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Abstract

This paper presents a benchmark, CommBench, for use in evaluating and designing
telecommunications network processors. The benchmark applications focus on small,
computationally intense program kernels typical of the network processor environment.
The benchmark is composed of eight programs, four of them oriented towards packet
header processing and four oriented towards data stream processing. The benchmark
is defined and various characteristics of the benchmark are presented. These include
instruction frequencies, computational complexity, and cache performance. These mea-
sured characteristics are compared to the SPEC benchmark which has traditionally been
used in evaluating workstation processors. Three examples are presented indicating how
CommBench can aid in the design of a single chip network multiprocessor.

1 Introduction

In recent years the telecommunications industry has been expanding rapidly. Conservative

estimates for aggregate bandwidth on the internet backbone indicate a doubling each year

for the past ten years, and further expansion at these levels is likely to continue for some

time to come [6]. One consequence of this grow is the demand for greater performance,

flexibility, reliability and cost effectiveness in the primary electronic components (e.g., routers

and switches) which control the flow of data through the network.

At the system level, these networks have used computer control techniques for some time.

Performance demands, however, now include not only bandwidth requirements, but also qual-

ity of service, encoding/decoding of packets, dynamic bandwidth management and routing,

and intelligent error recovery. The trend is to develop highly flexible routers which, in some

sense, are programmable “on the fly.” Programmability can range from utilizing predefined

functions which can be applied to packets traversing the router, to ‘active’ networks where

packets contain, or dynamically invoke, programs that are executed on the router [25].

These new requirements have pushed processing activities down to the network layer of the

system. Traditionally, bit level operations, like timing synchronization and error detection, as

well as packet level operations, like routing and switching, have been implemented in dedicated

logic to keep up with the speed of the incoming traffic. However, as processor performance

2



has increased, the domain of “real-time” activities which can be placed under program control

has grown.

The advantages of using processor cores instead of hard-wired logic include being able to

specialize processing at the lowest levels in response to customer needs, being able to modify

processing in response to discovery of errors and in response to changes in telecommunications

standards, and being able to have a single resuable core processor within a chip instead of

multiple custom logic designs. This flexibility can be significant when dealing with a product

line involving many chips since it impacts design, documentation and testing costs.

Until recently, most embedded processors for telecommunications have been standard mi-

croprocessors (e.g., MIPS, Power PC, ARM). Generally, these processors have been designed

and optimized for workstation and personal computer environments and have, for example,

extensive floating point features. A standard benchmark used in their evaluation has been

the SPEC suite [24]. However, the tasks associated workstations and PCs differ from those

associated with telecommunications and it is important to have a benchmark that reflects this

different environment.

This paper presents a set of benchmark applications, called CommBench , tailored to

the telecommunications environment. The rationale for selecting these programs is discussed,

the benchmark, and an extensive set of measurements are presented and contrasted with

those obtained using the SPEC integer benchmark. Differences and network processor design

implications are discussed. Note that the issues associated with benchmark selection are often

controversial and, in the longer term, industry associations and input are important. However,

the field is evolving so rapidly that we feel it is important to move ahead with a benchmark

proposal. It is anticipated that refinements will be necessary and will be part of an ongoing

process. Nevertheless having a benchmark is important now when research and industry are

still in the relatively early stages of developing network processor designs.

The following section presents background material and related work. In Section 3 the

benchmark applications and data sets are described. Section 4 contains the bulk of the paper

and considers a set of measurements on both CommBench and SPEC. Section 5 gives three

examples on how the benchmark results can influence network processor design. Section 6

summarizes the contributions of this work.
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2 Background and Related Work

In response to the increasing cost and performance demands associated with telecommuni-

cations applications, a number of alternative strategies to developing embedded processors

are being considered. While some companies have chosen to develop their own proprietary

processors, the general trend has been to use commercially available core processors. These

processors constitute a portion of an ASIC chip where the remainder of the chip area contains

dedicated logic and memory associated with a given telecommunications product.

While the basic design of the core processor typically follows standard advanced RISC

design principles, companies producing and marketing core processors [11] [16] often provide

for some specialization. Specialization features fall into the following general categories:

• Memory Organization: Selection of cache memory size, associativity and design.

