
EÆient Hash-Consing of Reursive TypesJe�rey Considinejonsidi�s.bu.eduJanuary 29, 2000
AbstratEÆient storage of types within a ompiler is neessary to avoid large blowups in spae during ompi-lation. Reursive types in partiular are important to onsider, as naive representations of reursive typesmay be arbitrarily larger than neessary through unfolding. Hash-onsing has been used to eÆientlystore non-reursive types [7℄. Deterministi �nite automata tehniques have been used to eÆientlyperform various operations on reursive types [4℄. We present a new system for storing reursive typesombining hash-onsing and deterministi �nite automata tehniques. The spae requirements are linearin the number of distint types. Both update and lookup operations take polynomial time and linearspae and type equality an be heked in onstant time one both types are in the system.

1 IntrodutionA reent trend in ompilers is the use of typed intermediate languages while ompiling to generate safer andmore optimized ode. One disadvantage to this approah is that saving type information an easily ause alarge blowup in the spae used by a ompiler. Types of simple expressions an blowup exponentially whenrepresented using a tree data struture. Reursive types allow arbitrary expansion through simple unfolding.We use the idea of hash-onsing to maintain a set of types in whih all equivalent types share the samerepresentation. [7℄ reports suessful appliations of these tehniques. We take the idea one step farther andadd DFA tehniques to allow the same bene�ts to be extended to reursive types.DFA tehniques have been used for various operations on reursive types [4℄. We use them to minimizereursive type representations and avoid dupliate representations. We also present a anonial orderingalgorithm to avoid the \isomorphi under permutations of states" lause in many presentations of DFAminimization algorithms. Use of anonial orderings allows linear time DFA omparisons and simpli�esomparing reursive types.Given a set S of types and a type � , our system allows eÆient update and lookup operations to beperformed in two steps: a pre-proessing step taking O(j� j2) time and a step atually aessing S usingO(j� j log jSj) time. The spae required to represent S is linear in the number of reahable distint types soit is asymptotially optimal in spae.This work was done during the period of Otober 1999 to Deember 1999. In the mean time, LaurentMauborgne defended his PhD thesis on representing sets of in�nite trees [5℄ and submitted an exerpt [6℄ forpubliation in ESOP 2000. The ore algorithm for eÆiently onstruting in�nite trees is virtually identialto the algorithm given here for representing reursive types, though the presentation is drastially di�erent.The key di�erene between the two representations is the spae utilization - ignoring logarithmi fators, thesize used per distint type is onstant in the representation presented here and dependent on the number ofmutually reursive trees in the representation of Mauborgne.

1

2 Reursive Types2.1 SyntaxThe ommon syntax of reursive types is� ::= b j � ! � j �v:� j vwhere b is a base type and v is a type variable. We generalize this syntax to inlude arbitrary type onstru-tors, in addition to \!".Let B be a �nite set of base types and C a �nite set of type onstrutors. B and C are disjoint. Let Vbe the set of type variables. � ::= b j (�; : : :) j �v:� j vwhere b 2 B, 2 C, and v 2 V .2.2 EquivaleneInformally, we de�ne two types to be equivalent if their orresponding labeled in�nite trees are the same.We will formally de�ne the labeled in�nite tree orresponding to a reursive type in 3.3.
3 In�nite TreesIn desribing in�nite trees, we will use the notation that ~i, ~j, and ~k are strings of positive integers and i, j,and k are individual positive integers. Let P be the set of positive integers. � is the empty string and P � isthe set of all strings of positive integers. � is an overloaded string onatenation operator. Given I; J 2 P �,I � J = n~i �~jj(~i 2 I) ^ (~j 2 J)o.3.1 TreesDe�nition 3.1 (Trees) T is a tree if the following are true:1. T is a non-empty set of strings built from positive integers - ; � T � P �.2. T is pre�x-losed - 8~i;~j ��~i �~j 2 T�! �~i 2 T��.3. T is leftward-losed - 8~i; j; k �(j � k)! �~i � k 2 T�! �~i � j 2 T��.We all the strings in T the paths of T . Note that the �rst two properties imply that � is a path of T . Inwords, � identi�es the root node of T and T is a potentially in�nite set of �nite paths.De�nition 3.2 (Subtrees) Let T be a tree and ~t a path in T . The subtree of T reahed by ~t is de�ned asfollows: subtree �T;~t� = n~i j �~t �~i 2 T�oLemma 3.3 Let T be a tree and ~t a path of T . Then, subtree(T;~t) is a tree.Proof Sketh:If ~s is a witness that subtree(T;~t) is not a tree, ~t � ~s is similarly a witness that T is not a tree.De�nition 3.4 (Degree) Let T be a tree. The degree of T is de�ned as follows:degree(T) = jT \ P jIn words, degree(T) is the number of hildren of the root node of T .2

