.11 Prove that if N,H,G are groups such that N < H < G, then (G : N) =
(G : H)(H : N) and that if two of these indices are finite, then the third also is.
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2.12 Prove that a quotient group of cyclic group is cyclic.

2.13 Prove that h(xr) = [h(x)]r, in the proof of the last theorem of this section.

2.14 In a group G, an element xyx−1y−1 is called a commutator. Prove that
the set of commutators generates a normal subgroup of G, denoted a G′ and
that the quotient G/G′ is abelian.

2.15 Let C = {Cn, δn} be a complex of cochains. Define the cohomology
group of degree n of C, Hn(C).
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2.3 Isomorphism Theorems

3.1 Definition. An automorphism of a group G is an isomorphism of G into
G.

For every element x ∈ G, the function

ιx : G −→ G given by
y �−→ xyx−1

is an automorphism of G, see Problem 3.1, called inner automorphism. In
these terms we can say that H is a normal (or invariant) subgroup if and only
if H is invariant under every inner automorphism of G.

3.2 Proposition. Let H ⊳ G and H ′ ⊳ G′. Consider the cannonical pro-
jections to the corresponding quotients p : G −→ G/H y p′ : G′ −→ G′/H ′.
If g : G −→ G′ is a group homomorphism such that g(H) ⊂ H ′, then g∗ :
G/H −→ G′/H ′ given by xH �→ g∗(xH) = g(x)H ′ is well defined and is a
group homomorphism called the homomorphism induced by g in the quo-
tient groups. The following square is also commutative

G
g−→ G′

p ↓ ↓ p′

G/H
g∗−→ G′/H′

and im g∗ = p′(im g) and ker g∗ = p(g−1(H ′)).

Proof. If x ∈ G and y ∈ H are arbitrary, given that g(xy) = g(x)g(y) ∈
g(x)g(H) ⊂ g(x)H ′, the image of xH under g is contained in a unique coset of
H ′, say g(xH) ⊂ g(x)H′. Then, we define

g∗ : G/H −→ G′/H ′ such that
xH −→ g∗(xH) = g(x)H ′.

It is immediate to prove that g∗ is well defined and to prove it is a homo-
morphism, consider any cosets xH and x′H. Then,

g∗((xH)(x′H)) = g∗((xx′)H))

= g(xx′)H ′

= (g(x)g(x′))H′

= (g(x)H ′)(g(x′)H ′)

= g∗(xH)g∗(x′H).
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We will show that the square commutes: consider and element x of G.
Then (p′ ◦ g)(x) = p′(g(x)) = g(x)H ′ = g∗(xH) = g∗(p(x)) = (g∗ ◦ p)(x).
Thus (p′ ◦ g) = (g∗ ◦ p). As p and p′ are epimorphisms, it is also clear that
im g∗ = p′(im g) y ker g∗ = p(g−1(H ′)).�

3.3 Theorem. Under the same hypothesis of the previous proposition, in
particular, if g is an epimorphism with H ′ = e and H = ker g then G′/H′ ∼= G′
and g∗ is an isomorphism in the following commutative diagram:

G
g
−։ G′

p ↓ ≅ ↓ p′

G/ ker g
g∗−→ G′

Proof. If g is an epimorphism with H′ = e and H = ker g then G′ = G′/H ′

and g∗ is an isomorphism. As ker g∗ = p(g−1(e)) = p(ker g) = p(H) = eH =
eG/H = e, then g∗ is a monomorphism and as im g∗ = p′(im g) = G′ then g∗ is
an epimorphism, hence an isomorphism.

Thus we have the following commutative diagram

G
g
−։ G′

p ↓ ≅ ↓ I
G′

G/ker g
g∗−→ G′ �

3.4 Theorem. Let H ⊳ G and, as a particular case of the previous theorem,
e = H′ ⊳ G′ with H ⊂ ker g. Then there is a unique homomorphism g∗ :
G/H −→ G′ given by xH �→ g∗(xH) = g(x)H ′ = g(x). Also, ker g∗ = ker g/H
and im g = im g∗. g∗ is an isomorphism if and only if, g is an epimorphism
and H = ker g.

Proof. By the previous theorem, g is a homomorphism. It is unique since it
is determined by g. Also, xH ∈ ker g∗ if and only if g(x) = e, which happens if
and only if x ∈ ker g. So, ker g∗ = {xH|x ∈ ker g} = ker g/H. Clearly im g = im
g∗. Finaly, g∗ is an epimorphism if and only if g is an epimorphism and g∗ is a
monomorphism if and only if ker g∗ = ker g/H is the trivial subgroup of G/H
which happens when ker g = H.�

3.5 Corollary. (First Isomorphism Theorem). Under the same hipotheses
as the previous theorem G/ker g ∼= im g.
Proof. As g is an epimorphism, im g = G′, then G/ ker g ∼= im g.�
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In other words, if g : G։ G′ is an epimorphism of groups with kernel ker g,
then there exists a unique isomorphism g∗ : G/ ker g ∼= G′, such that g = g∗ ◦p,
that is, any homomorpism of G with kernel ker g has an image that is isomorphic
to G/ker g. Even more, it tells us that any epimorphism g : G ։ G′ has as
its codomain a quotient group, that is, the codomain of g is the quotient of
the domain of g modulo the kernel of g. It also tells us which isomorphism:
that in which im g = im g∗. This result, G/ ker g ∼= im g is known as the
First Isomorphism Theorem. Given a group and a normal subgroup we can
“determine” the quotient group without having to establish the cosets, as we
will see later on.

3.6 Example. LetH be a normal subgroup of a groupG. Consider the quotient
group G/H. Let i : H −→ G be an inclusion monomorphism and p : G −→ G/H
the projection epimorphism. Then im i = H = ker p, hence:

e −→ H
i−→ G

p−→ G/H −→ e

is a short exact sequence. Consider now a short exact sequence

e
h−→ G′

f−→ G
g−→ G′′

k−→ e.

Then im f = ker g, f is a monomorphism (because e = im h = ker f) and
g is an epimorphism (because im g = ker k = G′′). Let H = im f = ker g

which is a normal subgroup of G, then f establishes an isomorphism H
∼=−→ G′

and g establishes another isomorphism G/H
∼=−→ G′′ by the first isomorphism

theorem. Hence a short exact sequence is equivalent to a sequence of a subgroup
and a quotient group of a group.

3.7 Example. g : G։ G′ where G = Z and G′ = Zn is an epimorphism with
the kernel being the subgroup nZ, that is,

e −→ nZ −→ Z
g−→Zn −→ e

is a short exact sequence. Then, by the previous theorem, Z/nZ ∼= Zn.

3.8 Example. Let G be the multiplicative group of real numbers different from
zero R∗ and G′ is the multiplicative group of the positive reals P∗. Consider the
epimorphism g : G։ G′ given by x �→ g(x) = |x| where |x| denotes the absolute
value of x. The kernel of g is {±1}. Then the sequence

e −→ {±1} −→ R∗
g−→ P∗ −→ e

is exact. By the previous theorem, the quotien group R∗/{±1} is isomorphic to
P∗.

3.9 Example. Let G be the additive group of the real numbers R and G′ the
multiplicative group of complex numbers S1 with absolute value equal to 1. Let
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g : G։ G′ be the epimorphism given by θ �→ g(θ) = e2πiθ. Its kernel is Z. Then
the sequence

e −→ Z −→ R
g−→ S1 −→ e

is exact and by the previous theorem, R/Z ∼= S1.

We will generalize the concept of coset:
3.10 Definition. Let H and N be any two subgroups of a group G. The
product of H and N is HN = {xy|x ∈ H, y ∈ N}.

Thus, a left coset is xH = {x}H, for x ∈ G. We can generalize this concept
and define, for a family of subgroups {Hi|i ∈ I} with I a set of linearly ordered
indices

∏

i∈I

Hi = {x1x2x3 · · ·xj |xk ∈ Hik , i1 < i2 < · · · < ij , j ≥ 0}.

Observe that HN is not necessarily a subgroup of G because the product
of the multiplication of two of its elements is not necessarily in HN . If G is
abelian then it is a subgroup of G.

3.11 Theorem. (Second Isomorphism Theorem). Let H < G, N ⊳ G.
Then (HN)/N ∼= H/(H ∩N).
Proof. As N ⊳ G, it is easy to see that (H ∩N) ⊳ H. Define

h : HN −→ H/(H ∩N) given by xy �→ h(xy) = x(H ∩N).

We will see that h is well defined: Suppose that x1y1 = xy, then x
−1x1 = yy

−1
1 .

Thus, x−1x1 ∈ H and x−1x1 ∈ N , then x−1x1 ∈ H ∩N . Hence, in H/(H ∩N),
x(H ∩N) = x1(H ∩N) and h(xy) = h(x1y1).

We will verify that h is a homomorphism. As N ⊳ G, x1y2 = y2x3. Then,
h((x1y1)(x2y2)) = h((x1x2)(y3y2)) = x1x2(H ∩N) = x1(H ∩N)x2(H ∩N) =
h(x1y1)h(x2y2).

As ker h = {xy ∈ HN |x ∈ H ∩N} = N and as h(xe) = x(H ∩N) for every
x ∈ H, using the First Isomorphism Theorem, HN/N ∼= H/(H ∩N).�

3.12 Ejemplo. Consider

G = Z× Z× Z× Z,
H = Z× Z× Z× {0} y

N = {0} × Z× Z× Z.

Then

HN = Z× Z× Z× Z y

H ∩N = {0} × Z× Z×{0}.
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Therefore,
HN/N ∼= Z ∼= H/(H ∩N).

3.13 Theorem. (Third Isomorphism Theorem). Let H ⊳ G and N ⊳ G
with N < H. Then, G/H ∼= (G/N)/(H/N).
Proof. We define

h : G −→ (G/N)/(H/N) by
x �−→ (xN)(H/N).

As

h(xy) = ((xy)N)(H/N) = ((xN)(yN))(H/N)

= [(xN)(H/N)][(yN)(H/N)] = h(x)h(y),

h is a homomorphism. Its kernel is ker h = {k ∈ G|h(k) = H/N}. These are,
exactly, the elements of H. Using the First Isomorphism Theorem, G/H ∼=
(G/N)/(H/N).

kerh →֒ G −→ G/H
‖ ↓ ↓ ≅
H G/N −→ (G/N) / (H/N) �

3.14 Example. Consider N = 6Z < H = 2Z < G = Z. Then G/H = Z/2Z ∼=
Z2. G/N = Z/6Z. We can see that , (Z/6Z)/(2Z/6Z) also has 2 elements and
is isomorfic to Z2.

Problems

3.1 Prove that for every element x ∈ G, the homomorphism

ιx : G −→ G given by
y �→ xyx−1

is an automorphism of G, called the inner automorphism.

3.2 Consider the set of all inner automorphisms of a group G, denoted In(G).
Prove that it is a group under the operation of composition.

3.3 Consider the set Aut(G) of all automorphisms of the group G. Prove that
Aut(G) is a group under composition and that In(G) ⊳ Aut(G). Two automor-
phisms f, g are said to belong to the same "automorphism class” if f = h ◦ g
for some automorphism h. Prove that the automorphism classes form a group
Aut(G)/In(G) called “outer automorphisms of G”.

3.4 Provide the details, in the proof of Theorem 3.2, which show that g∗ is well
defined. Prove, as well, that im g∗ = p′(im g) and ker g∗ = p(g−1(H′)).
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3.5 Provide the complete details of the proof of Theorem 3.4.

3.6 We will call the quotient groups of a homomorphism of abelian groups
g : G −→ G′′, the coimage and cokernel, if

coim g = G/ker g

coker g = G′′/im g.

Let g : G −→ G′′ be a homomorphism of abelin groups. Prove that the sequence

e −→ ker g −→ G −→ G′′ −→ coker g −→ e

is exact. Observe that, in this context, the First Isomorphism Theorem says
that coim g ∼= im g.

3.7 Prove that a group homomorphism g : G→ G′′ is a monomorphism if and
only if ker g = e and is a epimorphism if and only if coker g = e.

3.8 Verify that the sequences shown in the examples are, indeed, short exact
sequences.
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2.4 Products

Recall that if H and N are any two subgroups of a group G, the product of H
and N is HN = {xy|x ∈ H, y ∈ N} and for a family of subgroups {Hi|i ∈ I}
with I a set of linearly ordered indices

∏

i∈I

Hi = {x1x2x3...xj |xk ∈ Hik , i1 < i2 < · · · < ij , j ≥ 0}.

Recall that HN is not necessarily a subgroup of G because, if we multiply
two of its elements, we do not always obtain an element in HN . If G is abelian
then HN is a subgroup of G.

Consider a family of groups {Gi}. The external direct product of this
family is ∏

i∈I

Gi = {(x1, ..., xn)|xi ∈ Gi}

which has a group structure given by

(x1, ..., xn)(y1, ..., yn) = (x1y1, ..., xnyn).

If we use additive notation, we write ⊕
i∈I
Gi and we call it the external

direct sum.

Example. The external direct sum

Zm ⊕ Zn

is used in Mathematical Music Theory to study the motifs in n-tempered scales
with m-cyclic onsets. Specifically,

p1 : Zm ⊕ Zn → Zm,

(x, y) �→ x

is the first projection, a motif µ in Zm ⊕ Zn is an element of the power set2

℘(Zm ⊕ Zn) of Zm ⊕Zn such that p1(u) �= p1(v) for every u, v ∈ µ. The idea is
that, given an onset t, they should not coincide in more than one note.

For example, {(0, 0), (1, 2), (2, 4)} ⊆ Z3 ⊕ Z12 represent thel motif C, D, E
(in this order) in a time signature of three, as can be seen in figure ??. On
the other hand, the set {(0, 0), (1, 2), (1, 4)} ⊆ Z3 ⊕ Z12 is not a motif because
p1(1, 2) = 1 = p1(1, 4), which means that at the onset 1 the pitches D and E
coincide.

Recall that the Cartesian product
∏

i∈I

Xi of a family of sets {Xi}i∈I is the

set of functions h : I −→ ∪
i∈I
Xi such that h(i) = hi ∈ Xi for every i ∈ I.

2The symbol ℘X denotes the power set of X.
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Figure 2.1: A motif of three notes

Let G1 and G2 be two groups. Their product G1 ×G2 consists of the set
of all the pairs (x, y) with x ∈ G1, y ∈ G2 and binary operation

· : (G1 ×G2)× (G1 ×G2) −→ (G1 ×G2)
((x1, y1), (x2, y2)) �→ ·((x1, y1), (x2, y2)) = (x1, y1) · (x2, y2) = (x1x2, y1y2)

This binary operation gives it a group structure. The projections (x, y) �→ x
and (x, y) �→ y are group homomorphisms.

G1 ×G2
ւ ց

G1 G2

Observe that every function h : {1, 2} −→ G1 ∪G2 such that h(1) ∈ G1 and
h(2) ∈ G2 determines an element (x1, x2) = (h(1), h(2)) ∈ G1 × G2 and that,
inversely, a pair (x1, x2) ∈ G1×G2 determines a function h : {1, 2} −→ G1∪G2
given by h(1) = x1 and h(2) = x2.Thus, there exists a one to one correspondence
between the set of all functions defined this way, and the group G1 ×G2.

4.1 Theorem. Let G be a group. Consider a family of groups {Gi}i∈I and
a family of homomorphisms {ϕi : G −→ Gi}i∈I . Then there exists a unique
homomorphism ϕ : G −→ ∏

i∈I

Gi such that pi ◦ ϕ = ϕi for every i ∈ I.
Proof. Consider the product P =

∏

i∈I

Gi with projections pi :
∏

i∈I

Gi −→ Gi.

Given (G,ϕi : G −→ Gi), define ϕ : G −→
∏

i∈I

Gi by

g �→ hg : I −→ ∪Gi
i �−→ hg(i) = ϕi(g) ∈ Gi.

It is easy to see that ϕ is a homomorphism of groups. It is also clear that
pi ◦ ϕ = ϕi for every i ∈ I.

G
ϕi ւ ց ϕ

Gi
pi←− ∏

i∈I

Gi
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Suppose ϕ′ : G −→ ∏

i∈I

Gi is another homomorphism such that pi ◦ ϕ′ = ϕi
for every i ∈ I. However

(ϕ′(g))(i) = piϕ
′(g) = ϕi(g) = hg(i) = (ϕ(g))(i).

Hence ϕ = ϕ′.�

Suppose that there exists another group P ′ with p′i : P
′ −→ Gi such that

p′i ◦ ϕ = ϕi for every i ∈ I. Consider the following diagrams that represent the
property applied to what it corresponds:

P ′

p′i ւ ց ϕ

Gi
pi←− P =

∏

i∈I

Gi

P =
∏

i∈I

Gi

pi ւ ց ρ

Gi
p′i←− P ′

P =
∏

i∈I

Gi

pi ւ ց ρ◦ϕ

Gi
pi←− P =

∏

i∈I

Gi

As IP : P −→ P does the same as ρ ◦ ϕ, by the uniqueness of the identity,
IP = ρ ◦ ϕ. Analagously, ρ ◦ ϕ = IP ′ . Thus, ϕ is bijective (it is easy to verify
that all the functions are, indeed, group homomorphisms) and, therefore, is an
isomorphism.

This universal property of the direct product determines the product∏

i∈I

Gi uniquely up to isomorphism.

Consider a family of groups {Gi}. The weak external direct product of
this family is

∏d

i∈I

Gi = {f ∈
∏

i∈I

Gi|f(i) = ei ∈ Gi for almost every i ∈ I}.

In the case that there are only abelian groups we will call it external direct
sum and we will denote it by

∑

i∈I

Gi. If I is finite, the external and weak direct

products coincide.