• Word Size: Selection of register/instruction word size (e.g., 16, 24 or 32 bit).

• Functional Components: Selection of a limited set of predesigned functions (e.g., floating

point, timers).

• Coprocessor Functions: Standard coprocessor interfaces for the to perform special func-

tions [12]. The coprocessor, generally designed by the company purchasing the processor

core, acts as a special logic block which is invoked by the processor [28].

• New Instructions: Provision for the establishment of new instructions which execute

within the standard RISC pipeline structure [26].

This set of alternatives represents the first generation of choices associated with the develop-

ment of reconfigurable processor designs. While the above approaches are static in nature,

dynamic reconfiguration is becoming more feasible and dynamically reconfigurable instruction

sets and pipelines are likely appear in the next few years [2] [10] [21].

The design issue here is just how to select from the numerous alternatives given the avail-

able chip area and performance implications of each decision. There is a long history of

developing benchmark programs of both the synthetic (Whetstone [8], Drystone [30]) and real

(SPEC [24]) varieties. While the most popular benchmark associated with workstations has

been the SPEC integer and floating-point suite, benchmarks aimed towards other applica-

tion classes have also been developed and used with some success. Two examples are TPC
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[27], a benchmark oriented towards transaction processing applications, and SPLASH [32], a

benchmark oriented towards scientific applications executing on parallel processors .

In addition to specific differences in program execution characteristics (e.g., cache be-

havior, etc.), there are other related areas in which traditional benchmarks are inadequate

for evaluation of telecommunications oriented processors. One significant shortcoming is the

missing focus on clearly defined I/O. For a network environment, a benchmark should ideally

consider a wide range of input sizes, permitting analysis of both small (i.e., ATM cells) and

large (i.e., data streams) data sizes. Benchmarks such as SPEC also are not focussed on yield-

ing information related to real-time constraints. Additionally, traditional benchmarks tend

to assume an applications environment which is relatively static as opposed to the network

processor environment where one encounters many small dynamically changing applications.

A recent benchmark, that addresses I/O issues in the context of multimedia applications is

the MediaBench benchmark [14] which consists of programs implementing various compression

and coding algorithms for streaming voice, audio, and video data (e.g., JPEG, MPEG, GSM,

etc.). However, multimedia transcoding is only one part of the network processor applications

domain. Additionally, such processors must perform a wide variety of logical control operations

not significantly present in MediaBench.

CommBench focuses on operations that are performed at the network layer where ap-

plications are heavily dominated by I/O and hard real-time constraints. The benchmark

applications are split into two subsets. One considers streaming data flows in a networking

context (similar to MediaBench). The other focuses on packet-based processing tasks such as

routing, data forwarding and monitoring.

3 The Benchmark

A desirable property of any application in a benchmark is its representativeness of a wider

application class in the domain of interest. In this spirit, the benchmark applications have

been chosen so that their kernels represent common network processing computations. For

example, the tree based lookup in RTR is representative of many routing algorithms as well as

packet classification schemes. The discrete cosine transform performed in JPEG is the basis

of all JPEG and MPEG coding schemes.

CommBench applications have also been selected to represent typical workloads for both

traditional routers (focus on header processing) and ‘active’ routers (perform both header
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and stream processing). Thus, the applications can be divided into two groups: Header-

Processing Applications (HPA) and Payload-Processing Applications (PPA).

3.1 Header-Processing Applications

The header-processing programs represent operations that are done on a per-packet basis

and are mainly independent of the size and type of the packet payload. These applications

involve a good deal of “random” logic, header field interrogation and processing, table lookup,

and control. One issue concerns the selection of programs typical of this domain. At this

point, many of the more advanced application programs are embedded into existing network

components and are proprietary in nature. We have selected the public domain programs

listed below which likely to be operationally similar to proprietary programs.

• RTR is a Radix-Tree Routing table lookup program. Routing table lookups are impor-

tant operations performed for every packet in a datagram-based network, and for every

connection in a connection-based network. RTR is the radix-tree routing algorithm from

the public domain NetBSD distribution [17]. There are more efficient routing approaches

[23], however they are not freely available.

Kernel : lookup operations on tree data structure.