3.2 Labeled TreesDe�nition 3.5 (Labeled Trees) Let arity be a funtion from C to P returning the arity of its input andlet k be the maximum value returned by arity. We de�ne labeled trees as follows - T = (T; l) is a tree if thefollowing are true:1. T is a tree.2. l is a funtion from P � to B [C suh that� 8t((t 2 T)! (l(t) 2 B)! (degree(subtree(T; t)) = 0)� 8t((t 2 T)! (l(t) 2 C)! (degree(subtree(T; t)) = arity(l(t)))De�nition 3.6 (Labeled Subtrees) Let T = (T; l) be a labeled tree and ~t a path of T . The labeled subtreeof T reahed by ~t is de�ned as follows:labeledsubtree �T;~t� = �n~i j �~t �~i 2 T�o ; �x:l �~tx��Lemma 3.7 Let T = (T; l) be a labeled tree and ~t a path of T . Then, labeledsubtree �T ;~t� is a labeled tree.De�nition 3.8 (Labeled Paths) Let T = (T; l) be a labeled tree. The labeled paths of T is de�ned asfollows: paths(T) = ��~t; x� j �~t 2 T � ^ (x = l(t))	De�nition 3.9 (Labeled Tree Isomorphism) Let T1 = (T1; l1) and T2 = (T2; l2) be labeled trees. T1and T2 are isomorphi i� T1 = T2 and 8~t ��~t 2 T1�! �l1 �~t� = l2 �~t���.3.3 Labeled Tree Constrution from Reursive TypesDe�nition 3.10 (unfold) Let � be a reursive type. We de�ne the funtion unfold as follows:1unfold(�) = � [�t:�=t℄�if � = �t:��otherwiseDe�nition 3.11 (re unfold) Let � be a reursive type. We de�ne the funtion re unfold as follows:2
re unfold(�) = 8>><>>:

b if � = b 2 B(re unfold(�1); : : :) if � = (�1; : : :)v if � = v 2 Vunfold(�t:re unfold(�)) if � = �t:�De�nition 3.12 (Finite Trees of Reursive Types) Let � be a reursive type. We de�ne the �nite treeof � as follows:
�nite tree(�) = 8>><>>:

f�g if � 2 B[i(i � �nite tree(�i)) [f�g if � = (�1; : : :)f�g if � 2 V�nite tree(�) if � = �t:�In words, �nite tree(�) is the �nite set of all �nite paths traversing � without unfolding. Later, a similarbut potentially in�nite set will be desribed.1The ommon axiom �t:� �= [�t:�=t℄�, where �= denotes equivalene, allows one to prove � �= unfold(�).2As with unfold , � �= re unfold . 3

