
RV'01 Preliminary Version
Stati
 veri�
ation of dynami
ally dete
tedprogram invariants:Integrating Daikon and ESC/Java

Jeremy W. Nimmer and Mi
hael D. ErnstMIT Lab for Computer S
ien
e200 Te
hnology SquareCambridge, MA 02139 USAEmail: fjwnimmer, mernstg�l
s.mit.edu
Abstra
tThis paper shows how to integrate two 
omplementary te
hniques for manip-ulating program invariants: dynami
 dete
tion and stati
 veri�
ation. Dynami
dete
tion proposes likely invariants based on program exe
utions, but the resultingproperties are not guaranteed to be true over all possible exe
utions. Stati
 veri-�
ation 
he
ks that properties are always true, but it 
an be diÆ
ult and tediousto sele
t a goal and to annotate programs for input to a stati
 
he
ker. Combiningthese te
hniques over
omes the weaknesses of ea
h: dynami
ally dete
ted invariants
an annotate a program or provide goals for stati
 veri�
ation, and stati
 veri�
ation
an 
on�rm properties proposed by a dynami
 tool.We have integrated a tool for dynami
ally dete
ting likely program invariants,Daikon, with a tool for stati
ally verifying program properties, ESC/Java. Daikonexamines run-time values of program variables; it looks for patterns and relation-ships in those values, and it reports properties that are never falsi�ed during testruns and that satisfy 
ertain other 
onditions, su
h as being statisti
ally justi�ed.ESC/Java takes as input a Java program annotated with pre
onditions, post
ondi-tions, and other assertions, and it reports whi
h annotations 
annot be stati
allyveri�ed and also warns of potential runtime errors, su
h as null dereferen
es andout-of-bounds array indi
es.Our prototype system runs Daikon, inserts its output into 
ode as ESC/Javaannotations, and then runs ESC/Java, whi
h reports unveri�able annotations. Theentire pro
ess is 
ompletely automati
, though users may provide guidan
e in orderto improve results if desired. In preliminary experiments, ESC/Java veri�ed all ormost of the invariants proposed by Daikon.This is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Nimmer and Ernst1 Introdu
tionStati
 and dynami
 analyses have 
omplementary strengths and weaknesses,so 
ombining them has great promise. Stati
 analysis operates by examin-ing program sour
e 
ode and reasoning about possible exe
utions. It buildsa model of the state of the program, su
h as values for variables and otherexpressions. Stati
 analysis 
an be 
onservative and sound; however, it 
anbe ineÆ
ient, 
an produ
e weak results, and 
an require expli
it goals or an-notations. Dynami
 analysis obtains information from program exe
utions;examples in
lude pro�ling and testing. Rather than modeling the state of theprogram, dynami
 analysis uses a
tual values 
omputed during program exe-
utions. Dynami
 analysis 
an be eÆ
ient and pre
ise, but the results may notgeneralize to future program exe
utions. Our resear
h integrates stati
 and dy-nami
 analysis to take advantage of their 
omplementary strengths: dynami
analysis 
an propose program properties to be veri�ed by stati
 analysis.This paper fo
uses on analyses over program invariants. A program invari-ant is a property that is true at a parti
ular program point or points, su
h asmight appear in an assert statement or a formal spe
i�
ation. Invariants in-
lude pro
edure pre
onditions and post
onditions, loop invariants, and obje
t(representation) invariants. Examples in
lude y = 4 � x+ 3; x > abs(y); array a
ontains no dupli
ates; n = n.
hild.parent (for all nodes n); size(keys) = size(
ontents);and graph g is a
y
li
. Invariants expli
ate data stru
tures and algorithms andare helpful for programming tasks from design to maintenan
e. Invariantsassist in 
reation of better programs [30,46,35,34℄, do
ument program oper-ation [39,45℄, assist testing and enable 
orre
t modi�
ation [52,29℄, assist intest-
ase generation [59℄ and validation [7℄, form a program spe
trum [1,55,31℄,and 
an enable optimizations [6℄, among other uses. Despite their advantages,invariants are usually missing from programs.Dynami
 invariant dete
tion is a te
hnique for postulating likely invariantsfrom program runs: a dynami
 invariant dete
tor runs the target program,examines the values that it 
omputes, and looks for patterns and relationshipsover those values, reporting the ones that are always true over an entire testsuite and that satisfy 
ertain other 
onditions (see Se
tion 2.1). The outputsare likely invariants: they are not guaranteed to be universally true, be
ausethe test suite might not 
hara
terize all possible exe
utions of the program.Stati
 invariant veri�
ation is a te
hnique for 
he
king program properties.Given a program and a set of properties over that program, the veri�er re-ports whi
h properties are guaranteed to be true for all exe
utions. Unveri�edproperties might or might not be universally true. Stati
 veri�ers 
an operateby data
ow analysis, theorem proving, model 
he
king, or other te
hniques.Users of stati
 veri�ers must annotate their programs with the properties tobe proved (and other properties on whi
h those might depend).Combining dynami
 invariant dete
tion with stati
 veri�
ation has bene-�ts for both users of invariant dete
tors and users of stati
 