• FRAG is a IP packet fragmentation application. IP packets are split into multiple

fragments for which some header fields have to be adjusted and a header checksum

computed. The checksum computation that dominates this application is performed as

part of all IP packet application programs other than just forwarding.

Kernel : packet header modifications and checksum computation.

• DRR is a Deficit Round Robin fair scheduling algorithm [22] that is commonly used

for bandwidth scheduling on network links. The algorithm is implemented in one form

or another in various switches currently available (e.g., Cisco 12000 series [3]).

Kernel : queue maintenance and packet scheduling for fair resource utilization.

• TCP is a TCP traffic monitoring application that is representative of the class of

monitoring and management applications. We use tcpdump, a widely used tool, that is

standard in BSD distributions and is based on the BSD packet filter [15].

Kernel : pattern-matching on header data fields.
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3.2 Payload Processing Applications

Payload-processing applications access and possibly modify the contents of a packet during

processing on a network node. Generally the applications are executed not only on a single

packet, but on a stream of packets as is common in modern routers. Note that each of these

applications has an encoding and a decoding section. While each of these sections is executed

separately, they are considered together as a single program unless they have significantly

different performance characteristics.

• CAST is a program based on the CAST-128 block cipher algorithm that uses a 128

bit key to encrypt data for secure transmission [1]. CAST-128 operates similar to other

block cipher algorithms used in current networks, such as IDEA [13] and RC5 [19],

however, CAST is in the public domain and is not limited by patent restrictions.

Kernel : encryption arithmetic.

• ZIP is a data compression program based on the commonly used Lempel-Ziv (LZ77)

algorithm [33] for data compression. The implementation can achieve different levels of

data compression by varying the algorithm’s computational complexity and exemplifies

applications that permit tradeoffs between computational power and bandwidth.

Kernel : data compression.

• REED is an implementation of the Reed-Solomon Forward Error Correction scheme

that adds redundancy to data to allow recovery from transmission errors [18]. This is

commonly used on unreliable data links which can be found in wireless networks.

Kernel : redundancy coding.

• JPEG is a lossy compression algorithm [29] for image data. It represents the class of

media transcoding applications.

Kernel : discrete cosine transform (DCT) and Huffmann coding.

3.3 Data and Tools

Naturally, the data collected represents executions of the benchmark on a particular processor

utilizing a particular compiler. All the programs in the benchmark have been run on SUN

UltraSparc II processors operating under the SunOS 5.7. The C compiler used was gcc 2.8.1

and was executed with optimization level O2. This level has been selected because the compiler
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only performs optimizations that are independent of the target processor and does not exploit

particular architectural features (e.g., loop unrolling for superscalar machines). To account

for the influence that the compiler has on the benchmark characteristics, we compared gcc

to the cc 4.2 compiler. Differences in the generated instruction mix were limited to 1-2% for

each instruction class. The cache performance of the generated code was also very similar for

both compilers.

For run time instruction mix analysis, Shade [5] and SpixTools [4] were used. These tools

simulate and analyze programs on a Sparc processor. For the cache simulations, Dinero [9], a

uniprocessor cache simulator, was used.

The benchmark programs were executed with a variety of input data to see the effect on

program operation characteristics. While the Header-Processing Applications require data

inputs in a particular format for each program (i.e., TCP requires raw packet header, while

RTR lookups requires IP addresses), the Payload-Processing Applications, except for JPEG,

can process any data stream. For these applications we measured instruction mix and cache

behavior for HTML data (plain text), binary program code, and JPEG coded image data.

While CAST and REED perform identically on any data, ZIP shows differences on data

that has already been entropy encoded (i.e., JPEG data). To account for this variation, the

input for the benchmark measurements was developed with an equal mix of the three data

types.

4 Benchmark Characteristics

There is a wide range of characteristics associated with any program or benchmark, and

just which of these impacts performance depends on the underlying processor architecture

(existing or proposed) and associated compiler. We have selected the following general areas

of characterization: code and kernel sizes, computational complexity, instruction frequency,

and cache performance. We expect that other characterizations will appear as progress is

made towards developing embedded network computers as discussed earlier.

