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Abstract. A collection of unconstrained optimization test functions is presented.
The purpose of this collection is to give to the optimization community a large
number of general test functions to be used in testing the unconstrained
optimization algorithms and comparisons studies. For each function we give its
algebraic expression and the standard initial point. Some of the test fnctions are
from the CUTE collection established by Bongartz, Conn, Gould and Toint,
[1995], others are from Moré, Garbow and Hillstrom, [1981], Himmelblau [1972]
or from some other papers or technical reports.

1. Introduction

Always theorists working in nonlinear programming area, as well as practical
optimizers need to evaluate nonlinear optimization algorithms. Due to the
hypothesis introduced in order to prove the convergence and the complexity of
algorithms, the theory is not enough to establish the efficiency and the reliability of
a method. As a consequence the only way to see the “power” of an algorithm
remains its implementation in computer codes and its testing on large classes of
test problems of different structures and characteristics. Besides, as George B.
Dantzig (1914-2005) said “the final test of a theory is its capacity to solve the
problems which originated it”. This is the main reason we assembled here this
collection of large-scale unconstrained optimization problems to test the theoretical
developments in mathematical programming.

Nonlinear programming algorithms need to be tested at least in two
different senses. Firstly, testing is always profitable into the process of
development of an algorithm in order to evaluate the ideas and the corresponding
algebraic procedures. Clearly, well designed test problems are very powerful in
clarifying the algorithmic ideas and mechanisms. Secondly, a reasonably large set
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of test problems must be used in order to get an idea about the hypothesis used in
proving the quality of the algorithm (local and global convergence, complexity)
and to compare algorithms at an experimental level.

Generally, two types of (unconstrained) nonlinear programming problems
can be identified: “artificial problems” and “real-life problems”. The artificial
nonlinear programming problems are used to see the behavior of the algorithms in
different difficult situations like long narrow valleys, functions with significant
null-space effects, essentially unimodal functions, functions with a huge number of
significant local optima, etc. Figures 1-6 present some types of artificial nonlinear
function in unconstrained optimization. All of them are of 2 variables, thus having
the possibility for their graphical representation.

Fig. 1. Unimodal function. Fig. 2. Functions with significant null-
space effects.

Fig. 4. Functions with a huge number of
significant local optima.

Fig. 6. Functions whose global structure
provides no useful information about its
optima.

Fig. 5. Functions with a small number of
significant local optima.
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The main characteristic of artificial nonlinear programming problems is that they
are relatively easy to manipulate and to use into the process of algorithmic
invention. Besides, the algorithmist may rapidly modify the problem in order to
place the algorithm in different difficult conditions.

Real-life problems, on the other hand, are coming from different sources of
applied optimization problems like physics, chemistry, engineering, biology,
economy, oceanography, astronomy, meteorology, etc. Unlike artificial
(unconstrained) nonlinear programming problems, real-life problems are not easily
available and are difficult to manipulate. They may have complicated algebraic (or
differential) expressions, may depend on a huge amount of data, and possible are
dependent on some parameters which must be estimated in a specific way. A very
nice collection of real-life unconstrained optimization problems is that given by
Averick, et al. [1991, 1992].

In this collection we consider only artificial unconstrained optimization
test problems. All of them are presented in extended or generalized form. The main
difference between these forms is that while the problems in generalized form have
the Hessian matrix as a block diagonal matrix, the extended forms have the Hessian
as a multi-diagonal matrix. Many individuals have contributed, each of them in
important ways, to the preparation of this collection. We do not mention them here.
An important source of problems was the CUTE collection established by
Bongartz, Conn, Gould and Toint, [1995]. Some other problems are from Moré¢,
Garbow and Hillstrom, [1981], Himmelblau [1972] or are extracted from some
other papers or technical reports. Generally, the problems in extended forms are
slightly more difficult to be solved.

2. Unconstrained Optimization Test Functions

Extended Freudenstein & Roth function:
n/2

2
f(x)= Z(_B + x5 (5= xy)x,, — 2)x2i)
i-1
+ (_29 + X, +((xy; +Dx,, - 14)x2i)2 ’
x, =[0.5,-2,0.5,-2,...,0.5,-2].