Lemma 3.13 Let � be a reursive type. Then, �nite tree(�) is a tree.Proof Sketh:This lemma may be proven using strutural indution over � .Lemma 3.14 Let � be a reursive type. Then, �nite tree(�) � �nite tree(re unfold(�)).De�nition 3.15 (In�nite Trees of Reursive Types) Let � be a reursive type. Let �i = re unfold i(�),the result of applying re unfold to � i times. Let pi = �nite tree(�i). The in�nite tree of � is de�ned asfollows: in�nite tree(�) = [ipiIn words, in�nite tree(�) is the potentially in�nite set of all �nite paths traversing � unfolded an in�nitenumber of types. If � is not reursive, in�nite tree(�) = �nite tree(�), a �nite set.Lemma 3.16 Let � be a reursive type. Then, in�nite tree(�) is a tree.Proof Sketh:This lemma follows from lemmas 3.13 and 3.14.Lemma 3.17 Let � be a reursive type. Then, in�nite tree(�) is deidable.Proof Sketh:Note that ~t 2 in�nite tree(�) i� ~t 2 �nite tree(re unfold j~tj(�)).Let
 be a distinguished symbol whih stands for an unde�ned result.De�nition 3.18 (Finite Labeling of Reursive Types) Let � be a reursive type and x a path. Wede�ne the �nite labeling of � as follows:
�nite labeling(�)(x) = 8>><>>:

b if � = b 2 B and x = ��nite labeling(�i)(x0) if � = (�1; : : :) and x = i � x0
 if � 2 V�nite labeling(�)(x) if � = �t:�De�nition 3.19 (In�nite Labeling of Reursive Types) Let � be a reursive type and x be a path.The in�nite labeling of � is de�ned as follows:in�nite labeling(�)(x) = � y if there exists i suh that �nite labeling(re unfold i(�))(x) = y
 otherwiseNote in�nite labeling(�) has an in�nite domain i� in�nite tree(�) is in�nite.Lemma 3.20 Let � be a reursive type. Then, in�nite labeling(�) is a well de�ned and total omputablefuntion.Proof Sketh:Note �nite labeling(�)(x) = y implies �nite labeling(re unfold(�))(x) = y and the number of applia-tions of re unfold neessary is bounded by the length of x.Lemma 3.21 Let � be a reursive type. Let T = in�nite tree(�) and l = in�nite labeling(�). Then,T = (T; l) is a labeled tree.De�nition 3.22 (Reursive Type Labeled In�nite Trees) Let � be a reursive type. Let T = in�nite tree(�)and l = in�nite labeling(�). The labeled in�nite tree orresponding to � is de�ned to be T = (T; l).
4

4 Deterministi Finite AutomataOther work has been done using deterministi �nite automata (DFA's) to eÆiently implement operationssuh as subtyping [4℄. We start with DFA's for proessing strings and modify them to establish a orrespon-dene with types in our system. We an then use adaptations of standard DFA algorithms to minimize thesize of the types and traditional graph algorithms to analyze relations between types.4.1 Standard DFA'sTraditionally, a string proessing DFA an be onsidered as a direted multi-graph with eah edge labeledwith a member of the input alphabet. Eah node orresponds to a state of the DFA and is labeled �nal ornon-�nal. Stritly speaking, eah node has exatly one outgoing edge for eah member of the input alphabet.However, it is ommon prative to leave out edges to \error" states, non-�nal states in whih all edges areself-loops, sine one an error state is reahed, it is impossible to reah a �nal state [3℄.When proessing strings with standard DFA's, one node of the graph is designated as the start state ofthe DFA. Input to the DFA is read one harater at a time and the orresponding edge is followed. Whenthe end of input is reahed, the sDFA aepts the input string i� last state of the traversal is a �nal state.We avoid a formal de�nition of DFA's whih an be found in many textbooks on automata theory. Unlessotherwise spei�ed, we follow the terminology of [3℄.In ontrast to the modi�ed DFA's of 4.2, we will refer to standard DFA's as sDFA's.4.2 Modi�ed DFA'sInstead of using sDFA's, we use a modi�ed DFA (mDFA) with a more general labeling sheme beyond�nal/non-�nal. mDFA's aept strings built from members of f1; : : : ; kg. Eah state is labeled with theidenti�er of either a type onstrutor or a base type. In 4.3, it will be seen that type onstrutor labels andbase type labels will be distinguishable by the number of outgoing edges. The presene of a sink state isimplied but not used; all missing edges go to this sink state.String proessing with mDFA's is similar to that with sDFA's. Traversal of the mDFA graph is the sameas with a DFA, but the output is di�erent. If the last state reahed is a sink state, the mDFA rejets.Otherwise, it aepts and outputs the state's label.De�nition 4.1 (mDFA Output) LetA be an mDFA. The output of A is the set of pairs of strings aeptedby A and the assoiated output.output(A) = f(~x; y) j A aepts ~x and A outputs y given ~xg4.3 mDFA Constrution from Reursive TypesDe�nition 4.2 (mDFA/Reursive Type Equivalene) Let � be a reursive type and A be an mDFA.Let T be the labeled tree orresponding to type � . We de�ne A and � to be equivalent i� output(A) =paths(T).To onvert a reursive type � into an mDFA A, the tree struture of � is essentially opied into an mDFAgraph and bak referenes are added to replae bound type variables.Lemma 4.3 (mDFA Constrution from Reursive Types Algorithm) Let � be a reursive type. Thereexists an algorithm running in O(j� j log j� j) time and O(j� j) spae outputting mDFA A suh that A is equiv-alent to � and if A has n states, n 2 O(j� j).Proof Sketh:A an be built using two traversals of the tree representation of � . The �rst pass assigns states toomponents of � and the seond builds A. 5