4.1 Code and Computational Kernel Sizes

One can view the size of an application along a number of different dimensions ranging from

source code size to the number of bytes most often referenced during execution as shown in

Table 1. For CommBench and SPEC static and dynamic code size information was collected.
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Number of lines of C code Static
Number of bytes of compiled code Static
Number of instructions executed at least once Dynamic
Number of instructions accounting for 90% of execution Dynamic
Number of instructions accounting for 99% of execution Dynamic

Table 1: Benchmark Application Sizing

CommBench Type Code Size Code Size SPEC Code Size Code Size
Program C lines Object bytes Program C lines Object bytes

TCP HPA 19,100 352,000 126.gcc 206,000 1,950,000
JPEG PPA 18,300 260,000 147.vortex 67,200 1,150,000
ZIP PPA 6,500 117,000 132.ijpeg 31,200 594,000
RTR HPA 1,130 16,000 099.go 29,200 558,000
REED PPA 410 6,900 134.perl 26,900 544,000
CAST PPA 350 19,500 124.m88ksim 19,900 404,000
DRR HPA 100 2,500 130.li 7,600 139,000
FRAG HPA 100 2,400 129.compress 1,930 81,700
Average 5,750 97,000 Average 48,700 678,000

Table 2: CommBench and SPEC Code Size

The size of the source code and compiled code of each program in both CommBench and

SPEC is shown in Table 2. The object size data does not include the large but little used

dynamically linked libraries (up to 300 kbytes on the SUN Solaris system). CommBench

programs, based on object code size, are about an order of magnitude smaller than SPEC

programs. The variation in CommBench code size stems from the different environments in

which the applications have been developed. DRR and FRAG are non-commercial proof-of-

concept implementations, while ZIP and JPEG are industrial strength implementations with

a multitude of options. This has an impact on static code analysis, but dynamic run-time

analysis indicates that all applications execute within a fairly small kernel.

The dynamic kernel characteristics of CommBench programs are shown in Table 3. The

first column indicates the number of instructions which have been executed at least once.

Note that the average is 3,430 instructions (13,720 bytes), which is significantly less than the

average unlinked object code size (97,000 bytes). Even when one removes from the object

code size the roughly 15% which corresponds to data fields, this indicates the presence of

a significant amount of code that is never executed. This ‘dead’ code typically corresponds

to code for error handling conditions or rarely used data formats. A similar situation can

be seen from the corresponding SPEC data. Defining the ratio, Ic, of instruction code (e.g.,
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CommBench Instructions Instr. Instr. SPEC Instructions Instr. Instr.
Program at least once for 99% for 90% Program at least once for 99% for 90%

TCP 7,257 317 232 126.gcc 124,246 43,983 15,899
JPEG 6,155 804 504 147.vortex 60,630 10,136 1,715
RTR 3,805 1,371 387 099.go 53,629 17,511 6,530
ZIP 3,538 555 296 132.ijpeg 12,627 1,735 949
CAST 2,529 716 642 124.m88ksim 12,313 2,154 875
REED 1,510 48 23 134.perl 12,284 683 542
DRR 1,353 70 36 130.li 7,341 990 408
FRAG 1,258 97 80 129.compress 2,842 352 227
Average 3,430 500 275 Average 35,700 9,700 3,390

Table 3: CommBench and SPEC Dynamic Kernel Characteristics

instructions that have been executed at least once) to the instruction portion of the object

code size (e.g., 85% of the object code size), we obtain Ic,Comm = 0.16 and Ic,SPEC = 0.24 .

Thus, not only is the static size for CommBench significantly smaller than for SPEC, but the

dynamic kernel of CommBench is relatively even smaller.

This idea is reinforced by examining the ratio of the number of instructions which constitute

99% of the instructions executed to the number of instructions which are executed at least

once, Ik. For CommBench Ik,Comm = 0.15 while for SPEC Ik,SPEC = 0.27. Additionally,

while the ratio of object code sizes for SPEC versus CommBench is on average about 7,

the ratio of number of instructions which constitute 99% of the executed code is on average

almost 20. These results reflect the notion that workstation processors typically execute a few

large tasks while network processors can be expected to execute smaller, somewhat simpler

but computationally intense tasks. This has significant implications for memory and cache

requirements, and will be important when determining the memory requirements for single

chip parallel network processors.