4.2 Theorem. Let G be an abelian group. Consider a family of additive
abelian groups {Gi} and a family of homomorphisms {γi : Gi −→ G}i∈I . Then
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there exists a unique homomorphism γ :
∑

i∈I

Gi −→ G such that γ ◦ ιi = γi for
every i ∈ I.
Proof. Consider elements different from zero gi1 , ..., gis = {gij} ∈

∑

i∈I

Gi and

define

γ :
∑

i∈I

Gi −→ G by

0 �−→ 0,

{gi} �−→ γ({gi}) = γi1(gi1) + ...+ γis(gis) =
s∑

j=1

γij(gij),

this last sum over the indices where gi �= 0, which is a finite number. It can be
easily shown that γ is a homomorphism such that γ ◦ ιi = γi for every i ∈ I
because G is commutative.

G
γi ւ ց γ

Gi
ιi←− ∏

i∈I

Gi

Observe that {gi} ∈
∑

i∈I

Gi, {gi} =
∑
ιj(gj), this last sum over the indices

where gi �= 0 which is a finite number. If η :
∑

i∈I

Gi −→ G is such that η ◦
ιi = γi for every i ∈ I then ({gi}) = η (

∑
ιj(gj)) =

∑
γi(gi) =

∑
γιi(gi) =

γ (
∑
ιi(gi)) = γ({gi}).

Thus η = γ and,γ is unique.�

This theorem determines
∑

i∈I

Gi uniquely up to isomorphism.

We will now see the case of two factors, in which a group G is isomorphic to
the weak external product of one of its subgroups.

4.3 Proposition. Let H and N be any two normal subgroups of a group G.
If HN = G and H ∩N = e then H ×N ∼= G.
Proof. As HN = G, if g ∈ G, xy = g with x ∈ H, y ∈ N. We will see
that x and y are determined in a unique way by g: because if g = x1y1 then
xy = x1y1. Hence, x−1x1 = yy

−1
1 . As this element is in the intersection of H

and N , x−1x1 = yy
−1
1 = e. Therefore, x = x1 and y = y1.

Now we establish an isomorphism between H ×N and G. Define h : H ×
N −→ G given by (x, y) �−→ h(x, y) = xy. h is a homomorphism because
if we consider the commutator x−1y−1xy then (x−1y−1x)y ∈ N because N
is normal in G and x−1(y−1xy) ∈ H because H is normal in G. Hence, as
x−1y−1xy is in the intersection of H and N , x−1y−1xy = e, then xy = yx. Thus,
h((x1, y1)(x2, y2)) = h(x1x2, y1y2) = x1x2y1y2 = x1y1x2y2 = h(x1, y1)h(x2, y2).
Finally, it is easy to see that h is bijective (Problem 4.12).�
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4.4 Definition. We will say that a group G is a direct product (internal)
of H and N if H and N are normal subgroups of G such that HN = G and
H ∩N = e.

Observe that in this definition H and N are subgroups of G. If G = H ×N
as the external direct product, we can consider G as an internal direct product
by the subgroups that are images of H and N , that is, H × {1} and {1} ×N,
but not of H and N . Then it is clear the the two types of products provide, in
reality, isomorphic groups and we just call it direct product.

4.5 Proposition. Let {Xi}i∈I and {Yi}i∈I be families of abelian groups, X
and Y abelian groups. Then Hom(

∑

i∈I

Xi, Y ) ∼=
∏

i∈I Hom(Xi, Y ).

Proof.. Define ρ by ρ(ϕ) = (ϕιi)i∈I . It is clear that ρ is a homomorphism. We
will show that ρ is a monomorphism: suppose that ρ(ϕ) = 0; then (ϕιi) = 0 for
each i ∈ I. That is, in the following diagram:

Y
0ր տ ϕ

Xi
ιi←− ∑

i∈I

Xi

the homomorphism 0: Xi −→ Y is such that 0 = ϕ ◦ ιi. Hence, ϕ = 0.
Therefore, ker ρ = {0}. We will show that ρ is an epimorphism: let (ϕi)i∈I ∈∏
i∈I Hom(Xi, Y ). Then we have ϕi : Xi −→ Y for every i ∈ I. By the univer-

sal property of the direct sum, there exists a homomorphism ϕ :
∑

i∈I

Xi −→ Y

such that ϕιi = ϕi for each i ∈ I. Thus, ρ(ϕ) = (ϕi)i∈I .�

Problems

4.1 Prove that if H ⊳ G and N ⊳ G, then HN ⊳ G.

4.2 Let G1, G2 and G3 be three groups. (i) Prove that the product G1×G2 with
the binary operation defined above is, indeed, a group.(ii) Prove that G1×G2 ∼=
G2 ×G1.(iii) Prove that G1 × (G2 ×G3) ∼= (G1 ×G2)×G3.

4.3 Establish a definition of the external direct product in terms of the obser-
vation previous to Theorem 4.1.

4.4 Prove that ιj : Gj −→
∏d

i∈I

Gi given by ιj(g) = {gi}i∈I where

gi =

{
e, para i �= j,
g, para i = j,
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is a group monomorphism called the canonical injection, that ιi(Gi) ⊳
∏

i∈I

Gi

and that
∏d

i∈I

Gi ⊳
∏

i∈I

Gi.

4.5 Prove that the group Z2 × Z2 is isomorphic to the 4 Klein group V . (Hint:
Prove that Z2 × Z2 is not cyclic).

4.6 Prove that Z2 × Z3 ∼= Z6.(Hint: prove that Z2 × Z3 is cyclic by finding a
generator and, as there is only one cyclic group of each order, the result follows).

4.7 Prove that Z3 × Z3 ≇ Z9.(Hint: verify that Z3 × Z3 is not cyclic).

4.8 Prove that the external direct product of a family of groups {Gi},
∏

i∈I

Gi =

{(x1, ..., xn)|xi ∈ Gi} has a group structure given by

(x1, ..., xn)(y1, ..., yn) = (x1y1, ..., xnyn)

and that it is abelian if each group of the family is abelian.

4.9 Prove that Zi × Zj ∼= Zi,j if and only if the greatest common divisor is
(i, j) = 1.

4.10 Prove that for every j ∈ I l the canonical projection

pj :
∏

i∈I

Gi −→ Gj

given by f �−→ f(j) is a group epimorphism.

4.11 Provide all the details of the proof of Theorem 4.1.

4.12 Provide all the details of the proof of Proposition 4.3.

4.13 Prove that if G = H ×N , then G/(H × {1}) ∼= N.

4.14 Generalize the previous problem.

4.15 Let H1 ⊳ G1 and H2 ⊳ G2 be normal subgroups. Prove that H1 ×H2 ⊳
G1 ×G2 and that G1 ×G2/H1 ×H2 ∼= G1/H1 ×G2/H2.

4.16 Provide a generalization of the Proposition 4.3.

4.17 Let {Xi}i∈I and {Yi}i∈I be families of abelian groups. Let X and Y be
abelian groups. Prove that Hom(X,

∏
i∈I Yi)

∼=
∏

i∈I Hom(X,Yi).
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3.1 Finitely Generated Abelian Groups

We will say that a group G is finitely generated if it has a finite set of
generators. The most important result about finitely generated abelian groups
can be formulated in two ways, such that they provide “invariants”; then two
groups will be isomorphic if and only if they have the same numerical invariants.

1.1 Theorem. Every finitely generated abelian group G is isomorphic to the
direct product of n cyclic groups of order pλii with r infinite cyclic groups,
where the pi are prime numbers, not necessarily distinct, and the λi are positive
integers. The direct product is unique up to the order of its factors.

This means that G looks like:

G ∼= Zpλ1
1

× ...× Zpλnn × Z× ...× Z.

The second way of establishing this important result is:

1.2 Theorem. Every finitely generated abelian group G is isomorphic to the
direct product of n cyclic groups of order mi with r infinite cyclic groups, where
mi|mi+1 for 1 ≤ i ≤ n− 1.

This means that G looks like:

G ∼= Zm1
× ...× Zmn

× Z× ...× Z.

The integers mi are called torsion coefficients of G. These two theorems
provide us with a classification, up to isomorphism, of all finitely generated
abelian groups, that is, if we have a finitely generated abelian group, this should
have the structure defined in the two previous theorems. As special cases, we
have the following:

73
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1.3 Theorem. (i) If G is a finitely generated abelian group that does not
have elements of finite order, then it is isomorphic to the direct product of
a finite number of copies of Z and (ii) If G is a finite abelian group then it is
isomorphic to a direct product of finite cyclic groups of order mi where mi|mi+1

for 1 ≤ i ≤ n− 1.

That is, in the case (i) G ∼= Z × ... × Z with r copies of Z we say that
G is a free abelian group of rank r. In the case (ii) G ∼= Zm1

× ... × Zmn

where mi|mi+1 for 1 ≤ i ≤ n − 1 the elements of the list m1, ...,mn are called
invariant factorsof the group G. Two finite abelian groups are isomorphic if
and only if they have the same invariant factors. A list can be made of all the
non-isomorphic abelian groups of a certain order n. It is enough to find all the
possible lists m1, ...,mn such that mi|mi+1 for 1 ≤ i ≤ n− 1 with product n. In
conclusion, we have:

1.4 Theorem. Let G ∼= Zm1
× ...×Zmn

×Z× ...×Z, with r copies of Z, where
mi|mi+1 for 1 ≤ i ≤ n− 1 y G′ ∼= Zk1 × ...× Zkj × Z× ...× Z, with s copies of
Z, where ki|ki+1 for 1 ≤ i ≤ j − 1. If G ∼= G′ then mi = ki for 1 ≤ i ≤ n, n = j
and r = s.

Although the Primary Decomposition Theorem is studied in a Linear Al-
gebra course (as in [Ll2]), due to the approach of this presentation of Group
Theory (as a first course), directed towards the study of Homological Algebra
and Algebraic Topology, we prefer to postpone the proofs of these theorems for
a future course on Module Theory, and see these theorems as special cases of
the corresponding theorems for finitely generated modules over a prinicpal ideal
ring. This way we can present other topics that are usually excluded from an
introductory text on Group Theory. The reader who is interested can consult
the proofs in [B-M, Cap. X] or [H, Cap. II y IV]. Now we will see how these
theorems are used.

1.5 Example. All the possible finitely generated abelian groups of order 36
are obtained, using the first theorem, in the following manner: decompose 36 in
powers of primes, such as 36 = 22 · 32. Then all the possible groups of the first
way, (not isomorphic one to the other) are

Z2 × Z2 × Z3 × Z3,
Z4 × Z3 × Z3,
Z2 × Z2 × Z9,
Z4 × Z9

and, by the second way (not isomorphic one to the other) they are:

Z6 × Z6,
Z3 × Z12,
Z2 × Z18,
Z36.
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In summary, we have four abelian groups (up to isomorphism) of order 36.
The first ones on the list correspond to the order of those written in the second
list.

1.6 Example. All possible finitely generated abelian groups of order 540 are
obtained, the first way, by decomposing 540 in powers of primes as 540 = 22·33·5.
Then, the possible groups (not isomorphic one to the other) are:

Z2 × Z2 × Z3 × Z3 × Z3 × Z5,
Z4 × Z3 × Z3 × Z3 × Z5,
Z2 × Z2 × Z3 × Z9 × Z5,
Z2 × Z2 × Z27 × Z5,
Z4 × Z3 × Z9 × Z5,
Z4 × Z27 × Z5

and, by the second way (not isomorphic one to the other) are:

Z3 × Z6 × Z30,
Z3 × Z3 × Z60,
Z2 × Z270,
Z6 × Z90,
Z3 × Z180,
Z540.

Thus, we have six abelian groups (up to isomorphism) of order 540. The
ones in the first list correspond to the order of those written in the second list.

Consider a chain C = {Cn, ∂n} of finitely generated abelian groups and the
homology group of degree n of C, Hn(C) = ker ∂n/im ∂n+1 = Zn(C)/Bn(C).
The subgroups Zn(C) and Bn(C) of Cn are finitely generated, hence Hn(C) is
finitely generated. The torsion coefficients of Hn(C) are called torsion coeffi-
cients of degree n of C and the rank of Hn(C) is called the Betti number
βn(C) of degree n of C. The integer χ(C) =

∑
n(−1)nβn(C) is called The

Euler-Poincaré characteristic of the chain C.

Problems

1.1 Find the possible abelian groups, up to isomorphism, of order 8, 10.

1.2 Find the possible abelian groups, up to isomorphism, of order12, 16.

1.3 Find the possible abelian groups, up to isomorphism, of order 32.

1.4 Find the possible abelian groups, up to isomorphism, of order 720.

1.5 Find the possible abelian groups, up to isomorphism, of order 860.

1.6 Find the possible abelian groups, up to isomorphism, of order 1150.
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3.2 Permutations, Orbits and Sylow Theorems

Consider the set Σn that consists of all the permutations of the set In =
{1, ..., n}, that is, Σn consists of all the bijective functions of In onto In. In
I.2 we saw that Σn is a grup under the binary operation ◦ and that |Σn| = n!
Recall Σ3 and its corresponding table as in I.1. Its elements are:

ι =

(
1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
,

η1 =

(
1 2 3
1 3 2

)
, η2 =

(
1 2 3
3 2 1

)
, η3 =

(
1 2 3
2 1 3

)
.

The calculation of the composition of two permutations will be made follow-
ing the same order as in functions, for example:

ρ1 ◦ η1 =
(
1 2 3
2 3 1

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 1 3

)
= η3

that is, first consider η1 and then ρ1. Thus,

η1 ◦ ρ1 =
(
1 2 3
1 3 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
= η2.

Its table is (considering the way we compose two functions, first the right
(left column) and then the left (top row)):

◦ ι ρ1 ρ2 η1 η2 η3
ι ι ρ1 ρ2 η1 η2 η3
ρ1 ρ1 ρ2 ι η2 η3 η1
ρ2 ρ2 ι ρ1 η3 η1 η2
η1 η1 η3 η2 ι ρ2 ρ1
η2 η2 η1 η3 ρ1 ι ρ2
η3 η3 η2 η1 ρ2 ρ1 ι

We have written for In = {1, ..., n} a permutation σ : In −→ In as

σ =

(
1 2 ... n
σ(1) σ(2) ... σ(n)

)
.

We say that a permutation σ of In is a cycle of length r (or r-cycle) if
there exist integers i1, ...ir in In such that

σ(i) =






ij+1, si i = ij y 1 ≤ j < r,
i1, si i = ir,

i, si i �= ij y 1 �= j ≤ r,

and we denote it by σ = (i1, i2, ..., ir). For example,
(
1 2 3
2 3 1

)
= (1, 2, 3)
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is a cycle of length 3. Observe that (1, 2, 3) = (2, 3, 1) = (3, 1, 2), that is, there
are 3 notations for this cycle and, in general, see Problem 2.3.

We say that a cycle of length 2 is a transposition. We will usually omit a
cycle of length 1 when we have a product of cycles.

For example:
(
1 2 3 4 5 6 7
3 1 2 6 5 4 7

)
= (1, 3, 2)(4, 6)(5)(7)

where (1, 3, 2) is a tricycle, (4, 6) is a transposition, (5) and (7) are cycles of
length one and it is usual to omit them.

Let σ be a permutation of Σn and define in In = {1, ..., n} a relation given
by i ≡ j if and only if σr(i) = j, for some integer r. It can be easily verified that
this is an equivalence relation in In (Problem 2.4). The equivalence classes are
called orbits of σ. For example, the orbit of the element 1 of the permutacion

(
1 2 3 4 5 6 7 8 9 10 11 12
3 5 6 11 2 4 9 7 10 12 8 1

)

= (1, 3, 6, 4, 11, 8, 7, 9, 10, 12)(2, 5)

is {1, 3, 6, 4, 11, 8, 7, 9, 10, 12}, and that of the element 2 is {2, 5}. Observe that if
an orbit has more than one element, it then forms a cycle of length equal to the
number of the elements in the orbit. Thus, if O1, ..., Ok are the orbits (which
are disjoint) of a permutation σ and c1, ..., ck are the cycles (disjoint) given by
cj(i) = σ(i) if i ∈ Oj or i if i /∈ Oj then σ = c1c2 · · · ck. Hence, we have the
following

2.1 Proposition. Every permutation σ can be written as the product of
disjoint cycles.�

Observe that the representation as a product of disjoint cycles is unique up
to the order in which they are written. Clearly, the composition of two disjoint
cycles is commutative and as every cycle can be expressed as (i1, i2, ..., ir) =
(i1, ir)(i1, ir−1) · · · (i1, i3)(i1, i2) we have the following

2.2 Corollary. Every permutation σ ∈ Σn for n ≥ 2 is a product of transposi-
tions, not necessarily disjoint.�

For example,

(1, 3, 6, 4, 11, 8, 7, 9, 10, 12)(2, 5)

= (1, 12)(1, 10)(1, 9)(1, 7)(1, 8)(1, 11)(1, 4)(1, 6)(1, 3)(2, 5).

Observe that, by decomposing a permutation as a product of transpositions,
we can always add the identity transformation, written as(ij , ik)(ij, ik), in such
a way that the decomposition is not unique.
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2.3 Definition. We say that a group G acts (on the left) on a set X if there
exists a function

a : G×X −→ X,
(g, x) �→ a(g, x),

where a(g, x) will be denoted gx, such that (e, x) �→ a(e, x) = ex = x and
(gg′, x) �→ a(gg′, x) = (gg′)x = g(g′x) hold.

If G acts on X we say that X is a G-set. In the notation (g, x) �→ a(g, x) =
gx, writing gx is a common abuse of notation and is defined in a particular way
in every case. An analogous definition can be given of a right action.

We will see some examples.

2.4 Example. Every group G is a G-set with the binary operation seen as an
action. Every group can be considered an H-set as well, with H a subgroup of
G, and here we have H ×G −→ G given by (h, x) �→ a(h, x) = hx. This action
is called translation (on the left). Every vector space V over a field K can be
seen as a K-set where the multiplicative part of K acts on V .

