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Abstract – The paper presents an analysis of the statistical efficiency of the
sinewave histogram test used for estimating the unknown transition levels
of an analog-to-digital converter. Accordingly, at first a closed–form deter-
mination of the Cramér–Rao bound is derived under the assumption of a
noiseless stimulus signal. Both unbiased and biased versions of the bound
are described in order to account for the eventual bias introduced by com-
monly employed estimators. Then, additive Gaussian noise is assumed and
comments are made about its effects on the maximum achievable accuracy.

Keywords – Cramér–Rao bound, sinewave histogram test, statistical effi-
ciency.

I. INTRODUCTION

The assurance and improvement of quality levels characteriz-
ing the performance of analog-to-digital converters (ADCs),
require the careful selection of post-production device testing
methods. In fact, considerations mainly based on economical
reasons demand the tests to be quick, effective, easily repro-
ducible, and simple. In practice, both static and dynamic in-
formation on the ADC behavior is usually needed, as well as
figures showing its performance both in the time and frequency
domains. It is widely recognized that, among other parameters,
the ADC integral (INL) and differential (DNL) nonlinearities
represent quantities of paramount importance for the descrip-
tion of the tested device quality under both static and dynamic
conditions. In order to measure the ADC linearity parameters
the histogram test method is usually applied. This technique
is based on the use of a signal source exciting the ADC under
test and on the evaluation of the histogram of the device out-
put codes. Accordingly, the a priori knowledge about the am-
plitude distribution of the converter input signal is employed.
The linearity parameters are finally estimated by processing the
ADC output code histogram. The most frequently used device
stimuli are the sinusoidal and the ramp ones [1], even though
Gaussian noise has been recently proposed as an alternative
approach [2].

Whichever the excitation signal type, if the information carried
by the device output sequence is effectively processed, the time
needed to obtain prescribed levels of estimation accuracy is
minimized. Since the test costs are directly related to the test
process duration, efficiently processing data helps in keeping
test expenses at a minimum.

The goal of this paper is twofold. At first, the theoreti-
cally achievable accuracy of sinewave histogram testing (SHT)
is investigated through the evaluation of the Cramér–Rao
bound (CRB). Then, an analysis is carried out to determine
how efficiently the commonly adopted data processing tech-
niques exploit the information provided by the ADC data, as-
suming both noiseless and noisy stimulus signals.

II. EFFICIENCY OF THE SINEWAVE
HISTOGRAM TEST

A. The Sinewave Histogram Test

A brief description of the fundamentals of the SHT is given in
the following. The converter under test is stimulated through a
highly linear sinewave generator. Thus, a suitable model of the
single record input data set is:

x[n]
�
= d− A cos

(
2π

D

M
n + φ

)
, n = 0, 1, . . . ,M − 1,

(1)
with A, φ and d as the sinewave amplitude, initial record phase
and offset respectively, while D/M represents the ratio be-
tween sinewave frequency and converter sampling rate. Since
the phase difference between sinewave and ADC sampling se-
quence is usually not controlled and varies at random between
separate data records, φ can be considered as a random variable
uniformly distributed in [0, 2π).

The purpose of SHT is that of estimating the k-th transition

level, Tk, where k = 1, . . . , N − 1, N
�
= 2b and b is the

number of ADC bits. Once each Tk has been evaluated, esti-
mates of the converter INLs and DNLs easily follow. In order
to minimize the total number of samples required for a given
estimation accuracy, the coherence condition should be met.
This happens when D and M are mutually prime integer num-
bers. Other directions on how to choose appropriate values for
A, d, M and the number R of data records are provided in [1],
[3], [4]. Finally, the transition levels are estimated by means of

T̂k
�
= d− A cos

(
ψ̂k

)
, k = 1, . . . , N − 1, (2)

where ψ̂k represents the cumulative histogram corresponding
to the k-th converter output code normalized by (M · R)/π. It



can be shown that [3], [5]:

bias[T̂k]
�
= E[T̂k − Tk]

= −2A sin
[ π

2M
(2nk + αk)

]
sin

( π

2M
αk

)
(1 − αk)

