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Abstract

In this paper, an optimal adaptive fuzzy sliding mode controller is presented for a class of nonlinear systems. In the

proposed control, in the beginning, the boundaries of parametric uncertainties, disturbances and un-modeled

dynamics are reduced using a feedback linearization approach. Next, in order to overcome the remaining uncertainties,

a sliding mode controller is designed. Mathematical proof shows that the closed-loop system with the proposed control

is globally asymptotically stable. Using sliding mode control causes the undesirable chattering phenomenon to occur in

the control input. Next, in order to remove the undesirable chattering phenomenon, an adaptive fuzzy approximator is

designed to approximate the maximum boundary of the remaining uncertainties. Another mathematical proof shows that

the closed-loop system with the proposed control is globally asymptotically stable in the presence of structured and

unstructured uncertainties, and external disturbances. Finally, the self-adaptive modified bat algorithm is used to deter-

mine the coefficients of the adaptive fuzzy sliding mode control and the coefficients of the membership functions of the

adaptive fuzzy approximator. To investigate the performance of the proposed controller, an inverted pendulum system is

used as a case study. Simulation results verify the desirable performance of the optimal adaptive fuzzy sliding mode

control.
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1. Introduction

Controlling nonlinear systems with uncertainty has
always been one of the important challenges of control
engineering. As a result, researchers have presented
many methods for controlling these systems. Some of
the conventional nonlinear control approaches, such as
the feedback linearization approach and the back step-
ping technique, have shown a very desirable perform-
ance in controlling nonlinear systems. However, the
efficiency of these approaches in controlling nonlinear
systems with uncertainties has decreased significantly
and in some cases they cause the closed-loop system
to become unstable (Slotin and Li, 1991; Khalil,
2002). Variable structure control (VSC) is one of the
powerful methods in controlling nonlinear systems with
parametric uncertainties and external disturbances
(Soltanpour et al., 2012a).

Sliding mode control (SMC) is one of the famous
variable structure control approaches. In addition to
the advantages of variable structure control, sliding

mode control has other advantages such as simplicity
of designing and simplicity of practical implementation.
In recent years, SMC has been used for controlling
nonlinear systems with uncertainties (Shafiei and
Soltanpour, 2011; Khooban et al., 2012a). In these
papers, interesting approaches have been presented in
order to overcome the parametric uncertainties, dis-
turbance and unmodeled dynamics.
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The designers of SMC often assume that the con-
trol could be switched from one structure to another
without delay (Almutairi and Zribi, 2009; Chaouch
et al., 2012; Mamani et al., 2012). However, in prac-
tice, it is impossible to achieve high-speed switching
control. This is due to the switching delay computa-
tion and also because of the limitations of physical
actuators, which makes them unable to handle the
switching of control signal at an infinite rate. This
imperfect control switching between different struc-
tures causes the system trajectory to chatter instead
of sliding along the sliding surface. Basically, there
are two different ways for countering the chattering
phenomenon. The first way involves using higher
order sliding mode (Bartolini and Pydnowski, 1993;
Bartolini et al., 1998) and in the second way a bound-
ary layer is introduced around the sliding surface and
a continuous control is used within the boundary layer
(Temeltas, 1998; Chiang and Hu, 1999). Normally, the
boundary has a constant width and a larger width
results in a smoother control signal. Although the
boundary design reduces the chattering phenomenon,
it does not drive the system state to the origin any
longer, and steady-state error will appear. The larger
boundary width results in a larger steady-state error.

In recent years, fuzzy logic has been used to
increase the efficiency of SMC in controlling nonlinear
systems with uncertainties. This approach is known as
fuzzy sliding mode control (FSMC) by researchers
(Soltanpour and Khooban, 2013). Simulation results
show that FSMC is very powerful at overcoming
structured and unstructured uncertainties, and exter-
nal disturbances. Furthermore, the undesirable chat-
tering phenomenon is not observed in the input
control. Next, in order to increase the efficiency of
the proposed control, the coefficients of the control
input are optimized by using intuitive optimization
algorithms (Khooban et al., 2013a; Soltanpour
and Khooban, 2013). It is very simple to design and
implement the proposed approaches and the control
input has a low computational burden. However, the
proposed controllers do not have a mathematical ana-
lysis and a proof for the stability of the closed-loop
system.

Adaptive control is another approach which has
been proposed by researchers to control nonlinear sys-
tems with uncertainties. In adaptive control, to over-
come the uncertainties, some adaptive laws are
presented which online adjust the coefficients of control
input or system parameters. Of course, in adaptive con-
trol methods, system parameters converge only when
the variation of parameters happens slowly (Åström
and Wittenmark, 2008). Therefore, adaptive control is
successful at controlling nonlinear systems that only
have parametric uncertainties.

Nowadays, by combining SMC, fuzzy logic, and
adaptive control concepts, the adaptive fuzzy sliding
mode control (AFSMC) has been presented for con-
trolling nonlinear systems. In Benbrahim et al. (2013),
an AFSMC controller has been presented to overcome
the existing uncertainties in a nonlinear system. In this
method, two adaptive type-2 fuzzy systems have been
used to estimate unknown functions. Simulation results
show that the proposed control has a good perform-
ance in overcoming the existing uncertainties and it
makes the tracking error converge to zero. Although
the type-2 fuzzy logic is very flexible in overcoming
the existing uncertainties in a nonlinear system, it
greatly increases the computational burden of the con-
trol input. As a result, there are some problems with the
practical implementation of the proposed controller.

