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Stable Topology Control for Mobile Ad-Hoc Networks
João B. D. Cabrera, Ram Ramanathan, Carlos Gutiérrez, and Raman K. Mehra

Abstract— Topology control is the problem of adjusting the
transmission parameters, chiefly power, of nodes in a Mobile
Ad Hoc Network (MANET) to achieve a desired topology. Over
the last several years, this problem has received much attention.
Despite this work however, the stability of available techniques
has not been studied. This paper presents the first control-
theoretic investigation of topology control in MANETs. We take a
simple representative fully distributed topology control algorithm
called LINT and show that it is unstable under certain conditions.
We then formulate LINT in a control-theoretic context, and
derive a new mechanism called CLINT that is shown to be stable
for a wide range of parameter variations. We compare the in-
practice performance of LINT and CLINT using comprehensive
simulations and show that CLINT provides a higher throughput.

Index Terms— Mobile ad-hoc networks, power control, topol-
ogy control, stability.

I. INTRODUCTION

THE topology of a Mobile Ad Hoc Network (MANET)
is the set of nodes and communication links between

nodes. The topology of a MANET depends both on uncon-
trollable factors such as mobility, terrain, fading, etc. and on
controllable factors such as transmit power, antenna direction,
processing gain, etc. Topology control is the adjustment of
node parameters to get the desired topology, and maintain it
in face of changes due to the uncontrollable factors. Topology
control has been a subject of much research recently [1].
To the best of our knowledge however, none of the existing
algorithms take notice of the fact that the parameter adjustment
is a part of a control loop, involving a dynamical system. We
show in this note that failure to do so may lead to unstable
behavior of the resulting system. For the problem in question,
we will also show a way to fix the problem by designing a
feedback control system that takes into account the uncertainty
in the dynamics of the topology control loop.

II. A CONTROL-THEORETIC PROBLEM FORMULATION

A. LINT operation as a linear discrete time feedback loop

The Local Information No Topology (LINT) topology con-
trol algorithm works by changing the transmitting power in
order to regulate the node degree (number of neighbors) of
each node about a desired setpoint dd. If pc is the current
transmission power in dB and dc is the current node degree,
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Fig. 1. The LINT feedback control loop.

it is shown in [2] that when dd ≥ 1 and dc ≥ 1 the desired
transmission power pd in dB to assure a node degree equal to
dd is given by:

pd = pc + 5E log10

(
dd

dc

)
(1)

where E is a constant usually between 2 and 5 depending
on the propagation properties of the media [3]. Assume that
power control is updated every ∆ units of time, and define
u(k) = pd as the desired transmission power in dB at time k∆.
Clearly u(k−1) = pc is the transmission power in dB at time
(k− 1)∆. Define also ym(k) = log10 dc as the logarithm of
the measured node degree at time k∆, and y∗(k) = log10 dd as
the logarithm of the desired node degree at time k∆. Assuming
that dc ≥ 1 and dd ≥ 1 for all time, equation (1) becomes:

u(k) = u(k − 1) + 5Ee(k), where
e(k) = y∗(k) − ym(k),

which can be readily identified as Integral Control (eg. [4]).
This is the first step in describing LINT operation as a linear
discrete feedback control loop, as depicted in Figure 1. In
Figure 1, CL(z) represents the controller, with input e(k) and
output u(k). In terms of z-transforms, the LINT controller can
be expressed as:

U(z−1) = CL(z−1)E(z−1), CL(z−1) = 5E 1
1 − z−1

where U(z−1) and E(z−1) are the z-transforms of u(k) and
e(k) respectively, and CL(z−1) is the transfer function of
the LINT controller. The output u(k) is applied to the plant,
denoted as G(z−1). An additive disturbance term v(k) is also
included. Here, G(z−1) and v(k) are expected to represent
the combined effects of: (1) the actuator dynamics associated
with changing power, (2) the network dynamics, associated
with node mobility, and (3) the sensor dynamics, related with
how actual changes in the node degree gets reflected into
the measured node degree at the node. What are G(z−1)
and v(k) in Figure 1? It follows from equation (1) and
developments in [2] that pc = b + 5E log10(dc), where b is
a constant depending on the propagation properties of the
media, the average node density and the radio characteristics.
This gives ym(k) = 1

5E u(k − 1) − b
5E resulting in G(z−1) =

G1(z−1) = 1
5E z−1, v(k) = − b

5E , where G1(z−1) is the
model of the plant used in LINT. Viewing b as a constant
(but unknown) disturbance, the LINT controller is simply an
integrator, which is known to provide for zero steady-rate error

1089-7798/07$25.00 c© 2007 IEEE



CABRERA et al.: STABLE TOPOLOGY CONTROL FOR MOBILE AD-HOC NETWORKS 575

while tracking constant reference signals y∗(k) and rejecting
constant disturbances v(k). If the actual plant G(z−1) is
indeed equal to G1(z−1) then the resulting open loop transfer
function is CL(z−1)G1(z−1) = z−1

1−z−1 providing a closed

loop transfer function CL(z−1)G1(z
−1)

1+CL(z−1)G1(z−1) = z−1 which is
stable, and results in ym(k) = y∗(k − 1), i.e. the measured
node degree will follow a constant desired node degree.