2.5 Example. In is a Σn-set with the action a : Σn × In −→ In given by
(σ, i) �→ a(σ, i) = σ(i).

2.6 Example. Considere an action of a subgroup H of G, a : H × G −→ G
given by (h, x) �→ a(h, x) = hxh−1. This action is called conjugation by h.
The element hxh−1 is called a conjugate of x.

Let X be a G-set with a : G×X −→ X. We say that two elements x, y ∈ X
are related and we write x ∼ y if and only if there exists g ∈ G such that
a(g, x) = gx = y for some g ∈ G.

2.7 Proposition. ∼ is an equivalence relation and the set

Gx = {g ∈ G|gx = x}

is a subgroup of G.
Proof. As, for every x ∈ X, ex = x, then x ∼ x. If x ∼ y then there exists g ∈ G
such that gx = y for some g ∈ G. Then, x = ex = (g−1g)x = g−1(gx) = g−1y,
thus y ∼ x. If x ∼ y and y ∼ z then there exist g, g′ ∈ G such that gx = y
y g′y = z. Then (g′g)x = g′(gx) = g′y = z, thus x ∼ z. Consider g, g′ ∈ Gx.
Then gx = x and g′x = x. Hence, (gg′)x = g(g′x) = gx = x. Therefore,
gg′ ∈ Gx. Clearly ex = x, so e ∈ Gx. Finally, if g ∈ Gx then gx = x and
x = ex = (g−1g)x = g−1(gx) = g−1x. Thus, g−1 ∈ Gx. Hence Gx is a subgroup
of G.�

The subgroup Gx is called isotropy subgroup of x or stabilizer of x.
We will call each class of the equivalence relation ˜ the orbit of X under G. If
x ∈ X we will call the equivalence class of x the orbit of x and we will denote
it as Gx.
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We will give names to specific orbits:

(i) If a group G acts on itself under conjugation, the orbit {gxg−1} with
g ∈ G will be called the conjugate class of x.

(ii) If the subgroup H < G acts on G by conjugation, the isotropy group
Hx = {h ∈ H : hx = xh} is called the centralizer of x in H and we will denote
it as CH(x).

(iii) If H = G, CG(x) it will be called the centralizer of x.

(iv) If H < G acts on the set of subgroups of G by conjugation, then the
subgroup of H that leavesK fixed is called the normalizer of K in H, denoted
as NH(K) = {h ∈ H|hKh−1 = K}.

(v) In particular, if we have the case in which H = G, that is, NG(K) we
will just call it the normalizer of K.

2.8 Theorem. Let X be a G-set a : G × X −→ X. If x ∈ X, then the
number of equivalence classes, or orbits, is equal to the index of Gx in G, that
is, |Gx| = (G : Gx).
Proof. Define a function

ω : Gx −→ G/Gx given by
a(g, x) = gx = y �→ ω(a(g, x)) = ω(gx) = gGx.

We will see that ω is well defined: suppose that a(h, x) = hx = y for h ∈ G
as well. Then gx = hx , g−1(gx) = g−1(hx) and x = (g−1h)x. Thus, g−1h ∈ Gx,
h ∈ gGx and gGx = hGx.

Now we will see that ω is injective: if y, z ∈ Gx and ω(y) = ω(z). Then there
exists h, k ∈ G such that a(h, x) = hx = y and a(k, x) = kx = z, with k ∈ hGx.
Then k = hg for some g ∈ Gx, then z = kx = (hg)x = h(gx) = hx = y.
Therefore, ω is injective.

We will see that ω is surjective: let hGx be a left coset. Then if hx = y, we
have hGx = ω(y). Thus ω is surjective. Therefore, |Gx| = (G : Gx).�

2.9 Corollary. If o(G) is finite, then o(Gx)|o(G).
Proof. As o(G) Then o(G) = o(Gx)o(Gx).�

Example. Define a chord S as a subset of the scale Z12, that is S ∈ ℘(Z12).
The group −→

GL(Z12) = {et · u : t ∈ Z12, u ∈ GL(Z12)}
is called the general affine group of Z12 (or group of affine symmetries of
Z12) and acts on ℘(Z12) as

α :
−→
GL(Z12)× ℘(Z12)→ ℘(Z12),

(et · u, {x}) �→ {et · u(x)} = {ux+ t}.
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For example, the D minor chord1 {D,F,A} = {2, 5, 9} can be transposed to
E minor using e2 · 1, that is

e2 · 1({D,F,A}) = e2 · 1({2, 5, 9})
= {e2 · 1(2), e2 · 1(5), e2 · 1(9)}
= {4, 7, 11} = {E,G,B}.

Guerino Mazzola has calculated all the isotropy groups of the chords in Z12,
and a table that summarizes this information can be found in the book The
Topos of Music [M], in the appendix L. In particular, the isotropy group of a
major chord is always trivial (that is, it is {e0 ·1}), and the cardinality of its orbit

is |−→GL(Z12)| = 48, with the same happening in the case of the minor chords.
This means that, from the affine point of view, there are 48 major and minor
chords in the orbit of each one of them or that, at the end, there really only
exists one major (or minor) chord. On the other hand, an augmented chord A
(for example, Caug = {0, 4, 8}) has an isotropy group of cardinality 12. Thus,
there are

o(
−→
GL(Z12)A) =

o(
−→
GL(Z12))

o(
−→
GL(Z12)A)

=
48

12
= 4

elements in its orbit, and really twelve augmented chords from the affine point
of view.

2.10 Theorem. Let G be a finite group, g ∈ G and Xg = {x ∈ X|gx = x}. If
n is the number of orbits of X in G then n =

∑

g∈G

|Xg|o(G)−1.

Proof. Let r be the number of pairs (g, x) such that gx = x. There are |Xg|
pairs for every g and |Gx| for every x. Then

r =
∑

g∈G

|Xg| =
∑

x∈X

|Gx|.

As o(Gx) = (G : Gx) = o(G)/o(Gx) by the previous theorem, then o(Gx) =
o(G)/o(Gx). Hence, r =

∑

x∈X

(|G|/|Gx|) = |G|
∑

x∈X

(1/|Gx|). However, 1/|Gx|
is the same for every x in the same orbit and if O denotes any orbit, then∑

x∈O

(1/|Gx|) = ∑

x∈O

(1/|O|) = 1. Substituting, we obtain r = o(G)n.�

Example. We denote Z12 ⊕ Z12 as Z212 and consider the group

−→
GL(Z212) = {e(s,t) · (u, v) : s, t ∈ Z12, u, v ∈ GL(Z12)}

and its action on the motifs in Z212. Harald Fripertinger (see [M]) has calculated
the number of orbits of this action on these motifs and, in particular, the number

1For the definition of major and minor chorse, see chapter 4.
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of classes of the 72 element motifs. According to his calculations, this number
is

2 230 741 522 540 743 033 415 296 821 609 381 912 = 2.23 . . .× 1023.
which exceeds the approximate amount of stars in the Milky Way, which is 1011.

2.11 Proposition. Let X be a G-set. The function

ω : G −→ ΣX
g �→ ω(g) = σg(x) = gx

is a homomorphism.
Proof. We will see that σg : X −→ X is, indeed, a permutation: If σg(x) =
σg(y), then gx = gy. Thus g

−1(gx) = g−1(gy) and (g−1g)x = (g−1g)y. Hence,
ex = ey and x = y. Therefore, σg is injective.

As σg(g
−1x) = g(g−1x) = (gg−1)x = ex = x, for each x there exists g−1x

such that σg(g
−1x) = x. Thus, σg is surjective. ω is a homomorphism since

ω(gg′) = σgg′(x) = (gg
′)x = g(g′x) = gσg′(x)

= σg(σg′(x)) = ω(g)(σg′(x)) = ω(g)ω(g
′).�

2.12 Corollary. (Cayley) If G is a group then there exists a monomorphism
G −→ ΣG, that is, every group is isomorphic to a group of permutations. If G
is a finite group of order n then it is isomorphic to a subgroup of Σn.
Proof. Consider the action of G on itself by left translation and apply the
previous proposition, obtaining

ω : G −→ ΣG given by
g �→ ω(g) = σg(x) = gx.

If ω(g) = σg(x) = gx = IG, then σg(x) = gx = x for every x ∈ G. If we take
x = e then ge = e and g = e. Thus, ω is a monomorfphism. As a particular
case, if o(G) = n then ΣG = Σn.

Another way of writing this is the following: Let

H = {σg : G −→ G|x �→ σg(x) = gx, for every fixed g ∈ G }

be a candidate for the subgroup of ΣG. σg : G −→ G is clearly a permutation
of G, because if σg(x) = σg(y) then gx = gy and x = y; also, if x ∈ G then
σg(g

−1x) = gg−1x = x. It can be verified immediately that H is a subgroup of
ΣG because σg ◦σg′(x)) = σg(g′x) = g(g′x) = (gg′)x = σgg′(x) for every x ∈ G,
as σe(x) = ex = x for every x ∈ G, H contains the identity permutation and,
finally, as σgσg′ = σgg′ , σgσg−1 = σgg−1 = σe y σg−1σg = σg−1g = σe we see
that σg−1 = (σg)

−1. Now, define

h : G −→ H by

g �→ h(g) = σg.
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As

h(gg′)(x) = σgg′(x) = (gg
′)x = g(g′x) = σg(σg′(x)) = (σgσg′)(x)) = h(g)h(g

′)

h is a homomorphism. If h(g) = h(g′) then, in particular, σg(e) = ge = g =
g′ = g′e = σg′(e), thus g = g

′ and h es inyective. Hence h is an isomorphism.�

The Sylow theorems provide us with important information about finite non-
commutative groups. They tell us, among other things, that if the power of a
prime divides the order of a group, this group has a subgroup of that order.
2.13 Definition. A group G is called a p-group (p a prime number), if all the
elements of G have the order of a power of p.

2.14 Theorem. (First Sylow Theorem)) Let G be a group of order pnm
where p is prime, n ≥ 1 and such that p ∤ m. Then, G contains a subgroup of
order pi for every i such that 1 ≤ i ≤ n, and every subgroup H of G of order pi

is a normal subgroup of a subgroup of order pi+1 for 1 ≤ i < n.

2.15 Definition. Let p be prime number. We say that P is a Sylow p-
subgrupo of G if P is a maximum p-subgroup of G, i.e., if K is a p-group such
that P < K < G then P = K.

2.16 Theorem. (Second Sylow Theorem) Two Sylow p-subgroups of a
finite group G are conjugates.

2.17Theorem. (Third Sylow Theorem) If G is a finite group and p|o(G) (p
prime), then the number of Sylow p-subgroups of G divides the order of G and
is congruent with 1 modulo p.

See [A] or [F] for the proofs of the Sylow theorems.

Problems

2.1 Verify that a : Z × R −→ R given by (g, x) �→ a(g, x) = gx is an action of
Z in R called translation.

2.2 Consider the action a : H × s(G) −→ s(G) of a subgroup H of a group G
in the set s(G) that consists of all subgroupo of G given by (h,K) �−→ hKh−1.
Show that hKh−1 is a subgroup of G isomorphic to K. hKh−1 we say that it
is a conjugate subgroup of K.

2.3 Prove that for a cycle of length r there are exactly r notations in cycle form.

2.4 Prove that if σ is a permutation of Σn and in In = {1, ..., n}, i ≡ j if and
only if σr(i) = j, for some integer r, then ≡ is an equivalence relation in In.
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2.5 Define the sign of a permutation σ ∈ Σn as

sg(σ) =
∏

i<j

σ(j)− σ(i)
j − i .

Prove that if σ′ is another permutation, then sg(σ′ ◦ σ) = sg(σ′)sg(σ) and
that if τ is a transposition, then sg(τ) = −1.We say that a permutation is even
or odd if its sign is 1 or −1 respectively. Conclude that if n > 1, the set of even
permutation of In form a subgroup An of Σn called the alternating group of
degree n.

2.6 Define a homomorphism h : Σn −→ {1,−1} given by h(σ) equal to 1 if σ
is even and −1 if σ is odd. Prove that An is the kernel of h and, hence, is a
normal subgroup of Σn such that o(An) =

n!
2 .

2.7 Prove that if a prime number p divides the order of a finite group o(G), then
G possesses elements of order p and, hence, is a subgroup of order p. (Cauchy’s
Theorem)

2.8 Prove that a finite group is a p-group if and only if the order of G is a power
of p.

2.9 Prove that if o(G) = pn, p a prime number, then it possesses a non-trivial
center.

2.10 Show that if o(G) = p2 for p a prime number, thenG is cyclic or isomorphic
to Zp × Zp.

2.11 Show that the subgroup K is normal in NG(K).

2.12 Prove that K is normal in G if and only if NG(K) = G. Verify that the
Sylow 2-subgroups of Σ3 have order 2 and that these are conjugates to each
other.

2.13 Prove that there only is one group of order 15.

2.14 Prove that there do not exist simple groups of orders 15, 20, 30, 36, 48
and 255.
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3.3 Free Groups

Consider the Cartesian product A = X × Z2 where X denotes any set and
Z2 = {−1, 1}. For each element x of X we will use the notation x1 = (x, 1) and
x−1 = (x,−1). Consider the set K of all the finite sequences of elements with
repetition of the set A. Define a binary operation on K

K ×K → K,

(x1, ..., xr)(y1, ..., ys) �→ (x1, ..., xr, y1, ..., ys).

We will call the elements of A the alphabet, and the elements of K words,
which are formal products of the elements of A.

3.1 Example. Take X = {x1, x2, x3, x4}. The following expressions are words:
x11x

−1
2 x

1
1x
−1
2 x

1
3x
−1
4 x

−1
2 x

1
3, x

−1
2 x

1
3x
−1
4 x

1
1x
−1
2 x

1
3x
1
3x
−1
4 , x13x

−1
4 x

1
1x
−1
2 x

1
3.

We say that a word is reduced if, for every element x of X, x1 is never next
to x−1 or viceversa. Let L be the set of all reduced words of K and add the
empty word (which is not in K) and which we will denote as 1.

Now we will define a binary operation on L with the following conditions:
if one of the elements x or y is 1, then their product is x or y; if this is not
the case, their product is a reduced word xy. It can be proved that this binary
operation provides L with a group structure.

3.2 Definition. A free group on a set X is a pair (L, f) where L is a group
and f : X −→ L is a function such that, for any function g : X −→ G, G some
group, there exists a unique homomorphism h : L −→ G such that the following
triangle is commutative:

X
f−→ L

gց ւ h

G

We define a function f : X −→ L by f(x) = x1 ∈ L. Suppose that g : X −→
G is any function of X into a group G. Define a function h : L −→ G by

h(k) = eG if k is the empty word,

h(k) = g(x1)
η1g(x2)

η2 · · · g(xn)ηn if k = x
η1
1 x

η2
2 · · ·xηnn ,

for ηi = ±1, 1 ≤ i ≤ n.

It is easy to prove that h is a group homomorphism such that h ◦ f = g. If
h′ : L −→ G is another group homomorphism such that h′ ◦ f = g then, for the
word k = x

η1
1 x

η2
2 · · ·x

ηn
n , we see that h′(k) = h′(x1)

η1h′(x2)
η2 · · ·h′(xn)ηn =

g(x1)
η1g(x2)

η2 · · · g(xn)ηn .Hence, h = h′. Thus we have the following

3.3 Theorem. For every set X there always exists a free group on X.�
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Consider a free group on the set X denoted (L, f), where f : X −→ L is a
function. We see that such a function f is injective: Suppose that x, y ∈ X with
x �= y. Consider a group G and g : X −→ G a function such that g(x) �= g(y).
As h(f(x)) = g(x) �= g(y) = h(f(y)) we see that f(x) �= f(y). We can also see
that f(X) generates L: let H be the subgroup of L generated by f(X). Then
f defines a function g : X −→ H with i ◦ g = f , where i denotes the inclusion
of H in L. As L is free, there exists a homomorphism h : L −→ H such that
h ◦ f = g.

X
f−→ L

g ց iրւh

H

Consider the diagram

X
f−→ L

gց i◦hրւIL

H

It is clear that IL ◦f = f , and i◦h◦f = i◦g = f . By uniqueness, i◦h = IL.
Thus, i is surjective. Thus, H = G and f(X) generates L.

Suppose that (L′, g) is another free group on the same set X as L. Then we
can consider the following diagram:

X
f−→ L

‖ g ց ↓ h
X L′

f ց ↓ h′
L

X
f−→ L

g ց hւր h′

L′

Here, as L is free, there exists a unique homomorphism h such that g = h◦f
and as L′ is also free, there exists a unique homomorphism h′ such that f = h′◦g.
By uniqueness, IL = h

′ ◦ h. Analogously we can consider the diagram

X
g−→ L′

‖ f ց ↓ h′
X L

g ց ↓ h
L′

X
g−→ L′

f ց h′ւր h

L

and obtain IL′ = h ◦ h′. Thus, L ∼= L′. We can summarize the preceeding
analysis in the following

3.4 Theorem. Let (L, f) be a free group on X. Then f is injective and f(X)
generates L. (L, f) is unique up to isomorphism.�

Observe that every set X determines a unique free group. As f is injective,
identify X with its image and f(X) is a subset generated by L.We can say that
every function g : X −→ G extends to a unique homomorphism h : L −→ G.
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We will call L the free group generated by the elements of the set X.
Observe that every free group is infinite.

Let G be any group. We can choose a subset X of G that generates G. We
always can, because we can choose X = G. Consider the free group generated
by X. Then the inclusion function g : X −→ G extends to a homomorphism
h : L −→ G. h is surjective because X generates G and X = g(X) ⊂ h(L).
If N is the kernel of h, by the first isomorphism theorem, G ∼= L/N . We can
summarize this in the following

3.5 Theorem. Every group is isomorphic to the quotient of a free group.�

Denote the set of generators of a subgroup N of a free group L, as R . As
the group L is totally determined by the set X and the normal subgroup N is
determined by the set R, the group G ∼= L/N can be defined by a set whose
elements we will call generators of G and by a set R whose elements we will
call relations that define G.