An AFSMC controller has been designed in Han
(2011). The proposed approach is only capable of over-
coming parametric uncertainties, but, in addition to
parametric uncertainties, nonlinear systems encounter
unstructured uncertainties and external disturbances.
The AFSMC controllers are also presented by
Essounbouli and Hamzaoui (2006), Wang et al.
(2006), Madboul et al. (2010) and Sharkawy and
Salman (2011). Simulation results and mathematical
proof show the desirable performance of the proposed
controller. However, in the proposed approaches, many
adaptive fuzzy systems have been used to estimate the
unknown functions of nonlinear systems. Therefore,
the control input has a high computational burden.
Therefore, if a delay occurs during the calculation of
the control input, it will be impossible to guarantee the
stability of the closed-loop system.

In this paper, to overcome the undesirable chattering
phenomenon, an optimal adaptive fuzzy sliding mode
controller is presented for controlling a class of non-
linear systems. In the design of the proposed control, a
combination of feedback linearization technique, fuzzy
logic, adaptive control concepts, and self-adaptive
modified bat algorithm has been used. The features of
these methods mean that the proposed control is
powerful at overcoming the uncertainties. Some consid-
erations have been taken into account in the designing
process of the proposed controller in order to make it
practically implementable.

2. Problem formulation

Consider a single-input single-output (SISO) nonlinear
system described by the differential equation (1)
(Slotine and Li, 1991; Khalil, 2002):

XðnÞðtÞ ¼ f ðXðtÞ, tÞ þ gðXðtÞ, tÞuðtÞ þ d ðtÞ

yðtÞ ¼ xðtÞ ð1Þ
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where, XðtÞ ¼ ½xðtÞ, _xðtÞ, . . . , xðn�1ÞðtÞ�Trepresents the nth

order state vector of the system, yðtÞ 2 R denotes the
output of the system, f ðXðtÞ, tÞ and gðXðtÞ, tÞ are known
(uncertain) but bounded continuous functions, uðtÞ 2 R
denotes the control input and d ðtÞ 2 R represents the
disturbance which is unknown but bounded, due to the
external load and noise.

The control process is aimed at forcing the output
yðtÞ to follow a given bounded reference input signal
yd ðtÞ. Assume that the tracking error is represented by
eðtÞ ¼ yðtÞ � yd ðtÞ and its forward shifted values are
defined as eðiÞ ¼ yðiÞðtÞ � y

ðiÞ
d ðtÞ ði ¼ 1, 2, . . . , n� 1Þ.

Therefore, the error vector is defined as eðtÞ ¼ ½eðtÞ,
_eðtÞ, . . . , eðn�1ÞðtÞ�.

The following assumptions are made throughout this
paper.

Assumption 1 The state vector XðtÞ is available.

Assumption 2 The desired trajectory yd ðtÞ is once dif-
ferentiable in time. Besides, yd ðtÞ and y

ðnÞ
d ðtÞ are avail-

able and have known bounds.

Assumption 3 A known continuous function of XðtÞ
upper bounds the extent of the imprecision on f ðXðtÞ, tÞ.

Assumption 4 gðXðtÞ, tÞ is lower and upper bounded so
that 05 g5 gðXðtÞ, tÞ5 g where, g and g are positive
constants.

Assumption 5 d ðtÞ is unknown, but it is bounded. In
other words, d ðtÞ

�� ��5D where, ‘‘D’’ is a known positive
constant.

3. Problem formulation in state space

Equation (2) is defined in order to transform the system
described by equation (1) to the state space form:

xðtÞ ¼ x1ðtÞ, _xðtÞ ¼ x2ðtÞ, . . . , xðn�1ÞðtÞ ¼ xnðtÞ ð2Þ

And if new variables are substituted in equation (1), the
following equations will be obtained:

_x1ðtÞ ¼ x2ðtÞ

_x2ðtÞ ¼ x3ðtÞ

..

.

_xnðtÞ ¼ f ðXðtÞ, tÞ þ gðXðtÞ, tÞuðtÞ þ d ðtÞ

yðtÞ ¼ xiðtÞ, i ¼ 1, 2, . . . , n ð3Þ

The following error equations will appear if we transfer
the nonlinear system equations to the state space
domain:

x1ðtÞ � x1dðtÞ ¼ e1ðtÞ, x2ðtÞ � x2dðtÞ

¼ e2ðtÞ, . . . , xnðtÞ � xnd ðtÞ ¼ enðtÞ ð4Þ

In the equations above, xid ðtÞ denotes that the (i�1)th
derivative of the desired path must be tracked by the
input control. From equations (2) and (4) it can be
concluded that:

_e1ðtÞ ¼ e2ðtÞ, _e2ðtÞ ¼ e3ðtÞ, . . . , _en�1ðtÞ ¼ enðtÞ ð5Þ

4. Sliding mode control

In this section, the sliding surface is defined as

SðtÞ ¼ c1e1ðtÞ þ c2e2ðtÞ þ � � � þ cn�1en�1ðtÞ þ enðtÞ ð6Þ

where ci, ði ¼ 1, . . . , n� 1Þ are constant positive
factors.

The control action uðtÞ is designed in such a way that
the output is able to track a desired path. Besides, the
tracking error and all its derivatives will tend to zero.
Therefore, the control action is defined by the following
equation:

uðtÞ ¼ ĝ�1ðXðtÞ, tÞ �f̂ ðXðtÞ, tÞ þ _xndðtÞ þ uf ðtÞ
n o

ð7Þ

where, ĝðXðtÞ, tÞ and f̂ ðXðtÞ, tÞ represent known parts of
d f ðXðtÞ, tÞ respectively. Also, uf ðtÞ represents the SMC
input which is designed for handling structured and
unstructured uncertainties and _xnd ðtÞ denotes the
derivative of the desirable path xndðtÞ with respect to
time. For the sake of brevity, from now on in this sec-
tion we will use f̂, ĝ, f and g instead of f̂ ðXðtÞ, tÞ,
ĝðXðtÞ, tÞ, f ðXðtÞ, tÞ and gðXðtÞ, tÞ respectively.
Equation (7) is substituted in equation (3):

_xnðtÞ ¼ f þ g ĝ�1 �f̂ þ _xnd ðtÞ þ uf ðtÞ
n oh i

þ d ðtÞ ð8Þ

To equation (8), _xndðtÞ and uf ðtÞ are added and
subtracted.