B. Instabilities in the LINT loop - Theory

One important element which was not considered in LINT
design was the transport delay due to HELLO exchanges. Let
δ denote the time interval between HELLO messages issued
by a node, and N denote the number of HELLO messages
taken into account in making a decision about the existence
of a link1. The average delay between power changes in a
node and its effect in the measured node degree is given
by Nδ. Define ρ =

⌈
Nδ
∆

⌉
. It is clear that a more accurate

model for the plant is Gρ(z−1) = 1
5E z−ρ. When ρ ≥ 2, the

open loop transfer function formed by LINT and the plant
becomes CL(z−1)Gρ(z−1) = z−ρ

1−z−1 providing a closed loop

transfer function CL(z−1)Gρ(z−1)
1+CL(z−1)Gρ(z−1) = z−ρ

1−z−1+z−ρ , which has
a characteristic polynomial in z given by λ(z) = zρ−zρ−1+1.
Recalling that the product of the roots of the polynomial
zm + am−1z

m−1 + · · · + a0 is given by a0, it follows that
the product of the roots of λ(z) is given by 1. This implies
that for all ρ ≥ 2 the polynomial λ(z) will either have all roots
in the border of the unit circle |z| = 1, or it will have at least
one root strictly outside the unit circle. In either case λ(z) will
be an unstable polynomial [4], meaning that the LINT loop
fails to provide adequate tracking. It means that if Nδ > ∆
then the LINT algorithm will not work properly.

III. CONTROLLED LINT (CLINT)

A. Instabilities in the LINT loop - Practice

Ideally, both ∆ and δ must be decreased in response
to increasing mobility. However, decreasing δ increases the
protocol overhead acting in the system. In practice, one can
assume a lower bound in δ below which the overhead caused
by HELLO traffic becomes harmful to the operation of the
network. There is no cost however in decreasing ∆ in response
to mobility, as long as it does not interfere with the updates
of the routing tables. Decreasing N is not desirable, since it
will increase the noise level acting on the system.

Given the above, one can easily imagine a scenario where
in response to network mobility, the designer decreases ∆, but
keeps δ constant to avoid overhead. As shown in the previous
section this will result in instability. We show below that one
can operate with lower ∆, quickly responding to mobility,
without necessarily decreasing δ.

B. Designing CLINT: Closed loop pole placement

Figure 2 depicts the model used in designing CLINT (Con-
trolled LINT). We utilize closed loop pole placement as in [5],
page 146. We keep the LINT controller in the forward path,

1As noted in [2], nodes are incorporated in or taken out from neighborhood
tables based on a majority vote from N HELLO updates.
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Fig. 2. The CLINT design model.

to assure tracking of constant reference inputs. The problem
at hand is to design a compensator CC(z−1) to assure loop
stability when ρ ≥ 2. We now utilize the notation in [5], page
149, Figure 5.3.2 and define B(z−1)

A(z−1) = CL(z−1)Gρ(z−1) =
z−ρ

1−z−1 , giving B(z−1) = z−ρ, A(z−1) = 1 − z−1. Define

also P (z−1)
L(z−1) = CC(z−1) where P (z−1) and L(z−1) are

polynomials in z−1 with degree ρ−1 : P (z−1) = p0+p1z
−1+

· · ·+ pρ−1z
−ρ+1, L(z−1) = �0 + �1z

−1 + · · ·+ �ρ−1z
−ρ+1.

In practice, the value of ρ may not be known, and/or the user
may want the flexibility of varying ∆, δ and N . The poles
of the resulting closed loop system will be roots in z of the
polynomial Πρ(z−1) = L(z−1)(1 − z−1) + z−ρP (z−1). To
produce a fixed controller capable of stabilizing the closed-
loop system for wide variations in ρ we proceed as following:

1) Pick a fixed value of ρ = ρ∗ and compute P ∗(z−1)
and L∗(z−1) so that Πρ∗(z−1) = L∗(z−1)(1 − z−1) +
z−ρ∗

P ∗(z−1) = A∗(z−1), where A∗(z−1) = (z−1 −
3)2ρ∗−1, i.e. we are assigning all closed loop poles
to z = 1

3 which is known to provide a good trade-
off between overshoot, rise-time and settling time for
discrete time systems ([5], p. 159).