The �rst pass annotates the tree representation of � with state numbers in a bottom up fashion. Freshstates are assigned to base types and appliations of type onstrutors and passed bak up the tree. Typebindings are annotated with the state passed up by the body of binding and this state is passed up the treeagain. This pass takes O(j� j) time. Bound type variables are not assigned states.The seond pass atually generates the adjaeny list representation of the mDFA graph. � is traversedin a depth �rst manner passing a binding environment down to eah hild. When a base type is reahed, anappropriately labeled state with no outgoing edges is reated. When an appliation of a type onstrutoris reahed, an appropriately labeled state with a numbered edge to eah hild is reated; if the hild wasnot assigned a state in the �rst pass, it is a bound type variable and looked up in the binding environment(if it is not in the binding environment, � is invalid). When a type binding is reahed, a binding of thetype variable to the assigned state is added to the environment that will be passed to the body of the typebinding. Again, no ation is taken when a bound type variable is reahed. This pass takes O(j� j log j� j) timeusing a balaned tree representation for the environment.This proess preserves the tree struture of � exept when type variables are bound and used. Ignoringuses of bound type variables for a moment, the semantis of a type binding give it the same struture asits body so sharing the state of its body is semantially orret. Considering uses of bound type variablesagain, the semantis of using a bound type variable are that it is equivalent to the inner most binding ofthat type variable so using the state the type variable is urrently bound too is also orret.4.4 Minimization of mDFA'sDe�nition 4.4 (mDFA Equivalene) Let A and B be mDFA's. Then, A and B are de�ned to be equiv-alent i� output(A) = output(B).Lemma 4.5 (mDFA Minimization Algorithm) Let A be an mDFA with n states. There exists an al-gorithm running in O(n logn) and O(n) spae outputing an mDFA B suh that A and B are equivalent andB is minimal. That is, for all mDFAs C, if A and C are equivalent and C has m states, then n � m.Proof Sketh:An sDFA is usually minimized by alulating the equivalene relation or equivalene lasses of states [8℄.3One the equivalene lasses of an sDFA A are known, it is straightforward to reate a minimal equivalentsDFA B using a homomorphism mapping eah equivalene lass of A to a distint state in B.The �rst approximation of the equivalene lasses is a partitionning of the states aording to whetherthey are labeled �nal or not. This approximation is re�ned further by splitting equivalene lasses aordingto the states various inputs bring them to. If there are n states in jAj, at most n splits are neessary, andthere are many sDFA minimization algorithms running in O(n2) time. Most of these sDFA minimizationalgorithms also run in O(n) spae.4Adapting these algorithms to mDFA's simply onsists of replaing the original partitionning with oneaording to the mDFA labels. There may be as many sets in the partition as there are type onstrutors andbase types, as opposed to merely two with sDFA's. This partitionning is exatly that produed by heking0-distinguishability.5 Sine this is the riteria used for proving the orretness of the original partitionning insDFA algorithms, the orretness proof for the sDFA algorithm an be trivially transformed into a orretnessproof for the mDFA algorithm. This gives many algorithms for transforming an mDFA A into a minimalequivalent mDFA B in O(n2) time and O(n) spae. Hoproft's O(n logn) time algorithm an be transformedin the same fashion.3A notable exeption is the algorithm in [3℄ whih alulates the di�erene relation from whih it is trivial to alulate theequivalene relation.4The algorithm in [3℄ is an exeption again sine it uses O(n2) spae to alulate the distinguishability relation.5A and B are k-distinguishable if there is a string of length k that is a ounter example to A being equivalent to B.
6