he
kers. Be
ause2



Nimmer and Ernstthe output of a dynami
 invariant dete
tor is not guaranteed to be sound, pro-grammers may be relu
tant to use it, and its output 
annot be fed into othertools that require sound input. A stati
 veri�er 
an indi
ate whi
h proposedinvariants are guaranteed to be true. Users 
an �lter out unveri�ed invariantsso that the results are sound or 
an use the veri�
ations as a �rst approxima-tion when determining whi
h dynami
ally dete
ted properties are fun
tionalinvariants and whi
h are usage properties|both of whi
h are useful, but fordi�erent tasks.Users of stati
 veri�ers bene�t from de
reased annotation burden. Stati
veri�
ation often requires extensive annotations or intermediate assertionsand goals. Automati
 annotation relieves users of the burden of annotat-ing programs from s
rat
h|a task few enjoy or are good at. Dynami
allydete
ted invariants 
an also indi
ate properties programmers might otherwisehave overlooked.We have started to explore these bene�ts by integrating a dynami
 invari-ant dete
tor, Daikon [16,17℄, with a stati
 veri�er, ESC/Java [14,44℄. Oursystem operates in three steps. First, it runs Daikon, whi
h outputs a list oflikely invariants obtained from running the target program over its test suite.Se
ond, it inserts those invariants into the target program as annotations.Third, it runs ESC/Java on the annotated target program to report whi
hof the likely invariants 
an be stati
ally veri�ed and whi
h 
annot. Se
tion 4gives more details about this pro
ess. All three steps are 
ompletely auto-mati
, though users may provide guidan
e in order to obtain better results ifdesired. Users may edit and re-run test suites when de�
ien
ies are found, ormay add or remove spe
i�
 program annotations by hand.The remainder of this paper is organized as follows. Se
tion 2 providesba
kground on the dynami
 invariant dete
tor and stati
 veri�er used by oursystem. Se
tion 3 presents results from several experiments. Se
tion 4 de-s
ribes how we integrated these tools, and Se
tion 5 dis
usses problems thatarose while building and running our system. Finally, Se
tion 6 relates ourresults to other resear
h, Se
tion 7 proposes followon resear
h, and Se
tion 8
on
ludes.2 Ba
kground2.1 Daikon: Invariant dis
overyDynami
 invariant dete
tion [16,17℄ dis
overs likely invariants from programexe
utions by instrumenting the target program to tra
e the variables of in-terest, running the instrumented program over a test suite, and inferring in-variants over the instrumented values (Figure 1). The inferen
e step tests aset of possible invariants against the values 
aptured from the instrumentedvariables; those invariants that are tested to a suÆ
ient degree without falsi-�
ation are reported to the programmer. As with other dynami
 approa
hes3
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Fig. 1. An overview of dynami
 dete
tion of invariants as implemented by Daikon.su
h as testing and pro�ling, the a

ura
y of the inferred invariants dependsin part on the quality and 
ompleteness of the test 
ases. The Daikon invari-ant dete
tor is language independent, and 
urrently in
ludes instrumenters forC++ and Java.Daikon dete
ts invariants at spe
i�
 program points su
h as pro
edureentries and exits; ea
h program point is treated independently. The invariantdete
tor is provided with a variable tra
e that 
ontains, for ea
h exe
ution ofa program point, the values of all variables in s
ope at that point. Ea
h of aset of possible invariants is tested against various 
ombinations of one, two,or three tra
ed variables.For s
alar variables x, y, and z, and 
omputed 
onstants a, b, and 
, someexamples of 
he
ked invariants are: equality with a 
onstant (x = a) or a smallset of 
onstants (x 2 fa; b; 
g), lying in a range (a � x � b), non-zero, modulus(x � a (mod b)), linear relationships (z = ax+ by + 
), ordering (x � y), andfun
tions (x = fn(y)). Invariants involving a sequen
e variable in
lude mini-mum and maximum sequen
e values, lexi
ographi
al ordering, element order-ing, invariants holding for all elements in the sequen
e, or membership (x 2 y).Given two sequen
es, some example 
he
ked invariants are elementwise linearrelationship, lexi
ographi
 
omparison, and subsequen
e relationship.In addition to lo
al invariants su
h as node = node.
hild.parent (for all nodes),Daikon dete
ts global invariants over pointer-dire
ted data stru
tures, su
h asmytree is sorted by � by linearizing graph-like data stru
tures. Finally, Daikon
an dete
t 
onditional invariants that are not universally true, su
h as \ifp 6= null then p:value > x" and \p:value > limit or p:left 2 mytree". Conditionalinvariants result from splitting data into parts based on the 
ondition and
omparing the resulting invariants; if the invariants in the two halves di�er,they are 
omposed into a 
onditional invariant [19℄.For ea
h variable or tuple of variables in s
ope at a given program point,ea
h potential invariant is tested. Ea
h potential unary invariant is 
he
ked forall variables, ea
h potential binary invariant is 
he
ked over all pairs of vari-ables, and so forth. A potential invariant is 
he
ked by examining ea
h sample(i.e., tuple of values for the variables being tested) in turn. As soon as a sam-ple not satisfying the invariant is en
ountered, that invariant is known not tohold and is not 
he
ked for any subsequent samples. Daikon maintains a

ept-able performan
e as program size in
reases be
ause false invariants tend to be4



Nimmer and Ernstfalsi�ed qui
kly, so the 
ost of 
omputing invariants tends to be proportionalto the number of invariants dis
overed. All the invariants are inexpensive totest and do not require full-
edged theorem-proving.To enable reporting of invariants regarding 
omponents, properties of ag-gregates, and other values not stored in program variables, Daikon representssu
h entities as additional derived variables available for inferen
e. For in-stan
e, if array a and integer lasti are both in s
ope, then properties overa[lasti℄ may be of interest, even though it is not a variable and may noteven appear in the program text. Derived variables are treated just like othervariables by the invariant dete
tor, permitting it to infer invariants that arenot hard
oded into its list. For instan
e, if size(A) is derived from sequen
eA, then the system 
an report the invariant i < size(A) without hard
oding aless-than 
omparison 
he
k for the 
ase of a s
alar and the length of a sequen
e.For performan
e reasons, derived variables are introdu
ed only when knownto be sensible. For instan
e, for sequen
e A, the derived variable size(A) isintrodu
ed and invariants are 
omputed over it before A[i℄ is introdu
ed, toensure that i is in the range of A.An invariant is reported only if there is adequate eviden
e of its plausibility.In parti
ular, if there are an inadequate number of samples of a parti
ularvariable, patterns observed over it may be mere 
oin
iden
e. Consequently, forea
h dete
ted invariant, Daikon 
omputes the probability that su
h a propertywould appear by 
han
e in a random input. The property is reported only ifits probability is smaller than a user-de�ned 
on�den
e parameter [18℄.The Daikon invariant dete
tor is available for download from http://sdg.l
s.mit.edu/daikon/.2.2 ESC: Stati
 
