
RV'01 Preliminary Version
Stati veri�ation of dynamially detetedprogram invariants:Integrating Daikon and ESC/Java

Jeremy W. Nimmer and Mihael D. ErnstMIT Lab for Computer Siene200 Tehnology SquareCambridge, MA 02139 USAEmail: fjwnimmer, mernstg�ls.mit.edu
AbstratThis paper shows how to integrate two omplementary tehniques for manip-ulating program invariants: dynami detetion and stati veri�ation. Dynamidetetion proposes likely invariants based on program exeutions, but the resultingproperties are not guaranteed to be true over all possible exeutions. Stati veri-�ation heks that properties are always true, but it an be diÆult and tediousto selet a goal and to annotate programs for input to a stati heker. Combiningthese tehniques overomes the weaknesses of eah: dynamially deteted invariantsan annotate a program or provide goals for stati veri�ation, and stati veri�ationan on�rm properties proposed by a dynami tool.We have integrated a tool for dynamially deteting likely program invariants,Daikon, with a tool for statially verifying program properties, ESC/Java. Daikonexamines run-time values of program variables; it looks for patterns and relation-ships in those values, and it reports properties that are never falsi�ed during testruns and that satisfy ertain other onditions, suh as being statistially justi�ed.ESC/Java takes as input a Java program annotated with preonditions, postondi-tions, and other assertions, and it reports whih annotations annot be statiallyveri�ed and also warns of potential runtime errors, suh as null dereferenes andout-of-bounds array indies.Our prototype system runs Daikon, inserts its output into ode as ESC/Javaannotations, and then runs ESC/Java, whih reports unveri�able annotations. Theentire proess is ompletely automati, though users may provide guidane in orderto improve results if desired. In preliminary experiments, ESC/Java veri�ed all ormost of the invariants proposed by Daikon.This is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents

Nimmer and Ernst1 IntrodutionStati and dynami analyses have omplementary strengths and weaknesses,so ombining them has great promise. Stati analysis operates by examin-ing program soure ode and reasoning about possible exeutions. It buildsa model of the state of the program, suh as values for variables and otherexpressions. Stati analysis an be onservative and sound; however, it anbe ineÆient, an produe weak results, and an require expliit goals or an-notations. Dynami analysis obtains information from program exeutions;examples inlude pro�ling and testing. Rather than modeling the state of theprogram, dynami analysis uses atual values omputed during program exe-utions. Dynami analysis an be eÆient and preise, but the results may notgeneralize to future program exeutions. Our researh integrates stati and dy-nami analysis to take advantage of their omplementary strengths: dynamianalysis an propose program properties to be veri�ed by stati analysis.This paper fouses on analyses over program invariants. A program invari-ant is a property that is true at a partiular program point or points, suh asmight appear in an assert statement or a formal spei�ation. Invariants in-lude proedure preonditions and postonditions, loop invariants, and objet(representation) invariants. Examples inlude y = 4 � x+ 3; x > abs(y); array aontains no dupliates; n = n.hild.parent (for all nodes n); size(keys) = size(ontents);and graph g is ayli. Invariants expliate data strutures and algorithms andare helpful for programming tasks from design to maintenane. Invariantsassist in reation of better programs [30,46,35,34℄, doument program oper-ation [39,45℄, assist testing and enable orret modi�ation [52,29℄, assist intest-ase generation [59℄ and validation [7℄, form a program spetrum [1,55,31℄,and an enable optimizations [6℄, among other uses. Despite their advantages,invariants are usually missing from programs.Dynami invariant detetion is a tehnique for postulating likely invariantsfrom program runs: a dynami invariant detetor runs the target program,examines the values that it omputes, and looks for patterns and relationshipsover those values, reporting the ones that are always true over an entire testsuite and that satisfy ertain other onditions (see Setion 2.1). The outputsare likely invariants: they are not guaranteed to be universally true, beausethe test suite might not haraterize all possible exeutions of the program.Stati invariant veri�ation is a tehnique for heking program properties.Given a program and a set of properties over that program, the veri�er re-ports whih properties are guaranteed to be true for all exeutions. Unveri�edproperties might or might not be universally true. Stati veri�ers an operateby dataow analysis, theorem proving, model heking, or other tehniques.Users of stati veri�ers must annotate their programs with the properties tobe proved (and other properties on whih those might depend).Combining dynami invariant detetion with stati veri�ation has bene-�ts for both users of invariant detetors and users of stati hekers. Beause2

Nimmer and Ernstthe output of a dynami invariant detetor is not guaranteed to be sound, pro-grammers may be relutant to use it, and its output annot be fed into othertools that require sound input. A stati veri�er an indiate whih proposedinvariants are guaranteed to be true. Users an �lter out unveri�ed invariantsso that the results are sound or an use the veri�ations as a �rst approxima-tion when determining whih dynamially deteted properties are funtionalinvariants and whih are usage properties|both of whih are useful, but fordi�erent tasks.Users of stati veri�ers bene�t from dereased annotation burden. Stativeri�ation often requires extensive annotations or intermediate assertionsand goals. Automati annotation relieves users of the burden of annotat-ing programs from srath|a task few enjoy or are good at. Dynamiallydeteted invariants an also indiate properties programmers might otherwisehave overlooked.We have started to explore these bene�ts by integrating a dynami invari-ant detetor, Daikon [16,17℄, with a stati veri�er, ESC/Java [14,44℄. Oursystem operates in three steps. First, it runs Daikon, whih outputs a list oflikely invariants obtained from running the target program over its test suite.Seond, it inserts those invariants into the target program as annotations.Third, it runs ESC/Java on the annotated target program to report whihof the likely invariants an be statially veri�ed and whih annot. Setion 4gives more details about this proess. All three steps are ompletely auto-mati, though users may provide guidane in order to obtain better results ifdesired. Users may edit and re-run test suites when de�ienies are found, ormay add or remove spei� program annotations by hand.The remainder of this paper is organized as follows. Setion 2 providesbakground on the dynami invariant detetor and stati veri�er used by oursystem. Setion 3 presents results from several experiments. Setion 4 de-sribes how we integrated these tools, and Setion 5 disusses problems thatarose while building and running our system. Finally, Setion 6 relates ourresults to other researh, Setion 7 proposes followon researh, and Setion 8onludes.2 Bakground2.1 Daikon: Invariant disoveryDynami invariant detetion [16,17℄ disovers likely invariants from programexeutions by instrumenting the target program to trae the variables of in-terest, running the instrumented program over a test suite, and inferring in-variants over the instrumented values (Figure 1). The inferene step tests aset of possible invariants against the values aptured from the instrumentedvariables; those invariants that are tested to a suÆient degree without falsi-�ation are reported to the programmer. As with other dynami approahes3