4.5 Reonstrution of Reursive Types from mDFA'sOne � has been onverted into an mDFA A and minimized to get another mDFA B, we may want toreonstrut a minimal tree representation of a type � whih is equivalent to � .Lemma 4.6 (Reonstrution of Reursive Types from mDFA's) Let A be an mDFA with n states.There exists an algorithm outputing a reursive type � suh that A and � are equivalent, � is minimal, andthe algorithm runs in O(j� j logn) and O(j� j) spae.Proof Sketh:The tree struture of � an be generated by a depth �rst traversal of B allowing nodes to be visited morethan one. An environment ontaining all anestors in the traversal is passed down the traversal to detetbak referenes. Subtrees and the set of all states referened is passed bak up the tree.At eah state visited, if the state is an anestor of itself, the state is onverted into a bound variable andpassed bak up the tree with the singleton set of that state being the only referened state. If the state is notan anestor of itself and has a base type label, the base type is passed bak with an empty set of referenedstates. If the state is not an anestor of itself and has a type onstrutor label, its hildren are generatedand their sets of free referenes are unioned together. The type onstrutor is applied to the hild subtrees.If the state is in the set of free referenes, a type binding is added and it is removed from the set of freereferenes. Both the type and set of free referenes are then passed bak.All set operations exept union take O(log jBj) time. Union takes O(jBj) time, so O(jBj) is spent at eahnode of �. The entire proess takes O(j�jjBj) time. In terms of � , this is O(j� j2) time.� will have the same in�nite tree struture as � , but eah in�nite branh will be terminated at the �rstnode equivalent to a parent. The tree struture of � is provably minimal type sine earlier terminationimplies di�erent struture from � and later termination is not minimal. The � bindings in � are determinedby the nodes at whih � is terminated: the � bindings present are exatly the bindings used.4.6 Graph PropertiesIt is interesting to onsider some properties of the graph indued by the mDFA edges. We mention somewithout proof but they should be intuitive.� If a state an reah itself, the orresponding type is reursive.� If two states an reah eah other, their orresponding types are mutually reursive.� If one state an not reah a seond state, then the type orresponding to the �rst state may be analyzedindependently of the type orresponding to the seond.
5 Hash-ConsingHistorially, hash onsing is a tehnique originally used in LISP to avoid dupliation of lists. In LISP, liststrutures are only reated by the ons operation. By modifying ons with the help of hashing tehniques,no two invoations of ons would ever return distint opies of the same data. An early example of thistehnique is presented in [2℄. While limiting the ability to modify lists generated in suh a manner, thistehnique allows greater spae eÆieny and onstant time equality heking [1℄.We use similar ideas to represent a set of types S. The equivalene lass (�) of a type � is the set of alltypes equivalent to � ; a set C of types is an equivalene lass if C = (�) for some type � . We think of S asa �nite olletion of equivalene lasses, where eah equivalene lass is uniquely represented by a anonialmember of the lass and aessed through a unique handle. Internally, S is represented by� A mapping from base type identi�ers to handles (natural numbers). Given a total order of base types,this mapping aesible in O(S) time. Typially there will be a �xed number of base types so this willbe aessible in O(1) time. 7