+2A sin
[ π

2M
(2nk + αk + 1)

]
sin

[ π

2M
(1 − αk)

]
αk

(3)
and

var[T̂k] = A2αk(1−αk)
[
cos

( π

M
nk

)
− cos

( π

M
(nk + 1)

)]2

(4)
where E[·] is the expectation operator,

nk
�
=

⌊
2ψk

∆φ

⌋
, αk

�
=

〈
2ψk

∆φ

〉
,

ψk
�
= arccos

(
−T k

A

)
, ∆φ

�
=

2π
M

, (5)

with T k
�
= Tk − d and where A ≥ T k is assumed. In (5),

�x� and 〈x〉 represent the largest integer lower than or equal
to x and the fractional part of x, respectively. By employing
trigonometric equivalencies and by observing that 0 ≤ αk(1−
αk) ≤ 1/4, from (3) and (4) follows that

|bias[T̂k]| ≤ Aπ2

8M2
, var[T̂k] ≤ π2

4M2
(A2 − T

2

k). (6)

Thus, (2) is an asymptotically unbiased estimator of Tk, whose
bias is negligible for all values of M employed in practice.

B. The Cramér–Rao bound for the SHT

It is well known that, under certain regularity conditions, for a
given sample probability distribution and size, the mean square
error of any estimator of an unknown parameter can not be
made arbitrarily small. In other terms, there is a lower bound
on the amount of information that can be extracted from the
available data set about the parameter to be estimated. This
limit is called the Cramér–Rao bound [6], [7]. In particular,
since the adoption of unbiased estimators represents a common
engineering practice, it follows that the estimator variance can
not be made lower than a limit depending entirely on the sam-
ple size and data joint distribution function. The application of
such theoretical principles to the accuracy analysis of the SHT
applied to a single–bit ADC, allows the following inequality to
be written for any unbiased estimator T̃0 of T0:

var[T̃0]
�
= E{(T̃0 − T0)2} ≥ CRB, (7)

where the CRB has been obtained through the likelihood func-
tion derived in App. A, as follows (App. B):

CRB =
π2

M2
α0(1 − α0)(A2 − T

2

0). (8)
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Figure 1. Cramér–Rao bound as a function of the unknown transition level
using single record sinewave with random initial record phase: A = 1,

d = 0; (a) M = 20; (b) M = 40.

Moreover, from (8) it follows that

max
T0

CRB =
A2π2

4M2
. (9)

In order to appreciate its behavior, (8) has been plotted in
Fig. 1 as a function of T0, by assuming A = 1, d = 0 and
M = 20, 40. Notice that the Cramér–Rao bound vanishes
when α0 = 0, that is when T̂0 and ψ̂0 are no longer random
variables but become deterministic functions of the input data
sequence [5]. Notice also that M sets the number of lobes ap-
pearing in Fig. 1.

In order to compare the accuracy of (2) with the corresponding
theoretical limit, it is necessary to include the contribution of
estimator bias. Accordingly, for any biased estimator T̃0 of T0

the following inequality applies:

E{(T̃0 − T0)2} = bias2[T̃0] + var[T̃0] ≥ CRBb, (10)

where CRBb is the biased SHT Cramér–Rao bound which in-
cludes the contribution of (3) (App. B):

CRBb
�
= A2α0(1−α0)

[
cos

( π

M
n0

)
− cos

( π

M
(n0 + 1)

)]2

.

(11)
Notice that (11) differs appreciably from (8) only for small
values of M . Observe also that, the comparison of (4) with
(11) evidences that CRBb is equal to var[T̂0]. Thus, since
bias[T̂0] �= 0 when α0 �= 0, it follows that the equal sign in



(10) never applies. Consequently, the statistical efficiency of
(2) can be written as:

η
�
=

CRBb

bias2[T̂0] + var[T̂0]
=

1

1 +
bias2[T̂0]
CRBb

, (12)

which converges rapidly to 1, and uniformly with respect to
T0, for all values of M used in practice.