Nimmer and Ernst
Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Fig. 1. An overview of dynami detetion of invariants as implemented by Daikon.suh as testing and pro�ling, the auray of the inferred invariants dependsin part on the quality and ompleteness of the test ases. The Daikon invari-ant detetor is language independent, and urrently inludes instrumenters forC++ and Java.Daikon detets invariants at spei� program points suh as proedureentries and exits; eah program point is treated independently. The invariantdetetor is provided with a variable trae that ontains, for eah exeution ofa program point, the values of all variables in sope at that point. Eah of aset of possible invariants is tested against various ombinations of one, two,or three traed variables.For salar variables x, y, and z, and omputed onstants a, b, and , someexamples of heked invariants are: equality with a onstant (x = a) or a smallset of onstants (x 2 fa; b; g), lying in a range (a � x � b), non-zero, modulus(x � a (mod b)), linear relationships (z = ax+ by +), ordering (x � y), andfuntions (x = fn(y)). Invariants involving a sequene variable inlude mini-mum and maximum sequene values, lexiographial ordering, element order-ing, invariants holding for all elements in the sequene, or membership (x 2 y).Given two sequenes, some example heked invariants are elementwise linearrelationship, lexiographi omparison, and subsequene relationship.In addition to loal invariants suh as node = node.hild.parent (for all nodes),Daikon detets global invariants over pointer-direted data strutures, suh asmytree is sorted by � by linearizing graph-like data strutures. Finally, Daikonan detet onditional invariants that are not universally true, suh as \ifp 6= null then p:value > x" and \p:value > limit or p:left 2 mytree". Conditionalinvariants result from splitting data into parts based on the ondition andomparing the resulting invariants; if the invariants in the two halves di�er,they are omposed into a onditional invariant [19℄.For eah variable or tuple of variables in sope at a given program point,eah potential invariant is tested. Eah potential unary invariant is heked forall variables, eah potential binary invariant is heked over all pairs of vari-ables, and so forth. A potential invariant is heked by examining eah sample(i.e., tuple of values for the variables being tested) in turn. As soon as a sam-ple not satisfying the invariant is enountered, that invariant is known not tohold and is not heked for any subsequent samples. Daikon maintains aept-able performane as program size inreases beause false invariants tend to be4

Nimmer and Ernstfalsi�ed quikly, so the ost of omputing invariants tends to be proportionalto the number of invariants disovered. All the invariants are inexpensive totest and do not require full-edged theorem-proving.To enable reporting of invariants regarding omponents, properties of ag-gregates, and other values not stored in program variables, Daikon representssuh entities as additional derived variables available for inferene. For in-stane, if array a and integer lasti are both in sope, then properties overa[lasti℄ may be of interest, even though it is not a variable and may noteven appear in the program text. Derived variables are treated just like othervariables by the invariant detetor, permitting it to infer invariants that arenot hardoded into its list. For instane, if size(A) is derived from sequeneA, then the system an report the invariant i < size(A) without hardoding aless-than omparison hek for the ase of a salar and the length of a sequene.For performane reasons, derived variables are introdued only when knownto be sensible. For instane, for sequene A, the derived variable size(A) isintrodued and invariants are omputed over it before A[i℄ is introdued, toensure that i is in the range of A.An invariant is reported only if there is adequate evidene of its plausibility.In partiular, if there are an inadequate number of samples of a partiularvariable, patterns observed over it may be mere oinidene. Consequently, foreah deteted invariant, Daikon omputes the probability that suh a propertywould appear by hane in a random input. The property is reported only ifits probability is smaller than a user-de�ned on�dene parameter [18℄.The Daikon invariant detetor is available for download from http://sdg.ls.mit.edu/daikon/.2.2 ESC: Stati hekingESC [13,14,43℄ is an Extended Stati Cheker that has been implemented forModula-3 and Java. It statially detets ommon errors that are usually notdeteted until run time, suh as null dereferene errors, array bounds errors,and type ast errors.ESC is intermediate in both power and ease of use between typehekersand theorem-provers, but it aims to be more like the former and is lightweightby omparison with the latter. Rather than proving omplete program or-retness, ESC detets only ertain types of errors. Programmers must writeprogram annotations, many of whih are similar in avor to assert state-ments, but they need not interat with the heker as it proesses the anno-tated program. ESC issues warnings about annotations that annot be provenand about potential run-time errors.ESC performs modular heking: it heks di�erent parts of a programindependently and an hek partial programs or modules. It assumes thatspei�ations for missing or unheked omponents are orret. ESC's im-plementation uses a theorem-prover internally. We will not disuss ESC's5

Nimmer and Ernstheking strategy in more detail beause this researh treats ESC as a blakbox (it is distributed in binary form).ESC/Java is a suessor to the previous ESC/Modula-3. ESC/Java's an-notation language (see Setion 4.2) is simpler, beause it is slightly weaker.This is in keeping with the philosophy of a tool that is easy to use and useful toprogrammers rather than one that is extraordinarily powerful but so diÆultto use that programmers shy away from it.This researh uses ESC not only as a lightweight tehnology for detetinga restrited lass of runtime errors, but also as a tool for verifying represen-tation invariants. We hose to use ESC beause we are not aware of otherequally apable tehnology for statially heking properties of runnable ode.Whereas many other veri�ers operate over non-exeutable spei�ations ormodels, our researh aims to ombine dynami and stati tehniques over thesame ode artifat. Furthermore, we wished to explore the limits of whatinvariants an be dynamially deteted and statially veri�ed. In any event,good representation invariants are often required to determine that variablesare non-null and array aesses are within bounds.Both versions of ESC are publily available from http://researh.ompaq.om/SRC/es/.3 ExperimentsThis setion gives both quantitative and qualitative results from several exper-iments with statially verifying dynamially deteted invariants. Setions 3.1and 3.2 disuss in detail two examples taken from a data strutures text-book [61℄; these setions haraterize the generated invariants and provide anintuition about the output of our system. Setion 3.3 overviews other experi-ments and highlights the types of problems the system may enounter.3.1 StakAr: array-based stakThe StakAr example is an array-based stak implementation [61℄. The soureontains 40 non-omment lines of ode in seven methods, along with ommentswhih desribe the behavior of the lass but do not mention its representationinvariant.Our system determined the representation invariant, method preondi-tions, modi�ation targets, and postonditions, and statially proved thatthese properties hold. Without these annotations, ESC issues warnings aboutmany potential runtime errors. With the addition of the deteted invariants,ESC suessfully heks that the StakAr lass avoids runtime errors, meetsits spei�ation, and maintains important properties during exeution.Figure 2 shows that the Daikon invariant detetor �nds 88 invariants: 6objet invariants, 5 requires lauses (method preonditions), 3 modi�es lauses(modi�ation targets), and 74 ensures lauses (method postonditions). How-6

