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Abstract

The decision version of the maximum satisfiability problem (MAX-SAT) is stated as
follows: Given a set S of propositional clauses and an integer g, decide if there exists a
truth assignment that falsifies at most g clauses in S, where g is called the allowance

for false clauses. We conduct an extensive experiment on over a million of random
instances of 2-SAT and identify statistically the relationship between g, n (number
of variables) and m (number of clauses). In our experiment, we apply an efficient
decision procedure based on the branch-and-bound method. The statistical data of
the experiment confirm not only the “scaling window” of MAX-2-SAT discovered by
Chayes, Kim and Borgs, but also the recent results of Coppersmith et al. While there
is no easy-hard-easy pattern for the complexity of 2-SAT at the phase transition, we
show that there is such a pattern for the decision problem of MAX-2-SAT associated
with the phase transition. We also identify that the hardest problems are among
those with high allowance for false clauses but low number of clauses.

1 Introduction

Given a propositional formula F in conjunctive normal form (CNF), the maxi-
mum satisfiability problem (MAX-SAT) is to find a truth assignment that sat-
isfies the maximum number of clauses. The decision version of MAX-SAT is to
ask if the number of false clauses in F under any assignment is less than than or
equal to a given number, say g, the allowance for false clauses. It is well known
that the decision version of MAX-SAT is NP-complete, even if each clause has
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at most two literals (so called the MAX-2-SAT problem). In recent years, there
has been considerable interest in MAX-SAT [4,17,1,2,16,14,15,19,5,12,10,9].
Empirical studies can help to verify theoretical results, provide insights to
theoretical analysis, and apply the techniques to other domains. However,
very few of the reported research in this area involve empirical studies. This
is in sharp contrast with the study of satisfiability problem (SAT), where
great progress has been made in the recent years in developing and applying
powerful SAT solvers.

When the allowance g = 0, the decision version of MAX-SAT becomes the
satisfiability problem of F . It is well known that there is sharp transition in
satisfiability for random 2-SAT at m/n = 1 [8,11], where m is the number
of binary clauses and n is the number of variables. For g > 0, similar re-
sults are obtained very recently for MAX-2-SAT by Coppersmith et al. [9].
In this paper, we describe a detailed experimental investigation of the phase
transition for random MAX-2-SAT in terms of g, m and n. We verify exist-
ing theoretical results and observe a remarkable consistency of features in the
phase transition.

Because 2-SAT is solvable in linear time, there is no change of problem hard-
ness associated with the phase transition of 2-SAT. However, since MAX-2-
SAT is NP-hard, our experiment shows that there is a common easy-hard-easy
pattern in the median difficulty of the MAX-2-SAT decision problem, with
the hardest problems being associated with the phase transition, when the
allowance is high but the number of clauses is low.

2 Preliminary

We will adopt the notations from [9]. Let F be a formula in 2–CNF with n
variables V = {x1, ..., xn}. An assignment is a mapping from V to {0, 1} and

may be represented by a vector ~X ∈ {0, 1}n, where 0 means false and 1 means

true. Let F ( ~X) be the number of clauses satisfied by ~X. The MAX-2-SAT

problem asks for maxF = max ~XF ( ~X), i.e., the maximum, over all assignments
~X, of the size (number of clauses) of a maximum satisfiable subformula of F .

The decision version of MAX-2-SAT can be stated as follows:

Instance: A formula F in 2–CNF with m clauses and a nonnegative integer
g.

Question: Is there an assignment ~X such that m − F ( ~X) ≤ g?

Obviously, the phase transition of the above decision problem happens when
g goes from m − maxF − 1 to m − maxF for unsatisfiable F . That is, the
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Table 1
Experimental results on Borchers and Furman’s examples. Problems p100-p500 have
50 variables and problems p2200-p2400 have 100 variables. “BF” stands for Borchers
and Furman’s two-phase program for maxsat. “New” is the new algorithm presented
in [20]. Times (in seconds) are collected on a Pentium 4 linux machine with 256M
memory. “–” indicates an incomplete run after running for two hours.

Problem Name allowance BF New

p100 4 0.035 0.02

p150 8 0.091 0.02

p200 16 6.425 0.12

p250 22 37 0.05

p300 32 530 0.85

p350 41 3866 1.45

p400 45 3467 0.54

p450 63 – 4.68

p500 66 – 1.78

p2200 5 0.191 0.53

p2300 15 763 7.67

p2400 29 – 172

decision procedure will return false for g < m − maxF and return true when
g ≥ m − maxF .