Consider a reduced word k = x
η1
1 x

η2
2 · · ·x

ηn
n �= 1, that is, an element of R

such that, if N is not a trivial subgroup, we will omit the identity (1) from the
set R. As k ∈ N , it represents the identity element in the quotient. We will
denote it by the expression x

η1
1 x

η2
2 · · ·x

ηn
n = 1.

We will say that the sets X and R form a presentation (X|R) of the group
G ∼= L/N . There can be different presentations of the same group. In such
cases we will call them isomorphic presentations.

3.6 Example. The dihedral groupDn n ≥ 2, is the group of order 2n generated
by two elements a and b with relations an = 1, b2 = 1 and bab = a−1.

3.7 Example. (x|_) is a presentation of the free group Z. That is, a generator,
but no relations. That is the reason behind the term free, that is, free of
relations.

3.8 Example. (x|xn = e) is a presentation of the cyclic group Zn.

3.9 Definition. A free abelian group in the set X is a pair (L, f) where L
is an abelian group and f : X −→ L is a function such that, for any function
g : X −→ G, G any abelian group, there exists a unique homomorphism h :
L −→ G such that the following triangle commutes:

X
f−→ L

gց ւ h

G

The following two theorems are proved in the same way as those that corre-
spond to free groups:
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3.10 Theorem. Let (L, f) be a free abelian group on X. Then f is injective
and f(X) generates L. (L, f) is unique up to isomorphism.�

3.11 Theorem. Any abelian group is isomorphic to the quotient of a free
abelian group.�

3.12 Theorem. For any set X there always exists a free abelian group on X.
Proof. Let (K, i : X → K) be a free group on a set X. Consider the quotient
group L = K/K′where K ′ denotes the commutator subgroup, and the projec-
tion of this quotient group p : K → K/K′. We see that (L, f) is a free abelian
group on X, f = p ◦ i.

Let g : X → G be any function of X into an abelian group G. As K is a free
group on X, there exists a homomorphism k : K → G such that k ◦ i = g. As G
is an abelian group, k sends the commutator subgroup K′ of K to the element
0 of G. Thus, k induces a homomorphism h : L→ G such that h ◦ p = k. Hence
h◦p◦ i = k◦ i = g. The uniqueness is immediate and we leave it as an exercise.�

As the function f = p ◦ i is injective, we can identify X with its image f(X)
in L. Then X is a subset of L that generates L. We say that a function g
extends to a unique homomorphism h and we call L a free abelian group
generated by (the elements) of the set X. We assert that any group G is
a free abelian group, if it is isomorphic to a free abelian group L generated
by a set X. If f ′ : L → G and we denote the restriction of f to X as f, then
(G, f) is a free abelian group on the set X. We call the image f(X) the basis
of the free abelian group G. It is clear that every function g : f(X) → H,
where H is any abelian group, extends to a unique homomorphism h : G→ H.
(Problem 3.3).

3.13 Example. Consider the group that consists of the direct sum of n copies
of Z. Then (1, 0, ..., 0), (0, 1, 0, ...0),..., (0, ..., 0, 1) is a basis of that free abelian
group. The group of the integers modulo n is not free abelian.

Problems

3.1 Let L be the set of all reduced words of K and add the empty word (which
is not in K) that we will denote as 1. Define a binary operation on L with the
following conditions: if one of the elements x or y is 1, then the product is x or
y, and in any other case the product is the reduced word xy. Show that this
binary operation provides a group structure to L.

3.2 Consider the function h : L −→ G defined as

h(k) = eG if k is the empty word,

h(k) = g(x1)
η1g(x2)

η2 · · · g(xn)ηn if k = x
η1
1 x

η2
2 · · ·xηnn ,

for ηi = ±1, 1 ≤ i ≤ n.
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Verify that h is a group homomorphism such that h ◦ f = g in the context
of Theorem 3.3.

3.3 We say that any group G is a free abelian group, if it is isomorphic to a
free abelian group L generated by a set X. If f ′ : L → G and we denote the
restriction of f ′ to X as f, then (G, f) is a free abelian group on the set X. We
will call the image f(X) the basis of the free abelian group G . Prove that
every function g : f(X)→ H where H is any abelian group extends to a unique
homomorphism h : G→ H.

3.4 We say that a free abelian group has finite or infinite rank if it has a
finite or infinite basis, respectively. Show that if a basis is finite with n elements
(infinite), then any other basis is also finite with n elements (infinite).

3.5 Let L and L′ be isomorphic abelian groups generated by X and X′ respec-
tively. Show that if X consists of a finite number of elements, then X′ consists
of the same number of elements..

3.6 Let {Gj}j∈X be a family of abelian groups indexed by the set X with every
Gj ∼= Z, j ∈ X. Define L = {α : X → Z | α(j) = 0 for almost every j ∈ X}
together with a binary operation given by (α+ β)(j) = α(j) + β(j) j ∈ X.

(i) Prove that L is an abelian group.
(ii) Define f : X → L as j �→ f(j)(i) = 1 if i = j, 0 if i �= j. Show that (L, f)

is a free abelian group on X.
(iii) Prove that

∑
j∈X Gj

∼= (L, f).
(iv) Conclude that an abelian group has rankm if and only if it is isomorphic

to the direct sum of m infinite cyclic groups.

The following problems are optional (it is not expected that they will be
solve without outside help) and will establish (together with the problems of
previous sections and chapters) the groups with order less than 16, that is:

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1

where the upper row indicates the order of the group and the lower row indicates
the number of groups, up to isomorphismo, of that order.

3.7 Prove that if p is a prime number that divides the order of a group, then
the group contains an element of order p. This is Cauchy’s Theorem.

3.8 Prove that there only exist two groups of order 2p for every prime number
p, one is cyclic and the other is Dp.

3.9 Write down all the groups, up to isomorphism, of every order less than 16.

3.10 Determine all the groups, up to isomorphism, of order 10.
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3.11 Verify that the following presentations of Z6 are isomorphic:

(x, y|xyx−1y−1 = e, x2 = e, y3 = e) and (x|x6 = e).

3.12 Determine all the groups, up to isomorphism, of order 8. (There are five,
of which three are abelian and two are not abelian).

3.13 Determine all the groups, up to isomorphism, of order 12. (There are five,
two are abelian and three are not abelian. Hint: use the Sylow Theorems and
similar arguments as those used in the previous problem).
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3.4 Tensor Product

We will define an abelian group in which there are only biadditive relations.

4.1 Definition. Let X and Y be abelian groups. The tensor product of X
and Y is the pair (T, f), where T is an abelian group and f : X × Y → T is
a biadditive function, such that, if G is an abelian group and g : X × Y → G
is biadditive, then there exists a unique homomorphism h : T → G such that
g = h ◦ f .

The condition g = h ◦ f can be represented by the diagram

X × Y f−→ T

gց ւ h

G

The previous definition tells us that any biadditive function g : X ×Y → G can
be expressed in terms of f : X × Y → T as g(x, y) = h(f(x, y)) for a unique
homomorphism h : T → G.

We will see that the tensor product of two abelian groups, if it exists, is
unique. That is, given two tensor products (T, f) and (T ′, f ′) of X and Y there
exists an isomorphism between T and T ′. This is immediate because, as T is a
tensor product, there exists h : T → T ′ such that f ′ = h ◦ f . Analogously, as T ′
is a tensor product, there exists h′ : T ′ → T such that f = h′ ◦ f ′. Consider the
following diagrams

T
f ր ↓ h

X × Y f ′−→ T ′

f ց ↓ h′
T

T ′

f ր ↓ h′

X × Y f−→ T
f ′ ց ↓ h

T ′

As T is a tensor product, and 1T : T → T is such that 1T ◦ f = f we see
that h′ ◦ h ◦ f = f as well. Thus, by uniqueness, we have h′ ◦ h = 1T . Similarly,
as T ′ is a tensor product, and 1T ′ : T

′ → T ′ is such that 1T ′ ◦ f ′ = f ′ and
h ◦ h′ ◦ f ′ = f ′ as well, by uniqueness we see that h ◦ h′ = 1T ′ . Hence, h is an
isomorphism. Then we can identify the tensor product of T of X and denote
it as T = X ⊗ Y or, simply, X ⊗ Y .
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Now we will see that, given two abelian groups, their tensor product always
exists

4.2 Proposition. Let X and Y be two abelian groups. Then there exists and
abelian group T that fulfills the previous definition.
Proof. Let L be a free abelian group with basis X×Y and let G be a subgroup
of L generared by the elements (x + x′, y) − (x, y) − (x′, y) and (x, y + y′) −
(x, y)− (x, y′) where x, x′ ∈ X and y, y′ ∈ Y. Define X⊗Y = T = L/G. Denote
as x⊗y the coset (x, y)+G. It can be shown immediately that X×Y → X⊗Y ,
given by f(x, y) = x⊗ y is biadditive, (Problem 4.1). We will se that X ⊗ Y is,
indeed, a tensor product. Let G′ be an abelian group. Consider the triangle

X × Y f−→ T
gց ւ h′

G′

where g is biadditive. As L is free with basisX×Y , there exists a homomorphism
h′ : L → G such that g = h′ ◦ f . It is easy to see that h′ is annihilated by the
generators of G. Hence, G ⊂ kerh′, and induces a homomorphism h : L/G→ G′

such that the following triangle commutes:

X × Y f−→ L/G = X ⊗ Y
g ց ւ h

G′

It is easy to show that h is unique (Problem 4.1).�

For every x ∈ X and y ∈ Y , the element f(x, y) will be written as x ⊗ y.
It can be shown (Problem 4.2) that f(X × Y ) generates the tensor product T ,
which we will denote as X ⊗ Y . Then, every element of X ⊗ Y can be written
as
∑r

i=1 λi(xi ⊗ yi) with λi ∈ Z, xi ∈ X, yi ∈ Y . This expression is not unique
because different representatives can be chosen from a coset. Due to this, we
can define X⊗Y alternatively as the abelian group generated by all the symbols
x⊗ y, x ∈ X, y ∈ Y , subject to the relations

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2.

This expression is not unique because, by the biadditivity of f, we have

(x1 + x2)⊗ y = (x1 ⊗ y) + (x2 ⊗ y),
x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2),

where x1, x2, x ∈ X and y1, y2, y ∈ Y . As a particular case we have that,
for λ ∈ Z, (λx) ⊗ y = λ(x ⊗ y) = x ⊗ (λy). If λ = −1 we can see that
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(−x)⊗y = −(x⊗y) = x⊗(−y) and if λ = 0 it can be seen that 0⊗y = 0 = x⊗0.
Hence, any element of X ⊗ Y can be written as

r∑

i=1

(xi ⊗ yi)

where xi ∈ X, yi ∈ Y .

The biadditive function f is called the universal biadditive function
(any other biadditive function g : X × Y → G is obtained from f). We say the
due to the universal property, the abelian group X ⊗ Y is determined uniquely
up to isomorphism.

Let ϕ : X ′ → X, ψ : Y ′ → Y be homomorphisms of abelian groups

ϕ× ψ : X′ × Y ′ → X × Y

given by
(ϕ× ψ)(x, y) = (ϕ(x), ψ(y)).

Let f : X′ × Y ′ → X′ ⊗ Y ′ and g : X × Y → X ⊗ Y be biadditive functions.
Consider the biadditive function

g ◦ (ϕ× ψ) : X ′ × Y ′ → X ⊗ Y.

As X′ ⊗ Y ′ is the tensor product, there exists a unique homomorphism

h : X′ ⊗ Y ′ → X ⊗ Y

that we will denote as ϕ⊗ ψ such the the following diagram commutes:

X′ × Y ′ f−→ X′ ⊗ Y ′

ϕ×ψ ↓ ↓ ϕ⊗ψ

X × Y g−→ X ⊗ Y
i.e.,

(ϕ⊗ ψ) ◦ f(x, y) = g ◦ (ϕ× ψ)(x, y); (x, y) ∈ X′ × Y ′.
Thus

(ϕ⊗ ψ)(x⊗ y) = ϕ(x)⊗ ψ(y), x ∈ X ′, y ∈ Y ′.

As a consecuence of the uniqueness of ϕ⊗ψ we have that ifX′ ϕ−→ X
ϕ′−→ X ′′

and Y ′
ψ−→ Y

ψ′−→ Y ′′ are homomorphisms of abelian groups, then

(ϕ′ ◦ ϕ)⊗ (ψ′ ◦ ψ) = (ϕ′ ⊗ ψ′) ◦ (ϕ⊗ ψ).

In particular, the following propositions are immediate.
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4.3 Proposition. Let ψ : Y ′ → Y and ψ′ : Y → Y ′′ be homomorphisms of
abelian groups and X an abelian group. Then

(i) if 1X : X → X and 1Y : Y → Y are identity homomorphisms then 1X⊗1Y
is the identity of X ⊗ Y , and

(ii) (1X ⊗ ψ′) ◦ (1X ⊗ ψ) = (1X ⊗ (ψ′ ◦ ψ)).�

We can show these properties with the following diagram:

Y ′ X ⊗ Y ′

↓ ψ ↓ 1X⊗ψ

ψ′◦ψ 1Y Y
X⊗?−→ X ⊗ Y 1X⊗1Y 1X⊗ψ

′
◦ψ

↓ ψ′ ↓ 1X⊗ψ′

Y ′′ X ⊗ Y ′′

Analogously, we have the following

4.4 Proposition. Let ϕ : X′ → X and ϕ′ : X → X′′ be homomorphisms of
abelian groups and Y an abelian group. Then

(i) if 1X : X → X and 1Y : Y → Y are the identity homomorphisms, then
1X ⊗ 1Y is the identity on X ⊗ Y , and

(ii) (ϕ′ ⊗ 1Y ) ◦ (ϕ⊗ 1Y ) = ((ϕ′ ◦ ϕ)⊗ 1Y ).�

We can also show these properties by the following diagram:

X′ X′ ⊗ Y

↓ ϕ ϕ⊗1Y ↓

ϕ′◦ϕ 1X X
?⊗Y−→ X ⊗ Y1X⊗1Y (ϕ′◦ϕ)⊗1Y

↓ ϕ′ ϕ′⊗1Y ↓

X′′ X′′ ⊗ Y

The following is a result about the tensor product of a direct sum of abelian
groups:

4.5 Proposition. (i) Let X and Y be abelians groups with Y =
∑

i∈I

Yi. Then

X ⊗
(
∑

i∈I

Yi

)
∼=
∑

i∈I

(X ⊗ Yi)
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(ii) Let X and Y be abelian groups and X =
∑

i∈I

Xi. Then

(
∑

i∈I

Xi

)

⊗ Y ∼=
∑

i∈I

(Xi ⊗ Y )

Proof. Let g : X × (∑
i∈I

Yi) →
∑

i∈I

(X ⊗ Yi) given by g(x, (yi)) = (x ⊗ yi). It is

easy to show that g es biadditive. Then there exists

h : M ⊗ (Ni)→ (M ⊗Ni)

such that the following diagram commutes:

X ×
(∑

i∈I Yi
) f−→ X ⊗

(∑
i∈I Yi

)

gց ւ h

∑
i∈I (X ⊗ Yi)

Let ϕi : X ⊗ Yi → X ⊗ (∑
i∈I

Yi) be given by ϕi(x ⊗ yi) = x ⊗ ιYi(yi) where
ιYi : Yi →

∑

i∈I

Yi is the inclusion. Then, by the universal property of the direct

sum, there exists a unique homomorphism

ϕ :
∑

i∈I

(X ⊗ Yi)→ X ⊗
(
∑

i∈I

Yi

)

such that if ιX⊗Yi : X ⊗ Yi →
∑

i∈I

(X ⊗ Yi) is the inclusion then ϕi = ϕ ◦ ιX⊗Yi ,
that is, the following diagram commutes for every i ∈ I

X ⊗
(∑

i∈I Yi
)

ϕi ր տ ϕ

X × Yi ιX⊗Yi−→
⊕

i∈I (X ⊗ Yi)
It is easy to verify that ϕ◦h = 1X⊗(∑

i∈I

Yi) and that h◦ϕ = 1⊕i∈I(X⊗Yi). The

proof of (ii) is analogous.�

4.6 Proposition. (i) If Y ′
ψ
 Y

ψ
։ Y ′′ is an exact sequence of abelian groups

and X an abelian group, then

X ⊗ Y ′ 1X⊗ψ−→ X ⊗ Y 1X⊗ψ
′

−→ X ⊗ Y ′′ −→ 0

is an exact sequence. (ii) If X′
ϕ
 X

ϕ′

։ X′′ is an exact sequence of abelian
groups and Y an abelian groups, then

X ′ ⊗ Y ϕ⊗1Y−→ X ⊗ Y ϕ′⊗1Y−→ X ′′ ⊗ Y −→ 0
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is an exact sequence..
Proof. (i) We will see that 1X ⊗ ψ′ is an epimorphism: let t′′ =

∑
(xi ⊗ y′′i ) ∈

X ⊗ Y ′′, xi ∈ X, y′′i ∈ Y ′′. As ψ′ is an epimorphism, there exists yi ∈ Y such
that ψ′(yi) = y

′′
i for every i. Thus„

(1X ⊗ ψ′)
(∑

(xi ⊗ yi)
)
=
∑
(xi ⊗ y′′i ).