Nimmer and ErnstExpressible InexpressibleUnique Redun. Unique Redun. TotalObjet 6 0 0 0 6Requires 4 0 0 1 5Modi�es 3 0 0 0 3Ensures 17 40 0 17 74Total 30 40 0 18 88Fig. 2. Invariants deteted by Daikon in the StakAr program. The table lassi�esthe invariants by expressibility (whether it an be stated in the ESCJML language;see Setion 4.2) and redundany (whether it is logially implied other invariants).Our system disovered and proved 70 invariants, of whih 30 were non-redundant.ever, 18 of the invariants were inexpressible in ESC (see Setion 4.2). Also,58 invariants were implied by other other invariants and ould have been re-moved by improved redundany heks in Daikon (see Setion 7). Finally, oursystem heuristially added 2 annotations involving the owner of the array (seeSetion 4.3).Figure 3 shows part of the automatially-annotated soure ode for StakAr.The �rst six annotations desribe the representation invariant. The array isnever null, and its runtime type is Objet[℄. The topOfStak index is atleast �1 and is less than the length of the array. Finally, the elements of thearray are non-null if their index is no more than topOfStak and are nullotherwise.The next four annotations desribe the spei�ation for the onstrutor.If the apaity is non-negative on entry, then on exit the array length mathesthe given apaity, the topOfStak index indiates an empty stak, and allelements of the array are null. (The �nal assertion is redundant: it is impliedby the representation invariant.)In addition to proving the absene of errors, our system generated spei-�ations for all operations of the lass, and veri�ed that the implementationmet the spei�ation. For example, two postonditions for the topAndPopmethod were:/*� ensures (\old(topOfStak) == -1) == (\result == null) *//*� ensures (\old(topOfStak) >= 0) == (\result != null) */These invariants state that topAndPop returns null if and only if the stak isempty upon entry.The assertions for a method provide a partial spei�ation, but do notneessarily give a full input-output relation. The spei�ations derived fromdeteted invariants are useful for several reasons.First, users an understand the behavior of a method by reading the spei-�ations instead of reasoning about the implementation. Similarly, stati tools7

Nimmer and Ernstpubli lass StakAr{/*� invariant this.theArray != null *//*� invariant \typeof(this.theArray) == \type(java.lang.Objet[℄) *//*� invariant this.topOfStak >= -1 *//*� invariant this.topOfStak <= this.theArray.length-1 *//*� invariant (\forall int i; (0 <= i && i <= this.topOfStak)==> (this.theArray[i℄ != null)) *//*� invariant (\forall int i; (this.topOfStak+1 <= i &&i <= this.theArray.length-1) ==> (this.theArray[i℄ == null)) */publi StakAr(int apaity)/*� requires apaity >= 0 *//*� ensures apaity == this.theArray.length *//*� ensures this.topOfStak == -1 *//*� ensures (\forall int i; (0 <= i && i <= this.theArray.length-1)==> (this.theArray[i℄ == null)) */{ theArray = new Objet[apaity ℄;topOfStak = -1;/*� set theArray.owner = this */}.../*� spe_publi */ private Objet [℄ theArray;/*� invariant theArray.owner == this *//*� spe_publi */ private int topOfStak;...}Fig. 3. The objet invariants, �rst method, and �eld delarations of the annotatedStakAr.java �le [61℄. The JML annotations (omments starting with \/*�") areprodued automatially by Daikon, are automatially inserted into the soure odeby our system, and are automatially veri�ed by ESC/Java.
an hek the assertions, and an use the (heked) assertions to perform rea-soning about alling ode. Furthermore, programmers modifying existing odemay be aided by knowledge of existing invariants whih the ode preserves.They may hek that spei�ations previously generated and proved over theunmodi�ed program still hold true over the new soure. Finally, the invari-ants expliate potentially important properties of the implementation. Forexample, the representation invariant on StakAr guarantees that unused ar-ray elements are set to null. Thus, objets popped from the stak are notprevented from being garbage olleted.8

Nimmer and ErnstExpressible InexpressibleUnique Redun. Unver. Unique Redun. TotalObjet 4 1 0 0 0 5Requires 14 5 1 0 0 20Modi�es 2 0 0 0 0 2Ensures 14 40 1 7 55 117Total 34 46 2 7 55 144Fig. 4. Invariants deteted by Daikon in the DisjSets program. The tablelassi�es the invariants by expressibility (whether it an be stated in the ESCJMLlanguage), redundany (whether it is logially implied other invariants), and ver-i�ability (whether ESC was able to verify it). Our system disovered and proved80 invariants, of whih 34 were non-redundant. Two oinidental invariants due tospei�s of the test suite ould not be proved.3.2 DisjSets: union-�nd disjoint setsA seond example further illustrates our results, and provides an example ofinvariants whih ould not be veri�ed.The DisjSets lass is an array-based implementation of disjoint sets,whih partition a range of integers into disjoint subsets that support the unionand find operations [61℄. The soure ontains 30 non-omment lines of odein four methods, along with omments whih desribe the behavior of thelass but do not mention its representation invariant. Our system determinedthe representation invariant, method preonditions, modi�ation targets, andpostonditions, and statially proved that most of these properties hold.Figure 4 shows that Daikon found 144 invariants over the lass; 62 of theinvariants were not expressible in ESC, and 46 of the remaining ones wereredundant. Again, 2 annotations involving the owner of the array were addedby a heuristi. ESC proved 80 of the 82 expressible invariants, and it warnedabout two (unprovable) test suite artifats.The unprovable invariants were oinidenes of the test suite used to detetinvariants. In the DisjSets implementation, s is the integer array used torepresent the sets; s[i℄ referenes another integer in the same set, or is -1 ifthe element is the leader of its set. For the union operation, Daikon reportedthe following preondition:/*� requires s[s.length-2℄ < s.length-1 */This invariant states that the neighbor of the penultimate element is neverthe last element. The test ases did not inlude a ase where the penultimateelement was added to the set of the last element, so this assertion was truegiven the input data, but is not true in general. Tests whih ontradit thisassertion ould be added to the suite, but are arguably not of general utility.9