Extended Trigonometric function:

n ( n \\2
f(x)= Zk[n—Zcosxjj+i(l—cosxi)—sinx,) ,

x, =[0.2,0.2,...,0.2].
Extended Rosenbrock function:

n/2
= 2exy, —x2.) +(1-x,.)" x, =[-121...-12,1].  c=100.
i=1

149



Generalized Rosenbrock function:
2
b

f(x)= nf‘,c(x,.ﬂ —x2) +(1-x,)",  x, =[-121..-12]1], ¢=100.
i=1

Extended White & Holst function:

n/2

f)=2dx,-x ) +(1-x,)  x, =[-121,...-121],  c=100.

i=1

Extended Beale function:

f(x)= i(l.S - le._](l - le.))z +(2.25 - le._l(l - xzzi))2

1
#(2.625-x,, ,(1-x2)),
x, =[L03,...,1,08].
Extended Penalty function: )
f(x)= i(xi 1)’ +(Z":x§ —0.25] . Xy =[L2,....n].
= =

Perturbed Quadratic function:

n 1 n 2
f(x)= D ix? +—IOO(inj . x, =[0.5,0.5,...,0.5]
i=1 i=1

Raydan 1 function:

f(x) = zﬁ(exp(xi)— %), x=[LL...1].

Raydan 2 function:

f(x)= ;(exp(xi)— X)), x =[]

Diagonal 1 function:

f(x)= i(exp(xi)— ix)), x,=[1/nl/n,..1/n].

Diagonal 2 function:

f(x)= i(exp(xi)—%), xg=[1/1,1/2,....1/n).
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Diagonal 3 function:

f(x)= i(exp(xi)— isin(x,)),  x, =[LL....1].

Hager function:

f(x)= Zn:(exp(xi)— Jix,),  x, =[LL....1].

Generalized Tridiagonal 1 function:
4

S(x)= ni(xi T X _3)2 +(x,- —Xin +1) x, =[2,2,...,2].
i=1

Extended Tridiagonal 1 function:
n/2

f(x)= Z(‘xZi—l + Xy - 3)2 +<x2i—1 Xy T 1)

4
b

X, =[2,2,...2].

Extended TET function : (Three exponential terms)
n/2

f(x)= z‘(exp(le;1 +3x,, —0.1)+exp(x,, , —3x,, —0.1)+ exp(—x,, , — O.l)),
i=1
x, =[0.1,0.1,...,0.1].

Generalized Tridiagonal 2 function:
f(x)= ((5—3x1 —x])x, —3x, +1)2 +

n=1

2((5=3x, = x2)x, —x,, —3x,, +1) +(5-3x, —xD)x, —x,, +1)

i+1
i=1

x, =[-1,-1,...,~1].

2
’

Diagonal 4 function:
n/2

f(X)=Z§(x22i_l+cx22i), X, =[LL...,1], c=100.
i=1

Diagonal 5 function:

f(x)= ilog(exp(xi)+exp(—xi)), x,=[LLLL...,L1].

Extended Himmelblau function:
n/2

S(x)= z<x22i—1 + X, _11)2 +(x2i—l + x22i _7)2= xo =[L1,...,1].
i=1
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Generalized White & Holst function:
2

f(x)= nf‘,c(x,.ﬂ —x)) +(1-x)", x,=[-121...-121], ¢=100.
i=1

Generalized PSC1 function:

n=1

F()=2(x2 +x2, +x,x,,) +sin’(x,)+cos’(x,), x, =[3,01,...3,01].
i=1

i7Vi+l

Extended PSC1 function:

n/2
2 .
f(x)= Z(xzzi—l + x22i + x2i—1x2i) +sin’ (x5,)+ cos’ (x5,

i=1
x, =[3,0.,...,3,01].