As
(1X ⊗ ψ′)(1X ⊗ ψ) = (1X ⊗ ψ′ψ) = 1X ⊗ 0 = 0

we can see that im(1X⊗ψ) ⊂ ker(1X⊗ψ′). It remains to verify that (1X⊗ψ) ⊃
ker(1X ⊗ ψ′), which we will leave to the reader, as well as part (ii).�

The previous result is the best we can obtain. For example, is we consider
an exact sequence

Z
2._
 Z։ Z/2

where 2._ denotes the multiplication by two, when the tensor product is con-
structed with Y = Z/2 we obtain

Z⊗ Z/2 2∗−→ Z⊗ Z/2։ Z/2⊗ Z/2
which is equivalent to

Z/2
2∗−→ Z/2։ Z/2

but 2∗ is not injective..

Now we will establish some properties of the tensor product.

4.7 Proposition. Let Y be an abelian group. Then Y ⊗ Z ∼= Y ∼= Z⊗ Y .
Proof. Let g : Y × Z → Y be the biadditive function given by g(y, λ) = λy,
λ ∈ Z, y ∈ Y . Then there exists a unique homomorphism h : Y ⊗ Z→ Y such
that h ◦ f = g, that is, the following diagram commutes:

Y × Z f−→ Y ⊗ Z

gց ւ h

Y

The biadditive function g is surjective because g(y, 1) = 1·y = y. As h◦f = g
then h is surjective.

We will see that h is injective: sea x ∈ Y ⊗ Z. Then there exist elements
{yi}ni=1 in Y and {λi}ni=1 in Z such that x is

∑n
i=1(yi ⊗ λi) for yi ∈ Y , λi ∈ Z.

However,

x =
n∑

i=1

(yi ⊗ λi) =
n∑

i=1

(λiyi ⊗ 1) = (
n∑

i=1

λiyi)⊗ 1 = y ⊗ 1,
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thus
h(x) = h(y ⊗ 1) = h(f(y, 1)) = g(y, 1) = 1 · y = y.

If h(y ⊗ 1) = 0 then y = 0 and x = y ⊗ 1 = 0. Hence, h es inyective. The
proof that Y ∼= Z⊗ Y is left to the reader(Problem 4.5).�

4.8 Proposition. Let X,Y,Z be abelian groups. Then

(X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z) ∼= X ⊗ Y ⊗ Z

Proof. Consider the biadditive function

g′′ : X × Y → X ⊗ Y ⊗ Z

given by g′′(x, y) = x⊗ y ⊗w for w ∈ Z fixed, which induces a homomorphism

hw : X ⊗ Y → X ⊗ Y ⊗ Z

such that
hw(x⊗ y) = x⊗ y ⊗w.

Let
g : (X ⊗ Y )× Z → X ⊗ Y ⊗ Z

given by
g(t, w) = hw(t).

The function g is biadditive and induces a homomorphism h : (X⊗Y )⊗Z →
X ⊗ Y ⊗ Z

such that.
h((x⊗ y)⊗w) = x⊗ y ⊗w.

We now construct a function

h′ : X ⊗ Y ⊗ Z → (X ⊗ Y )⊗ Z

such that h′ ◦ h = 1(X⊗Y )⊗Z and h ◦ h′ = 1X⊗Y⊗Z . To construct h′ consider
the function

g′ : X × Y × Z → (X ⊗ Y )⊗ Z
given by

g′(x, y, w) = (x⊗ y)⊗w.
g′ is linear in each variable, thus induces a homomorphism

h′ : X ⊗ Y ⊗ Z → (X ⊗ Y )⊗ Z

such that
h(x⊗ y ⊗w) = (x⊗ y)⊗w.

It is easily verified that h′ ◦ h = 1(X⊗Y )⊗Z and that h ◦ h′ = 1X⊗Y⊗Z
thus, h and h′ are isomorphisms. The proof that X ⊗ (Y ⊗Z) ∼= X ⊗ Y ⊗Z is
analogous.�
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Problems

4.1 Show that in Proposition 4.2 f : X × Y → X ⊗ Y , given by f(x, y) = x⊗ y
is biadditive, h′ is annihilated in the generators of G and h is unique.

4.2 Verify that f(X × Y ) generates X ⊗ Y . (Hint:define a homomorphism
i : X × Y → X ⊗ Y and use the uniqueness to show that i is surjective).

4.3 Let g : X × (∑
i∈I

Yi) →
∑

i∈I

(X ⊗ Yi) given by g(x, (yi)) = (x ⊗ yi) as in

Proposition 4.5. Verify that g is biadditive. Verify that ϕ ◦ h = 1X⊗(∑
i∈I

Yi) and

that h ◦ ϕ = 1⊕i∈I(X⊗Yi) as well. Prove part (ii).

4.4 In Proposition 4.6 show that (1X ⊗ ψ) ⊃ ker(1X ⊗ ψ′), as well as part (ii).

4.5 Prove that Y ∼= Z⊗ Y .

4.6 Prove that X ⊗ Y ∼= Y ⊗X.

4.7 Prove that X ⊗ (Y ⊗ Z) ∼= X ⊗ Y ⊗ Z.

4.8 Prove that if X′
ϕ
 X

ϕ′

։ X ′′ is an exact sequence of abelian groups that
splits (that is, X ∼= X ′ ⊕X ′′) and Y an abelian group, then

0→ X′ ⊗ Y ϕ⊗1Y−→ X ⊗ Y ϕ′⊗1Y−→ X′′ ⊗ Y → 0

is an exact sequence that splits (that is, X ⊗ Y ∼= X′ ⊗ Y ⊕X′′ ⊗ Y ).





Chapter 4

A detailed exposition of some applications of Group Theory to Music Theory will
be made in this chapter. Some basic applications of Mathematical Music Theory
will be explained and, in the process, we hope to contribute theoretical and
analytical elements to readers with different backgrounds, both in Mathematics
as well as Music. With this in mind, the examples follow from some of the most
important theoretical aspects of the previous chapters; the musical terms and
concepts are introduced as they are needed, so that a reader, without a musical
background can understand the essence of how Group Theory is used to explain
certain pre-established musical relations. For the reader with knowledge of
Music Theory, this chapter provides concrete elements, as well as motivation,
to begin to comprehend Group Theory.

A goal of Music Theory is to describe the possibilities of a pitch system. A
pitch is the sound that is heard and that, usually, is associated to frequencies of
vibrations. Traditionally, the study of the intervals between pitches was done
using the frequency ratios of the powers of small integers. Modern Mathemati-
cal Music Theory offers an independent way of understanding pich systems by
considering the intervals as transformations. In this chapter we will explore and
develop some aspects of Neo-Riemannian Theory, in particular the duality of
the TI and PLR groups. The content of this chapter is based on [CFS] and
[DP].

4.1 Musical Background

The twelve pitches of our modern system use the names of the first 7 letters
of the alphabet. Each letter represents a different frequency and the letters
are repeated when the frequency of a pitch is doubled. The range of pitches
which begin with a frequencey, until it is doubled, is known as an octave. By
convention, the octave is divided into 12 equal intervals, from which we obtain a
set of 12 pitches, such that the frequency of each pitch results from multiplying

99
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Note Frecuency (Hz) Note Frecuency (Hz)
C4 261.63 F♯4/G♭4 369.99

C♯4/D♭4 277.18 G4 392.00
D4 293.66 A♭4/G♯4 415.30

E♭4/D♯4 311.10 A4 440.00
E4 329.63 B♭4/A♯4 466.16
F4 349.23 B4 493.88

Table 4.1: Frecuencies of the notes in the central octave.

the previous one by 12
√
21 . This is known as equal tempered tuning. Previous

to equal tempered tuning, musicians used, among others, just tuning, which is
a system whose notes have frequencies that are related by ratios of integers. In
equal tempered tuning, the difference in frequency between each note is called
a semitone. With only 7 letters and 12 notes, the symbol ♯ is used to denote a
pitch that is a semitone above the original and the symbol ♭ to denote a pitch
that is a semitone below the original. For example, if we take the pitch G,
then the note that is above by a semitone would be G♯ and the note that is
below by a semitone would be G♭. The complete set of twelve notes is called
the chromatic scale and is denoted, musically, as follows:

C,C♯,D,D♯,E,F,F♯,G,G♯,A,A♯,B.

As was previously mentioned, two successive notes differ by a semitone. The
note that is a semitone above G is G♯, although this same note is a semitone
below A and can be denoted as A♭. This property of notes possessing multiple
names in equal tempered tuning is known as harmonic equivalence. This is
shown together with the frequency values of each pitch (beginning with middle
C2 and the eleven notes that follow it) in the table 4.1.

As all multiples of a certain frequency are represented by the same letter, it
is mathematically convenient to represent the set of twelve notes by the integers
modulo 12 (Z12), where each element is a class and represents an infinite set of
numbers. According to the literature on Mathematical Music Theory, we will
assign number to the letters, as is shown in the figure 4.1.

1The human brain interprets the distances between the pitches logarithmically. That is,
the distance (in octaves) between a pitch of frequency F1 and another with frequency F2 is
perceived as

| log
2
(F1)− log2(F2)|.

For this reason, if F2 = 2F1, then the distance is

| log
2
(F1)− log2(F2)| = | log2(F1)− log2(2F1)| = | log2(

F1

2F1
)| = | log

2

1

2
| = | − 1| = 1.

The reader can verify that if the distance between F1 and 2F2 is divided in twelve equal
parts, the frequencies of the resulting pitches are the same as those obtained by multplying

F1 by successive powers of 2
1
12 .

2 In the scientific notation of pitch, middle C is located in the fourth octave. That is why
it is denoted C4.
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C D E F G A B
0 2 4 5 7 9 11

C♯ D♯ F♯ G♯ A♯
1 3 6 8 10

Figure 4.1: Notes assigned to the elements of Z12.

This assignment is not rigid, and it is valid to assign 0 to any of the 12 notes.
In this chapter, we are interested in sets of notes that are played simultaneously.
These sets of notes are known as chords. We will concentrate, in particular,
on the group of chords known as triads, that is, sets of 3 notes that are played
simultaneously.

Now, there are
(
12
3

)
= 220 subsets of 3 notes of the set of 12 notes. However,

we will limit ourselves to the study of sets of 3 elements that are known as major
and minor chords.

The three notes of a triad are called the root, the third and the fifth, respec-
tively. Each triad has the name of its root. However, in our work the triads are
sets and the order is not important (except to identify the root, of course). The
major and minor chords are defined as follows:

Definition 1 We will say the the chord {a, b, c} ∈ ℘(Z12) is a major chord if
b = a+ 4 and c = a+ 7.

The major chords, in this order, are in the root position and are designated
with upper case letters, such as G♯ = {8, 0, 3}.In the case of G♯, the root is
G♯ = 8, the third is B♯ = 0, and the fifth is D♯ = 3.

In spite of this musical observation, in the mathematical work with the
triads (that are sets of three elements) we insist that the order does not matter:
sometimes it will be more useful to refer to G♯ as, say, {3, 0, 8}. The same is
true for the minor chords that are defined as follows.

Definition 2 We say that a chord {a, b, c} ∈ ℘(Z12) is a minor chord if
b = a+ 3 and c = a+ 7.

The minor chords in this order are also in root position, and will be denoted
with lower case letters, for example, f = {5, 8, 0}. Now that we have defined the
elements, we will refer to them as pitch class triads.
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Definition 3 The complete set of the 24 major and minor chords will be de-
noted as M. Specífically,

M = {{x, x+ 3, x+ 7}, {X,X + 4,X + 7}|x,X ∈ Z12}.

We willl emphasize, once again, that chords are sets and, for this reason,
are not ordered. In other words: by definitions 1 and 2 if the set {5, 8, 0} is
written in another order, say,{0, 8, 5}, there is no difference because both sets
represent the F minor chord. The F minor chord is formed by playing the notes
F, A♭, and C simultaneously. If we take {0, 8, 5}, we are still be indicating that
the notes C, A♭, and F will be played together, forming the F minor chord.
Hence, the root position of the chord (as in the definitions ?? and ??) shows
how the components of the chord will be included, but the individual notes can
be distributed many ways without changing the identity of the chord.

There is a detail that should be considered with respect to the term “triad of
pitch classes”. It should be clear with which elements we are working because, up
until now, we have refered to the triad of pitch classes just as a triad. However,
an element x in M is a tríad, where x = {a, b, c}, and a, b, c ∈ Z12. This
notation is used because it is comfortable and simple, but to be precise we must
remember that Z12 is a set of cosets:

Z12 = {[0], [1], . . . , [11]},

where

[0] = {. . . ,−24,−12, 0, 12, 24, . . .},
...

[11] = {. . . ,−13,−1, 11, 23, . . .}.

Therefore, a ∈ Z12, really means that [a] ∈ Z12. We call them pitch classes
because every note from C to B represents all multiples of those pitches, in
the same way that every coset in Z12 represents all the numbers modulo 12 of
which they are multiples. For this reason, when reading x = {a, b, c}, we are
really reading [x] = {[a], [b], [c]}. Hence, this idea is extended from pitch classes
to triads of pitch classes, where all the elements in M are also classes. As an
example, take the C major chord, x = {0, 4, 7}. If C major is seen as a class of
triads, it whould be represented in the following way:

C = [x] = {[0], [4], [7]} = {. . . , {−12,−8,−5}, {0, 4, 7}, {12, 16, 19}, · · · }.

Now that we have clarified the difference between the basic elements and the
classes, we will continure denoting [x] with x, for simplicity.
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4.2 The T and I Transformations.

In Music Theory, transposition refers to the process of translating a pitch, or set
of pitches, by a constant interval. The musical definition of this transformation
can be translated directly into the definition of a mathematical transformation.

2.1 Definition. Let x ∈M, where x = {a, b, c}. A transposition is a function
Tn :M→M given by

Tn(x) = x+ n = {a+ n, b+ n, c+ n},

where n ∈ Z.
Tn can only be applied to the 24 elements (triads) in M, but there is an

infinite amount of transpositions of any triad because n ∈ Z. However, after
having transposed any triad 12 times, the same sequence of triads is obtained
once again. For example:

T0(C) T0({0, 4, 7}) = {0, 4, 7}
T1(C) T1({0, 4, 7}) = {1, 5, 8}

...
T12(C) T12({0, 4, 7}) = {0, 4, 7} = T0(C)
T13(C) T13({0, 4, 7}) = {1, 5, 8} = T1(C)

...

T0 behaves like the identity function and, for every triad, there are at most
12 different transpositions.

We can see the transpositions, geometrically, as the rotations of a triangle
through 12 points equally distributed in a circle. The three vertices of the
triangle represent all the pitches of the triad. For example,the C major chord
{0, 4, 7} is situated in the upper left corner of the figure 4.2 . Then the three
vertices, or pitches, are rotated towards the right, one by one. The figure 4.2
presents the process of applying Tn({0, 4, 7}), for every 0 ≤ n < 12, to the C
major chord.

2.2 Definition. Let x ∈ M, where x = {a, b, c}. An inversion is a function
In :M→M given by

In(x) = −x+ n = {−A+ n,−B + n,−C + n}

where n ∈ Z.
As in the case of the transpositions, there are 24 tríads to invert and an

infinite number of inversions of each triad. However, once again, when we invert
a triad and then transpose it 12 times, we are back to the starting point, and
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Figure 4.2: The twelve transpositions of the C major {0, 4, 7} triad.
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the same sequence is obtained when we begin again. For example:

I0(C) = I0({0, 4, 7}) = {0, 8, 5}
I1(C) = I1({0, 4, 7}) = {1, 9, 6}

...

I12(C) = I12({0, 4, 7}) = {0, 8, 5} = I0(C)
I13(C) = I13({0, 4, 7}) = {1, 9, 6} = I1(C)

...

Once again it can be seen that for each triad there are no more than 12
different inversions. In contrast with the geometric representation of the trans-
position, the representation that corresponds to the inversion is relatively more
descriptive. All the inversions can be ilustrated as reflections of triangles with
respect to the vertical axis that passes through 0 and 6 in the circle. At first
sight, thefigure 4.3 does not present the 12 inversions of {0, 4, 7}. With the
intention of illustrating the reflections, the figure presents the inverted form of
every major triad. However, each one of these triads is, at the end, a transpo-
sition of the original triad {0, 4, 7}. In other words, if each one of the triads of
the figure 4.2 is reflected, the ones from the figure 4.3are obtained.

2.3 Proposition. For every n, k ∈ Z, such that n ≡ k mod 12,

Tn = Tk and In = Ik

Proof. As n ≡ k mod 12, then n = 12q + k, for some q ∈ Z. Hence
Tn = T12q+k = T12q ◦ Tk = (T0)q ◦ Tk = (i)q ◦ Tk = Tk

where i is the identity transformation (or the translation by 0) and

In = I12q+k
∗
= T12q ◦ Ik = (T0)q ◦ Ik = (i)q ◦ Ik = Ik;

the equality marked with an asterisc will be shown in lemma 4.2.�

2.4 Definition. The set of all the transposition and inversion functions is
denote as TI, and is defined as:

TI = {Tn, In|n = 0, . . . , 11}.
It turns out that we can represent all these elements in a more compact form

if we analyze the four possibile compositions of the T and I functions.

2.5 Lemma. In the TI set there exist the following relations:

Tm ◦ Tn = Tm+n mod 12,
Tm ◦ In = Im+n mod 12,
Im ◦ Tn = Im−n mod 12,
Im ◦ In = Tm−n mod 12.
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Figure 4.3: The twelve inversions of the C major {0, 4, 7} triad.
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Proof. For the first equality we have

Tm ◦ Tn = Tm(Tn({a, b, c}))
= Tm({a+ n, b+ n, c+ n})
= {a+ n+m, b+ n+m, c+ n+m}
= {a+ (m+ n), b+ (m+ n), c+ (m+ n)}
= Tm+n mod 12

whereas for the second

Tm ◦ In = Tm(In({a, b, c}))
= Tm({−a+ n,−b+ n,−c+ n})
= {−a+ n+m,−b+ n+m,−c+ n+m}
= {−a+ (m+ n),−b+ (m+ n),−c+ (m+ n)}
= Im+n mod 12.