� A mapping from tuples of type onstrutors and the handles of their hildren to handles. Given atotal order of type onstrutors, there is a total order of these tuples and this mapping is aessible inO(log jSj) time.� A mapping from anonially ordered mDFA's to handles. These mDFA's have a slight modi�ationfrom the mDFA's disussed in 4.2: base type identi�ers in labels are replaed with hash-ons handles.Sine the states of the mDFA's have a anonial order, the mDFA's an be given a meaningful totalorder. For an mDFA A, this mapping is aessible in O(jAj log jSj) time.Semantially, eah mDFA maps to the handle of its �rst state and suessive states are mapped tosuessive handles.� A mapping inverting the union of the previous mappings. This mapping an be sorted by handle andaessed in O(log jSj) time.5.1 Hash-Consed Reursive TypesWhen hash-onsing reursive types, two modi�ations from the syntax given in 2.1 are used. First, handlesof hash-onsed types are added to the allowed syntax for reursive types. Seond, free type variables arereplaed with extra base types to allow uniform treatment of type variables in 5.4.5.2 Hash-Consing Base TypesLemma 5.1 There is an algorithm to hash-ons base types in O(log jSj) time. If the set of base types is�nite and �xed, there is an algorithm to hash-ons base types in O(1) time.Proof Sketh:Base types are a trivial ase. Sine base types are unrelated to other types, the data strutures of S anbe updated in O(log jSj) time. If the set of base types is �xed and the base types are hash-onsed ahead oftime, this improves to O(1) time.5.3 Hash-Consing Type Construtor AppliationsLemma 5.2 Let � be a reursive type without any type bindings or bound type variables. There is analgorithm to hash-ons � in O(j� j log jSj) time.Proof Sketh:� an be hash-onsed in a bottom up manner using O(log jSj) time per subtree. The total time isO(j� j log jSj).5.4 Hash-Consing Reursive TypesLemma 5.3 Let � be a reursive type. Let h be the last hash-ons handle6 mentionned in � . Let m be thenumber of states of the mDFA refered to by h or 0 if h is not reursive or there are no hash-ons handles in� . There is an algorithm to hash-ons � in O(j� j2 + j� jm+ j� j log jSj) time.Proof Sketh:It is useful to separate the subtrees of � whih have no free variables and onsider them independently.When alulating sets of free variables in the traditional bottom up fashion, any subtree of � with no freevariables an be onsidered independently of the rest of � . These subtrees an be hash-onsed and replaedwith their handle leaving a smaller but equivalent version of � to examine.6Hash-ons handles are ordered in the same way as natural numbers and alloated squentially in inreasing order.
8

Suppose � is suh a subtree of � . If �'s hildren have no free variables, then � an be hash-onsednormally as disussed in 5.2 and 5.3. Otherwise, � is a reursive type and the subtrees of � that have notbeen hash-onsed represent a set of mutually reursive types. This is easily veri�ed by indution over thestruture of � by noting that eah suh subtree has at least one free variable whih must refer to an anestorin the tree.� is onverted into an mDFA7 A and minimized with a anonial ordering to get mDFA B. All statesin B not labeled with handles orrespond to types that are mutually reursive with eah other. However,it is not known yet whether states remaining to be hash-onsed are mutually reursive with any previouslyhash-onsed states.8Cheking all states of hash-onsed mDFA's represented by handles in � is prohibitively expensive: thereare O(jBj) possible handles, O(jBj) states that need to be heked for eah possible form of mutual reursion,and the size m of the largest mDFA represented by a handle is arbitrarily large. In pratie, these heksshould be prunable but this is still O(jBj2m) time. By noting that only the mDFA represented by thegreatest handle in � an be mutually reursive with the states of B,9 this an be brought down to O(jBjm)time.If � is mutually reursive with a previously hash-onsed state, then the erti�ate (a suessful traversalmapping � to previously hash-ons handles) gives the handle of �. Otherwise hash-onsing � and B's statesremaining to be hash-onsed in O(j�j log jSj) time.One � is separated from � , O(j�jm+ j�j log jSj) time is spent hash-onsing �. Separating � into subtreestakes O(j� j2) time and the total time hash-onsing � is O(j� j2+ j� jm+ j� j log jSj). When � has no hash-onshandles, this is O(j� j2 + j� j log jSj) and O(j� j) spae.Theorem 5.4 (Reursive Type Hash-Consing Algorithm) Let � be a reursive type with no referenesto hash-onsed types. There is an algorithm to hash-ons � in O(j� j2 + j� j log jSj) time and O(j� j) spae.Proof Sketh:This theorem follows from lemmas 5.1, 5.1, and 5.3.5.5 HashingHashing tehniques have been ignored so far but an be used to speed up the average ase of variouslookups. [7℄ reports great suess with using hashing in their hash-onsing sheme. If the base types andtype onstrutors are �xed before hand, the mappings from hash-ons entry to handle an be split aordingto base type or type onstrutor and the orret mapping an be hosen in onstant time.
6 ConlusionWe have presented an eÆient system for managing types. Key features of this system inlude asymptotiallyoptimal spae usage and onstant time type equality tests. While the omponent ideas of hash-onsing andrepresenting reursive types as DFA's have both been used before, we believe that their ombination tosupport reursive types while hash-onsing is new.An earlier form of this system has been implemented in SML. All hanges sine this implementation havebeen both simpli�ations and algorithmi improvements. Later, we plan to adapt this system for use in theChurh Projet SML ompiler.7� is onverted into a variant of mDFA's using hash-ons handles in plae of base type identi�ers8A reursive type may be de�ned in terms of a previous de�nition of itself.9The manner in whih handles are assigned to mDFA's embeds the partial order indued by mDFA dependenies.