Extended Powell function:
nl4

S(x)= Z(x4i—3 +10x,,_, )2 + 5(x4i—1 Xy )2 +
i1

(X2 =2, )4 +10 (x5 =y, )4 )
x, =[3,-1,0,1,...,3,-1,0.1].

Full Hessian FH1 function:
F)=(x,=3)* + 2 (x, =3-2(x, + x, 4+ +x,)°)
i=2
x, =[0.01,0.01,...,0.01].

2
s

Full Hessian FH2 function:
2

()= (x, =57 + 2 (x, +x,4++x,-1),  x, =[0.01,0.01,...,0.01].
=2

Extended BD1 function (Block Diagonal):
n/2
Fe)=2(x2 +x2=2) +(exp(x,, —D—x,,)", x, =[0.1,0.1,...,0.1].
i=1

Extended Maratos function:
n/2

F(0)=2on, +dxl +x2 1), x,=[1101,..,L1,01],  c=100.

i=1

Extended CIiff function:

n/2 = :5 2
f(x)= ;(%) - (XZi—l - le‘) + exp(ZO(xZH - x2i))’

x, =[0,~1,...,0,-1].
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Perturbed quadratic diagonal function:

f(x)= (Zx j + Z—x x, =[0.5,0.5,...,0.5].

=1 100

Extended Wood function:
n/4

f(x)= ZI:IOO(xiH - x4l>2)2 +(x4l>3 _1)2 + 90()‘51‘71 - x4i)2 +
(1= ) #1104 (o, 1)+, 1)} +198( i, L, —1)(x,, — 1),
—[=3-1,-31,... -3 ~1-31].

Extended Hiebert function:
n/2

f(x)= Z(xz, ~10) + (x5, x,, —50000)°,  x, =1[0,0,...,0].

Quadratic QF1 function:
f(x)= sz —x,,  x,=[LL...1].

Extended quadratic penalty QP1 function:

f(x)= i(x? )’ +(ixf —0.5] o x, = [LL..1].

Extended quadratic penalty QP2 function:

n—1 n 2
f(x)=2 (x> =sinx,)’ +(fo —100) . x, =[LL...1].
i=1 i=1

Quadratic QF2 function
f(x)= Z(x ~1)"-x,,  x,=[0505,...,0.5]

i=1

Extended quadratic exponential EP1 function:
n/2

f(x)= ;(exp(xzifl — X))~ 5)2 +(x21>1 - x2i)2(x2i’1 ~ %1 1)2’
=[L5,15,...,1.5].

Extended Tridiagonal 2 function:

f(x)= Z( Xy =1 +dx, +1)(x,, +1), x, =[L.1,...L]. =01
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FLETCBV3 function (CUTE):
1 = z h* +2
ﬂm=—ﬂﬁ+xﬂ+2£hwaY—ZPi——lx+3%muﬁ,
2 i 2 i h’ h
where:

p=1/10°, h=1/(n+1), c=1, x,=[h2h,...,nh].

FLETCHCR function (CUTE):

n=1

()= 2ex —x, +1-x2)", x, =[0.0.,....0.], ¢=100.

i=1
BDQRTIC function (CUTE):
f(x)_Z(—4x +3)" 4 (x2 4222, +3x

i+1 i+2
i=1

x, =[L.1,...,L].

2 2
+4x2, +5x2),

i+3

TRIDIA function (CUTE):
2 n
f(x):7(5x1—1) + Z(ODC - pr. 1) >

i=

a=2 B=1, y=1 S, x, =[L1,...1].

ARGLINB function (CUTE):

f(x)= i(Zyx] —1} , x, =[LL...1].

i=1 \j=1
ARWHEAD function (CUTE):
n—1 —
F)=2(4x, +3)+ (2 +x2),  x, =[L.L....L].
i=1

i=1
NONDIA function (CUTE):
()= -7+ 2100(x, - x2,),  x, =[-L,-1,...—L].
i=2

NONDQUAR function (CUTE):
n—2
)= (6 =x,) + 2 (%, + %0 +x,) (6, +x,)°,
i=1
x, = [1,-1,...,L—1.,].