Nimmer and Ernst3.3 Other experimentsWe have run our system on seven other examples, primarily hosen from text-books and from sta� solutions to assignments in a programming ourse atMIT. We seleted these partiular programs beause they ontain interesting,nontrivial representation invariants that are not obviously beyond the apa-bilities of ESC. Our system was not able to verify all the deteted invariantsfor these other programs (as for StakAr). Setion 5 disusses hallenges tostati veri�ation, but we illustrate them briey here.We found there were three general lasses of problems. First and foremostwere artifats of the test suites, whih initially resulted in many irrelevant (andnot universally true) invariants. For instane, integer bounds on a variables,suh as denom � 19719720, were ommon artifats of the test suites. Theinitial test suites were unit tests that ame from the textbooks or were usedfor grading. We speulate that unit tests, whih tend to be smaller and morestylized than typial usage, throw o� Daikon's statistial justi�ation tests(see Setion 2.1), whih seem to work well when running system tests [17℄.The seond lass of veri�ation problems involved invariants that Daikonould not detet|missing lasses of invariants. For instane, in a negatemethod for rational numbers, Daikon deteted the equality of the denomina-tors of the argument and result. Proving that property would require detetingthat the numerator and denominator of the argument are relatively prime, sothe gd operation alled by the onstrutor has no e�et. We had previouslyrejeted suh invariants as of insuÆiently general appliability. Users aneasily add invariants to Daikon, however, by writing a Java lass that satis�esan interfae with four methods.The third lass of problems involved ESC's inability to prove ertain in-variants. We found that disovering the soure of the seond and third lass ofproblems was easy and quik, and we had little trouble onvining ourselves ofthe orretness or inorretness of the invariant or the ode. By omparison,extending the unit test suites to �nd the interesting invariants in Daikon'soutput was time-onsuming and tedious. In the future we will avoid startingwith unit tests.
4 ImplementationThis setion disusses our implementation. We enhaned Daikon's invariantdetetion apabilities to permit it to report ertain invariants (Setion 4.1).To permit ESC to verify the deteted invariants, they must be onverted intoESC's input language (Setion 4.2). Finally, some annotations are addedheuristially (Setion 4.3). 10

Nimmer and Ernst4.1 Daikon additionsWe made several enhanements to Daikon to make its output easier for ESCto prove.We added some invariants over sequene elements, suh as omparing allelements to another variable or a onstant. Suh invariants were present ina previous version of Daikon [17℄ but had not been added to the urrentimplementation.We listed whih variables are modi�ed by the routine. This output ansometimes be misleading. For instane, the disjoint-set unionmethod modi�ess[set2℄; but set2 might be 0, so s[0℄ is also listed as possibly modi�ed,even though it is never modi�ed unless set2 is 0. We plan to eliminatethis extraneous listing by a ombination of statially analyzing the methodtext and heuristially omitting from the modi�ation list sometimes-modi�edvariables that overlap with always-modi�ed variables.We enhaned Daikon's list of splitting riteria to onsider boolean proe-dure return values and proedure exit points. Daikon uses these riteria toprodue impliations [19℄ by splitting data into two parts; if di�erent invariantsare true in the parts of the data, they an be ombined into impliations ordisjuntions. Therefore, Daikon was able to report what preonditions auseda boolean funtion to return true or false, or what preonditions aused a er-tain return statement to be exeuted (and what other properties hold there).Finally, we altered Daikon so that it did not report invariants from non-private methods when they were implied by an objet invariant. Even thoughDaikon was not suessful in �nding all redundant invariants, this greatlyredued the number of redundant reported invariants, making them moremanageable without removing any information. The output hanges did nota�et the provability of invariants, but did ease the interpretation of ESC'soutput.4.2 ESC notationESC's input language is a variant of JML, the Java Modeling Language [41,42℄.JML is an interfae spei�ation language that an speify the behavior ofJava modules. Most relevant to our researh is its ability to speify objetrepresentation invariants and method preonditions and postonditions. JMLexpressions are written in a syntax losely resembling Java. We use \ESC-JML" for the JML variant aepted as input by ESC/Java.Daikon's default output language is also similar to Java, with extensionsthat permit ertain varieties of invariant to be expressed more onisely orlearly than would be possible in Java. As a user option, Daikon an pro-due output in ESCJML. The di�erenes between these formats fall into twoategories. When the semantis di�er beause ESCJML is less onvenient oronise but the languages are equally expressive, we usually onvert Daikon'soutput to ESCJML. In ases where ESCJML annot express onepts that11