he
kingESC [13,14,43℄ is an Extended Stati
 Che
ker that has been implemented forModula-3 and Java. It stati
ally dete
ts 
ommon errors that are usually notdete
ted until run time, su
h as null dereferen
e errors, array bounds errors,and type 
ast errors.ESC is intermediate in both power and ease of use between type
he
kersand theorem-provers, but it aims to be more like the former and is lightweightby 
omparison with the latter. Rather than proving 
omplete program 
or-re
tness, ESC dete
ts only 
ertain types of errors. Programmers must writeprogram annotations, many of whi
h are similar in 
avor to assert state-ments, but they need not intera
t with the 
he
ker as it pro
esses the anno-tated program. ESC issues warnings about annotations that 
annot be provenand about potential run-time errors.ESC performs modular 
he
king: it 
he
ks di�erent parts of a programindependently and 
an 
he
k partial programs or modules. It assumes thatspe
i�
ations for missing or un
he
ked 
omponents are 
orre
t. ESC's im-plementation uses a theorem-prover internally. We will not dis
uss ESC's5
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he
king strategy in more detail be
ause this resear
h treats ESC as a bla
kbox (it is distributed in binary form).ESC/Java is a su

essor to the previous ESC/Modula-3. ESC/Java's an-notation language (see Se
tion 4.2) is simpler, be
ause it is slightly weaker.This is in keeping with the philosophy of a tool that is easy to use and useful toprogrammers rather than one that is extraordinarily powerful but so diÆ
ultto use that programmers shy away from it.This resear
h uses ESC not only as a lightweight te
hnology for dete
tinga restri
ted 
lass of runtime errors, but also as a tool for verifying represen-tation invariants. We 
hose to use ESC be
ause we are not aware of otherequally 
apable te
hnology for stati
ally 
he
king properties of runnable 
ode.Whereas many other veri�ers operate over non-exe
utable spe
i�
ations ormodels, our resear
h aims to 
ombine dynami
 and stati
 te
hniques over thesame 
ode artifa
t. Furthermore, we wished to explore the limits of whatinvariants 
an be dynami
ally dete
ted and stati
ally veri�ed. In any event,good representation invariants are often required to determine that variablesare non-null and array a

esses are within bounds.Both versions of ESC are publi
ly available from http://resear
h.
ompaq.
om/SRC/es
/.3 ExperimentsThis se
tion gives both quantitative and qualitative results from several exper-iments with stati
ally verifying dynami
ally dete
ted invariants. Se
tions 3.1and 3.2 dis
uss in detail two examples taken from a data stru
tures text-book [61℄; these se
tions 
hara
terize the generated invariants and provide anintuition about the output of our system. Se
tion 3.3 overviews other experi-ments and highlights the types of problems the system may en
ounter.3.1 Sta
kAr: array-based sta
kThe Sta
kAr example is an array-based sta
k implementation [61℄. The sour
e
ontains 40 non-
omment lines of 
ode in seven methods, along with 
ommentswhi
h des
ribe the behavior of the 
lass but do not mention its representationinvariant.Our system determined the representation invariant, method pre
ondi-tions, modi�
ation targets, and post
onditions, and stati
ally proved thatthese properties hold. Without these annotations, ESC issues warnings aboutmany potential runtime errors. With the addition of the dete
ted invariants,ESC su

essfully 
he
ks that the Sta
kAr 
lass avoids runtime errors, meetsits spe
i�
ation, and maintains important properties during exe
ution.Figure 2 shows that the Daikon invariant dete
tor �nds 88 invariants: 6obje
t invariants, 5 requires 
lauses (method pre
onditions), 3 modi�es 
lauses(modi�
ation targets), and 74 ensures 
lauses (method post
onditions). How-6



Nimmer and ErnstExpressible InexpressibleUnique Redun. Unique Redun. TotalObje
t 6 0 0 0 6Requires 4 0 0 1 5Modi�es 3 0 0 0 3Ensures 17 40 0 17 74Total 30 40 0 18 88Fig. 2. Invariants dete
ted by Daikon in the Sta
kAr program. The table 
lassi�esthe invariants by expressibility (whether it 
an be stated in the ESCJML language;see Se
tion 4.2) and redundan
y (whether it is logi
ally implied other invariants).Our system dis
overed and proved 70 invariants, of whi
h 30 were non-redundant.ever, 18 of the invariants were inexpressible in ESC (see Se
tion 4.2). Also,58 invariants were implied by other other invariants and 
ould have been re-moved by improved redundan
y 
he
ks in Daikon (see Se
tion 7). Finally, oursystem heuristi
ally added 2 annotations involving the owner of the array (seeSe
tion 4.3).Figure 3 shows part of the automati
ally-annotated sour
e 
ode for Sta
kAr.The �rst six annotations des
ribe the representation invariant. The array isnever null, and its runtime type is Obje
t[℄. The topOfSta
k index is atleast �1 and is less than the length of the array. Finally, the elements of thearray are non-null if their index is no more than topOfSta
k and are nullotherwise.The next four annotations des
ribe the spe
i�
ation for the 
onstru
tor.If the 
apa
ity is non-negative on entry, then on exit the array length mat
hesthe given 
apa
ity, the topOfSta
k index indi
ates an empty sta
k, and allelements of the array are null. (The �nal assertion is redundant: it is impliedby the representation invariant.)In addition to proving the absen
e of errors, our system generated spe
i-�
ations for all operations of the 
lass, and veri�ed that the implementationmet the spe
i�
ation. For example, two post
onditions for the topAndPopmethod were:/*� ensures (\old(topOfSta
k) == -1) == (\result == null) *//*� ensures (\old(topOfSta
k) >= 0) == (\result != null) */These invariants state that topAndPop returns null if and only if the sta
k isempty upon entry.The assertions for a method provide a partial spe
i�
ation, but do notne
essarily give a full input-output relation. The spe
i�
ations derived fromdete
ted invariants are useful for several reasons.First, users 
an understand the behavior of a method by reading the spe
i-�
ations instead of reasoning about the implementation. Similarly, stati
 tools7