Let F (n, m) denote a random formula in 2–CNF with n variables and m
clauses, where each clause is proper (consisting of two distinct literals and not
a tautology); this is equivalent to choosing m clauses uniformly at random
from the t(n) = 2n(n− 1) possible binary clauses with n variables. Typically,
m is expressed as a linear function of n, m = bcnc (or simply m = cn), where
c is a constant.

Throughout this paper, we let K(n, m) = m − maxF (n, m) if one instance
is given; if multiple instances in F (n, m) are given, K(n, m) represents the
arithmetic mean of individual K(n, m)’s.

The following results have been proved in [9].

Theorem 1 ([9]) (1) For c < 1, K(n, cn) = Θ(1/n).

(2) For c large, (0.25c−0.343859
√

c+O(1))n �
∼

K(n, cn) �
∼

(0.25c−0.509833
√

c)n.

(3) For any fixed ε > 0, 1
3
ε3n �

∼
K(n, (1 + ε)n).

3



Table 2
Number of random 2-CNF instances used in the experiment.

n c min-instances/c total instances

20 { 0.8, 0.9, ..., 2.4, 3, 4, ..., 36 } 2000 238000

25 { 0.8, 0.9, ..., 2.4, 3, 4, ..., 46 } 1000 214000

30 { 0.8, 0.9, ..., 2.4, 3, 4, ..., 56 } 800 213200

35 { 0.8, 0.9, ..., 2.4, 3, 4, ..., 50 } 400 189200

40 { 0.8, 0.9, ..., 2.4, 3, 4, ..., 44 } 300 182600

50 { 0.8, 0.9, ..., 2.4 } 10000 170000

70 { 0.8, 0.9, ..., 2.4 } 10000 170000

90 { 0.8, 0.9, ..., 2.4 } 10000 170000

In the above theorem, �
∼

is a standard asymptotic notation: f(n) �
∼

g(n)

means that f is greater than or equal to g asymptotically — f(n)/g(n) ≥
1 when n goes to infinity — though it may be that f(n) < g(n) even for
arbitrarily large values of n [9].

3 Experiments

Recently, we developed a new decision algorithm for MAX-2-SAT which takes
a formula F in 2–CNF and an integer g as input and returns true if and only
m − F ( ~X) ≤ g [20]. We proved that the algorithm takes time O(n2n) in the
worst case, settling an open problem posed by Alber, Gramm and Niedermeier
[18,2].

The new algorithm uses an efficient data structure for binary clauses and works
as a typical branch-and-bound algorithm. The new algorithm runs substan-
tially faster than Borchers and Furman’s algorithm [6]. Table 1 shows some
results of Borchers and Furman’s maxsat program [6] and the new algorithm
on the problems of 50 variables and some 100 variables problems distributed
by Borchers and Furman. It is clear that the algorithm runs much faster than
Borchers and Furman’s program on all the examples except one.

The high performance algorithm allows us to run a large number of MAX-
2-SAT instances. For each instance, we consider three parameters: the num-
ber n of the variables occurring in it, the number m = cn of clauses for
some constant c, and K, the minimal allowance for false clause under any
assignment. For this study, we generated random MAX-2-SAT instances for
n = 20, 25, 30, 35, 40, 50, 70, 90. The range of c for each n is given in Table 2,
along with the minimum number of instances for each n and c.
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Fig. 1. Relationship between y and x for given n.
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When m ≤ n, it is not easy to pick m random binary clauses which contain all
the n variables. To create such an instance randomly, we employ the following
procedure:

(1) Pick randomly m clauses and add them into S.
(2) While S does not contain all the n variables, pick randomly a new clause

and add it into S.
(3) While |S| > m, randomly pick a clause c in S; if every variable of c

appears in S − {c}, let S = S − {c}.

We were able to run all the instances only for n = 20, 25, and 30. For n = 35
and 40, we can only run instances for smaller c because our algorithm cannot
finish the runs in a reasonable amount of time.

In order to study the relationship between K(n, m) and m for a given n, we
compute the arithmetic mean of K(n, m) for each m. To better observe the
relationship between K and m, we try to plot the data in a single figure.
To do this, we scale m and K by dividing them by t(n) = 2(n − 1)n, the
total number of clauses for n variables. Now, the horizontal axis represents
x = cn/t(n), whose value ranges from 0 to 1, and the vertical axis represents
y = K(n, cn)/t(n), whose value ranges from 0 to 0.25. The results are shown
in Figure 1 for n = 20, 25, 30.