Nimmer and ErnstDaikon disovers and expresses in its own language, we omit those invariantswhen attempting veri�ation with ESC.4.2.1 Semanti di�erenesBoth (full) JML and Daikon's default output format support array ompre-hensions suh as a[i..j℄ to represent the subarray of a from indies i toj inlusive. Daikon also permits quanti�ation via the expression \arrayelements"; for instane, this:s elements � this:s:length. Daikon represents a-esses to arrays, vetors, and linked lists uniformly and suintly with sub-sripting notation, a[i℄. Field aesses may be applied to sequenes, indi-ating a sequene of the spei�ed �elds; for instane, a[℄.fld represents thesequene a[0℄.fld, a[1℄.fld, By ontrast, ESCJML states expressionsover arrays via an expliit \forall quanti�er and annot aess vetor orlinked list elements.By default, expressions in Daikon's output are assumed to hold only whentheir subexpressions are sensible. For instane, foo:bar = 22 in Daikon's out-put means \foo = null or foo:bar = 22", and a[i℄ > xmeans \i < 0 or i � a:lengthor a[i℄ > x". A Daikon swith makes these guards expliit in the output or elim-inates invariants over expressions that are sometimes nonsensial. In ESC, useof an expression like a[i℄ when i may not be a legal index an result in failureto verify and uninformative error messages.Daikon's objet invariants are spei�ed to hold at entry and exit of non-private methods, whereas ESC's are required to hold at entry and exit ofall methods. However, private helper methods need not require or maintainobjet invariants. To math semantis, we ould remove Daikon's objet in-variants and repeat them at all appropriate method entries and exits, but wejudged that to be too verbose and onfusing; this prevents some true (publi)objet invariants from being proved by ESC.4.2.2 Invariants inexpressible in ESCJMLDaikon and ESCJML method postonditions an indiate (via orig() inDaikon or \old() in ESCJML) that expressions should be evaluated in thepre-state. For instane, return = orig(x) indiates that the proedure re-turns the value whih x held before the method was alled, even though theproedure may have modi�ed x during its exeution. Daikon's orig() an ap-ply to any variable, and distinguishes between array identity, array ontents,and array subsequenes. ESCJML's \old() annot apply to array ontents orto method parameters of primitive type. Furthermore, there is no way to mixexpressions from the post-state within expressions in pre-state. (Some of theselimitations an be worked around by triks suh as existential quanti�ers, butthe resulting invariants are not partiularly readable.)ESCJML annotations annot inlude method alls, even ones that are side-e�et-free. Daikon uses these for obtaining Vetor elements and as prediatesin impliations. 12

Nimmer and ErnstUnlike Daikon, ESCJML annot express losure operations, suh as all theelements in a linked list. Properties over suh olletions are often the mostinteresting and important invariants over reursively de�ned data strutures.The full JML language permits method alls in assertions, \old() appliedto primitive parameters, and \reah() for expressing reahability via transi-tive losure.4.3 Other annotationsOur system makes private variables aessible to the spei�ation with thespe_publi annotation. More signi�antly, in eah onstrutor it sets theowner ghost �eld of eah non-primitive �eld to the objet being onstruted.This states that the ontents of the �eld are not aliased by other objets.Without this annotation, ESC reasons that the �eld an be arbitrarily modi-�ed at any time by another method, and very little whatsoever an be proved.Adding this annotation without soure ode analysis is potentially unsafe,but this disipline is very frequently followed, so it has been aeptable in ourexperiments to date.5 ChallengesThis setion disusses hallenges to stati veri�ation of dynamially detetedprogram invariants. These hallenges fall into three general ategories: prob-lems with the tools, problems with the target programs, and problems withthe test suites for the target programs. In some ases we have largely solvedthe problems, and in other ases diÆulties remain to be overome.5.1 ToolsSetion 4.1 lists enhanements made to the Daikon invariant detetor as apart of this researh. As Daikon is still a prototype, we antiipate that addi-tional hanges may be required in the future, partiularly as it is extended tonew varieties of invariant. Also, strengthening its heks for redundant invari-ants will redue the size of its output and improve omprehensibility withoutremoving any information.Setion 4.2 noted problems with ESC's input language, a variant of JMLthat annot express ertain important invariants and annot onisely andlearly express others. In some ases ESC does not appear to be strong enoughto verify ertain true invariants, and its error messages are oasionally rypti.However, in general we have been pleased with ESC: it has operated e�etivelyand eÆiently. For instane, though we have not run ESC on Daikon's soureode, ESC has deteted at least two bugs in Daikon by failing to verify reportedinvariants that, upon loser inspetion, were not true. (Both bugs were ut-and-paste errors: in one ase, the invariant formatting routine was inorret,and in another ase, the �rst element of an array was being ignored.)13

Nimmer and ErnstESC annot express invariants over strings, and Daikon reports few suhinvariants in any event. As a result, ESC annot prove that objet invariantshold at the exit from a onstrutor or other method that interprets a stringargument, even though it an show that the invariant is maintained by othermethods.In a few ases, ESC annot prove properties Daikon reports beause theproperty depends on an objet invariant that is beyond Daikon's sope. Usersan either add suh invariants by hand or delete the properties that dependon them.5.2 Target programsAnother hallenge to stati veri�ation of invariants is the fat that programsare likely to ontain errors that prevent the desired invariant from being true.(Although it was never our goal, we have previously identi�ed suh errors intextbooks [30,61℄ and in programs used in testing researh [36,56℄.) As anexample of a likely error that we deteted in the ourse of this projet, one ofthe objet invariants for StakAr states that unused elements of the stak arenull; this permits objets to be garbage-olleted after the stak is popped andpermits earlier detetion of ertain types of error. The topAndPop operationmaintains this invariant (whih approximately doubles the size of its ode),but the makeEmpty routine fails to do so|a non-obvious oversight whih theimplementor and lients should be appraised of.5.3 Test suitesDynami invariant detetion may produe properties that are true for the testsuite over whih the target program was run, but whih are not true for ar-bitrary runs of the program. However, that problem is solved by integratingdynami invariant detetion with stati veri�ation. The stati veri�er indi-ates that some invariants are universally true; the others might be true butbeyond the apabilities of the veri�er, might be true of the ontext in whihthe program is always run, or might be aidental usage properties of thetest suite. In the latter ase, the reported invariants speify the unintendedproperty of the test suite that makes it less general than it should be, so aprogrammer knows exatly what is wrong with, and how to improve, the testsuite.Beause stati veri�ation partly solves the question of whih invariantsare neessarily true in all ontexts, the remainder of this setion only treatsthis problem in the absene of stati veri�ation: how diÆult is it to eliminateall properties that are not universally true from the output, so that it veri�eswith no warnings whatsoever?In some ases the \bad" invariants gave valuable hints about test asesthat needed to be added to the test suite. For instane, in some of our ex-periments, ertain stak operations were not performed on a ompletely full14