DQDRTIC function (CUTE):
f(x)= Z(x +ox? +dxl,), ¢=100., d=100., x,=[3.3.....3.].
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EG2 function (CUTE):
< . 2 1 . 2
F(x)= D sin(x, + x° ~D+sin(x), 3 = (L.l
i=1

CURLY20 function (CUTE):
f(x)=2q! —20g; -01g,,
i=1

where:
xi +xi+1+“'+x[+k7 ZS I’l—k,
qz = . =20,
X, +x,,+-+x, i>n—k,

x, =[0.001/ (n+1),...,0.001/ (n+1)].

DIXMAANA - DIXMAANL functions:

n N | .\ k2
f)=1+ Zax?(ﬁ) + 2 ]+ x)(i) +
et (2] Sona
;7% Xivm " + ;5xixi+2m 0
m=n/3,
a B Y 5 k1 k2 K3 | ké
A 1 0 0.125 0.125 0 0 0 0
B 1 0.0625 0.0625 0.0625 0 0 0 1
C 1 0.125 0.125 0.125 0 0 0 0
D 1 0.26 0.26 0.26 0 0 0 0
E 1 0 0.125 0.125 1 0 0 1
F 1 0.0625 0.0625 0.0625 1 0 0 1
G 1 0.125 0.125 0.125 1 0 0 1
H 1 0.26 0.26 0.26 1 0 0 1
1 1 0 0.125 0.125 2 0 0 2
J 1 0.0625 0.0625 0.0625 2 0 0 2
K 1 0.125 0.125 0.125 2 0 0 2
L 1 0.26 0.26 0.26 2 0 0 2

x, =[2.,2.,...,2.].
Partial Perturbed Quadratic function:

n 1
fx)=x>+ Z(ix} + ﬁ(xl + 2, -+x,.)2), x, =[05,05,...,05].
i=1
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Broyden Tridiagonal function:
n—1
F(x)=Cx, = 2x2) + 2, (3x, = 2x7 —x,, —2x,, +1)* +(3x, = 2x> —x,_, +1)*,
i=2
x, =[-1-1,....~1].
Almost Perturbed Quadratic function:

1 2
f(x)= sz troo(ndx)’ g =[0505....,05]
i=1

Perturbed Trldlagonal Quadratic function:

f(x)=x +le +(x,, +x, +x,,)°, x, =[05,05,...,0.5].

Staircase 1 function:

f(x)= Z[Zx,j . x, =[L1,...1].

i=1 \_j=1

Staircase 2 function:
2

f(x)zg{(ngj—z} , x, =[0,0,...,0].

LIARWHD function (CUTE):
F()= D2 4(=x, +x2) + 2 (x, =1, x, =[4.4,...,4].
i=1 i=1

POWER function (CUTE):
F@)=2006), %=Ll
i=1

ENGVALL function (CUTE):

n—1

f(x)= Z(x +x2,) +Z(—4x 13),  x=[22..2]

CRAGGLVY function (CUTE):
F(x)= 2 exp(x,, )= x,,) " +100(x,, = x,,,)" +
i=1

4 8 2
(tan(x,;, = Xy )+ Xy — Xp50) " + X5 (X, =17,
x, =[L2,...,2].
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EDENSCH function (CUTE):

f(x)—16+2[(x —2) 4 (%, — 25,0 + (i, + D], x, =[0,0,...,0

INDEF function (CUTE):

f(x)= Zx +n21: cos(2x; — x, — x,), x0=r : 2 n_|

CUBE function (CUTE):

F(x)=(x, =1)> + 2,100(x, — x>,  x, =[-12,1,-12,1,...,-1.2,1].
=2

EXPLIN1 function (CUTE):
f(x)=exp(0.1x,x,,)— IOZ(ixi), x, =[0,0,...,0].
i=1

EXPLIN2 function (CUTE):
S IX;X; "
S(0)= Zexp(—g =0 =102 (ix). %, =[0.0.....0].
i=1 i=1

ARGLINC function (CUTE):
2
m=1{ n=1
f(x)=2+ Z(ijj(i—1)—1] . xo =[LL,...1.

i=2 \j=2
BDEXP function (CUTE)
f(x)= Z(x +xl+1)exp( X, (X, + X, )), x, =[LL,....1].