The proof of the other two equalities is left as an exercise for the reader. �

If the functions of the TI set are applied consecutively to any triad in M,
all of the set M is reproduced. We reiterate that the figures 4.2 and 4.3 show
the result of applying all the functions of T and I to C = {0, 4, 7}.

It is left to the reader to show, in the exercises, that the functions in T and
I are well defined.

2.6 Theorem. The TI set forms a group under composition.
Proof.

1. For all f, g ∈ TI, f ◦ g = h ∈ TI, by the lemma 4.2, then TI is closed
under composition.

2. The following is satisfied

T0 ◦ Tn = T0+n = Tn,

Tn ◦ T0 = Tn+0 = Tn,

T0 ◦ In = I0+n = In,

In ◦ T0 = In−0 = In.

Hence, T0 = i ∈ TI (i.e. T0 is the identity element).

3. On the one hand the relationships:

Tn ◦ T12−n = Tn+12−n = T12 = T0,

T12−n ◦ Tn = T12−n+n = T12 = T0,

implied T−1n = T12−n and on the other we have In ◦ In = Tn−n = T0; this
shows that I−1n = In.
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4. By the properties of the composition of functions, the operation ◦ is asso-
ciative.

Then TI is a group under composition.�

Problems

2.1 Show that the operations on T are well defined. That is, if [x] is a
triad of pitch classes in M , for every x1, x2 ∈ [x] we have: Tn(x1) ≡

Tn(x2), i.e. Tn({a1, b1, c1}) ≡ Tn({a2, b2, c2}).

2.2 Show that the operations on I are well defined. That is, if [x] is a
triad of pitch classes in M , for every x1, x2 ∈ [x] we have: In(x1) ≡

In(x2), i.e. In({a1, b1, c1}) ≡ In({a2, b2, c2}).

2.3 Prove the last two equalities of Lemma 4.2.
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4.3 The P, L and R Transformations

In addition to the T and I transformations that we apply to the setM, we also
have the parallel (P ), leading tone exchange (L), and relative (R) functions.
Analogously to what occurs with the T and I functions, there are musical,
group theoretic and geometric descriptions of the P , L and R functions. The
descriptions and definitions of these three will not be separated, as with the T
and I functions, and several examples will be provided after the formal defini-
tion.

Two triads are said to be parallel if they have the same letter name, but are
of opposite parity (parity meaning major or minor). For instance, the parallel
minor of F major, F = {5, 9, 0}, is f-minor f = {5, 8, 0}. Both triads are named
with the letter F but one is major and the other is minor.

Two triads are said to be relative if they are again of opposite parity, and if
the root of the minor triad is three semitones below the root of major triad. To
illustrate, we take F-major {5, 9, 0} and count three semitones below 5, which
is 2 and then build a minor chord on 2. This yields the d-minor chord {2, 5, 9},
and d minor is the relative minor of F-major.

Lastly, the leading tone exchange is derived from the fact that a semitone
below any pitch is called the leading tone of that pitch. Therefore, the leading
tone exchange of any triad is also of opposite parity, and the root of the major
triad is replaced with its leading tone. We use F-major {5, 9, 0}once again to
illustrate. The root of F is 5, which is replaced with its leading tone, 4. It
suffices for now to say that the only minor chord with the pitches 4, 9, and 0 is
the a-minor chord, {4, 0, 9}.

Below are the mathematical definitions of P , L, and R which are then fol-
lowed by examples .

3.1 Definition. Let x, Y ∈ M, where x = {a, b, c} is a minor triad and
Y = {A,B,C} is a major triad. Then

P (x) = P ({a, b, c}) = {a, b+ 1, c},
P (Y ) = P ({A,B,C}) = {A,B − 1, C},
L(x) = L({a, b, c}) = {c+ 1, a, b},
L(Y ) = L({A,B,C}) = {B,C,A− 1},
R(x) = R({a, b, c}) = {b, c, a− 2},
R(Y ) = R({A,B,C}) = {C + 2, A,B}.

For example,

P (c) = P ({0, 3, 7}) = {0, 4, 7} = C and P (F ) = P ({5, 9, 0}) = {5, 8, 0} = f,
L(e) = L({4, 7, 11}) = {0, 4, 7} = C and L(G) = L({7, 11, 2}) = {11, 2, 6} = b,
R(b) = R({11, 2, 6}) = {2, 6, 9} = D and R(A) = R({9, 1, 4}) = {6, 1, 9} = f♯.

We now explore what the set of P , L, and R functions looks like and we will
start with the geometric representation. As with the T and I functions, there is
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Figure 4.4: Oettingen/Riemann Tonnetz

a rather interesting representation of the P , L, and R functions, known as the
Tonnetz .

The word Tonnetz is German for “tone network” and was invented by Leon-
hard Euler. It was Hugo Riemann that explored its capacity to chart harmonic
motion, that is,the movement from one pitch or triad to another. The original
Tonnetz has undergone various alterations, but we will use the version shown in
figure 4.4 . Note that the vertices are pitch classes and the triangles represent
major and minor triads. As mentioned before, the P , L, and R transformations
preserve 2 pitches when applied to any triad inM. Therefore, the rotation of a
triangle about any one of its edges yields another triangle which is equivalent to
one of the three triads that P , L, or R would produce. Notice that if we expand
the diagram with more vertices, we see that they start repeating vertically and
horizontally and, in effect, the grid wraps around and therefore lies on a torus.

Now we will analyze the compositions of the functions P , L, and R and
the powers of these compositions, to determine all the elements of the set. Note
that P , L, y R are involutive. That is:

P 2 = L2 = R2 = i.

We will show this for the function P , as the L and R functions behave in
the same way.

P ◦ P ({a, b, c}) = P ({a, b+ 1, c}) = {a, (b+ 1)− 1, c} = {a, b, c} = i({a, b, c})

By consecutively applying R to any triad and then L to the result, the
following sequence of triads is produced (again, upper case representing major
triads and lower case representing minor triads):

C, a,F,d,B♭, g,E♭, c,A♭, f,D♭,b♭,G♭, e♭,B, g♯,E, c♯,A, f♯,D,b,G, e,C (4.1)
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This sequence is a famous progression in Beethoven’s Ninth Symphony, first
observed by Cohn [C]. To follow the first step in the construction of the sequence,
we take C = {0, 4, 7} and apply the functions R and L, obtaining:

R({0, 4, 7}) = {4, 0, 9} = a.

Hence, C is taken to its relative minor, which is a. After that, we get:

L ◦R({0, 4, 7}) = L({4, 0, 9}) = {5, 9, 0} = F,

which shows that it is taken to its leading tone exchange, which is F major. By
continuing this way, the row of triads shown above is produced. Even more,
when the functions R and L are applied to any major triad ofM, in this order,
the same cyclic sequence of triads results. On the other hand, the sequence is
produced in reverse order when applied to any minor triad. In general, we can
observe that:

(L ◦R)3({A,B,C}) = (L ◦R)2(L ◦R({A,B,C}))
= (L ◦R)2({B + 1, C + 2, A})
= (L ◦R)(C + 3, A+ 2,B + 1)
= {A+ 3, B + 3, C + 3}

and this pattern can be used four times to obtain:

(L ◦R)12({A,B,C}) = (L ◦R)9((L ◦R)3({A,B,C})
= (L ◦R)9({A+ 3, B + 3, C + 3})
= (L ◦R)6((L ◦R)3({A+ 3, B + 3, C + 3}))
= (L ◦R)6({A+ 6, B + 6, C + 6})
= (L ◦R)3((L ◦R)3({A+ 6, B + 6, C + 6}))
= (L ◦R)3({A+ 9, B + 9, C + 9})
= {A+ 12, B + 12, C + 12}
= {A,B,C} = i({A,B,C}).

Analogously, if (L◦R)12 = (L◦R)◦ (L◦R)11 is applied to a minor triad, the
same triad results. The following step in the process of calculating the effect of
the powers of L ◦R is R ◦ (L ◦R)13. First we have:

R ◦ (L ◦R)12({A,B,C}) = {C + 2, B,A} = R({A,B,C}).

If we calculate L ◦R ◦ (L ◦R)12 = (L ◦R)13 we obtain

(L ◦R)13({A,B,C}) = {A+ 1, C + 2, B} = L ◦R({A,B,C})

and the pattern repeats itself.
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This way it can be verified that (L◦R)12 behaves as the identity and we can
assert that:

(L ◦R)12 = i = (L ◦R)0.
Once again it can be observed that any arbitrary exponent of the function

will always be contained in the set:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

This fact can be treated formally in a proposition.

3.2 Proposition. For n, k ∈ Z such that n ≡ k mod 12

(L ◦R)n = (L ◦R)k

and
R ◦ (L ◦R)n = R ◦ (L ◦R)k.

Proof. Remembering that (L ◦R)12 = (L ◦R)0 = i, we have

(L ◦R)n = (L ◦R)12q+k

= (L ◦R)12q(LR)k

= ((L ◦R)0)q(L ◦R)k

= iq(LR)k = (L ◦R)k.

The second equality it follows inmmediatly from the first.�

3.3 Definition. The set of parallel, relative and leading tone exchange func-
tions is denoted as PLR. Specífically,

PLR = {(L ◦R)n, R ◦ (L ◦R)n|n = 0, . . . , 11}.

It seems curious that the P and L functions are not explicitly mentioned in
the definition of the PLR set, but we can generate the whole set M without
using them. However, both P and L are represented, because the reader can
show that

P = R ◦ (L ◦R)3 (4.2)

and
L = R ◦ (L ◦R)11. (4.3)

These equalities hold whether applied to a major or minor triad.
Another possible issue is that the functions R◦L might introduce additional

functions to the set. However, as the functions P , L and R are involutive, when
L is applied first, followed by R, in a consecutive manner, the same sequence is
obtained, just in reverse order. The table 4.2 shows the relations between the
functions L ◦R and R ◦L
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R ◦ (RL)0 = R = L ◦ (LR)11 L ◦ (LR)6 = L ◦ (RL)5
LR = (RL)11 (LR)7 = (RL)5

R ◦ (RL) = L ◦ (LR)10 L ◦ (LR)7 = L ◦ (RL)4
(LR)2 = (RL)10 (LR)8 = (RL)4

R ◦ (RL)2 = L ◦ (LR)9 L ◦ (LR)8 = L ◦ (RL)3
(LR)3 = (RL)9 (LR)9 = (RL)3

R ◦ (RL)3 = L ◦ (LR)8 L ◦ (LR)9 = L ◦ (RL)2
(LR)4 = (RL)8 (LR)10 = (RL)2

R ◦ (RL)4 = L ◦ (LR)7 L ◦ (LR)10 = L ◦ (RL)
(LR)5 = (RL)7 (LR)11 = RL

R ◦ (RL)5 = L ◦ (LR)6 L ◦ (LR)11 = L(RL)0 = L
(LR)6 = (RL)6 (LR)0 = (RL)0

Table 4.2: Equivalences between the LR and RL functions.

Now we can conclude that the list of all functions (L◦R)n and R◦(L◦R)m is
much more exhaustive than it might appear. It contains the set of compositions
that include the P , L and R functions, as well as the compositions L ◦ R and
R ◦ L. Moreover, these 24 different functions transform any element of M into
a distinct element of M.

We will denote the compositions L ◦ R and R ◦ L, from here on, simply as
LR and RL, respectively.

3.4 Lemma. The set is closed under composition ◦.
Proof. It is left to the reader to show, as an exercise, that the P , L and R
operations are well defined, and that all the possible compositions of P , L and
R are in the PLR set.�

3.5 Theorem. The PLR set forms a group under composition. In particular,

(R(LR)n)−1 = R(LR)n and ((LR)n)−1 = (LR)k

where k = −n mod 12.

Proof. The lemma 4.3 proves that every possible composition, including the
inverses, are in the PLR set.

Therefore, the P , L and R functions satisfy the group properties, as asso-
ciativity is a property of the functions. Although we know the existence of the
inverses, it is interesting see the generators of the inverses in the PLR group.

For the lemma 4.3 proof, for all functions of the form R ◦ (LR)n we have

R ◦ (LR)n ◦R ◦ (LR)n = i.
Therefore, (R ◦ (LR)n)−1 = R ◦ (LR)n.

For the functions that appear as (LR)n,
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((LR)n)−1 = (LR)−n = (LR)−nmod12 = (LR)k.

where k = −nmod12.�

Problems

3.1 Exhibit a trajectory on the Tonnetz such that a sequence of R and L
functions transform the triad {5, 9, 0} into itself, after passing through all the
other triads of M in the process.

3.2 Show that the P , L and R operations are well defined. That is, if [x] is a
triad of pitch classes inM then, for every x1, x2 ∈ [x] we have:

P (x1) ≡ P (x2), i.e. P ({a1, b1, c1}) ≡ P ({a2, b2, c2}),
L(x1) ≡ L(x2), i.e. L({a1, b1, c1}) ≡ L({a2, b2, c2}),
R(x1) ≡ R(x2), i.e. R({a1, b1, c1}) ≡ R({a2, b2, c2}).
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4.4 The Isomorphism between PLR and TI

Now we will exhibit an explicit isomorphism between the TI and PLR groups
although, as both are isomophic to the group of symmetries of the dodecagon
(see the exercises 4.4 and 4.4), they are isomorphic by transitivity.

The isomorphism we are interested in between the TI and PLR groups does
not send (as one might think) a function in one of the groups to a function in the
other, such that both transform a triad x into the same triad y. Consider the
transformation denoted by φ, in the table 4.3. This is, exactly, the isomorphism
that will be verified in the theorem 4.

R �−→I0 R ◦ (LR)4 �−→I8 R ◦ (LR)8 �−→I4
LR �−→T1 (LR)5 �−→T5 (LR)9 �−→T9

R ◦ (LR) �−→I11 R ◦ (LR)5 �−→I7 R ◦ (LR)9 �−→I3
(LR)2 �−→T2 (LR)6 �−→T6 (LR)10 �−→T10

R ◦ (LR)2 �−→I10 R ◦ (LR)6 �−→I6 R ◦ (LR)10 �−→I2
(LR)3 �−→T3 (LR)7 �−→T7 (LR)11 �−→T11

R ◦ (LR)3 �−→I9 R ◦ (LR)7 �−→I5 R ◦ (LR)11 �−→I1
(LR)4 �−→T4 (LR)8 �−→T8 (LR)0 �−→T0

Table 4.3: The isomorphism φ : PLR �→ TI.

The isomorphism is constructed in the following way. First the generators
and the identities of the TI and PLR groups are exhibited. For example, the
generators of TI are T1 and I0, with the relations

(T1)
12 = i and (I0)

2 = i.

The generators of the the PLR group are LR and R, with the relations

(LR)12 = i and R2 = i.

This suggests the following: take T1 to LR and I0 to R. The identity T0 is
taken to the identity (LR)0. The other functions reveal a pattern between the
powers of RL and the subindices of the functions T and I.

Theorem 4 There exists a bijective homorphism φ : PLR→ TI such that

φ((LR)x) = Tx, φ(R ◦ (LR)x) = In,

where n = −xmod12.

Proof. By using the table 4.3 we can conclude that the function is bijective.
Now we will carry out a pointwise evaluation of all the possible combinations of
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the generators of the PLR group. We will show that for every g, h ∈ PLR and
all x ∈M,

φ(g ◦ h)(x) = φ(g)(φ(h)(x)).

Let x = {a, b, c} ∈M, and let g = LR and h = R. Then the left side of the
equation is:

φ(g ◦ h)({a, b, c}) = φ((LR) ◦R)({a, b, c})
= φ(L ◦R ◦R)({a, b, c})
= φ(L)({a, b, c}) (because R2 = i)

= φ(R ◦ (LR)11)({a, b, c}) (using 4.3)

= I1({a, b, c}) (by 4.2)

= {−a+ 1,−b+ 1,−c+ 1},

whereas the right side is:

φ(g)(φ(h)({a, b, c})) = φ(LR)(φ(R)({a, b, c}))
= T1(I0({a, b, c})) (by 4.2) (4.4)

= I1+0({a, b, c}) (by lemma 4.2)

= I1({a, b, c})
= {−a+ 1,−b+ 1,−c+ 1}.

Now let g = R and h = LR; then the left side of the equation is:

φ(g ◦ h)({a, b, c}) = φ(R ◦ LR)({a, b, c})
= I11({a, b, c}) (by 4.2)

= {−a+ 11,−b+ 11,−c+ 11} (by 4.2)

whereas the right side is:

φ(g) (φ(h)({a, b, c})) = φ(R) (φ(LR)({a, b, c}))
= I0 (T1 ({a, b, c}))
= I0−1({a, b, c}) (by 4.2)

= I−1({a, b, c})
= I11({a, b, c})
= {−a+ 11,−b+ 11,−c+ 11}.

Now let g = LR and h = LR; then the left side of the equation is:



4.4 The Isomorphism between PLR and TI 117

φ(g ◦ h)({a, b, c}) = φ((LR) ◦ (LR))({a, b, c})
= φ((LR)2)({a, b, c})
= T2({a, b, c}) (by 4.2)

= {a+ 2, b+ 2, c+ 2}

wheras the right side is:

φ(g)(φ(h)({a, b, c})) = φ(LR)(φ(LR)({a, b, c}))
= T1(T1({a, b, c})) (by 4.2)

= T1+1({a, b, c}) (by lemma 4.2)

= T2({a, b, c})
= {a+ 2, b+ 2, c+ 2}.

Finaly let g = R and h = L; then the left side of the equation is:

φ(g ◦ h)({a, b, c}) = φ(R ◦R)({a, b, c})
= φ(i)({a, b, c}) (because R2 = i)

= φ((LR)0)({a, b, c}) (by 4.2)

= T0({a, b, c}) (by 4.2)

= {a, b, c}

wheras the right side is:

φ(g)(φ(h)({a, b, c})) = φ(R)(φ(R)({a, b, c}))
= I0(I0({a, b, c})) (by 4.2)

= T0+0({a, b, c}) (by lemma 4.2)

= T0({a, b, c})
= {a, b, c}.