Nimmer and Ernststak, and a queue implemented via an array was not fored to wrap aroundby adding and deleting more elements than its apaity. As another exampleof a serious oversight, a test suite's alls to a safe stak pop operation werealways proteted by a hek whether the array was empty. The resulting in-variants stated that the result was always non-null, indiating that the fullfuntionality of the method was not being tested.In other ases, however, eliminating the undesirable invariants was a te-dious hore. It required �nding a test ase that falsi�ed a partiular speialase that had little to do with the abstration (it was relevant to the datastrutures, but not the logi, of the partiular implementation). The largestproblems were undesirable upper and lower bounds for variables. We speu-late that Daikon's statistial tests for these partiular invariants need to beadjusted. It is also possible that, sine those statistial tests strive to be time-and spae-eÆient, they make too many approximations and do not produean aurate result.6 Related workThis is the �rst researh we are aware of that has dynamially generated, thenstatially proved, program properties.Dynami analysis has been used for a variety of tasks; for instane, indu-tive logi programming (ILP) [54,8℄ produes a set of Horn lauses (�rst-orderif-then rules) and an be run over program traes [4℄, though with limited su-ess. Programming by example [12℄ is similar but requires lose human guid-ane, and version spaes an ompatly represent sets of hypotheses [50,33,40℄.Value pro�ling [5,57,6℄ an eÆiently detet ertain simple properties at run-time. Event traes an generate �nite state mahines that expliate potentialsystem organization or behavior [9,10℄. Program spetra [1,55,31,2℄ also ap-ture aspets of system runtime behavior. None of these other tehniques havebeen as suessful as Daikon in deteting invariants in programs, though manyhave been valuable in other domains. Many stati inferene tehniques alsoexist, but spae prohibits disussing them here.There are many other tehniques and tools besides ESC for statially hek-ing formal spei�ations [53,15,22,13,20,51,43℄. These other systems have dif-ferent strengths and weaknesses than ESC, but few have the polish of itsintegration with a real programming language (see Setion 7).6.1 HoudiniThe researh most losely related to ours is Houdini, an annotation assistantfor ESC/Java [24,23℄. Houdini is motivated by the observation that users arerelutant to annotate their programs with invariants; it attempts to lessen theburden by providing an initial set. Houdini takes a andidate annotation setas input and omputes the greatest subset of it that is valid for a partiular15

Nimmer and Ernstprogram. It repeatedly invokes the heker and removes refuted annotations,until no more annotations are refuted. The andidate invariants are all pos-sible arithmeti omparisons among �elds (and \interesting onstants" suhas �1, 0, 1, array lengths, and null); many elements of this initial set aremutually ontraditory.Daikon's andidate invariants are riher than those of Houdini; Daikonoutputs impliations and disjuntions, and its base invariants are also riher,inluding more ompliated arithmeti and sequene operations. If even onerequired invariant is missing, then Houdini will eliminate all other true in-variants that depend on it. Houdini makes no attempt to eliminate implied(redundant) invariants, as Daikon does (reduing its output size by an order ofmagnitude [18℄), so it is diÆult to interpret numbers of invariants produedby Houdini. Finally, Houdini is not publily available, so we annot performa diret omparison.Merging the two approahes ould be very useful. For instane, Daikon'soutput ould form the input to Houdini, permitting Houdini to spend less timeeliminating false invariants. (A prototype \dynami refuter"|essentially alimited dynami invariant detetor|has been built [24℄, but no details orresults about it are provided.) Houdini has a di�erent intent than Daikon:Houdini does not try to produe a omplete spei�ation or annotations thatare good for people, but only to make up for missing annotations and permitprograms to be less luttered; in that respet, it is similar to type inferene.However, Daikon's output ould perhaps be used in plae of Houdini's. In-variants that are true but depend on missing invariants or are not provableby ESC would not be eliminated, so users might be loser to a ompletelyannotated program, though they might need to eliminate some invariants byhand.7 Future workSetion 5 listed a number of problems with our system (and with its ompo-nents Daikon and ESC) that should be orreted.Another obvious way to extend this work is to use di�erent invariant de-tetors than Daikon or di�erent veri�ers than ESC. Setion 6 lists some otherinvariant detetors. Examples of stati veri�ers that are onneted with realprogramming languages inlude LCLint [22,20,21℄, ACL2 [38℄, LOOP [37℄,Java PathFinder [32℄, and Bandera [11℄.We are urrently integrating Daikon with IOA [28,27℄, a formal languagefor desribing omputational proesses that are modeled using I/O automata[47,48,49℄. The IOA toolset (http://theory.ls.mit.edu/tds/ioa.html)permits IOA programs to be run and also provides an interfae to the LarhProver (LP) [25,26,58℄, an interative theorem-proving system for multisorted�rst-order logi. Daikon will propose goals, lemmas, or intermediate assertionsfor the theorem prover. Side onditions suh as representation invariants an16

Nimmer and Ernstenable proofs that hold in all reahable states/representations (but not inall possible states/representations). It an be tedious and error-prone forpeople to speify the properties to be proved, and urrent systems have troublepostulating them; some researhers onsider that task harder than performingthe proof [60,3℄.We are also interested in reovering from failed attempts at stati veri�a-tion. Broadly speaking, veri�ation fails beause the goal properties are toostrong or are too weak. Properties that are too strong may be true but beyondthe apabilities of the veri�er, or may not be universally true (for instane,guaranteed by the program ontext or artifats of the test suite). Propertiesthat are too weak are true, but annot be proved by the stati veri�er or arenot useful to it| for instane, loop invariants may need to be strengthened tobe proved. We antiipate that dynami invariant detetion will propose moreoverly-strong invariants than overly-weak ones. When veri�ation fails, wewould like to know how to strengthen and weaken invariants in a prinipledway, by examining the soure ode, program exeutions, patterns of invariants,and veri�er output, to inrease the likelihood of suessful veri�ation.While dynami invariant detetion has been quite suessful in a number ofappliation domains, we believe that truly suessful program analysis requiresboth stati and dynami omponents. What is hard for one variety of analysisis easy for the other. Some of the properties that are diÆult to obtain froma dynami analyses are apparent from an examination of the soure ode,and properties that are beyond the state of the art in stati analysis an beeasily heked at runtime. We plan to integrate more stati analysis into oursystem (and partiularly into Daikon). The dynami analysis need not hekproperties disovered by the stati analysis, and the dynami analysis anfous on statially indiated ode.8 ConlusionWe have demonstrated the feasibility of dynamially deteting, then statiallyverifying, program invariants. In partiular, we have built a system that takesthe output of the Daikon invariant detetor and feeds it to the ESC statiheker. To our knowledge, ours is the �rst system to dynamially detet andthen statially prove program properties. Preliminary experiments over smallprograms demonstrate that Daikon is e�etive at proposing useful invariantsand that ESC is e�etive at verifying those invariants.Integrating dynami invariant detetion with stati veri�ation has bene�tsfor both tools. Use of a stati veri�er to augment dynami invariant dete-tion overomes a potential objetion about possibly unsound output, lassi�esthe output to permit programmers to use it more e�etively, permits proveninvariants to be used in ontexts (suh as input to ertain programs) that de-mand sound input, and may improve the performane or output of dynamiinvariant detetion. As a result, more programmers an take advantage of17