Nimmer and Ernstpubli
 
lass Sta
kAr{/*� invariant this.theArray != null *//*� invariant \typeof(this.theArray) == \type(java.lang.Obje
t[℄) *//*� invariant this.topOfSta
k >= -1 *//*� invariant this.topOfSta
k <= this.theArray.length-1 *//*� invariant (\forall int i; (0 <= i && i <= this.topOfSta
k)==> (this.theArray[i℄ != null)) *//*� invariant (\forall int i; (this.topOfSta
k+1 <= i &&i <= this.theArray.length-1) ==> (this.theArray[i℄ == null)) */publi
 Sta
kAr( int 
apa
ity )/*� requires 
apa
ity >= 0 *//*� ensures 
apa
ity == this.theArray.length *//*� ensures this.topOfSta
k == -1 *//*� ensures (\forall int i; (0 <= i && i <= this.theArray.length-1)==> (this.theArray[i℄ == null)) */{ theArray = new Obje
t[ 
apa
ity ℄;topOfSta
k = -1;/*� set theArray.owner = this */}.../*� spe
_publi
 */ private Obje
t [ ℄ theArray;/*� invariant theArray.owner == this *//*� spe
_publi
 */ private int topOfSta
k;...}Fig. 3. The obje
t invariants, �rst method, and �eld de
larations of the annotatedSta
kAr.java �le [61℄. The JML annotations (
omments starting with \/*�") areprodu
ed automati
ally by Daikon, are automati
ally inserted into the sour
e 
odeby our system, and are automati
ally veri�ed by ESC/Java.

an 
he
k the assertions, and 
an use the (
he
ked) assertions to perform rea-soning about 
alling 
ode. Furthermore, programmers modifying existing 
odemay be aided by knowledge of existing invariants whi
h the 
ode preserves.They may 
he
k that spe
i�
ations previously generated and proved over theunmodi�ed program still hold true over the new sour
e. Finally, the invari-ants expli
ate potentially important properties of the implementation. Forexample, the representation invariant on Sta
kAr guarantees that unused ar-ray elements are set to null. Thus, obje
ts popped from the sta
k are notprevented from being garbage 
olle
ted.8



Nimmer and ErnstExpressible InexpressibleUnique Redun. Unver. Unique Redun. TotalObje
t 4 1 0 0 0 5Requires 14 5 1 0 0 20Modi�es 2 0 0 0 0 2Ensures 14 40 1 7 55 117Total 34 46 2 7 55 144Fig. 4. Invariants dete
ted by Daikon in the DisjSets program. The table
lassi�es the invariants by expressibility (whether it 
an be stated in the ESCJMLlanguage), redundan
y (whether it is logi
ally implied other invariants), and ver-i�ability (whether ESC was able to verify it). Our system dis
overed and proved80 invariants, of whi
h 34 were non-redundant. Two 
oin
idental invariants due tospe
i�
s of the test suite 
ould not be proved.3.2 DisjSets: union-�nd disjoint setsA se
ond example further illustrates our results, and provides an example ofinvariants whi
h 
ould not be veri�ed.The DisjSets 
lass is an array-based implementation of disjoint sets,whi
h partition a range of integers into disjoint subsets that support the unionand find operations [61℄. The sour
e 
ontains 30 non-
omment lines of 
odein four methods, along with 
omments whi
h des
ribe the behavior of the
lass but do not mention its representation invariant. Our system determinedthe representation invariant, method pre
onditions, modi�
ation targets, andpost
onditions, and stati
ally proved that most of these properties hold.Figure 4 shows that Daikon found 144 invariants over the 
lass; 62 of theinvariants were not expressible in ESC, and 46 of the remaining ones wereredundant. Again, 2 annotations involving the owner of the array were addedby a heuristi
. ESC proved 80 of the 82 expressible invariants, and it warnedabout two (unprovable) test suite artifa
ts.The unprovable invariants were 
oin
iden
es of the test suite used to dete
tinvariants. In the DisjSets implementation, s is the integer array used torepresent the sets; s[i℄ referen
es another integer in the same set, or is -1 ifthe element is the leader of its set. For the union operation, Daikon reportedthe following pre
ondition:/*� requires s[s.length-2℄ < s.length-1 */This invariant states that the neighbor of the penultimate element is neverthe last element. The test 
ases did not in
lude a 
ase where the penultimateelement was added to the set of the last element, so this assertion was truegiven the input data, but is not true in general. Tests whi
h 
ontradi
t thisassertion 
ould be added to the suite, but are arguably not of general utility.9