2) For each value of ρ ≥ 2 verify if the roots in z
of the polynomial Πρ(z−1) = L∗(z−1)(1 − z−1) +
z−ρP ∗(z−1) are all inside the unit circle or not. If they
are, then the closed loop system formed by P ∗(z−1),
L∗(z−1), B(z−1) = z−ρ, and A(z−1) = 1 − z−1 is
stable. Otherwise, it is unstable.

In our design, we picked ρ∗ = 3, and verified that the
corresponding P ∗(z−1) and L∗(z−1) produced stable control
loops for all values of ρ in the interval 1 ≤ ρ ≤ 9. The
resulting closed loop is unstable for ρ ≥ 10. The equations
governing the CLINT controller are as following:

uL(k) =
1
�∗0

[−�∗1uL(k − 1) − �∗2uL(k − 2)

+ p∗0e(k) + p∗1e(k − 1) + p∗2e(k − 2)]
u(k) = u(k − 1) + 5EuL(k), where

�∗0 = −243, �∗1 = 162, �∗2 = −108, p∗0 = −18, p∗1 = −15, p∗2 = 1.

IV. EXPERIMENTAL STUDIES

We simulated a MANET with 50 nodes using the ns-2
simulation package. The details are as following. Motion:
Nodes move for 1000 s in a 1000 m × 1000 m square,
changing direction and velocity (uniform distribution between
2 m/s and 6 m/s) randomly every 100 s; Network layer:
Hazy-Sighted Link State Routing (HSLS); MAC layer: IEEE
802.11 MAC as provided in ns-2; Maximum power: The
maximum power for each node correspond to 4.6 W (range of
500 m); Desired node degree: For both LINT and CLINT, the
desired setpoint is dd = 8. The LINT controller is only active
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Fig. 3. LINT performance for varying ρ.
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Fig. 4. CLINT performance for varying ρ.

when the measured node degree is below 5 or above 112. To
verify the effect of delay, we kept ∆ = 3 s constant, N = 3
constant, and considered three cases: δ = 1 s, 3 s and 5 s,
corresponding respectively to ρ = 1, 3, 5. The evolution
of the measured node degree and the transmitted power for
one of the nodes is depicted in Figure 3 (LINT) and Figure
4 (CLINT). It is clear the performance of LINT degrades
considerably with the increase in ρ, while the performance
of CLINT is not affected. For ρ = 3 and ρ = 5 the power
in LINT essentially oscillates between minimum power and
maximum power, which is a clear evidence of instability. The
CLINT loop in contrast remains stable.

Table I presents the Error RMS3 for the regulated output
ym(k) and the the overall average (among all nodes and

2This was shown experimentally to improve LINT overall performance; it
was also shown experimentally that CLINT behavior is not affected. This also
explains the plateaus in LINT power profiles shown in Figure 3.

3Error RMS=

√
1
n

∑n

k=1
(ym(k) − 8)

2
, where n is the number of data

samples across all nodes.

TABLE I

ERROR RMS OF ym(k) AND AVERAGE POWER (WATTS).

Error RMS ρ = 1 ρ = 3 ρ = 5

LINT 2.36 3.80 4.49
CLINT 2.40 2.85 3.20

Av. Power ρ = 1 ρ = 3 ρ = 5

LINT 1.31 1.91 2.00
CLINT 1.20 1.20 1.20

TABLE II

THROUGHPUT WITH ∆ = 3 s AND VARYING δ.

Throughput ρ = 1 ρ = 3 ρ = 5

Baseline (4.6 W) 0.71 0.36 0.27
LINT 0.66 0.23 0.19

CLINT 0.70 0.37 0.26

across time) of transmitting power. The results clearly show
the superiority of CLINT. To verify the effect of power control
on data throughput, we ran another set of experiments in which
data was sent between 5 node pairs. The data was UDP/CBR
data at a rate of 4 KBps, with the packet size being 256 bytes.
All sets contained data for LINT and CLINT, as well as a
baseline run in which no power control was performed. In
all cases, the throughput falls with increasing ρ. However, the
CLINT system provides the same throughput as the baseline
with much less usage of power.

V. CONCLUDING REMARKS

The present note is a first step into the understanding of
topology control algorithms from a control theoretic view-
point. For global topology control schemes, where power
decisions in one node depends on information on the other
nodes, the problem becomes much more involved, as the
topology control mechanism interacts with the dynamics of
the routing algorithm being employed. An integrated design
of routing and topology control, taking into account the overall
dynamics of the resulting loop is a future research direction.
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