Nimmer and Ernstdynamially deteted invariants in a variety of ontexts, diretly leading tofewer bugs (by introduing fewer and deteting more), better doumentation,less time wasted on program understanding, better test suites, more e�etivevalidation of program hanges, and more eÆient programs.Use of dynamially deteted invariants to bootstrap stati veri�ation, byannotating programs or by providing goals and intermediate assertions, willspeed the adoption of stati analysis tools by lessening the user burden, evenif some work remains for the user. The diret e�et of inreased use of thesetools will be the detetion of more errors earlier in the software developmentproess, statially at ompile time rather than dynamially at test time (or,worse, after an appliation has been �elded). The indiret e�et will be theprodution of more robust, reliable, and orret omputer systems. Bothvisible faults and silent errors will our less often, and it will be easier tomaintain these properties during a program's life beause of mahine hekingof onditions that program orretness depends upon.AknowledgmentsWe thank the members of the Daikon group|partiularly Ben Morse, MihaelHarder, and Melissa Hao| for their ontributions to this projet. We also hadfruitful onversations with William Griswold, Josh Kataoka, Rustan Leino,Greg Nelson, David Notkin, and James Saxe. This researh was supported inpart by NSF grants CCR-9970985 and CCR-6891317.Referenes[1℄ David Abramson, Ian Foster, John Mihalakes, and Rok Soi�. Relativedebugging: A new methodology for debugging sienti� appliations.Communiations of the ACM, 39(11):69{77, November 1996.[2℄ Thomas Ball. The onept of dynami analysis. In ESEC/FSE, pages 216{234,September 6{10, 1999.[3℄ Saddek Bensalem, Yassine Lakhneh, and Hassen Saidi. Powerful tehniques forthe automati generation of invariants. In CAV, pages 323{335, July/August1996.[4℄ Ivan Bratko and Marko Grobelnik. Indutive learning applied to programonstrution and veri�ation. In Jos�e Cuena, editor, AIFIPP '92, pages 169{182. North-Holland, 1993.[5℄ Brad Calder, Peter Feller, and Alan Eustae. Value pro�ling. In MICRO-97,pages 259{269, Deember 1{3, 1997.[6℄ Brad Calder, Peter Feller, and Alan Eustae. Value pro�ling and optimization.Journal of Instrution Level Parallelism, 1, Marh 1999. http://www.jilp.org/vol1/. 18

Nimmer and Ernst[7℄ Juei Chang and Debra J. Rihardson. Strutural spei�ation-based testing:Automated support and expenmental evaluation. In ESEC/FSE, pages 285{302, September 6{10, 1999.[8℄ William W. Cohen. Grammatially biased learning: learning logi programsusing an expliit anteedent desription language. Arti�ial Intelligene,68:303{366, August 1994.[9℄ Jonathan E. Cook and Alexander L. Wolf. Disovering models of softwareproesses from event-based data. ACM Transations on Software Engineeringand Methodology, 7(3):215{249, July 1998.[10℄ Jonathan E. Cook and Alexander L. Wolf. Event-based detetion ofonurreny. In FSE, pages 35{45, November 1998.[11℄ James Corbett, Matthew Dwyer, John Hatli�, Corina P�as�areanu, Robby,Shawn Laubah, and Hongjun Zheng. Bandera: Extrating �nite-state modelsfrom Java soure ode. In ICSE, pages 439{448, June 7{9, 2000.[12℄ Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, DavidMaulsby, Brad A. Myers, and Alan Turransky, editors. Wath What I Do:Programming by Demonstration. MIT Press, Cambridge, MA, 1993.[13℄ David L. Detlefs. An overview of the Extended Stati Cheking system. InProeedings of the First Workshop on Formal Methods in Software Pratie,pages 1{9, January 1996.[14℄ David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.Extended stati heking. SRC Researh Report 159, Compaq SystemsResearh Center, Deember 18, 1998.[15℄ Matthew B. Dwyer and Lori A. Clarke. Data ow analysis for verifyingproperties of onurrent programs. In FSE, pages 62{75, Deember 1994.[16℄ Mihael D. Ernst. Dynamially Disovering Likely Program Invariants.PhD thesis, University of Washington Department of Computer Siene andEngineering, Seattle, Washington, August 2000.[17℄ Mihael D. Ernst, Jake Cokrell, William G. Griswold, and David Notkin.Dynamially disovering likely program invariants to support programevolution. IEEE TSE, 27(2):1{25, February 2001. A previous version appearedin ICSE, pages 213{224, Los Angeles, CA, USA, May 1999.[18℄ Mihael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.Quikly deteting relevant program invariants. In ICSE, pages 449{458, June2000.[19℄ Mihael D. Ernst, William G. Griswold, Yoshio Kataoka, and David Notkin.Dynamially disovering pointer-based program invariants. Tehnial ReportUW-CSE-99-11-02, University of Washington, Seattle, WA, November 16, 1999.[20℄ David Evans. Stati detetion of dynami memory errors. In PLDI, pages44{53, May 21{24, 1996. 19