Nimmer and Ernst3.3 Other experimentsWe have run our system on seven other examples, primarily 
hosen from text-books and from sta� solutions to assignments in a programming 
ourse atMIT. We sele
ted these parti
ular programs be
ause they 
ontain interesting,nontrivial representation invariants that are not obviously beyond the 
apa-bilities of ESC. Our system was not able to verify all the dete
ted invariantsfor these other programs (as for Sta
kAr). Se
tion 5 dis
usses 
hallenges tostati
 veri�
ation, but we illustrate them brie
y here.We found there were three general 
lasses of problems. First and foremostwere artifa
ts of the test suites, whi
h initially resulted in many irrelevant (andnot universally true) invariants. For instan
e, integer bounds on a variables,su
h as denom � 19719720, were 
ommon artifa
ts of the test suites. Theinitial test suites were unit tests that 
ame from the textbooks or were usedfor grading. We spe
ulate that unit tests, whi
h tend to be smaller and morestylized than typi
al usage, throw o� Daikon's statisti
al justi�
ation tests(see Se
tion 2.1), whi
h seem to work well when running system tests [17℄.The se
ond 
lass of veri�
ation problems involved invariants that Daikon
ould not dete
t|missing 
lasses of invariants. For instan
e, in a negatemethod for rational numbers, Daikon dete
ted the equality of the denomina-tors of the argument and result. Proving that property would require dete
tingthat the numerator and denominator of the argument are relatively prime, sothe g
d operation 
alled by the 
onstru
tor has no e�e
t. We had previouslyreje
ted su
h invariants as of insuÆ
iently general appli
ability. Users 
aneasily add invariants to Daikon, however, by writing a Java 
lass that satis�esan interfa
e with four methods.The third 
lass of problems involved ESC's inability to prove 
ertain in-variants. We found that dis
overing the sour
e of the se
ond and third 
lass ofproblems was easy and qui
k, and we had little trouble 
onvin
ing ourselves ofthe 
orre
tness or in
orre
tness of the invariant or the 
ode. By 
omparison,extending the unit test suites to �nd the interesting invariants in Daikon'soutput was time-
onsuming and tedious. In the future we will avoid startingwith unit tests.
4 ImplementationThis se
tion dis
usses our implementation. We enhan
ed Daikon's invariantdete
tion 
apabilities to permit it to report 
ertain invariants (Se
tion 4.1).To permit ESC to verify the dete
ted invariants, they must be 
onverted intoESC's input language (Se
tion 4.2). Finally, some annotations are addedheuristi
ally (Se
tion 4.3). 10



Nimmer and Ernst4.1 Daikon additionsWe made several enhan
ements to Daikon to make its output easier for ESCto prove.We added some invariants over sequen
e elements, su
h as 
omparing allelements to another variable or a 
onstant. Su
h invariants were present ina previous version of Daikon [17℄ but had not been added to the 
urrentimplementation.We listed whi
h variables are modi�ed by the routine. This output 
ansometimes be misleading. For instan
e, the disjoint-set unionmethod modi�ess[set2℄; but set2 might be 0, so s[0℄ is also listed as possibly modi�ed,even though it is never modi�ed unless set2 is 0. We plan to eliminatethis extraneous listing by a 
ombination of stati
ally analyzing the methodtext and heuristi
ally omitting from the modi�
ation list sometimes-modi�edvariables that overlap with always-modi�ed variables.We enhan
ed Daikon's list of splitting 
riteria to 
onsider boolean pro
e-dure return values and pro
edure exit points. Daikon uses these 
riteria toprodu
e impli
ations [19℄ by splitting data into two parts; if di�erent invariantsare true in the parts of the data, they 
an be 
ombined into impli
ations ordisjun
tions. Therefore, Daikon was able to report what pre
onditions 
auseda boolean fun
tion to return true or false, or what pre
onditions 
aused a 
er-tain return statement to be exe
uted (and what other properties hold there).Finally, we altered Daikon so that it did not report invariants from non-private methods when they were implied by an obje
t invariant. Even thoughDaikon was not su

essful in �nding all redundant invariants, this greatlyredu
ed the number of redundant reported invariants, making them moremanageable without removing any information. The output 
hanges did nota�e
t the provability of invariants, but did ease the interpretation of ESC'soutput.4.2 ESC notationESC's input language is a variant of JML, the Java Modeling Language [41,42℄.JML is an interfa
e spe
i�
ation language that 
an spe
ify the behavior ofJava modules. Most relevant to our resear
h is its ability to spe
ify obje
trepresentation invariants and method pre
onditions and post
onditions. JMLexpressions are written in a syntax 
losely resembling Java. We use \ESC-JML" for the JML variant a

epted as input by ESC/Java.Daikon's default output language is also similar to Java, with extensionsthat permit 
ertain varieties of invariant to be expressed more 
on
isely or
learly than would be possible in Java. As a user option, Daikon 
an pro-du
e output in ESCJML. The di�eren
es between these formats fall into two
ategories. When the semanti
s di�er be
ause ESCJML is less 
onvenient or
on
ise but the languages are equally expressive, we usually 
onvert Daikon'soutput to ESCJML. In 
ases where ESCJML 
annot express 
on
epts that11