A common notion used in processor design is the 90/10 “rule”; that is 90% of executed

instructions are derived from 10% of the instructions in the program. Figure 1 is a visual

representation of the 90/10 rule showing the size of the kernel in relation to the total number

of instructions. A steeply rising curve indicates that only a few instructions are responsible

for most of the runtime computation. Only instructions that are executed at least once are

considered.

In CommBench, RTR, ZIP, and JPEG have kernels that follow the 90/10 rule very closely.

FRAG, DRR, and REED have smaller kernels that correspond more to a 95/5 rule. TCP
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Figure 1: Kernel characteristics of CommBench applications

has a wider spread kernel more closely following a 85/15 rule. CAST has a basically linear

behavior due to a fairly large inner loop that repeats many instructions the same number of

times.

4.2 Computational Complexity

Given clearly defined I/O components for each CommBench application, it is possible to

define the computationally complexity of each application with respect to the number and

size of the processed packets. This complexity measure helps in determining certain aspects

of performance as a function of expected workload. Note, that computational complexity here

does not reflect memory system performance since it is based on the number of instructions

rather than the number of cycles executed.

We define the computational complexity Na,l to be the number of instructions per byte

required for application a operating on a packet of length l. For header processing, l is taken to

be 64, 576 and 1, 536 bytes (i.e., minimum IP-packet size, minimum MTU (maximum transfer

unit) over IP, and maximum Ethernet packet size). The minimum l = 64 is also in the

range of ATM cell size (53 bytes). For payload processing applications l is effectively equal to

infinity. That is, we consider data streams of sufficient length (≥ 1Mbyte) so that the startup

processing overhead is negligible. Table 4 shows the complexity of CommBench applications.

Given an average incoming data rate, the results of Table 4 give a preliminary indication

of how fast a processor is needed for real-time packet header and payload processing (see

example in Section 5.1).
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HPA a Na,64 Na,576 Na,1536 PPA a Na,∞ (enc) Na,∞ (dec)

TCP 10.3 1.2 .4 REED 603 1052
FRAG 7.7 .9 .3 ZIP 226 35
DRR 4.1 .5 .2 CAST 104 104
RTR 2.1 .2 .1 JPEG 81 60

Table 4: Computational Complexity of CommBench Applications in instructions/byte. Packet
sizes for header processing applications are 64, 576 and 1, 536 bytes. For payload processing
applications the complexity is given as instructions per byte of payload (enc =encode/encrypt;
dec =decode/decrypt)

4.3 Instruction Set Characteristics

The instruction mix gives an indication on the type of instructions executed in the bench-

mark. Figure 2 shows the instruction set frequencies for each of the programs in CommBench.

Figure 3 gives the instruction frequencies for CommBench, SPEC, and the two CommBench

components, HPA and PPA. Table 5 presents this same data sorted by frequency for each

benchmark. Both, the general trend and the variability across programs is similar to that

found in SPEC. The following points out the similarities between the two benchmarks:

• The average difference in frequencies for the top nine instructions (≈ 97% of executed

instructions) between CommBench and SPEC is under 5%.

• The eight most frequent instruction types (≈ 95% of executed instructions) are the same

for both CommBench and SPEC.

There are also important differences:

• The average variance of the instruction frequencies over all instructions for CommBench

is 1.4 times that of SPEC. This is due to the fact that the HPA and PPA act as two

sub-benchmarks within CommBench and have differing execution characteristics.

• CommBench executes about 6% more add/sub instructions and 5% fewer load immedi-

ate instructions than SPEC.

A comparison of the HPA and PPA benchmark components points to other differences of note.

• The two components of CommBench, HPA and PPA, have different instruction execution

frequencies. For example, there are two instruction groups, the first, including load and
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Figure 2: CommBench Instruction Frequencies (see Figure 3 for x-axis legend)
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Figure 3: Instruction Frequencies: CommBench, SPEC, CommBench Header and Payload
Processing Application. Error bars indicate the minimum and maximum of instruction fre-
quencies encountered for any single application. (LD = load, AD = add/sub, BR = conditional
branch, CP = compare, LG = logic, SH = shift, ST = store, LI = load immediate, JP = jump
and link, SR = save/restore, CL = call, MU = mult, NO = nop, OT = other)