_xnðtÞ ¼ f þ g ĝ�1 �f̂ þ _xndðtÞ þ uf ðtÞ
n oh i

þ d ðtÞ þ _xnd ðtÞ

� _xndðtÞ þ uf ðtÞ � uf ðtÞ ð9Þ
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Equation (9) could be reorganized as follows:

_xnðtÞ � _xnd ðtÞ ¼ f � g ĝ�1f̂ þ ð g ĝ�1 � 1Þ _xnd ðtÞ

þ ð g ĝ�1 þ 1Þ uf ðtÞ þ d ðtÞ � uf ðtÞ ð10Þ

The following equations are used in order to simplify
equation (10):

_enðtÞ ¼ _xnðtÞ � _xnd ðtÞ

� ¼ f � g ĝ�1 f̂ þ ð g ĝ�1 � 1Þ _xndðtÞ

þ ð g ĝ�1 þ 1Þ uf ðtÞ þ d ðtÞ ð11Þ

Remark 1 According to equation (11), � includes all
existing uncertainties. Substituting equation (11) into
equation (10) results in

_enðtÞ ¼ �� uf ðtÞ ð12Þ

In SMC design uf ðtÞ is composed of two parts; ueqðtÞ
equivalent control and usðtÞ switching control
(Temeltas, 1998; Chiang and Hu, 1999):

uf ðtÞ ¼ ueqðtÞ þ usðtÞ ð13Þ

In the sliding phase, where SðtÞ and _SðtÞ are equal to
zero, the equivalent term ueqðtÞ is responsible for keep-
ing the system on the sliding surface. In the approach-
ing phase where SðtÞ 6¼ 0, the switching term usðtÞ is
designed to meet the reaching condition
SðtÞ _SðtÞ5 0. To design the part ueqðtÞ, it is assumed
that the derivative of equation (6) is equal to zero:

_SðtÞ ¼ c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ þ _enðtÞ ¼ 0

ð14Þ

Substituting equation (12) in equation (14) yields

c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ þ �� uf ðtÞ ¼ 0

ð15Þ

In the design of ueqðtÞ, the sliding surface is assumed
to be equal to zero. Therefore, ueqðtÞ is responsible for
preventing the sliding surface from changes. Based on
this assumption, in this part of the design usðtÞ might be
considered as zero. Considering the aforementioned
points and substituting equation (13) in (15):

c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ þ �� ueqðtÞ ¼ 0

ð16Þ

Eventually ueqðtÞ is derived from the equation (16):

ueqðtÞ ¼ c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ þ � ð17Þ

Since � is not completely known, ueqðtÞ is chosen as
follows:

ueqðtÞ ¼ c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ ð18Þ

Now, usðtÞ is designed in such a way that the sliding
surface tends to zero. Thus, the following Lyapunov
candidate function is introduced:

V SðtÞð Þ ¼
1

2
S2ðtÞ ð19Þ

Calculating the derivative of the Lyapunov candidate
function with respect to time yields

_V SðtÞð Þ ¼ _SðtÞSðtÞ ð20Þ

From equations (6) and (20), it can be concluded that

_V SðtÞð Þ ¼ ðc1 _e1ðtÞ þ c2 _e2ðtÞ þ � � �

þ cn�1 _en�1ðtÞ þ _enðtÞÞSðtÞ ð21Þ

And the following equation could be concluded from
equations (12), (13) and (21):

_V SðtÞð Þ ¼ ðc1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ

þ �� ðueqðtÞ þ usðtÞÞÞSðtÞ ð22Þ

Substituting equation (18) in equation (22) results in

_VðSðtÞÞ ¼ 0c1 _e1ðtÞSðtÞ þ c2 _e2ðtÞSðtÞ þ � � �

þ cn�1 _en�1ðtÞSðtÞ þ �SðtÞ � c1 _e1ðtÞSðtÞ

� c2 _e2ðtÞSðtÞ � � � � � cn�1 _en�1ðtÞSðtÞ � usðtÞSðtÞ

ð23Þ

From equation (23) it can be concluded that the follow-
ing condition has to be met in order to have the
inequality _VðSðtÞÞ50 satisfied:

usðtÞ ¼ � if SðtÞ4 0
usðtÞ ¼ �� if SðtÞ5 0

�
ð24Þ

where, � is a constant positive factor that it is ��.
Considering equations (13), (18) and (24) we have

uf ðtÞ ¼ uþðtÞ ¼ ueqðtÞ þ � if SðtÞ4 0
uf ðtÞ ¼ u�ðtÞ ¼ ueqðtÞ � � if SðtÞ5 0

�
ð25Þ

The above equation can also be shown in the following
form:

ufðtÞ ¼ ueqðtÞ þ �signðSðtÞÞ
ueqðtÞ ¼ c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ

�
ð26Þ

where, signð�Þ represents the Sign function.
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5. Adaptive fuzzy sliding mode control

From equations (25) and (26), it can be concluded that
the reason for the occurrence of chattering phenom-
enon in classic sliding mode control lies in the existence
of the constant coefficient � and the Sign function.

Now, suppose that the control gain �signðSðtÞÞ is
replaced by a fuzzy gain �. The block diagram of a
typical fuzzy system is shown in Figure 1. A fuzzy
system normally has one or more inputs and a single
output. A system with multiple outputs could be con-
sidered as a combination of several single-output sys-
tems (Wang et al., 1997).