Consider now the unbiased CRB related to the estimation of
ADC transition levels corresponding to a multibit quantizer.
Output data related to the device under test can be regarded
as data coming from a set of converters each characterized by
one of the transition levels pertaining to the original device.
Thus, the CRB corresponding to the estimation of more than
a single transition level can not be larger than (8). Further-
more, the numerical evaluation of such bound under various
settings of both test parameters and using several values of
N , has confirmed that (8) appears also to apply to the multi-
bit quantizer case. Consequently, on the basis of (8) and (12),
the currently adopted estimator (2) is an almost optimum one,
under the specified system and signal hypotheses.

When additive noise corrupts (1), an additional source of un-
certainty must be taken into consideration. Usually, even under
these testing conditions (2) still applies. This results in esti-
mator bias and variance whose approximate expressions have
been given in [3]. Because of the noise, it is expected that the
corresponding estimation accuracy be worse than that theoret-
ically achievable through (8). In fact, by following a reasoning
similar to that described in App. A and B, a numerical evalu-
ation of the CRB has been carried out. The CRB that applies
to the unbiased estimator of a single transition level is graphed
in Fig. 2. Data have been derived by assuming random initial
record phase, zero–mean Gaussian noise with standard devia-
tion σ = 0.05, 0.12, 0.2, A = 1, d = 0 and M = 11. For
comparison, also (8) has been reported in the same figure. Data
shown in Fig. 2 confirms the overall increase of the CRB due
to the additive noise. However, for particular values of T 0, the
addition of noise with low enough variance, seems to allow
slightly more accurate estimates than those achievable assum-
ing a noiseless sinewave. Moreover, numerical simulations and
theoretical results published in [3] confirm that (2), is almost
efficient even in this case, once the associated bias has been
neglected.

Notice that when multiple data records are collected, each ob-
tained by independently setting the initial record phase, (8)
scales by a factor 1/R. Moreover, by assuming M = 1 and
R > 1, the presented results apply also when sinewave ran-
dom sampling is adopted, that is when the input sinewave is
sampled at random.
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Figure 2. Cramér–Rao bound of an unknown ADC transition level. Single
record sinewave is assumed with random initial record phase and zero-mean
Gaussian additive noise with A = 1, d = 0, M = 11 and σ = 0.05 (solid
line), σ = 0.12 (dash–dotted line), σ = 0.2 (dotted line). Expression (8) is

graphed for comparison, using a dashed line.

III. CONCLUSION

In this paper, it is analyzed the efficiency of the code density
test in exploiting the information provided by the converter
output when the device is properly stimulated using a sinu-
soidal signal generator. A closed form relationship is given
for the Cramér–Rao bound related to the estimation of con-
verter transition levels under the assumption of sinewave co-
herent sampling and random initial record phase. By using
this result, it is shown that the ADC sinewave histogram test
is an asymptotically efficient estimator of converter linearity.
Moreover, the contribution of additive noise is taken into con-
sideration. At this regard, results are presented on the increase
in minimum attainable variance when estimating the converter
transition levels.

APPENDIX A: DERIVATION OF THE ADC OUTPUT

LIKELIHOOD FUNCTION

Assume (1) as the noiseless converter input signal. Define

P{Y = Y ;T} �
= P{y0 = y0,y1 = y1, . . . ,yN = yN ;T}
= P{y0, y1, . . . , yN ;T} (A.1)

where T is the set of unknown transition levels, that is the pa-
rameters to be estimated, and

Y
�
= [y0,y1, . . . ,yN ], Y

�
= [y0, y1, . . . , yN ], N ≥ 1

(A.2)
with yk as the random variable representing the number of
occurrences of the k-th output code when M samples are ac-
quired, and yk as the value taken by yk. Such variable is based
on the definition of the ADC input–output characteristic,

y(x) =


y0 x < T0

yk Tk−1 ≤ x < Tk, k = 1, . . . , N − 1
yN x ≥ TN−1

(A.3)
assuming x as the converter input quantity. By using the prop-
erties of conditional probabilities, it can be proved that

P{Y = Y ;T} = PC{C = C;T} (A.4)



where C
�
= [c0, c1, . . . , cN ], C

�
= [c0, c1, . . . , cN ], N ≥ 1

and ci
�
=

∑i
j=0 yj . Observe that cN = M must hold true.