It shows clearly that y and x have a linear relationship in most area (0.3 ≤
x ≤ 0.7). When n increases, the line moves near to the line y = 0.25x.

We guess that the relationship for the linear part should look something like
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Fig. 2. Relationship between y and x for (0.3 ≤ x ≤ 0.7)
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this:

y = ax +
b
√

n + d

2(n − 1)
,

where a, b and d are constants.

We used the data of n = 20, 25, 30 to compute the linear regression. The result
is:

y = 0.248067x − 0.26128
√

n − 0.049115

2(n − 1)
for (0.3 ≤ x ≤ 0.7). (1)

We then used the data of n = 35, 40 to check the result. Surprisingly, they fit
very well as shown in Figure 2.

Because x = cn/t(n) = 2c(n − 1) and y = K(n, cn)/t(n), the relationship
between K(n, cn) and c can be deduced from (1) as

K(n, cn) = (0.248067c− 0.26128
√

n + 0.049115)n (2)

for 0.6(n− 1) ≤ c ≤ 1.4(n− 1). We still prefer (1) over (2) because x and y in
(1) have a fixed range and can be easily plotted in one figure for different n’s.

Coppersmith et al. [9] proved by theoretical analysis that, when c large (cf. The-
orem 1 (2) in Section 2), the following relation holds.

0.25c − 0.343859
√

c + O(1) �
∼

K(n, cn)/n �
∼

0.25c − 0.509833
√

c (3)

From (2), we have K(n, cn)/n = 0.248067c − 0.26128
√

n + 0.049115. This
equation looks very much like (3) because

√
n is close to

√
c for 0.6(n − 1) ≤
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Fig. 3. Relationship between y and x for n = 35 (0.3 ≤ x ≤ 0.7)
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c ≤ 1.4(n − 1). This comparison suggests that the bound of O(1) in (3) can
be very small.

Before we attempted to obtain equation (1), we tried another idea for the
relation of y and x:

y = ax +
bn + d

n
Using the same data to compute the linear regression, we obtain the following
result.

y = 0.248067x − 0.012606n + 0.337762

n
for (0.3 ≤ x ≤ 0.7). (4)

Then we used the data of n = 35, 40 to check (4). It appears that equation
(4) fits the data better than equation (1) as shown in Figure 3.

Conjecture 2 The equation (4) holds for arbitrary large n.

The relationship between K(n, cn) and c can be deduced from (4) as:

K(n, cn) = 0.248067cn− δ(n) for 0.6(n − 1) ≤ c ≤ 1.4(n − 1). (5)

where δ(n) = 0.025212n2 + 0.650312n − 0.675524.

From (5), we have K(n, cn)/n = 0.248067c− δ(n)/n. This equation also looks
very much like (3).

For the region where 0 ≤ x < 0.3, or equivalently, 0 ≤ c < 0.6(n − 1), a close
look of the mean value of K(n, cn) is shown in Figure 4(a). We also run some
examples for c = 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 to verify the sharp transition
in satisfiability for random 2-SAT around c = m/n = 1. Figure 4(b) shows
the details for n = 30, 50, 70, 90 when c near 1. As a future study, we will try
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Fig. 4. Detailed view when m is small.
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Fig. 5. Probability of satisfiable at the phase of transition.
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to obtain a more detailed regression function in this region. We tried a second
order function and a third order function to fit it, but none of them fit well.

Let Fn,cn be a 2-SAT problem with n variables and cn clauses. Chayes, Kim
and Borgs [5] gave a theorem about the probability of Fn,cn being satisfiable.
Let m = (1 + ε)n, where ε = λnn−1/3. It shows that for λn < 0 we have
P(Fn,cn is SAT ) = exp(−Θ(|λn|−3) and for λn > 0 we have P(Fn,cn is SAT ) =
exp(−Θ(λ3

n). From this theorem, they give the result of “scaling window”: For
all sufficiently small δ > 0, the scaling window is of the form

W (n, δ) = (1 − Θ(n−1/3), 1 + Θ(n−1/3)).

For n = 30, 50, 70, 90 and c = 0.8, 0.9, ..., 2.4, we have run 10000 instances
for each case. Then we computed P(Fn,cn is SAT) for each case. The result is
shown in Figure 5. Then we draw a line of P(Fn,cn) = 0.1 which cross the prob-
ability curves for n = 90, 70, 50, 30 at c ≈ 1.7, 1.76, 1.86, 2.06, respectively, will
let P(Fn,cn) = 0.1. For n = 90, 70, 50, 30, n−1/3 = 0.22314, 0.24264, 0.27144, 0.32183
and c − 1 = 0.7, 0.76, 0.86, 1.06. Does n−1/3 and c − 1 has a linear relation?
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Fig. 6. Computing cost of the decision procedure.
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The answer is yes. For n = 90, 70, 50, 30,

n−1/3

c − 1
= 0.31877, 0.31926, 0.31563, 0.3065,

respectively. This result fits the “scaling window” proposed in [5,9] very well.