Hence φ(g ◦ h)(x) = φ(g)(φ(h)(x)) for every g, h ∈ PLR and for every
x ∈M.

This shows that φ is an isomorphism.�

Problems

4.1 Given the lemma:
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Let x ∈ {(LR)n,R ◦ (LR)n}, and y = a ◦ x, where a ∈ {P,L,R}. Then
y = a ◦ x ∈ PLR.

Show by induction that all possible compositions of P, L and R are in the
PLR set. (Hint: express P as R ◦ (LR)3, and L as R ◦ (LR)11 and, together
with R, it can be verified for n = 1, that x ∈ PLR in the three cases. Then
suppose that x has length k, at the most).

4.2 Show that the TI group is isomorphic to the dihedral group of order n = 12,
that is, that

(T1)
n = i, (I0)

2 = i, (4.5)

I0 ◦ T1 = Tn−11 ◦ I0, (4.6)

TI = {i, T1, T2, . . . , Tn−1, I0, I1, . . . , In−1}. (4.7)

4.3 Show that the PLR group is isomorphic to the dihedral group of order
n = 12, that is,

(LR)n = i, R2 = i, (4.8)

R ◦ (LR) = (LR)n−1 ◦R, (4.9)

PLR = {i, (LR), (LR)2, . . . , (LR)11, R,R ◦ (LR), . . . , R ◦ (LR)11}. (4.10)
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4.5 The Duality of the TI and PLR Groups

We know from chapter 3, definition 2.3, what it means for a group G to act on
a set X.

5.1 Lemma. The setM is a TI-set. In other words, the TI group acts onM.
Proof. We define the action of Tm, In ∈ TI on x ∈M through the evaluation,
ie

φ(Tm, x) = Tm ∗ x = Tm(x) y φ(In, x) = In ∗ x = In(x).
Since for any functions f, g ∈ TI we have:

(f ◦ g) ∗ x = (f ◦ g)(x) = f(g(x)) = f ∗ (g ∗ x)

as well as i ∗ x = T0 ∗ x = T0(x) = x = i(x), it follows that IT acts onM.�

5.2 Lemma. The setM is a PLR-set. In other words, the PLR group acts on
M.

Proof. Defining the action through the evaluation, the proof is essentially the
same as the previous lemma.�

Recall, also from chapter 3, the definition of the orbit of X under G.

5.3 Lemma. For every x ∈M, the orbit TIx of x is M.

Proof. As illustrated in figures 4.2 and 4.3, where all the functions are applied
to a single triad, the entire set M is generated. Even thought the table shows
only the functions applied to the C major chord, it can be easily verified that
the functions act in the same manner on any major or minor triad. So the orbit
of the TI group is:

TIx = {f ∗ x | f ∈ TI} =M.�

We leave it as an exercise to show that, for every x ∈M, the orbit PLRx is
also M. Recall the definition of isotropic subgroup (or stabilizer) from chapter
3, as well as the orbit-stabilizer theorem (theorem 2.8).

5.4 Lemma. Let x ∈M. Then the stabilizer of x under PLR is

PLRx = {f ∈ PLR|f ∗ x = x} = i = (LR)0

Proof. We use Theorem 3.2.8. to see that

|PLRx| =
|PLR|
|PLRx| .
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But |PLR| = 24 as there are 24 functions in PLR and |PLRx| = 24 since
PLRx =M. This gives us

|PLRx| =
24

24
= 1.

Naturally, i ∗ x = x, so PLR_i ∈ {x} and is the only member of the set.
Therefore, the stabilizer is trivial.�

We leave it as an exercise to show that if x ∈ M, then the stabilizer of x
under TI is

TIx = {f ∈ TI | f ∗ x = x} = i = T0.

5.5 Definition. An action of a group G on a set X is free if for any g, h ∈ G
and x ∈ X g ∗ x �= f ∗ x. This condition is equivalent to g ∗ x = x if and only if
g is the identity element of G.

5.6 Corollary. The TI and PLR groups act freely on M.

Proof. We’ve already established that for all x ∈M TIx{x} = i and PLRx = i
are the stabilizers. Therefore, the actions of TI and PLR groups on M meet
the definition of free action.�

5.7 Definition. An action of a group G on a set X is transitive if for any
x, y ∈ X there exists g ∈ G such that g ∗ x = y.

5.8 Definition. An action of a group G on a set X is regular if it is transitive
and free (also called "simply transitive").

Now we will show that the TI and PLR groups act regularly onM.

5.9 Proposition. The actions of the TI and PLR groups on M are regular,
that is, they are transitive and free.

Proof. We can deduce the regularity from figures 4.2 and 4.3 and the equa-
tion(4.1). First, we see that all functions acting on any x produce the entire
set M. In other words, for every y in M always exists a function g such that
g(x) = y. Moreover, this happens without a repeat occurrence of triads, which
means that only one function transforms any triad in any other triad. Therefore,
g is unique.
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Figure 4.5: Musical illustration of T2 ◦ L(C) = L ◦ T2(C).

Therefore, the findings can be used to infer the regularity. Since, for all x, it
holds that TIx =M , then given z, y ∈M there are f, g ∈ TI such that f ∗x = z
and g ∗ x = y. This means that

f−1(z) = f−1 ∗ (f ∗ x) = (f−1 ◦ f) ∗ x = i ∗ x = x

and
(g ◦ f−1) ∗ z = g ∗ (f−1(z)) = g ∗ x = y

so that g ◦ f−1 is an element of the group that sends z to y by means of this
action. Finally, if there are g1, g2 ∈ TI such that g−12 ◦ g1 = i then g2 = g1. But
the stabilizer of x is trivial, so g2 = g1and therefore g2 = g1. This demonstrates
that TI is regular. The PLR case is analogous.�

Recall the definition of the centralizer of a group from chapter 3. The concept
of centralizer is based on commutativity and, because of this, we will examine
the commutativity between elements of TI and PLR.

5.10 Lemma. All the elements of the PLR and TI groups commute.

We should show the commutativity of the generators of each group, that is,

T1 ◦ (LR) = (LR) ◦ T1, (4.11)

T1 ◦R = R ◦ T1, (4.12)

I0 ◦ (LR) = (LR) ◦ I0, (4.13)

I0 ◦R = R ◦ I0. (4.14)

It is left as an exercise complete the proof of this lemma.�

The figures 4.5 y 4.6 provide musical examples of commutativity with the
use of commutative diagrams.
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Figure 4.6: Musical illustration of I0 ◦R(a) = R ◦ I0(a).

Given that the commutative relations are valid when any element of M is
evaluated, for every f in TI and for every g in PLR, the commutative diagram
is always valid.

M f−→ M
g ↓ ↓ g
M −→

f
M

For example,

M Tn−→ M
L ↓ ↓ L
M −→

Tn
M

means that L ◦ Tn = Tn ◦ L.
The commutative nature of the TI and PLR groups brings us to the last

notion we need for duality.
As the TI and PLR groups are transformations of M into itself, they are

permutation groups and, consequently, subgroups of the symmetric group of
M (i.e. Sym(M), which is the group of all bijections of M into itself under
function composition). Recall the definition of centralizer from chapter 3. We
will examine the centralizers of each group (TI and PLR) as subgroups of the
big group Sym(M).

5.11 Lemma. It holds that:

CSym(M)(TI) = PLR y CSym(M)(PLR) = TI.

Proof. First we consider the centralizer of the TI group,

CSym(M)(TI) = {g ∈ Sym(M)|fg = gf,∀f ∈ TI}.
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By lemma 4.5 we have that for every g ∈ PLR and f ∈ TI, f ◦g = g◦f . Then
the PLR group is contained in CSym(M)(TI). We should verify that there do
not exist other functions that do no belong to the PLR group in CSym(M)(TI).
We begin by looking at the stabilizer of x in CSym(M)(TI). Suppose that h ∈
CSym(M)(TI) and that it fixes x ∈M. Let g ∈ TI. Then:

h(x) = x,

g(h(x)) = g(x),

h(g(x)) = g(x),

where the last equality follows from the fact that h is in the centralizer. By
proposition 4.5 we know that TI acts regularly, hence for every y ∈ M there
exists a g such that y = g(x). This shows that for every x, y ∈M

h(y) = h(g(x)) = g(x) = y.

In particular, h(y) = y for every y ∈ M. However, the only element in
CSym(M)(TI) that fixes all elements in CSym(M)(TI) is i, hence h is the identity
element. Thus, CSym(M)(TI)x = i.

By applying theorem 2.8 from Chapter 3 (the orbit-stabilizer theorem) to
CSym(M)(TI)x we obtain:

|CSym(M)(TI)x| =
|CSym(M)(TI)|
|CSym(M)(TI)x|

= |CSym(M)(TI)| ≤ |M| = 24,

given that the orbit of x under CSym(M)(TI) is contained in M. On the other
hand, PLR ⊆ CSym(M)(TI), giving us:

|PLR| ≤ |CSym(M)(TI)|.

Combining these inequalities, we see that |CSym(M)(TI)| = 24 and the cen-
tralizer of TI must be the group PLR. We still must show that the centralizer
of the PLR goupr is the TI group. However, we only have to interchange the
roles of the TI group with the PLR group from the beginning of the proof to
show that CSym(M)(PLR) = TI.

5.12 Definition. Let H and K be subgroups of the symmetric group Sym(X)
(i.e. H and K are permutation groups on the set X). Then H and K are said
to be dual if each one acts regularly on X and one is the centralizer of the other
in Sym(X).

The multiple lemmas and theorems that have been seen are used to deduce
the duality of the TI and PLR groups.
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5.13 Theorem. The TI and PLR groups are dual.

Proof. The statement follows from Proposition 4.5 and Lemma 4.5.

Problems

5.1 Show that for all x ∈M, the orbit of x is PLRx =M.

5.2 Show that if x ∈M, andM is a set-T/I, then the stabilizer of x is

T/Ix = {f ∈ T/I | fx = x} = T0

5.3 Show the lemma 5.10. All the elements of the PLR and TI groups commute.
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4.6 Solutions to the Problems of Chapter 4

2.1 Let x1, x2 ∈ [x] ∈ M, where x1 = 〈a1, b1, c1〉 and x2 = 〈a2, b2, c2〉. Then
x1 and x2 are elements in the class of triads [x] = 〈[a], [b], [c]〉. We see that a1,
a2 ∈ [a] ∈ Z12, b1, b2 ∈ [b] ∈ Z12, and c1, c2 ∈ [c] ∈ Z12, then: Tn(〈a1, b1, c1〉) =
〈a1 + n, b1 + n, c1 + n〉 and, Tn(〈a2, b2, c2〉) = 〈a2 + n, b2 + n, c2 + n〉 as, a1 ∈
[a], then (a1 + n) ∈ [a+ n] and a2 ∈ [a], then (a2 + n) ∈ [a+ n].

Similarly (b1 + n), (b2 + n) ∈ [b + n] and (c1 + n), (c2 + n) ∈ [c + n] which
gives us:

Tn(x1) = Tn(〈a1, b1, c1〉)
= 〈a1 + n, b1 + n, c1 + n〉
≡ 〈a2 + n, b2 + n, c2 + n〉
≡ Tn(〈a2, b2, c2〉)
≡ Tn(x2).

Hence Tn is well defined.

2.2 iii. Im ◦ Tn = Im(Tn(〈a, b, c〉))
= Im(〈a+ n, b+ n, c+ n〉)
= 〈−a− n+m,−b− n+m,−c− n+m〉
= 〈−a+ (m− n),−b+ (m− n),−c+ (m− n)〉
= Im−n mod 12

iv. Im ◦ In = Im(In(〈a, b, c〉))
= Im(〈−a+ n,−b+ n,−c+ n〉)
= 〈a− n+m, b− n+m, c− n+m〉
= 〈a+ (m− n), b+ (m− n), c+ (m− n)〉
= Tm−n mod12

3.1 Let x1, x2 ∈ [x] ∈ M , where x1 = 〈a1, b1, c1〉and x2 = 〈a2, b2, c2〉. Then x1
and x2 are elements in the class of triads [x] = 〈[a], [b], [c]〉. We see that if a1, a2 ∈
[a] ∈ Z12, b1, b2 ∈ [b] ∈ Z12, and c1, c2 ∈ [c] ∈ Z12, then: In(〈a1, b1, c1〉) =
〈−a1 + n,−b1 + n,−c1 + n〉and In(〈a2, b2, c2〉) = 〈−a2 + n,−b2 + n,−c2 + n〉.

As, −a1 ∈ [a], then (−a1 + n) ∈ [a + n] and −a2 ∈ [a], hence (−a2 + n) ∈
[a+n]. Similarly, (−b1+n), (−b2+n) ∈ [b+n] and (−c1+n), (−c2+n) ∈ [c+n]



126 Chapter 4

which gives us

In(x1) = In(〈a1, b1, c1〉)
= 〈−a1 + n,−b1 + n,−c1 + n〉
≡ 〈−a2 + n,−b2 + n,−c2 + n〉
≡ In(〈a2, b2, c2〉)
≡ In(x2).

Thus In is well defined.�

3.2
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R 
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L 

R 

L L L L L L L L L L L 

3.3 Let x1, x2 ∈ [x] ∈ M, where x1 = 〈a1, b1, c1〉and x2 = 〈a2, b2, c2〉. Then x1
and x2 are elements in of the class of triads [x] = 〈[a], [b], [c]〉and a1, a2 ∈ [a] ∈
Z12, b1, b2 ∈ [b] ∈ Z12, c1, c2 ∈ [c] ∈ Z12.
i) P (〈a1, b1, c1〉) = 〈C1, B1 + 1, A1〉and P (〈a2, b2, c2〉) = 〈C2, B2 + 1, A2〉. As
A1 ∈ [A] , then (A1 + n) ∈ [A + n] and A2 ∈ [A]. Thus (A2 + n) ∈ [A + n].
Analogously, (B1 + n), (B2 + n) ∈ [B + n] and (C1 + n), (C2 + n) ∈ [C + n].
Then:

P (x1) = P (〈a1, b1, c1〉)
= 〈C1, B1+1, A1〉
≡ 〈C2, B2 + 1,A2〉
≡ P (〈a2, b2, c2〉)
≡ P (x2).

Therefore, P is well defined.

3.4 L(〈a1, b1, c1〉) = 〈A1 + 1, C1, B1〉 and L(〈a2, b2, c2〉) = 〈A2 + 1, C2, B2〉. As
A1 ∈ [A], then (A1 + n) ∈ [A + n] and A2 ∈ [A]. Thus (A2 + n) ∈ [A + n].
Similarly, (B1 + n), (B2 + n) ∈ [B + n] and (C1 + n), (C2 + n) ∈ [C + n] then:

L(x1) = L(〈a1, b1, c1〉)
= 〈A1 + 1, C1, B1〉
≡ 〈A2 + 1, C2, B2〉
≡ L(〈a2, b2, c2〉)
≡ L(x2)
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Hence L is well defined.

3.5 R(〈a1, b1, c1〉) = 〈B1, A1, C1 − 2〉 and R(〈a2, b2, c2〉) = 〈B2, A2, C2 − 2〉. As
A1 ∈ [A], then (A1 + n) ∈ [A + n] and A2 ∈ [A]. Hence (A2 + n) ∈ [A + n].
Similarly (B1 + n), (B2 + n) [B + n] and (C1 + n), (C2 + n)[C + n]. Then

R(x1) = R(〈a1, b1, c1〉)
= 〈B1, A1, C1 − 2〉
≡ 〈B2, A2, C2 − 2〉
≡ R(〈a2, b2, c2〉)
≡ R(x2).

Thus R is well defined. �

4.1 Let x be any composition of P , L and R functions. We say that x has
length of, at the most n, if there exists a decomposition of x as the composition
of, at the most, n functions of P , L and R. We will prove by induction that any
composition of P , L and R functions is in the PLR set.

The base case: verify that, for any x of length n = 1, x is in the PLR set.

Case 1: If x = P = R(LR)3, then x ∈ PLR.
Case 2: If x = L = R(LR)11, then x ∈ PLR.
Case 3: If x = R, then x ∈ PLR.
We assume that, if x has at most length k for every k ≥ 1, then x ∈ PLR.
Induction step: Verify that, for any x of length k + 1, x ∈ PLR.
Let y be of length k + 1; then, by definition, y is a composition of k + 1

P , L and R functions. Let "a" be the first function of the composition; then
a ∈ {P,L,R}, and y = a ∗ x. Now, the length of x is ≤ k and we know that
x ∈ PLR. Hence, there exists an n such that x = (LR)n or x = R(LR)n.

Now, applying the lema, it can be seen that a ∗ x = y ∈ PLR.

4.2 i. (T1)
n = (T1)

12 as n = 12

= (T1)(T1) · · · (T1)(T1)︸ ︷︷ ︸
12 times

= T 1+1+...+1+1︸ ︷︷ ︸
12 times

= T12

= T0

= i

and (I0)
2 = (I0)(I0) = T0+0 = T0 = i.
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ii. (I0)(T1) = I0−1 = I−1

= I11 as 11 = −1mod12
= I12−1+0

= (T12−1)(I0)

= (T1)
12−1(I0)

= (T1)
n−1(I0)

iii. The elements of the T/I group are

{i, T1, (T )2, . . . , (T1)11, I0, (I0)(T1), . . . , (I0)(T1)11}

= {i, T1, T2, . . . , T11, I0, I0−1, . . . , I0−11}
as (T1)

m = Tm,
and (In)(Tm) = In−m

= {i, T1, T2, . . . , T11, I0, I1, . . . , I11} as Ik = I−nmod12

Hence, the T/I group is isomorphic to the group of symmetries of the dodecagon.
�

4.3 i. (LR)n = (LR)12 as n = 12

= (LR)0 as 12 = 0mod12

= i

and (R)2 = i as R is involutive.

ii. R(LR) = L(LR)10 by table 2.5

= L(LR)10(RR) as (R)2 = i

= (L(LR)10R)R

= (LR)11R

= (LR)12−1R

= (LR)n−1R

iii. The elements of the PLR group are

{i, (LR), (LR)2, . . . , (LR)n−1, R,R(LR), . . . , R(LR)n−1}.