A fuzzy system consists of four basic parts. The
fuzzification and defuzzification play the role of an
interface between the fuzzy systems and the crisp sys-
tems. The rule base is composed of a set of
‘‘if. . .then. . .’’ rules which are derived from human
experience. Each of these rules describes a relationship
between the input space and the output space. For
each rule, based on the relationship defined by the
rule, the input fuzzy sets are mapped to an output
fuzzy set by the inference engine. Then, it combines
the fuzzy sets from all the rules that exist in the rule
base into the output fuzzy set. This output fuzzy set is
translated to a crisp value output by the
defuzzification.

All these parts could be mathematically formulated.
The singleton fuzzifications, center average defuzzifica-
tion, Mamdani implication and product inference
engine are used in this paper. Therefore, the output of
the fuzzy system could be described by the following
equation:

y ¼

PM
m¼1 �

m
Qn

i¼1 �Am
i
ðx�i ÞPM

m¼1

Qn
i¼1 �Am

i
ðx�i Þ

¼ �T�ðxÞ ð27Þ

Where, � ¼ ½�1, . . . , �m, . . . , �M�T represents the vector
of the centers of the membership functions of y,
�ðxÞ ¼ ½�ðxÞ1, . . . ,�ðxÞm, . . . ,�ðxÞM�T denotes the

vector of the height of the membership functions of y
in which

�ðxÞm ¼
Yn

i¼1
�Am

i
ðx�i Þ

XM

m¼1

Yn

i¼1
�Am

i
ðx�i Þ,

.

and M is the amount of the rules.
Then, the new control input could be written as

ufðtÞ ¼ ueqðtÞ þ �þ � ð28Þ

In equation (28), ueqðtÞ is equal to equation (18) and
� is a positive constant. To design the adaptive fuzzy
controller, the following candidate Lyapunov function
is introduced:

V SðtÞð Þ ¼
1

2
S2ðtÞ ð29Þ

In equation (29), V is considered as an indicator of the
energy of S. The stability of the system is guaranteed by
choosing a control law such that _V � 0 and _V ¼ 0 only
when S ¼ 0. In order to compensate the system uncer-
tainty and reduce the energy of S, a fuzzy � is applied
in the adaptive fuzzy sliding mode control.

Equation (29) is differentiated with respect to the
time and the following equation is obtained by substi-
tuting equation (18) into it:

_VðSðtÞÞ ¼ c1 _e1ðtÞSðtÞ þ c2 _e2ðtÞSðtÞ þ � � �

þ cn�1 _en�1ðtÞSðtÞ þ �SðtÞ

� c1 _e1ðtÞSðtÞ � c2 _e2ðtÞSðtÞ � � � �

� cn�1 _en�1ðtÞSðtÞ � �SðtÞ � �SðtÞ ð30Þ

From equation (30), it can be concluded that _V � 0
only if � and S(t) have the same sign. On the other
hand, if kS(t)k is too large then a larger value of �
can further guarantee the stability because � becomes
more negative. In other words, the energy of S(t)
decreases more rapidly. If SðtÞ is too small, then

Fuzzy Rule 
Base

X YA’ B’
Fuzzification

Fuzzy 
Inference 

Engine
Defuzzifica�on

X YA’ B’

Figure 1. Diagram of a typical fuzzy system
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�SðtÞ, �SðtÞ, and �SðtÞ have an insignificant effect on _V.
Under such conditions, a small value of � could prevent
the occurrence of chattering. Finally, if SðtÞ ¼ 0, then
the value of � could be chosen to be equal to zero.

This is similar to the idea of applying the function
at ð�Þ. The difference is that the control gain varies
along with the sliding surface all the time. Moreover,
in order to guarantee that � is capable of compensating
the system uncertainty, an adaptive law is designed. It is
revealed by these analyses that the value of � could be
decided by the value of the sliding surface S tð Þ:
Therefore, the fuzzy system for � ought to be a SISO
system, with SðtÞ as the input and � as the output.
Figure 1 shows the structure of the fuzzy systems.
The rules in the rule base are in the following format:

if SðtÞ is Am
i then � is Bm

i

where Am
i and Bm

i are fuzzy sets. In this paper, the same
kind of membership functions, i.e.
NB,NM,NS, ZE, PS, PM, PB are chosen for both SðtÞ
and � where, N stands for negative, P positive, B big, M
medium, S small and ZE zero. These are all Gaussian
membership functions defined by the following
equation:

�AðxiÞ ¼ exp �
xi � �

�

� �2� �

where, ‘‘A’’ denotes one of the fuzzy sets NB, . . . , PB
and xi represents SðtÞ or �. � is the center of ‘‘A’’ and �
is the width of ‘‘A’’. Despite the fact that the member-
ship functions for SðtÞ and � have the same titles, cor-
respondingly, the values of the center and the width of
the membership function with a same title for SðtÞ and
� are different, respectively. The parameters of the
membership functions of � are updated online whereas,
those of S tð Þ have predefined values. Thus, the control-
ler is an adaptive controller.

Based on the definitions of the input and output
membership functions and according to the above dis-
cussion, the following rules could be decided as the rule
base:

if SðtÞ is NB then � is NB

if SðtÞ is NM then � is NM

if SðtÞ is NS then � is NS

if SðtÞ is ZE then � is ZE

if SðtÞ is PS then � is PS

if SðtÞ is PM then � is PM

if SðtÞ is PB then � is PB

and based on our knowledge of fuzzy systems, � can be
written as follows:

� ¼

PM
m¼1 �

m�Am SðtÞð ÞPM
m¼1 �Am SðtÞð Þ

¼ �T� S tð Þð Þ ð31Þ

where � ¼ �1, . . . , �m, . . . , �M
� 	T

, �ðSðtÞÞ ¼ ½�ðSðtÞÞ1

, . . . ,�ðSðtÞÞm, . . . ,�ðSðtÞÞM�T and

�ðSðtÞÞm ¼
Yn

i¼1
�Am

i
ðSðtÞÞ

XM

m¼1

Yn

i¼1
�Am

i
ðSðtÞÞ:

.