4 Problem Hardness

Recall that given (F, g) as input, where F is a set of m binary clauses on n
variables and g is an integer, the decision procedure for MAX-2-SAT returns
true iff K(n, m) ≤ g. We observed a common easy-hard-easy pattern in the
median difficulty of this decision problem, with the hardest problems being
associated with the phase transition (g = K(n, m)−1). This observation came
as expected because, when g = K−1, the decision procedure presented in [20]
has to almost exhaust all the search space before claiming that there exists
no assignment under which at most g clauses in F are false. If g < K − 1,
the procedure will return false early; when k > K − 1, the procedure will
terminate once a satisfying assignment is found; when g = K − 1, the tight
bound allows little space to be pruned.

In Figure 6, we plotted the median computing cost of the decision procedure
[20] for n = 20, 30, 40 and −10 ≤ g−(K(n, m)−1) ≤ 10. The computing cost is
represented by the number of branches of the search tree (the computing time
is a linear function of the branches) with respect to the maximum number
of branches for each n. It is interesting to notice that as g decreases, the
computing cost decreases faster for bigger n on the left side of the threshold
point (unsatisfiable cases) but when g increases, the computing cost decreases
faster for smaller n on the right side of the threshold point (satisfiable cases).
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Fig. 7. Computing cost for g = K(n,m) − 1
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The sharpest drop comes at the threshold point when g goes from K − 1
(unsatisfiable) to K (satisfiable).

Another interesting phenomena we observed in the experiment is that, in
general, the computing cost increases when K grows. However, the hardest
problems are those with higher K values but lower m (or c) values. That is,
suppose one instance has n variables and m1 clauses and another instance has
n variables and m2 clauses. If K(n, m1) = K(n, m2) and m1 < m2, then the
first instance intends to be harder than the second instance. To illustrate this
observation, we have done some experiments for n = 20 and 25. For n = 20,
60 ≤ m ≤ 159, we generated 4000× 100 instances. For n = 25, 75 ≤ m ≤ 199,
we generated 4000×125 instances. Figure 7(a) shows the computing cost of the
decision procedure when g = K − 1 for n = 20 and K = 4, 8, 12, 16, 20. Figure
7(b) shows the results when g = K − 1 for n = 25 and K = 4, 8, 12, 16, 20.

One possible explanation for this phenomena is that when more clauses are
presented, more information will be obtained from the propagation of an as-
signment and this information may help to terminate the search on one branch
earlier than otherwise.

Finally, we like to point out another interesting phenomena on which we do
not have any explanation. for the same n, we said that the computing cost
goes up when K goes up. However, it appears tha this observation is true only
when comparing even K’s with even K’s, or when comparing odd K’s with
odd K’s, because it appears that the instances with even K’s are harder than
those with odd K’s. This phenomena is illustrated in Figure 8 for n = 20.
From the figure, we can see that the instances with K = 14 are harder than
those with K = 15. Similarly, the instances with K = 12 are harder than
those tieh K = 13 (but are easier than those with K = 15), and those with
K = 10 are harder than those with K = 11.
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Fig. 8. Computing cost for K = 10, 11, 12, 13, 14, 15, n = 20
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5 Conclusion

In this study, we have applied an efficient decision procedure for a great num-
ber of random MAX-2-SAT instances. The statistical data of our experiment
confirmed not only the “scaling window” of MAX-2-SAT discovered by Chayes,
Kim and Borgs [5], but also the recent results of Coppersmith et al. [9]. While
there is no easy-hard-easy pattern for the complexity of 2-SAT at the phase
transition, we showed that there is such a pattern for the decision problem of
MAX-2-SAT associated with the phase transition. We also identified that the
hardest problems are among those with high allowance for false clauses but
low number of clauses.

Determining bounds for the random k-SAT threshold has been solved for
k = 2. However, in spite of significant efforts, neither a tight analysis nor the
structural properties of this threshold have been determined for k > 2. We
plan to study the statistical behavior of random MAX-k-SAT as we did for
MAX-2-SAT in this paper. We hope our empirical results will provide some
insights into the random k-SAT threshold.
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