Nimmer and ErnstDaikon dis
overs and expresses in its own language, we omit those invariantswhen attempting veri�
ation with ESC.4.2.1 Semanti
 di�eren
esBoth (full) JML and Daikon's default output format support array 
ompre-hensions su
h as a[i..j℄ to represent the subarray of a from indi
es i toj in
lusive. Daikon also permits quanti�
ation via the expression \arrayelements"; for instan
e, this:s elements � this:s:length. Daikon represents a
-
esses to arrays, ve
tors, and linked lists uniformly and su

in
tly with sub-s
ripting notation, a[i℄. Field a

esses may be applied to sequen
es, indi-
ating a sequen
e of the spe
i�ed �elds; for instan
e, a[℄.fld represents thesequen
e a[0℄.fld, a[1℄.fld, . . . . By 
ontrast, ESCJML states expressionsover arrays via an expli
it \forall quanti�er and 
annot a

ess ve
tor orlinked list elements.By default, expressions in Daikon's output are assumed to hold only whentheir subexpressions are sensible. For instan
e, foo:bar = 22 in Daikon's out-put means \foo = null or foo:bar = 22", and a[i℄ > xmeans \i < 0 or i � a:lengthor a[i℄ > x". A Daikon swit
h makes these guards expli
it in the output or elim-inates invariants over expressions that are sometimes nonsensi
al. In ESC, useof an expression like a[i℄ when i may not be a legal index 
an result in failureto verify and uninformative error messages.Daikon's obje
t invariants are spe
i�ed to hold at entry and exit of non-private methods, whereas ESC's are required to hold at entry and exit ofall methods. However, private helper methods need not require or maintainobje
t invariants. To mat
h semanti
s, we 
ould remove Daikon's obje
t in-variants and repeat them at all appropriate method entries and exits, but wejudged that to be too verbose and 
onfusing; this prevents some true (publi
)obje
t invariants from being proved by ESC.4.2.2 Invariants inexpressible in ESCJMLDaikon and ESCJML method post
onditions 
an indi
ate (via orig() inDaikon or \old() in ESCJML) that expressions should be evaluated in thepre-state. For instan
e, return = orig(x) indi
ates that the pro
edure re-turns the value whi
h x held before the method was 
alled, even though thepro
edure may have modi�ed x during its exe
ution. Daikon's orig() 
an ap-ply to any variable, and distinguishes between array identity, array 
ontents,and array subsequen
es. ESCJML's \old() 
annot apply to array 
ontents orto method parameters of primitive type. Furthermore, there is no way to mixexpressions from the post-state within expressions in pre-state. (Some of theselimitations 
an be worked around by tri
ks su
h as existential quanti�ers, butthe resulting invariants are not parti
ularly readable.)ESCJML annotations 
annot in
lude method 
alls, even ones that are side-e�e
t-free. Daikon uses these for obtaining Ve
tor elements and as predi
atesin impli
ations. 12



Nimmer and ErnstUnlike Daikon, ESCJML 
annot express 
losure operations, su
h as all theelements in a linked list. Properties over su
h 
olle
tions are often the mostinteresting and important invariants over re
ursively de�ned data stru
tures.The full JML language permits method 
alls in assertions, \old() appliedto primitive parameters, and \rea
h() for expressing rea
hability via transi-tive 
losure.4.3 Other annotationsOur system makes private variables a

essible to the spe
i�
ation with thespe
_publi
 annotation. More signi�
antly, in ea
h 
onstru
tor it sets theowner ghost �eld of ea
h non-primitive �eld to the obje
t being 
onstru
ted.This states that the 
ontents of the �eld are not aliased by other obje
ts.Without this annotation, ESC reasons that the �eld 
an be arbitrarily modi-�ed at any time by another method, and very little whatsoever 
an be proved.Adding this annotation without sour
e 
ode analysis is potentially unsafe,but this dis
ipline is very frequently followed, so it has been a

eptable in ourexperiments to date.5 ChallengesThis se
tion dis
usses 
hallenges to stati
 veri�
ation of dynami
ally dete
tedprogram invariants. These 
hallenges fall into three general 
ategories: prob-lems with the tools, problems with the target programs, and problems withthe test suites for the target programs. In some 
ases we have largely solvedthe problems, and in other 
ases diÆ
ulties remain to be over
ome.5.1 ToolsSe
tion 4.1 lists enhan
ements made to the Daikon invariant dete
tor as apart of this resear
h. As Daikon is still a prototype, we anti
ipate that addi-tional 
hanges may be required in the future, parti
ularly as it is extended tonew varieties of invariant. Also, strengthening its 
he
ks for redundant invari-ants will redu
e the size of its output and improve 
omprehensibility withoutremoving any information.Se
tion 4.2 noted problems with ESC's input language, a variant of JMLthat 
annot express 
ertain important invariants and 
annot 
on
isely and
learly express others. In some 
ases ESC does not appear to be strong enoughto verify 
ertain true invariants, and its error messages are o

asionally 
rypti
.However, in general we have been pleased with ESC: it has operated e�e
tivelyand eÆ
iently. For instan
e, though we have not run ESC on Daikon's sour
e
ode, ESC has dete
ted at least two bugs in Daikon by failing to verify reportedinvariants that, upon 
loser inspe
tion, were not true. (Both bugs were 
ut-and-paste errors: in one 
ase, the invariant formatting routine was in
orre
t,and in another 
ase, the �rst element of an array was being ignored.)13