� is selected as the parameter to be updated and it is
therefore called the parameter vector. �ðSðtÞÞ is known
as the function basis vector and can be considered as
the weight of the parameter vector.

Define �� so � ¼ ��
T

�ðSðtÞÞ is the optimal compen-
sation for �. Based on Wang’s theorem (Wang et al.,
1997), there exists !4 0 which satisfies the following
inequality:

�� � ¼ �� ��T�ðSðtÞÞ � ! ð32Þ

In the above inequality, ! is approximation error
and it can be as small as possible. Then, define

~� ¼ � � �� ð33Þ

From equations (31) and (33) it is concluded that

� ¼ ~�
T
�ðSðtÞÞ þ ��T�ðSðtÞÞ ð34Þ

When the details of designing adaptive fuzzy control
are explained, in order to design it, the candidate
Lyapunov function (29) is changed as follows:

VðSðtÞÞ ¼
1

2
SðtÞ2 þ

1

2	
~�
T~� ð35Þ

where, 	 is a constant that is greater than 0. Equation
(35) is differentiated with respect to the time and the
following equation is obtained by substituting equation
(18) into it:

_VðSðtÞÞ ¼ c1 _e1ðtÞSðtÞ þ c2 _e2ðtÞSðtÞ þ � � � þ cn�1 _en�1ðtÞSðtÞ

þ �SðtÞ � c1 _e1ðtÞSðtÞ � c2 _e2ðtÞSðtÞ � � � �

� cn�1 _en�1ðtÞSðtÞ � �SðtÞ � �SðtÞ

þ
1

2	
ð ~�

_T

~� þ ~�
T ~�Þ

_

ð36Þ
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Simplifying equation (36) results in

_VðSðtÞÞ ¼ ��SðtÞ þ ð�� �ÞSðtÞ þ
1

	
~�
T ~�

_

ð37Þ

Equation (34) is substituted in equation (36) and the
result is reorganized as follows:

_VðSðtÞÞ ¼ ��SðtÞ þ ð�� ��T�ðSðtÞÞÞSðtÞ

þ
1

	
~�
T ~�

_�

~�
T
�ðSðtÞÞSðtÞ ð38Þ

Equation (38) is reorganized as follows:

_VðSðtÞÞ ¼ ��SðtÞ þ ð�� ��T�ðSðtÞÞÞSðtÞ

þ ~�
T 1

	
~�
_�

�ðSðtÞÞSðtÞ

 !
ð39Þ

Considering equation (39), the adaptive rule could
be chosen as follows:

_~� ¼ 	�ðSðtÞÞSðtÞ ð40Þ

By choosing the above adaptive rule, equation (39) is
simplified as follows:

_VðSðtÞÞ ¼ ��SðtÞ þ ð�� ��T�ðSðtÞÞÞSðtÞ ð41Þ

From equations (32) and (41) it is concluded that:

_VðSðtÞÞ � ��SðtÞ þ !SðtÞ ð42Þ

Equation (42) shows that by properly choosing the
coefficient �, _VðSðtÞÞ � 0 is satisfied and _VðSðtÞÞ ¼ 0 if
_VðSðtÞÞ ¼ 0. Therefore, the closed-loop system with
adaptive fuzzy sliding mode control is globally asymp-
totically stable in presence of all structured and
unstructured uncertainties. To summarize our discus-
sion, the proposed control input is as follows:

ufðtÞ ¼ ueqðtÞ þ �þ �
ueqðtÞ ¼ c1 _e1ðtÞ þ c2 _e2ðtÞ þ � � � þ cn�1 _en�1ðtÞ
� ¼ �T�ðSðtÞÞ
_� ¼ 	�ðSðtÞÞSðtÞ

8>><
>>: ð43Þ

6. Self-adaptive modified bat algorithm
(SAMBA)

A new optimization algorithm which is based on bat
algorithm (BA) is proposed in this section.

6.1. Original bat algorithm

BA is a meta-heuristic population-based algorithm
which is inspired by the behavior of bats searching
for food. Four simple and basic ideas constructing the
main concept behind the BA are as follows (Niknam
et al., 2011):

1. Each bat with the position Xi has the velocity of Vi
and produces a special pulse with the frequency and
loudness of fi and Ai, respectively.

2. In order to distinguish between the food and prey,
the echolocation phenomenon is used.

3. Loudness Ai changes from a large value to a small
value.

4. The frequency fi and rate ri of each pulse are regu-
lated automatically during the optimization process.

Similar to the other evolutionary optimization algo-
rithms, BA also uses a random population to start its
search. The position of bats is updated using the fol-
lowing equation:

Vnew
i ¼ Vold

i þ fiðGbest� XiÞ; i ¼ 1, . . . ,NBat

Xnew
i ¼ Xold

i þ Vnew
i ; i ¼ 1, . . . ,NBat

fi ¼ fmin
i þ ’1ð f

max
i � fmin

i Þ; i ¼ 1, . . . ,NBat ð44Þ

where, Gbest is the best bat; NBat denotes the size of the
population; fmax

i =fmin
i are the maximum/minimum fre-

quency of the ith bat and ’1 is a random value in the
range [0,1].

Another random movement is also simulated in this
algorithm. In this regard, a random number 
 is gen-
erated randomly. If this random number is greater than
ri, a new solution around the bat Xi is produced:

Xnew
i ¼ Xold

i þ "A
old
mean; i ¼ 1, . . . ,NBat ð45Þ

where, Aold
mean is the mean value of the bats’ frequency

loudness and " is a random value in the range of [�1,1].
On the other hand, if the random value 
 is smaller
than ri, a new solution Xnew

i is generated randomly.
The new solution Xnew

i can be accepted if the following
two conditions are met:


5Ai

f ðXiÞ5 f ðGbestÞ ð46Þ

Meanwhile, the rate parameter and the loudness are
updated as follows:

Anew
i ¼ �A

old
i

rIterþ1i ¼ r0i ½1� expð�	 � IterÞ� ð47Þ
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In equation (47), � and 	 are constant values and
Iter represents the number of the iterations.