CommBench SPEC CINT95 CommBench CommBench
Average % Average % HPA % PPA %

load 22 load 18 load 27 add/sub 22
add/sub 17 cond. branch 15 cond. branch 18 load 18
cond. branch 16 compare 13 compare 18 cond. branch 13
compare 15 logic 12 add/sub 13 shift 13
logic 9 add/sub 11 store 6 compare 12
shift 8 store 7 logic 6 logic 11
store 7 shift 7 shift 4 store 7
load imm. 2 load imm. 7 load imm. 2 load imm. 1
jmpl 1 save/restore 2 jmpl 1 save/restore 1

Table 5: Instruction Frequencies for CommBench, SPEC, HPA and PPA.
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add/sub, where the differences in instruction frequencies are about 10%, and the second,

including cond branch, compare and logic, where the differences are around 5%.

• For certain instructions the differences between SPEC and HPA are significant. For

example there are four instructions in the top eight, load, compare, logic and load

immediate, where the differences are between 5% and 9%. On the one hand it appears

that the SPEC applications are better able to use the load immediate instruction. On

the other hand, header processing involves a good deal of load byte from the header into

a register and comparing them against some values. This is reflected in CommBench’s

larger percentages for load and compare.

• For selected instructions, there are significant differences between SPEC and PPA. The

frequency difference associated with add/sub is about 11%. In this case the PPA pro-

grams have a higher frequency due to the requirements of payload/streaming applica-

tions. For other instructions, shift and load immediate, the differences are about 5%.

The above differences point out that a network processor must deal with both streaming ap-

plications and header processing applications. These results also support a design approach

which consists of developing network processors in terms of communicating groups of process-

ing cores where the individual cores have selected characteristics tailored to either HPA and

PPA applications. The number of cores of each type within a given chip would generally not

be equal since the prior complexity analysis indicates that the processing requirements of the

two CommBench components are different.

4.4 Memory Hierarchy Characteristics

An important part of any processor design is its memory hierarchy. We measured the cache

performance for each CommBench application. Separate instruction and data caches from 1

kbyte to 32 kbyte were simulated. Figure 4 shows the results for a 2-way associative instruction

and data cache. Other caches with different associativity were also investigated. For the direct

mapped cache the rule of thumb holds which states that the miss rate is about 1.5 to 2 times

that of a 2-way cache. The differences between 2-way, 4-way and 8-way associative caches are

minor, hence the gain for going to higher associativity given the additional chip area costs are

limited.
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(b) HPA Data Cache
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(c) PPA Instruction Cache (Encoding)
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(d) PPA Data Cache (Encoding)
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(e) PPA Instruction Cache (Decoding)
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Figure 4: Instruction Cache and Data Cache Miss Rates for CommBench Applications
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(a) Instruction Cache Average
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Figure 5: Average Instruction Cache and Data Cache Miss Rates for CommBench, HPA, PPA,
and SPEC.

The CommBench, and HPA and PPA component cache performance is compared to SPEC

in Figure 5. The following points are relevant:

• If a 8 kbyte instruction cache is available, instruction miss rates under 0.5% can be

achieved for all but the CAST program. For 16 kbyte instruction caches, all applications

achieve miss rates are below 0.2%.

• Due to the relatively small CommBench program kernels, CommBench instruction miss

rates are considerably smaller then SPEC miss rates (3.8% vs. 8.3% for 1 kbyte, 0.6%

vs. 2.2% for 8 kbyte, 0.1% vs. 0.5% for 32 kbyte).

• For Payload Processing Applications, encoding and decoding programs have almost

identical instruction and data cache performance. Only ZIP has a much higher data

cache miss rate for the encoding application.

• Data cache miss rates are below 1% for a 16 kbyte cache, except for the ZIP and FRAG

applications.

• Payload Processing Applications and SPEC have a similar data cache performance.

The miss rates for Header Processing Applications however is roughly half the miss

rate of SPEC. This is due to the fact that the payloads are streamed through the

system, touched a few times for processing, and then sent out. Thus there is little data
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Cache Type 16 byte vs. 32 byte 32 byte vs. 64 byte

Instruction 1.67 1.18
Data 1.36 1.26

Table 6: Effect of Line Size on Cache Miss Rates. Table entries indicate the ratio of the
average miss rate at the lower line size to the average miss rate at the larger line size.

locality. Headers, on the other hand are typically held in memory for a longer time (e.g.,

the length of the packet time) and require more complex processing (e.g., routing and

forwarding).