HARKERP?2 function (CUTE):

f(x)=(zn:xj Z(x + X )+2Z(2xJ . X, =[L2,...,n].

J=2\i=j
GENHUMPS function (CUTE):
n—l1
F(x)=D_sin(2x,)* sin(2x,,,)* +0.05(x> + x),

i=1

x, =[-506.,506.2,....,506.2].

MCCORMCK function (CUTE):
n=1
f(x)= Z(—I.Sxi +25x,, +1+(x, - x,,)” +sin(x, + x,,, )),
i=1
x, =[LL,....1].
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NONSCOMP function (CUTE):
F(x)=(x, =1 + 2 4(x, - x2,),  x, =[3,3,....3].
=2

VARDIM function (CUTE):

f(x):i(xi_1)2+( z ixj_n(n+1)) +(iiXi_n(n+1)j ’

i1 2 i1 2
[ 1 2 n|
X, =|_1—;,1—;,...,1—;J.

QUARTC function (CUTE):
. 4
f=2x -1 x=[2.2,....2.]
i=1

Diagonal 6 function:

f(x):iex" -(I-x,), x,=[LL....1].

SINQUAD function (CUTE):
n—1
F@) =0 D'+ 2{sin(x, = x,) = x7 +x2)+ (62 - 2],
=2
x, =[0.1,0.1,...,0.1].
Extended DENSCHNB function (CUTE):
n/2 2 2 2
S =200 =2) + 0 =2) i +{x, +1) % = (L1
i=1

Extended DENSCHNF function (CUTE):

n/2

2 2
f(x)= Z(z(xzi—l + x21’)2 + (X, — x2i)2 _8) +(5‘x22i—1 +(xy, — 3)2 - 9) 5
i=1
x, =12.,0.,2.,0.,...,2.,0.].

LIARWHD function (CUTE):
F()= D2 4(x>—x) + 2(x, =1, x, =[4.,4.,...4].
i=1 i=1

DIXON3DQ function (CUTE):
n=1
SO =(x =1+ 20, = x,)" +(x, =17, xp =[-L—L,...~1].
J=1
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COSINE function (CUTE):
n—l1
F(x)= 2 cos(—05x,, +x2),  x,=[LL,....1].
=1

SINE function:
n—1
()= Dsin(<0.5x,, +x7),  x, =[LL,....1]
i=1

BIGGSB1 function (CUTE):

n—1

S(x)=(x _1)2 + Z(xm _xi)2 +(1- xn)za x, =[0,0,...,0].
i=1
Generalized Quartic function:

n=1

f(x)zzxi2+(xi+1+xz'2)2= xo =[LL....1].
i1

Diagonal 7 function:

f(x)= Zexp(x[)—in -x7, x, =[L1,....1].
i=1

Diagonal 8 function:

F(x)= D x exp(x,)-2x,— x>, x,=[LL....1].
i=1

Full Hessian FH3 function:

f(x)= (ixij + i(xi exp(x,)—2x, — x}), x, =[LL....1].

SINCOS function:

n/2
_Z( 22 )2 +sin? + cos?
f(x)= Xojop T Xp; T Xpi 1 Xy, sSim- X, ; +COS” Xx,;,

i=1
x, =[3,0.1,3,0.1,...,3,0.1].

Diagonal 9 function:

f(x)= i(exp(xi)—ixi)+10000xf, X = [LL,...1].

i=1
HIMMELBG function (CUTE):

n/2

S = (253, +3%5, Jexp(—x,,  —xy, ), % =[1.5,1.5,...,1.5].
i=1
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HIMMELH function (CUTE):

n/2

F)=D (3%, = 2%, +2+4 x5, +X3), X%, =[1.5,1.5,...,1.5].
i=l
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