6.2. Self-adaptive modification method

In this section, a new self-adaptive modification tech-
nique is proposed to efficiently improve the total search
capability of the BA. This modification mechanism is
aimed at making use of an adaptive structure that
makes the bats capable of selecting between two differ-
ent modifications. Indeed, the proposed modification
approach is composed of two modification methods
that are described below.

6.3. Sub-modification method 1

The first modification is aimed at increasing the diver-
sity of the bat population by using the crossover and
mutation operators. The significant role of this modifi-
cation in improving the performance of the optimiza-
tion algorithms has been explained in various references
(Niknam et al., 2011, 2014; Khooban et al., 2013b,
2014). In this regard, for each bat Xi three bats Xm1,
Xm2 and Xm3 are chosen randomly so that
m1 6¼m2 6¼m3 6¼ i. Now, a test solution is generated
using the mutation operator:

XTest ¼ Xm1 þ ’1ðXm2 � Xm3Þ

XTest ¼ ½xTest,1, xTest,2, . . . , xTest,n� ð48Þ

where n denotes the length of the control vector. Then,
the crossover operator is used for producing two new
promising optimal solutions as follows:

XTest1 ¼
xi,j; ’2 5 ’3

gbestj; ’3 � ’2

�

XTest2 ¼
xTest,j; ’3 5 ’4

gbestj; ’4 � ’3

�
Xi ¼ ½xi,1, xi,2, . . . , xi,n�

Gbest ¼ ½ gbest1, gbest2, . . . , gbestn�

ð49Þ

where ’1, ’2, ’3, and ’4 are random values in the
range [0,1].

6.4. Sub-modification method 2

The goal of this modification method is to update the
parameter � in equation (47) during the optimization
adaptively.

�new ¼ ð1=2IterÞ1=Iter�old ð50Þ

This formula is obtained empirically by running the
algorithm for several times.

In the beginning, a probability parameter is defined
for the sub-modification methods (known as Pry for
yth sub-modification method). Initially, the probability
parameters of both modification methods are assumed
to be equal; i.e. Pry¼ 0.5 & y¼ 1, 2. As previously
mentioned, the key idea behind this adaptive modifica-
tion is to give the bats the choice of preference.
Nonetheless, their probability could be increased or
decreased by the successful performance of each sub-
modification. It is clear that a bigger Pry shows more
chance for yth modification to be chosen as the proper
sub-modification method by the bats.

The population of bats is sorted in a descending
order in each iteration. Now, a better bat solution
will take a higher weighting factor:

WTj ¼
LogðN� jþ 1ÞPn

i¼1 LogðiÞ
; j ¼ 1, . . . ,N ð51Þ

where N is the number of bats in the population. Now,
using the following equation, the probability success of
each sub-modification method is updated:

Pr� ¼ Pr� þ
WTl

nMod�

l ¼1, . . . , nMod� ; � ¼ 1, 2 ð52Þ

Where nMod� denotes the number of bats that have
chosen the yth sub-modification method. Then, using
the following equation, the probability success param-
eters are updated at the end of each iteration:

Pr! ¼
Pr!P2
!¼1 Pr!

ð53Þ

The roulette wheel mechanism is used for selecting the
proper modification method by each bat, in order to
keep the random characteristics of the algorithm. This
process is shown in Figure 2.

Begin: 
    For i=1:NBat where NBat is size of bat population
        If 1 ≤  Prb1

Iter+1

        Select modification method 1 for the bat solution i
       ElseIf Prb1

 Iter+1< randi ≤ Prb1
 Iter+1+ Prb2

 Iter+1

        Select modification method 2 for the bat solution i
       End If

     End For i 
End

Figure 2. Pseudo code for choosing yth modification method

by randomized weighted majority (RWM).
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Generally speaking, a heuristic algorithm like
SAMBA only requires the cost function to be checked
to guide its search and no longer requires information
about the system. Therefore, the mean of root of
squared errors (MRSE) is considered in this paper:

MRSE ¼ E Kð Þ ¼ 1 N
XN

i¼1
eðiÞ
�� ��.

ð54Þ

where N is the number of samples, i is the iteration
number, eðiÞ represents the trajectory error of the ith
sample for the object, and uðiÞ denotes the control
signal.

7. Advantages of proposed control

In the design of the proposed control some important
points have been considered that play a key role in the
practical implementation of this approach. These key
points are as follows:

1. In the design of the proposed control, a combination
of feedback linearization technique, fuzzy logic,
adaptive control concepts, and SAMBA optimiza-
tion algorithm has been used in order to overcome
parametric uncertainties, external disturbances and
unmodeled dynamics. Therefore, the features of
these techniques could be used in the proposed con-
trol. In other words, if fairly accurate information
about the dynamics of a nonlinear system is avail-
able, the contribution of the feedback linearization
part could be increased by removing the known
dynamics and finally overcoming the remaining
dynamics which are insignificant could be done by
the adaptive part. If accurate information about the
dynamics of the nonlinear system is not available,
the contribution of the feedback linearization part
decreases and consequently, contribution of the
adaptive part of this controller increases because of
an increase in the boundaries of uncertainties.

2. Paying attention to the computational burden of the
proposed control is one of the most important points
in designing a controller for industrial systems,
because if the computational burden of the control-
ler is high, owing to delay in online control, the sta-
bility of the closed- loop system cannot be
guaranteed (Soltanpour and Fateh, 2009; Fateh,
2012a). In the proposed approach, using feedback
linearization, the boundary of uncertainties
decreases, and only seven rules in the rule base ofFigure 3. The inverted pendulum system..