The instruction miss rates for CommBench varies as a function of the cache line size. Table 6

shows that average miss rates decrease with increasing line size. The step from 16 to 32 bytes

decreases the miss rates by 1.67 for instruction cache and 1.36 for data cache. Going to 64

bytes decreases the miss rate further, but only by 1.18 for instruction cache and 1.26 for data

cache. There are two applications (CAST and RTR) that have higher miss rates with a 64

byte line size than with a 32 byte line size. The overall performance effect of using increased

line size depends not only on the miss rate, but also on the miss penalty. This is processor

implementation dependent, though, and is therefore not considered here.

5 Design Implications - Examples

To illustrate how CommBench can be used in network processor design three examples are

considered. First the computational complexity measure is used to estimate processing re-

quirements. Second, instruction set information is considered to see if creation of special

purpose instructions might improve performance. Finally, cache miss rate data is used to

determine memory bandwidth requirements of a multi-processor ASIC.

5.1 Computational Complexity

One fundamental system design issue concerns estimating the computational power required

for a certain data traffic mix. As an example, consider the requirements associated with

processing a mix requiring RTR and DRR (for IP header processing), and CAST (for payload

encryption).

Using the results from section 4.2 consider the processing requirements of RTR and DRR

with a link bit rate of Rlnk = 1.2 Gbit/sec. Assuming packet sizes, l, of 576 bytes, the number
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instruction pairs avg. occurrence max. occurrence

ADD-SUBCC 3.55% 11.6%
LD-SUBCC 3.03% 13.0%
LD-LD 2.36% 20.2%
ADD-LDUB 2.07% 4.84%
SLL-LD 2.05% 6.82%
STB-ADD 2.05% 4.65%
LD-ADD 1.85% 5.35%
ADD-ADD 1.84% 5.85%

Table 7: Most Frequent Instruction Pairs for CommBench.

of instructions per second, M , that have to be executed is:

M = (NRTR,576 + NDRR,576) · Rlnk = (0.2 + 0.5)
instr

byte
· 150 · 106

bytes

sec
= 105 MIPS.

For on-the-fly CAST encryption (also at link bit rate of Rlnk = 1.2 Gbit/sec), the header

processing overhead for the data stream can be ignored since payload processing dominates

the computational complexity. This is generally true for stream data where typically large

packets are used. The computational requirements M for this example are:

M = NCAST,∞ · Rlnk = 104
instr

byte
· 150 · 106

bytes

sec
= 15, 600 MIPS.

This first cut analysis indicates that standard RISC processor by itself is sufficient for header

processing at link speed, but will not provide adequate computational power for tasks that

perform payload processing. The use of vector processing techniques for streaming applications

(i.e., embedded vector processors) [20] or multiple parallel superscalar or VLIW processors on

a chip [31] are promising approaches to achieve link-speed payload processing.

5.2 Instruction Set Design

Opportunities are now becoming available for incorporating special nonstandard instructions

into processor designs. Such instructions can be incorporated either prior to fabrication or

(with some restrictions) dynamically during execution. They can be identified by the pro-

grammer who is familiar with the applications or by a dynamic instruction profiling analysis.

CommBench applications were profiled and the most common instruction sequences were

identified. Table 7 shows the ten most common pairs of instructions. The most frequent

instruction pair is an ADD followed by a SUBCC (compare) and this pair constitutes 3.55%

of all instruction pairs that occur. Other pairs are less frequent, but the top eight pairs still
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occur each more than 1.8% of the time. Longer instruction sequences all had substantially

lower frequencies of occurrence.