Hence, the PLR group is isomorphic to the dihedral group of the dodecagon. �

5.1 As illustrated in table 2.3, all the functions, when applied to one triad,
generate the complete set M. The orbit of x in the PLR group is

PLRx = {fx | f ∈ PLR} =M
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Once more, there is only one orbit for every x ∈ M, given that the complete
setM results from the application of all the functions in the PLR group to any
triad. �

5.2 Proposition 2.8 from Chapter 3 is used to see that: |T/Ix| = |T/I|�|T/Ix|
where |T/I| = 24 as there are 24 functions in T/I and |T/Ix| = 24 as T/Ix =M
This gives us: |T/Ix| = 24/24 = 1.Then T/Ix = {T0} = {i} as T0(x) = x
Therefore, the stabilizer is trivial. �

5.3 i. T1 ◦ (LR)(〈A,B,C〉 = T1(L(〈b, a, c+ 2〉)
= T1 〈B − 1, C + 2, A〉
= 〈B,C + 3, A+ 1〉

(LR) ◦ T1(〈A,B,C〉 = (LR)(〈A+ 1, B + 1, C + 1〉)
= L(〈b+ 1, a+ 1, c+ 3〉
= 〈B − 1, C + 3, A+ 1〉

ii. T1 ◦ (R)(〈A,B,C〉 = T1(〈b, a, c+ 2〉)
= 〈b+ 1, a+ 1, c+ 3〉

(R) ◦ T1(〈A,B,C〉 = R(〈A+ 1, B + 1, C + 1〉)
= 〈b+ 1, a+ 1, c+ 3〉

iii. I0 ◦ (LR)(〈A,B,C〉 = I0(〈B − 1, C + 2,A〉)
= 〈1− b, 10− c,−a〉

(LR) ◦ I0(〈A,B,C〉 = (LR)(〈−a,−b,−c〉)
= L(〈−B,−A,−C − 2〉)
= 〈1− b,−c+ 10,−a〉

iv. I0 ◦ (R)(〈A,B,C〉 = I0(〈b, a, c+ 2〉)
= 〈−B,−A,−C − 2〉

(R) ◦ I0(〈A,B,C〉 = R(〈−a,−b,−c〉)
= 〈−B,−A,−C − 2〉

Thus, for every f ∈ T/I, and for every g ∈ PLR, fg = gf . �





List of Symbols

(A,+, µ, ·), 29
(G,+), 22
(i1, i2, ..., ir), 76
(V,+, µ), 22
(x), 42
(X | R), 86
(Λ,+, ·), 27
{Cn}n∈Z , 51
|G|, 25
+(u, v), 22⊕

i∈I

Gi, 66

+: G×G→ G, 22∏d

i∈I

Gi, 66
∏

i∈I

Hi, 66
∑

i∈I

Gi, 68

∼=, 35∧k
V , 32

· · · → Gi−1
fi−1→ Gi

fi→Gi+1
fi+1→ · · ·, 47

, 36
։, 36
♯, 100
Aut(G), 64
CG(x), 79
CH(x), 79
coim g, 65
coker g, 65
Dn, 39
G/H, 53
Gx, 78
G1 ×G2, 67
Gx, 78
Hn(C), 57

H < G, 36
H ⊳G, 55
hKh−1, 82
Hn(C), 59
HN , 63, 66
Hom(G,G′), 39
Hom(X,Y ), 37
IS, 23
I = Z12 × Z12, 28
im f , 36
In(G), 64
ker f , 35
M, 102
NG(K), 79
NH(K), 79
o(G), 25
O ∈ G, 22
R, 23
RIs, 23
sg(σ), 83
Sym(M), 122
T (n), 23
T k(V ), 31
V , 39
X ⊗ Y , 90
x ≡d y (mod H), 54
x ≡i y (mod H), 54
xfy, 20
Z, 15
Z3, 17
βn (C)75
∆3, 19
Σn, 21
χ(C), 75

131





Index

action, 26
by conjugation, 78
free, 120
of a group on a set, 78
regular, 120
transitive, 120

affine symmetry, 79
algebra, 29

division, 31
exterior, 32
graduated, 31
Grassmann, 32
tensor, 31

algebraic
structure, 20
system, 20

algebras
associative, 31
commutative, 31
with identity, 31

alphabet, 84
alternating group, 83
automorphism, 36, 60

class, 64
inner, 60, 64
outer, 64

basis
of a free abelian group, 87

Betti number, 75
binary

induced operation, 20
boundaries, 58
boundary operators, 58

canonical
injection, 71
projection, 55, 71

Cauchy
theorem, 88

centralizer, 79
chain, 51
chains

of degree, 58
characteristic of chain

Euler-Poincaré, 75
chord, 79, 101

augmented, 80
major, 101
minor, 101
of the scale, 57

class
automorphism, 64
conjugate, 79

closed
subset, 20

cochain, 52
codomain, 15
coefficients

torsion, 73
cohomology

group, 59
coimage, 65
cokernel, 65
commutative

group, 22
ring, 27

commutator, 59
complete

133



set of remainders module 3, 17
composition, 16
congruent

on the left, 54
on the right, 54

conjugate, 78
class, 79
subgroup, 82

coset, 53
cosets

left, 54
right, 54

counterpoint interval, 28
cycle

of length r, 76
cycles

of degree n, 58
cyclic

infinity group, 42
subgroup, 42

degree
boundaries, 58
cycles, 58
of chains, 58
of torsion coefficients, 75

diagram, 50
commutative, 50

diferentials, 58
dihedral group, 86
direct

external product, 66
product, 70
sum
external, 66

direct sum
external, 68

domain, 15
integral, 28

endomorphism, 36
epimorphism, 36
equal tempered tuning, 100
external direct sum, 66

field, 28

finitely
generated, group, 73

First Isomorphism Theorem, 61
First Sylow Theorem, 82
free

abelian group, 86
group
generated by the elements of a
set, 86

group on a set, 84
module, 28

function
universal
biadditive, 92

function, 15

G-set, 78
generator, 42
generators, 86
group, 20, 22, 33

abelian, 33
free of rank, 74

alternating of degree n, 83
cohomology, 59
commutative, 22, 33
cyclic
generated by, 42
infinite, 42
of order, 42

dihedral, 39, 86
dual, 123
finitely generated, 73
free
generated by elements of the set
X, 86

free abelian, 86
basis of a, 87
free generated by , 87

free on a set X, 84
general affine, 79
homology
of degree, 57

Klein four, 39
order of, 25
quotient, 53
simple, 56



with operators, 26
groups

isomorphic, 35
with order less than 16, 88

grupoid, 22

harmonic equivalence, 100
homologous, 58
homology

class, 58
group of degree, 57
of the chain, 58

homomorphism
identity, 39
induced by, 37, 60
of groups, 26
of modules, 28
ring, 28
trivial, 36, 39

identity
element, 34
homomorphism, 39
left element, 33
right element, 33

identity element, 22
image, 36
index

of a subgroup, 56
induced

homomorphism, 60
injection

canonical, 71
internal

product, 70
intervalofcountr

orientation, 28
invariant

factors, 74
inverse, 22, 34, 35

left, 33
right, 33

inversion, 103
respect to a pitch, 23

isomorphic
groups, 35

presentations, 86
isomorphism, 35, 36

kernel, 35

Lagrange
theorem, 56

law of composition, 16
leading tone exchange, 109
left

cosets, 54
identity, 33
inverse, 33

magma, 22
module

finitely generated, 28
free, 28
left, 28
projective, 28

monomorphism, 36
morphism

of chains, 51
of cochains, 52
trivial, 47
zero, 47

motif, 66
motive, 23
multiplication, 29

natural
projection, 55

normal
subgroup, 55

normalizer, 79

octava, 18
octave, 99
operation

binaria, 16
binary, 20
induced binary, 20
n-ary, 20
null, 20
ternary, 20
unary, 20

operator, 27



oprators
boundary, 58

orbit, 77, 78
order, 25
outer

automorphism, 64

p-group, 82
permutation

even, 83
odd, 83
sign of a, 83

presentation, 86
presentations

isomorphic, 86
product, 67

direct
external, 66
internal, 70
weak external, 68

tensor, 90
projection, 67

canonical, 53, 55, 71
natural, 55

properties
of tensor product, 95

range, 16
rank

finite, 88
infinite, 88
of free abelian group, 74

related elements, 78
relations, 86
retrograde

with inversion, 23
retrograde, 23
right

cosets, 54
identity, 33
inverse, 33

ring, 27
commutative, 27
division, 28
homomorphism, 28
unit, 27

with identity, 27

scale, 57
C major, 18
chromatic, 18, 57, 100
F major, 18

Second Isomorphism Theorem, 63
Second Sylow Theorem, 82
semigroup, 22
semitone, 43, 100
sequence

exact, 48
short, 48
short splits, 97

semiexact, 47
sign

of a permutation, 83
stabilizer, 78
stable

subset, 20
subgroup, 36

conjugate, 82
cyclic, 42
diagram, 44
improper, 36
index, 56
isotropy, 78
normal, 55
proper, 36
trivial, 37

subset
closed, 20
stable, 20

Sylow
first theorem, 82
p-subgroup, 82
second theorem, 82
yhird theorem, 82

tensor
product, 90
properties, 95

tensor space of degree k, 31
Theorem

Cauchy’s, 83
First Isomorphism, 61



first Sylow, 82
second isomorphism, 63
second Sylow, 82
third isomorphism, 64
third Sylow, 82

theorem
Cauchy’s, 88
of Lagrange, 56

Third Isomorphism Theorem, 64
Third Sylow Theorem, 82
Tonnetz, 110
tono, 18
torsion

coefficients, 73
of degree, 75

translation, 78, 82
transposition, 77, 103
triad, 101

of pitch classes, 101
paralell, 109
parity, 109
relative, 109

trivial
homomorphism, 36, 39
morphism, 47

universal
biadditive function, 92
property
of direct product, 68

word, 84
reduced, 84





Bibliografy and References

[A] Armstrong, M. A. Groups and Symmetry. UTM. Springer. 1988.

[B] Bourbaki, N. Algebra I. Addison Wesley. 1973.

[B-M] Birkhoff, G. and MacLane, S. Algebra. Macmillan. 1968.

[C] Cohn, R. Neo-Riemannian operations, parsimonious trichords and their Ton-
netz representations. Journal of Music Theory, 41 (1997), 1-66.

[CFS] Crans, A., Fiore, T. and Satyendra, R. Musical Actions of Dihedral
Groups.
http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.1873v2.pdf, 2008.

[DP] Du Plessis, J. Transformation Groups and Duality in the Analysis of Mu-
sical Structure. Masters thesis, Georgia State University (EU), 2008.

[F] Fraleigh, J.B. Abstract Algebra. Addison Wesley. 2003.

Hu, S-T. Elements of Modern Algebra. Holden-Day. 1965.

[H] Hungerford, T.W. Algebra. Springer. 1980.

Lang, S. Algebra. Addison Wesley. 1965.

[Ll1] Lluis-Puebla, E. Álgebra Homológica, Cohomología de Grupos y K-Teoría
Algebraica Clásica. Segunda Edición. Publicaciones Electrónicas. Sociedad
Matemática Mexicana. Serie: Textos. Vol. 5. 2005.

[Ll2] Lluis-Puebla, E. Álgebra Lineal, Álgebra Multilineal, y K-Teoría Algebraica
Clásica. Segunda Edición. Publicaciones Electrónicas. Sociedad Matemática
Mexicana. Serie: Textos. Vol. 9. 2008.

[M] Mazzola, G. The Topos of Music. Birkhäuser-Verlag. 2002.

Robinson, J.S. A Course in the Theory of Groups. Springer. 1980.

Rotman, J.J. The Theory of groups. Allyn and Bacon. 1976.

139



The Authors

Flor Aceff-Sánchez

Flor Aceff-Sánchez obtained the Professor of Primary Education degree at the
Escuela Nacional de Maestros in 1982. In 1989 obtained her undergraduate
degree in Mathematics, in 1990 graduated as Master in Mathematics and ob-
tained a Ph.D. in Mathematics in 1995 at the Faculty of Sciences of the Uni-
versidad Nacional Autónoma de México. She is currently Full Time Professor
at the Faculty of Sciences of the Universidad Nacional Autónoma de México
both in Professional and Posgraduate Studies. She was National Researcher
(1995-1998).

She is member of various scientific associations such as: the Mexican Institute of
Sciences and Humanities, the Royal Spanish Mathematical Society, the Ameri-
can Mathematical Society, the Mexican Society of Geography and Statistics, the
Mathematical Society of Mexico and is president of the Council on Accreditation
of Educational Programs in Mathematics.

Octavio A. Agustín-Aquino

Octavio Alberto Agustín Aquino studied his undergraduate degree in Applied
Mathematics at the Universidad Tecnológica de la Mixteca in Huajuapan de
León, Oaxaca, and the Masters in Mathematical Sciences at the Universidad
Nacional Autónoma de México. He obtained his Ph.D. in 2011 at the Univer-
sidad Nacional Autónoma de México under the joint direction of Emilio Lluis-
Puebla, Guerino Mazzola and Rodolfo San Agustín Chi. His research is aimed
at extending the Mathematical Theory of Counterpoint developed by Guerino
Mazzola.

Janine du Plessis

Janine du Plessis is originally from South Africa and did her undergraduate and
Masters in Mathematics at Georgia State University, where she wrote her thesis
under the direction of Mariana Montiel. She also studied Music at the same
University. She presently teaches Mathematics at Georgia Perimeter College
and Chattahoochee Technical College.



Emilio Lluis-Puebla

Emilio Lluis-Puebla completed his Professional and Master Studies in Mathe-
matics in Mexico. In 1980 he obtained his Ph.D. in Mathematics in Canada.
He is professor at the National Autonomous University of Mexico in their Pro-
fessional and Graduate divisions for over thirty years. He has formed several
professors and researchers who work in Mexico and abroad. His mathemati-
cal work has been established in his research articles published on Algebraic
K-theory and Cohomology of Groups in the most prestigious national and in-
ternational journals. He has been Visiting Professor in Canada.

He received several academic awards, among others, Gabino Barreda Medal
for the highest average in the Masters, National Researcher (1984-1990) and
Endowed Chair of Excellence Conacyt (1992-1993). He is the author of sev-
eral books on Algebraic K-Theory, Homological Algebra, Linear Algebra and
Mathematical Music Theory published worldwide by Addison Wesley, Springer
Verlag, Birkhäuser, AMS, SMM, among others.

He is a member of several scientific associations such as the Royal Spanish
Mathematical Society and the American Mathematical Society. He is president
of the Academy of Sciences of the Mexican Institute of Sciences and Humanities,
president of the Academy of Mathematics of the Mexican Society of Geography
and Statistics and president 2000-2002 of the Mathematical Society of Mexico.

Mariana Montiel

Mariana Montiel did her undergraduate and Masters in Mathematics at the
National Autonomous University of Mexico. In 2005 she obtained her Ph.D. in
Mathematics in the United States. She is professor at Georgia State University,
in the Department of Mathematics and Statistics, since 2006. Her research is
focused on Mathematical Music Theory and Mathematics as a semiotic system,
with emphasis in the aspect of language.

She has directed theses and research projects in Mexico and the United States
in the area of Mathematical Music Theory. She has published articles and col-
laborated in books about the application of Category Theory to Mathematical
Music Theory.

She has received several scholarships and grants from foundations and insti-
tutes in Mexico and the United States, such as the National Council of Science
and Technology, The UNAM Foundation, the University of New Hampshire and
the Research Foundation of Georgia State University. She collaborates inter-
nationally and does translations of articles on Mathematics and Mathematics
Education. Some of her publications are found in Birkhäuser and Springer Ver-
lag.



The success of Group Theory is impressive and extraordinary. It is, per-
haps, the most powerful and influential branch of all Mathematics. Its influence
is strongly felt in almost all scientific and artistic disciplines (in Music, in par-
ticular) and in Mathematics itself. Group Theory extracts the essential charac-
teristics of diverse situations in which some type of symmetry or transformation
appears. The concept of structure, and the concepts related to structure such
as isomorphism, play a decisive role in modern Mathematics.

In this text, a modern presentation is chosen, where the language of commu-
tative diagrams and universal properties, so necessary in Modern Mathematics,
in Physics and Computer Science, among other disciplines, is introduced.

This text consists of four chapters. Each section contains a series of problems
that can be solved with creativity by using the content that is presented there;
these problems form a fundamental part of the text. They also are designed
with the objective of reinforcing students’ mathematical writing. Throughout
the first three chapters, representative examples (that are not numbered) of
applications of Group Theory to Mathematical Music Theory are included for
students who already have some knowledge of Music Theory.

In chapter 4, the application of Group Theory to Music Theory is presented
in detail. Some basic aspects of Mathematical Music Theory are explained and,
in the process, some essential elements of both areas are given to readers with
different backgrounds. For this reason, the examples follow from some of the
outstanding theoretical aspects of the previous chapters; the musical terms are
introduced as they are needed so that a reader without musical background can
understand the essence of how Group Theory is used to explain certain pre-
established musical relations. On the other hand, for the reader with knowledge
of Music Theory only, this chapter provides concrete elements, as well as moti-
vation, to begin to understand Group Theory.