Figure 4. The membership functions of the rule base of the fuzzy inference engine.
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the fuzzy system have been used. Therefore, the com-
putational burden is very low and no delay occurs in
online control of the nonlinear system.

3. In the classic sliding mode control design approach,
for precaution’s sake, a value much greater than the
boundary of existing uncertainties is chosen as the
value of the coefficient � (Shafiei and Soltanpour,
2009). When the amplitude of the control input
increases, in order to prevent the saturation of actu-
ators, high power actuators must be used. While, in
the proposed approach, due to the existence of an
adaptive law for estimating the coefficient �, the
magnitude of the control input does not increase.
Thus, using high power actuators is out of the
question.

4. In most of the presented controllers, some coeffi-
cients are considered for decreasing the tracking
error. Designers can decrease the tracking error by
increasing these parameters but this increase causes
the amplitude of the control input to increase and
consequently it causes the actuators to get saturated
(Fateh et al., 2012b; Soltanpour et al., 2012b).
Coefficient 	 is used in the adaptive law of the pro-
posed approach. Increasing this coefficient decreases
the tracking error, while it has no effect on the
increase of the amplitude of the control input. This
advantage is presented in the simulation section.

5. In recent years, in order to decrease the undesirable
chattering phenomenon, fuzzy logic has been used in
classic SMC (Soltanpour et al., 2013; Khooban
et al., 2013c). Although the proposed approaches
have desirable performance, they suffer from the
absence of proof for the stability of the closed
loop. In this paper, however, it has been proved

that the closed-loop system with the proposed con-
trol is globally asymptotically stable in the presence
of all uncertainties.

6. In designing the adaptive fuzzy approximator,
instead of using seven rules, nine or at most 11
rules could be used. By so doing, the accuracy of
tracking the desirable path greatly increases, without
increasing the computational burden or the ampli-
tude of the control input.

7. The SAMBA optimization algorithm has been used
for determining the coefficients of the proposed con-
trol and determining the membership functions of
the assumed part of the fuzzy rules (Khooban
et al., 2012b; Niknam and Khooban, 2013; Shamsi-
Nejad et al., 2013). Therefore, the amplitude of the
control input will be optimal and concerns about the
saturation of the actuators of the system will be out
of the question.

8. Stages of designing the proposed
control

To design the proposed control, the following steps
must be followed:

1. Determine the tracking errors, ei(t).
2. Determine the sliding surface S(t) using equation (6),

through properly selecting the coefficients, ci.
3. Determine ueqðtÞ, according to equation (43).
4. Determine � by using equation (11) and existing

information from known dynamics of the nonlinear
system.

5. Build the rule base of fuzzy inference engine.
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Figure 5. The error caused by applying sliding mode control.
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6. Determine the adaptive law according to equation
(43).

7. Determine the coefficient �, according to equation
(43).

8. Implementation.
9. Determine the coefficients �, 	 and the coefficients ci

of sliding surface S(t) by using the SAMBA opti-
mization algorithm.

10. Change the number of rules in the rule base of the
fuzzy inference engine to decrease the tracking
error.

9. Simulation results

In order to demonstrate the effectiveness and robust-
ness of the proposed approach, illustrative numerical
simulation examples are provided in this section. The
problem to be considered is a pole-balancing of an
inverted pendulum. This system is shown in Figure 3
and is described by the following equations:

_x1 ¼ x2

_x2 ¼
mlx22 sinðx1Þ cosðx1Þ � ðMþmÞg sinðx1Þ

ml cos2ðx1Þ �
4

3


 �
lðMþmÞ

þ
� cosðx1Þ

ml cos2ðx1Þ �
4

3


 �
lðMþmÞ

uðtÞ þ dðtÞ

8>>>>>>>><
>>>>>>>>:

ð55Þ

where x1 angle � (in radians) of the pendulum from the
vertical, M mass of cart, m mass of the pole, uðtÞ force
applied to the cart and d ðtÞ denotes an external

disturbance. The following values are used for param-
eters in this simulation:

M ¼ 1 kg, m ¼ 0:3 kg, l ¼ 0:5m and g ¼ 9:8m=s2:

In this simulation, the known parts of f ðXðtÞÞ and
gðXðtÞÞ are listed as follows:

f̂ ðXðtÞÞ ¼
m̂l̂x22 � ðM̂þ m̂Þĝ

m̂l̂�
4

3
l̂ ðM̂þ m̂Þ

ĝðXðtÞÞ ¼
�1

m̂l̂�
4

3
l̂ ðM̂þ m̂Þ

8>>>>>><
>>>>>>:

ð56Þ

The values considered for parameters m̂, l̂, M̂ and ĝ are
equal to 90% of their real values. e1ðtÞ ¼ x1ðtÞ � x1d ðtÞ,
e2ðtÞ ¼ x2ðtÞ � x2d ðtÞ and SðtÞ ¼ c1 e1ðtÞ þ e2ðtÞ define
the error and the sliding surface equation, respectively.
The equivalent control input is ueqðtÞ ¼ c1 _e1ðtÞ. j� j
would be calculated as follows:

k� k ¼ 0:01 x22 þ 0:8þ 0:01 k _x2d ðtÞ k þ 0:01 kuf ðtÞ k

ð57Þ

Using the SAMBA optimization algorithm the coeffi-
cients, 	, �, and c1 were determined to be equal to 2235,
5.16, and 24.23 respectively. The membership functions
of the rule base of the fuzzy inference engine are shown
in Figure 4.