Thus,

P{y0, y1, . . . , yN ;T} = PC{c0, c1, . . . , cN−1,M ;T} (A.5)

It can be shown that ck is a function of Tk and φ
�
= 〈φ/∆φ〉 as

follows:

ck
�
= c(φ, Tk) =



nk 0 ≤ φ < 1
2 − αk

2

nk + 1 1
2 − αk

2 ≤ φ < 1
2 + αk

2

nk φ ≥ 1
2 + αk

2

nk

odd

nk + 1 0 ≤ φ < αk

2

nk
αk

2 ≤ φ < 1 − αk

2

nk + 1 φ ≥ 1 − αk

2

nk

even

(A.6)
Moreover, when φ is uniformly distributed in [0, 1), (A.5) be-
comes the measure µ(A), in the Lebesgue sense, of the set

A �
=

N−1⋂
k=0

Ik(ck) (A.7)

where the sets Ik(·) are defined as follows:

Ik(ck)
�
=



[
0, 1

2 − αk

2

) ∪ [
1
2 + αk

2 , 1
)

ck = nk[
1
2 − αk

2 , 1
2 + αk

2

)
ck = nk + 1

nk

odd

[
αk

2 , 1 − αk

2

)
ck = nk[

0, αk

2

) ∪ [
1 − αk

2 , 1
)

ck = nk + 1

nk

even

(A.8)
Thus, P{Y = Y ;T} = µ(A).

APPENDIX B: DERIVATION OF THE SINGLE LEVEL CRB

The CRB on the variance of an estimator t̂ of a scalar differ-
entiable function tT of T exhibiting bias bT = E{t̂} − tT is
given by:

CRB = [∇tT + ∇bT ]T F−1[∇tT + ∇bT ], (B.1)

where ∇f
�
= [∂f/∂T0, ∂f/∂T1, . . . , ∂f/∂TN−1]T is the gra-

dient function and

F
�
= E{[∇ log P{Y = Y ;T}][∇ log P{Y = Y ;T}]T }

(B.2)
denotes the N × N Fisher information matrix, which is as-
sumed to be non–singular. Since Y is a discrete random vec-
tor, the element Fr,c in row r and column c in such a matrix
has the following representation:

Fr,c
�
=

∑
Y ∈Y

P{Y = Y ;T}∂ log P{Y = Y ;T}
∂Tr

×

∂ log P{Y = Y ;T}
∂Tc

, (B.3)

where Y represents the set of admissible values for Y. By
using (A.4) it follows that

Fr,c =
∑
C∈C

1
PC{C = C;T}

∂PC{C = C;T}
∂Tr

×

∂PC{C = C;T}
∂Tc

, (B.4)

where C represents the set of admissible values for C. Notice
that (B.3) and (B.4) apply only when the values of the model
parameters allow ∂PC{C = C;T}/∂T· to exist.

Under the assumption of a single transition level, e.g. a single-
bit quantizer for which T = T0, two outcomes are possible and
the joint probabilities become:

P{y0, y1;T} = P{y0,M − y0;T} = PC{c0,M ;T}

= µ(I0(c0)) =


p0

�
= 1 − α0 c0 = n0

p1
�
= α0 c0 = n0 + 1

. (B.5)

Moreover, Fisher matrix becomes the following scalar:

F = E

[(
∂ log PC{c0,M ;T0}

∂T0

)2
]

=
1
p0

(
∂p0

∂T0

)2

+
1
p1

(
∂p1

∂T0

)2

. (B.6)

When α0 �= 0, we obtain:(
∂p0

∂T0

)2

=
(

∂p1

∂T0

)2

=
M2

π2(A2 − T 2
0 )

. (B.7)

Thus, from (B.1) and (B.6) it follows that F = M 2/(π2α0(1−
α0)(A2 −T 2

0 )). Consequently, when bT = 0, (8) results. Con-
versely, by differentiating (3) with respect to Tk, k = 0, and
by using (B.1), we obtain (11).
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