Nimmer and ErnstESC 
annot express invariants over strings, and Daikon reports few su
hinvariants in any event. As a result, ESC 
annot prove that obje
t invariantshold at the exit from a 
onstru
tor or other method that interprets a stringargument, even though it 
an show that the invariant is maintained by othermethods.In a few 
ases, ESC 
annot prove properties Daikon reports be
ause theproperty depends on an obje
t invariant that is beyond Daikon's s
ope. Users
an either add su
h invariants by hand or delete the properties that dependon them.5.2 Target programsAnother 
hallenge to stati
 veri�
ation of invariants is the fa
t that programsare likely to 
ontain errors that prevent the desired invariant from being true.(Although it was never our goal, we have previously identi�ed su
h errors intextbooks [30,61℄ and in programs used in testing resear
h [36,56℄.) As anexample of a likely error that we dete
ted in the 
ourse of this proje
t, one ofthe obje
t invariants for Sta
kAr states that unused elements of the sta
k arenull; this permits obje
ts to be garbage-
olle
ted after the sta
k is popped andpermits earlier dete
tion of 
ertain types of error. The topAndPop operationmaintains this invariant (whi
h approximately doubles the size of its 
ode),but the makeEmpty routine fails to do so|a non-obvious oversight whi
h theimplementor and 
lients should be appraised of.5.3 Test suitesDynami
 invariant dete
tion may produ
e properties that are true for the testsuite over whi
h the target program was run, but whi
h are not true for ar-bitrary runs of the program. However, that problem is solved by integratingdynami
 invariant dete
tion with stati
 veri�
ation. The stati
 veri�er indi-
ates that some invariants are universally true; the others might be true butbeyond the 
apabilities of the veri�er, might be true of the 
ontext in whi
hthe program is always run, or might be a

idental usage properties of thetest suite. In the latter 
ase, the reported invariants spe
ify the unintendedproperty of the test suite that makes it less general than it should be, so aprogrammer knows exa
tly what is wrong with, and how to improve, the testsuite.Be
ause stati
 veri�
ation partly solves the question of whi
h invariantsare ne
essarily true in all 
ontexts, the remainder of this se
tion only treatsthis problem in the absen
e of stati
 veri�
ation: how diÆ
ult is it to eliminateall properties that are not universally true from the output, so that it veri�eswith no warnings whatsoever?In some 
ases the \bad" invariants gave valuable hints about test 
asesthat needed to be added to the test suite. For instan
e, in some of our ex-periments, 
ertain sta
k operations were not performed on a 
ompletely full14



Nimmer and Ernststa
k, and a queue implemented via an array was not for
ed to wrap aroundby adding and deleting more elements than its 
apa
ity. As another exampleof a serious oversight, a test suite's 
alls to a safe sta
k pop operation werealways prote
ted by a 
he
k whether the array was empty. The resulting in-variants stated that the result was always non-null, indi
ating that the fullfun
tionality of the method was not being tested.In other 
ases, however, eliminating the undesirable invariants was a te-dious 
hore. It required �nding a test 
ase that falsi�ed a parti
ular spe
ial
ase that had little to do with the abstra
tion (it was relevant to the datastru
tures, but not the logi
, of the parti
ular implementation). The largestproblems were undesirable upper and lower bounds for variables. We spe
u-late that Daikon's statisti
al tests for these parti
ular invariants need to beadjusted. It is also possible that, sin
e those statisti
al tests strive to be time-and spa
e-eÆ
ient, they make too many approximations and do not produ
ean a

urate result.6 Related workThis is the �rst resear
h we are aware of that has dynami
ally generated, thenstati
ally proved, program properties.Dynami
 analysis has been used for a variety of tasks; for instan
e, indu
-tive logi
 programming (ILP) [54,8℄ produ
es a set of Horn 
lauses (�rst-orderif-then rules) and 
an be run over program tra
es [4℄, though with limited su
-
ess. Programming by example [12℄ is similar but requires 
lose human guid-an
e, and version spa
es 
an 
ompa
tly represent sets of hypotheses [50,33,40℄.Value pro�ling [5,57,6℄ 
an eÆ
iently dete
t 
ertain simple properties at run-time. Event tra
es 
an generate �nite state ma
hines that expli
ate potentialsystem organization or behavior [9,10℄. Program spe
tra [1,55,31,2℄ also 
ap-ture aspe
ts of system runtime behavior. None of these other te
hniques havebeen as su

essful as Daikon in dete
ting invariants in programs, though manyhave been valuable in other domains. Many stati
 inferen
e te
hniques alsoexist, but spa
e prohibits dis
ussing them here.There are many other te
hniques and tools besides ESC for stati
ally 
he
k-ing formal spe
i�
ations [53,15,22,13,20,51,43℄. These other systems have dif-ferent strengths and weaknesses than ESC, but few have the polish of itsintegration with a real programming language (see Se
tion 7).6.1 HoudiniThe resear
h most 
losely related to ours is Houdini, an annotation assistantfor ESC/Java [24,23℄. Houdini is motivated by the observation that users arerelu
tant to annotate their programs with invariants; it attempts to lessen theburden by providing an initial set. Houdini takes a 
andidate annotation setas input and 
omputes the greatest subset of it that is valid for a parti
ular15



Nimmer and Ernstprogram. It repeatedly invokes the 
he
ker and removes refuted annotations,until no more annotations are refuted. The 
andidate invariants are all pos-sible arithmeti
 