Nimmer and Ernst[21℄ David Evans. LCLint User's Guide, Version 2.5, May 2000. http://llint.s.virginia.edu/guide/.[22℄ David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: Atool for using spei�ations to hek ode. In FSE, pages 87{97, Deember1994.[23℄ Corma Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation inferenefor modular hekers. Information Proessing Letters, 2(4):97{108, February2001.[24℄ Corma Flanagan and K. Rustan M. Leino. Houdini, an annotation assistantfor ESC/Java. In International Symposium of Formal Methods Europe 2001:Formal Methods for Inreasing Software Produtivity, volume 2021 of LNCS,pages 500{517, Berlin, Germany, Marh 2001.[25℄ Stephen Garland and John Guttag. LP, the Larh Prover. In M. Stikel, editor,Proeedings of the Tenth International Conferene on Automated Dedution(Kaiserslautern, West Germany), volume 449 of LNCS. Springer-Verlag, 1990.[26℄ Stephen J. Garland and John V. Guttag. A guide to LP, the Larh Prover.Tehnial Report 82, Digital Equipment Corporation, Systems Researh Center,31 Deember 1991.[27℄ Stephen J. Garland and Nany A. Lynh. Using I/O automata fordeveloping distributed systems. In Gary T. Leavens and Murali Sitaraman,editors, Foundations of Component-Based Systems, pages 285{312. CambridgeUniversity Press, 2000.[28℄ Stephen J. Garland, Nany A. Lynh, and Mandana Vaziri. IOA: A language forspeifying, programming, and validating distributed systems. Tehnial report,MIT Laboratory for Computer Siene, 1997.[29℄ Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Prediting faultinidene using software hange history. IEEE TSE, 26(7):653{661, July 2000.[30℄ David Gries. The Siene of Programming. Springer-Verlag, New York, 1981.[31℄ Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirialinvestigation of program spetra. In PASTE '98, pages 83{90, June 16, 1998.[32℄ Klaus Havelund and Thomas Pressburger. Model heking Java programsusing Java PathFinder. International Journal on Software Tools for TehnologyTransfer, 2(4):366{381, 2000.[33℄ Haym Hirsh. Theoretial underpinnings of version spaes. In IJCAI, pages665{670, August 1991.[34℄ C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Rosoe, J. W.Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Corrigenda: \Laws ofprogramming". Communiations of the ACM, 30(9):771, September 1987. See[35℄. 20

Nimmer and Ernst[35℄ C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Rosoe, J. W.Sanders, I. H. S�rensen, J. M. Spivey, and B. A. Sufrin. Laws of programming.Communiations of the ACM, 30(8):672{686, August 1987. See orrigendum[34℄.[36℄ Monia Huthins, Herb Foster, Tarak Goradia, and Thomas Ostrand.Experiments on the e�etiveness of dataow- and ontrolow-based testadequay riteria. In ICSE, pages 191{200, May 1994.[37℄ Bart Jaobs, Joahim van den Berg, Marieke Huisman, Martijn van Berkum,Ulrih Hensel, and Hendrik Tews. Reasoning about Java lasses. In OOPSLA,pages 329{340, Vanouver, BC, Canada, Otober 18{22, 1998.[38℄ Matt Kaufmann and J. Strother Moore. An industrial strength theorem proverfor a logi based on Common Lisp. IEEE TSE, 23(4):203{213, April 1997.[39℄ John C. Knight and Nany G. Leveson. An experimental evaluation of theassumption of independene in multiversion programming. IEEE Transationson Software Engineering, 12(1):96{109, January 1986.[40℄ Tessa Lau, Pedro Domingos, and Daniel S. Weld. Version spae algebra and itsappliation to programming by demonstration. In ICML, Stanford, CA, June2000.[41℄ Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation fordetailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors,Behavioral Spei�ations of Businesses and Systems, pages 175{188. KluwerAademi Publishers, Boston, 1999.[42℄ Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:A behavioral interfae spei�ation language for Java. Tehnial Report 98-06m, Iowa State University, Department of Computer Siene, February 2000.See www.s.iastate.edu/~leavens/JML.html.[43℄ K. Rustan M. Leino and Greg Nelson. An extended stati heker for Modula-3.In Compiler Constrution '98, pages 302{305, April 1998.[44℄ K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user'smanual. Tehnial Report 2000-002, Compaq Systems Researh Center, PaloAlto, California, Otober 12, 2000.[45℄ Nany G. Leveson, Stephen S. Cha, John C. Knight, and Timothy J. Shimeall.The use of self heks and voting in software error detetion: An empirial study.IEEE TSE, 16(4):432{443, 1990.[46℄ Barbara Liskov and John Guttag. Abstration and Spei�ation in ProgramDevelopment. MIT Press, Cambridge, MA, 1986.[47℄ Nany Lynh. Distributed Algorithms. Morgan Kaufmann, San Franiso, CA,1996. 21

Nimmer and Ernst[48℄ Nany A. Lynh and Mark R. Tuttle. Hierarhial orretness proofs fordistributed algorithms. In PODC, pages 137{151, Vanouver, BC, Canada,August 1987.[49℄ Nany A. Lynh and Mark R. Tuttle. An introdution to Input/Outputautomata. CWI-Quarterly, 2(3):219{246, September 1989.[50℄ Tom M. Mithell. Version Spaes: An Approah to Conept Learning. PhDthesis, Department of Computer Siene, Stanford University, Stanford, CA,Deember 1978. Stanford University Tehnial Report, HPP-79-2.[51℄ Gleb Naumovih, Lori A. Clarke, Leon J. Osterweil, and Matthew B. Dwyer.Veri�ation of onurrent software with FLAVERS. In ICSE, pages 594{595,May 1997.[52℄ Mitsuru Ohba and Xiao-Mei Chou. Does imperfet debugging a�et softwarereliability growth? In ICSE, pages 237{244, May 1989.[53℄ Frank Pfenning. Dependent types in logi programming. In Frank Pfenning,editor, Types in Logi Programming, hapter 10, pages 285{311. MIT Press,Cambridge, MA, 1992.[54℄ J. Ross Quinlan. Learning logial de�nitions from relations. Mahine Learning,5:239{266, 1990.[55℄ Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use ofprogram pro�ling for software maintenane with appliations to the year 2000problem. In ESEC/FSE, pages 432{449, September 22{25, 1997.[56℄ Gregg Rothermel and Mary Jean Harrold. Empirial studies of a safe regressiontest seletion tehnique. IEEE TSE, 24(6):401{419, June 1998.[57℄ Avinash Sodani and Gurindar S. Sohi. An empirial analysis of instrutionrepetition. In ASPLOS, pages 35{45, Otober 1998.[58℄ J�rgen F. S�gaard-Anderson, Stephen J. Garland, John V. Guttag, Nany A.Lynh, and Anna Pogosyants. Computed-assisted simulation proofs. InCostas Couroubetis, editor, Fifth Conferene on Computer-Aided Veri�ation,pages 305{319, Heraklion, Crete, June 1993. Springer-Verlag Leture Notes inComputer Siene 697.[59℄ Nigel Traey, John Clark, Keith Mander, and John MDermid. An automatedframework for strutural test-data generation. In ASE '98, pages 285{288,Otober 1998.[60℄ Ben Wegbreit. The synthesis of loop prediates. Communiations of the ACM,17(2):102{112, February 1974.[61℄ Mark Allen Weiss. Data Strutures and Algorithm Analysis in Java. AddisonWesley Longman, 1999. 22