Consider adding a new “load and compare” instruction which has the functionality of

the ADD-SUBCC pair. A typical instruction sequence (shown below) indicates how the pair

appears in the kernel of the REED encoding program.
... 8 add %g2, -0xff, %g2

1 ld [%i3 + %g4], %g2 9 sra %g2, 8, %g3

2 subcc %g2, 0xff, %g0 10 and %g2, 0xff, %g2

3 be 0x104c0 11 add %g3, %g2, %g2

4 add %g2, %i4, %g2 12 subcc %g2, 0xfe, %g0

5 subcc %g2, 0xfe, %g0 13 bg,a 0x10494

6 ble,a 0x104b0 14 add %g2, -0xff, %g2

7 sll %g2, 2, %g2 ...

The destination register of the ADD instruction (%g2) is also a source register of the

SUBCC instruction. This dependence makes is possible to combine ADD and SUBCC in

a single instruction that performs both an addition and a compare. If such an instruction

can be implemented without increasing the cycle time, then each occurrence of ADD-SUBCC

can be executed in one cycle instead of two cycles. As a result, the average CommBench

program would execute 3.5% faster and the REED program (having maximum occurrence of

that pair) would execute about 12% faster, a significant amount when dealing with a real time

application.

5.3 I/O Requirements for Multi-Processor ASIC

The computational complexity of the CommBench applications indicate that a single network

processor is insufficient to handle the stream processing requirements of a high-speed data link

(see Section 5.1). One approach to increasing computational power is through parallel use of

multiple processors. The inherent parallelism of independent data flows makes partitioning

the workload onto multiple independent processors relatively straight forward. With current

advances in ASIC technology it is possible to implement these processors along with a small

amount of cache onto a single chip [7].

For this example assume a system where data packets are received from the link, reassem-

bled, and put into a common main memory. A control processor then notifies one of the

multiple network processors to process the packet. The goal of this example is to estimate the

average memory bandwidth that is required between the main memory and the multi-processor

ASIC.
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To a first approximation, the memory bandwidth requirements of a processor depends on

its cache size (and design) and the program executing on it. Assume 2-way 8 kbyte instruction

cache and 2-way 8 kbyte write-through data cache with a line size of 32 bytes. Assume also

that the ASIC network processor is comprised of eight individual processors clocked at 400

MHz. For simplicity say that each of the processors performs one of the eight benchmark

applications.

The memory bandwidth mbw for an application a and cache size c is:

mbwa,c = (I miss ratea,c + (D miss ratea,c ∗ % loada) + % storea) ∗ clock ∗ line size.

For a = CAST and c = 8k the memory bandwidth is

mbwCAST,8k = (.0385 + (.0076 ∗ .1985) + .0722) ∗ 400 ∗ 106
∗ 32

bit

sec
= 1.4Gbit/sec.

Using the same expression, the mbw for each of the applications can be obtained with the

total mbwtotal being the overall sum.

mbwtotal = mbwCAST,8k + . . . + mbwZIP,8k = 8.12Gbit/sec.

Assuming a 64-bit wide memory interface, a bus clock rate of at least 130 MHz is required.

Naturally, this estimate considers only the average required memory access. A more detailed

analysis would have to account for activity bursts and peak bandwidth requirements.

6 Summary and Conclusion

This paper has presented a benchmark, CommBench, for use in evaluating and designing

telecommunications network processors. Of the eight programs in the benchmark, four are

oriented towards packet header processing and four towards payload processing. The bench-

mark is defined and various characteristics of the benchmark have been presented. Where

possible, characteristics of CommBench have been contrasted with those of SPEC.

In terms of static code size and kernel instructions, CommBench programs are about

an order of magnitude smaller than the programs in SPEC . The instruction frequencies

for CommBench are similar when compared to SPEC across the entire benchmark, but the

payload processing applications execute significantly more add/sub, shift, and logic operations.

With respect to the cache performance, CommBench applications have only about half the

miss rate compared to SPEC. For an instruction cache of 16 kbytes the miss rates drop below
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0.1%. For data cache performance, payload processing applications behave like SPEC, and

header processing applications have about half the miss rate. This lower cache requirements

are due to the smaller kernel sizes associated with CommBench applications. Branch and

addressing mode statistics, though not presented here, are similar to those obtained with

SPEC.

Unlike traditional processor benchmarks, CommBench provides clearly defined I/O and

computational complexity measures that are directed at the network processor environment.

Three examples show how CommBench can be used in the initial design process. More detailed

processor simulation models may also use CommBench instruction trace data during design

and evaluation.
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