Simulation 1 In this part of simulation x1dðtÞ ¼ 0 and
external disturbance is equal to zero. In other words, in
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Figure 6. The control input caused by applying sliding mode control.
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Figure 8. The control input caused by applying optimal adaptive fuzzy sliding mode controller.
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Figure 7. The error caused by applying optimal adaptive fuzzy sliding mode controller.
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Figure 9. Approximating the � caused by applying optimal adaptive fuzzy sliding mode controller.
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this part, the system has only the parametric uncertain-
ties. In this stage of simulation, the performance of the
proposed control is compared to the classic sliding
mode controller. Once the classic sliding mode control
is applied on the inverted pendulum system, according
to Figure 5 it is concluded that the classic sliding mode
controller shows a good performance and makes the
error converge to zero in less than 0.6 s. However,
Figure 6 shows that the control input of classic sliding
mode has too much chattering. The occurrence of the
undesirable chattering phenomenon in the mechanical
system excites high-order nonlinear dynamics and con-
sequently makes the closed-loop system unstable. After
applying the proposed control, according to Figure 7, it
can be seen that controller shows good performance

and makes the error converge to zero in 0.3 s. In
Figure 8 it can be seen that the control input does
not have chattering and is within the allowed range.
From Figure 9 it is concluded that, to make the error
equal to zero, the adaptive law makes � converge to
�20 after 0.3 s. The desirable performance of the pro-
posed control can also be seen in Figure 10. According
to this figure, it can be concluded that the sliding sur-
face converges to zero in less than 0.5 seconds and it
remains zero without chattering until the end of the
simulation.

Simulation 2 In this part of the simulation, in order to
create a more difficult challenge for the proposed con-
trol, the disturbance was considered to be
d ðtÞ ¼ �4sinð3tÞ and the desired trajectory was con-
sidered to be time-variant, i.e. x1d tð Þ ¼ 0:2sin tð Þ: In
this stage of the simulation, to evaluate the effect of
coefficient 	, this coefficient was first considered to be
equal to 500 but the next time it was considered to
be equal to 2235. After simulation was carried out, it
can be concluded from Figure 11 that the controller
shows a good performance and makes the error con-
verge to zero, but from Figure 12 it can be concluded
that the tracking error has increased with the decrease
of coefficient 	 . In this figure it can be seen that with
the increase of coefficient 	, the maximum tracking
error decreased from 0.038 to 0.003. Therefore, we con-
clude that the tracking error could be significantly
improved by increasing the coefficient 	 in the proposed
control. In most of the control approaches if the coef-
ficient of the controller increases with a factor of 4, the
amplitude of control input increases to an extent that it
forces the system actuators to move towards saturation.
However, from Figure 13 it is concluded that although
the coefficient 	 has increased with a factor of 4.47, the
amplitude of the control input has not increased
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Figure 10. The sliding surface caused by applying optimal

adaptive fuzzy sliding mode controller.
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Figure 11. The tracking error when 	 ¼ 500.
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significantly. Therefore, in the proposed approach, the
concerns about the saturation are automatically
eliminated.

In Figure 14 we can see that when	 ¼ 2235, the slid-
ing surface converges to zero without chattering in a
very short time. Next, the control presented in
Soltanpour and Khooban (2013) is implemented on
the inverted pendulum system. To make a fair compari-
son, the conditions governing this stage of simulation
are considered for the controller presented in
Soltanpour and Khooban (2013). The coefficient of
the controller was set to � ¼ 30 . After simulation, it
can be concluded from Figure 15 that the controller
presented in Khooban and Soltanpour (2013) functions
properly and makes the tracking error converge to zero.

Based on a comparison made between Figures 11 and
15, it can be concluded that the amplitude of the fluc-
tuations of tracking error is higher in Figure 15. In
Figure 16 it can be seen that the amplitude of control
input is within a correct range. However, a comparison
between Figure 13 and Figure 16 shows that the amp-
litude of control input in Soltanpour and Khooban
(2013) is higher and it encounters the problem of chat-
tering. It can be seen in Figure 17 that the sliding sur-
face caused by applying the controller in Soltanpour
and Khooban (2013) has high fluctuations. Therefore,
these fluctuations cause the tracking error to converge
to zero in a longer period of time. By investigating
simulation results of this stage and the contents of
Section 7 of this paper, it can be concluded that
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Figure 13. The control inputs with the increase of coefficient 	:
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Figure 12. The decrease of tracking error with the increase of coefficient 	:
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compared to the controller presented in Soltanpour and
Khooban (2013), the proposed control has a better and
more acceptable performance in overcoming the struc-
tured and unstructured uncertainties existing in the
inverted pendulum system.

10. Conclusion

In this paper, an optimal adaptive fuzzy sliding mode
controller was presented. In the proposed approach, to
prevent the increase of the amplitude of control input,
the boundary of uncertainties is decreased using the

feedback linearization approach. Next, in order to
overcome the remaining uncertainties, an adaptive
fuzzy approximator is designed to determine the max-
imum boundary of uncertainties. The designed approx-
imator is an appropriate substitute for the Sign
function in classic sliding mode control because it oper-
ates in a way that not only provides the required con-
ditions for overcoming uncertainties, but also totally
removes the chattering effect in the control input. In
the presented adaptive law, by using the coefficient
the tracking error can be improved without affecting
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Figure 14. The sliding surface when 	 ¼ 2235.
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Figure 15. The tracking error caused by applying proposed

control.
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Figure 16. The control input caused by applying proposed

control.
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Figure 17. The sliding surface caused by applying proposed

control.
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the amplitude of the control input. A mathematical
proof shows that the closed-loop system with the pro-
posed controller is globally asymptotically stable in the
presence of all uncertainties. Finally, to optimize the
proposed controller, the coefficients of the control
input were determined using the SAMBA optimization
algorithm. Simulations were carried out on an inverted
pendulum system in two stages. The results of these
simulations show a desirable performance of the opti-
mal adaptive fuzzy sliding mode controller.
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