omparisons among �elds (and \interesting 
onstants" su
has �1, 0, 1, array lengths, and null); many elements of this initial set aremutually 
ontradi
tory.Daikon's 
andidate invariants are ri
her than those of Houdini; Daikonoutputs impli
ations and disjun
tions, and its base invariants are also ri
her,in
luding more 
ompli
ated arithmeti
 and sequen
e operations. If even onerequired invariant is missing, then Houdini will eliminate all other true in-variants that depend on it. Houdini makes no attempt to eliminate implied(redundant) invariants, as Daikon does (redu
ing its output size by an order ofmagnitude [18℄), so it is diÆ
ult to interpret numbers of invariants produ
edby Houdini. Finally, Houdini is not publi
ly available, so we 
annot performa dire
t 
omparison.Merging the two approa
hes 
ould be very useful. For instan
e, Daikon'soutput 
ould form the input to Houdini, permitting Houdini to spend less timeeliminating false invariants. (A prototype \dynami
 refuter"|essentially alimited dynami
 invariant dete
tor|has been built [24℄, but no details orresults about it are provided.) Houdini has a di�erent intent than Daikon:Houdini does not try to produ
e a 
omplete spe
i�
ation or annotations thatare good for people, but only to make up for missing annotations and permitprograms to be less 
luttered; in that respe
t, it is similar to type inferen
e.However, Daikon's output 
ould perhaps be used in pla
e of Houdini's. In-variants that are true but depend on missing invariants or are not provableby ESC would not be eliminated, so users might be 
loser to a 
ompletelyannotated program, though they might need to eliminate some invariants byhand.7 Future workSe
tion 5 listed a number of problems with our system (and with its 
ompo-nents Daikon and ESC) that should be 
orre
ted.Another obvious way to extend this work is to use di�erent invariant de-te
tors than Daikon or di�erent veri�ers than ESC. Se
tion 6 lists some otherinvariant dete
tors. Examples of stati
 veri�ers that are 
onne
ted with realprogramming languages in
lude LCLint [22,20,21℄, ACL2 [38℄, LOOP [37℄,Java PathFinder [32℄, and Bandera [11℄.We are 
urrently integrating Daikon with IOA [28,27℄, a formal languagefor des
ribing 
omputational pro
esses that are modeled using I/O automata[47,48,49℄. The IOA toolset (http://theory.l
s.mit.edu/tds/ioa.html)permits IOA programs to be run and also provides an interfa
e to the Lar
hProver (LP) [25,26,58℄, an intera
tive theorem-proving system for multisorted�rst-order logi
. Daikon will propose goals, lemmas, or intermediate assertionsfor the theorem prover. Side 
onditions su
h as representation invariants 
an16



Nimmer and Ernstenable proofs that hold in all rea
hable states/representations (but not inall possible states/representations). It 
an be tedious and error-prone forpeople to spe
ify the properties to be proved, and 
urrent systems have troublepostulating them; some resear
hers 
onsider that task harder than performingthe proof [60,3℄.We are also interested in re
overing from failed attempts at stati
 veri�
a-tion. Broadly speaking, veri�
ation fails be
ause the goal properties are toostrong or are too weak. Properties that are too strong may be true but beyondthe 
apabilities of the veri�er, or may not be universally true (for instan
e,guaranteed by the program 
ontext or artifa
ts of the test suite). Propertiesthat are too weak are true, but 
annot be proved by the stati
 veri�er or arenot useful to it| for instan
e, loop invariants may need to be strengthened tobe proved. We anti
ipate that dynami
 invariant dete
tion will propose moreoverly-strong invariants than overly-weak ones. When veri�
ation fails, wewould like to know how to strengthen and weaken invariants in a prin
ipledway, by examining the sour
e 
ode, program exe
utions, patterns of invariants,and veri�er output, to in
rease the likelihood of su

essful veri�
ation.While dynami
 invariant dete
tion has been quite su

essful in a number ofappli
ation domains, we believe that truly su

essful program analysis requiresboth stati
 and dynami
 
omponents. What is hard for one variety of analysisis easy for the other. Some of the properties that are diÆ
ult to obtain froma dynami
 analyses are apparent from an examination of the sour
e 
ode,and properties that are beyond the state of the art in stati
 analysis 
an beeasily 
he
ked at runtime. We plan to integrate more stati
 analysis into oursystem (and parti
ularly into Daikon). The dynami
 analysis need not 
he
kproperties dis
overed by the stati
 analysis, and the dynami
 analysis 
anfo
us on stati
ally indi
ated 
ode.8 Con
lusionWe have demonstrated the feasibility of dynami
ally dete
ting, then stati
allyverifying, program invariants. In parti
ular, we have built a system that takesthe output of the Daikon invariant dete
tor and feeds it to the ESC stati

he
ker. To our knowledge, ours is the �rst system to dynami
ally dete
t andthen stati
ally prove program properties. Preliminary experiments over smallprograms demonstrate that Daikon is e�e
tive at proposing useful invariantsand that ESC is e�e
tive at verifying those invariants.Integrating dynami
 invariant dete
tion with stati
 veri�
ation has bene�tsfor both tools. Use of a stati
 veri�er to augment dynami
 invariant dete
-tion over
omes a potential obje
tion about possibly unsound output, 
lassi�esthe output to permit programmers to use it more e�e
tively, permits proveninvariants to be used in 
ontexts (su
h as input to 
ertain programs) that de-mand sound input, and may improve the performan
e or output of dynami
invariant dete
tion. As a result, more programmers 
an take advantage of17



Nimmer and Ernstdynami
ally dete
ted invariants in a variety of 
ontexts, dire
tly leading tofewer bugs (by introdu
ing fewer and dete
ting more), better do
umentation,less time wasted on program understanding, better test suites, more e�e
tivevalidation of program 
hanges, and more eÆ
ient programs.Use of dynami
ally dete
ted invariants to bootstrap stati
 veri�
ation, byannotating programs or by providing goals and intermediate assertions, willspeed the adoption of stati
 analysis tools by lessening the user burden, evenif some work remains for the user. The dire
t e�e
t of in
reased use of thesetools will be the dete
tion of more errors earlier in the software developmentpro
ess, stati
ally at 
ompile time rather than dynami
ally at test time (or,worse, after an appli
ation has been �elded). The indire
t e�e
t will be theprodu
tion of more robust, reliable, and 
orre
t 
omputer systems. Bothvisible faults and silent errors will o

ur less often, and it will be easier tomaintain these properties during a program's life be
ause of ma
hine 
he
kingof 
onditions that program 
orre
tness depends upon.A
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