9

7 AknowledgementsThis report was written to summarize some work done in a Direted Study with my advisor, Assaf Kfoury.The original motivation for work on this problem was given by Joe Wells. Allyn Dimok was helpful inexplaining the ontext of the Churh ompiler into whih this work will be integrated.
A DFA Canonial OrderingDe�nition A.1 (DFA Canonial Ordering) A funtion f : DFA! DFA gives a anonial ordering tomDFA's i� forall mDFAs A and B, A and B are equivalent i� f(A) and f(B) are idential.10 This de�nitionapplies to all DFA variants we have disussed.Lemma A.2 (DFA Canonial Ordering Algorithm) Given an mDFA A with n states, there is an al-gorithm running in O(n2) time and O(n) spae outputing B suh that B is minimal and B = f(A) for someanonial ordering f .Proof Sketh:We present an algorithm to minimize a DFA to produe an minimum isomorphi DFA with a anonialstate ordering. The algorithm given is for standard DFA's, but is appliable to all DFA variants we havementionned. The algorithm onstruts a anonially ordered DFA in a manner similar to the way it isminimized - the main distintion from DFA minimization is that the partitions approximating the equivalenerelation are ordered internally.First, the sets of the original partition are totally ordered, plaing the set of �nal sets before the set ofnon-�nal sets. As sets are split aording to the previous partitionning, the subsets are ordered aording tothe sets that split them. Details of this splitting and ordering proess follow.Approximations of the equivalene relation are represented as lists of sets of states. Given suh a list L,the n states are given a partial ordering by mapping all states in the ith set in L to i. States are omparedby omparing their assoiated values. The mapping an be reated in O(n) time and aessed in O(1) timeusing an array indexed by state number.An element S of L is split if the members of S do not have their hildren mapped to the same sets. Thatis, eah element s of S is haraterized by the values its hildren are mapped to. The haraterization of anelement s an be determined in O(1) time sine there is a onstant upper bound on the number of hildren.Cheking whether S needs to be split (i.e. heking whether some of the haraterizations are di�erent) anbe done in O(jSj) time. If S needs to be split, it an be split in O(n) time using pigeon-hole sort. When sis split, the subsets are ordered aording to the hildren that split them. Splits based on di�erent hildrenare done separately in a onsistent order.The total number of approximations is at most n sine there are at most n non-isomorphi states andeah approximation must add at least one split. The total time heking an approximation for splits is O(n)time so the total time heking for splits is O(n2). The total time performing splits is O(n2) sine there areat most n splits and eah split takes O(n) time. Therefore, the total time is O(n2).The proof of this algorithm's orretness is similar to that of the orresponding minimization whih doesnot order the sets. The kth approximation separates states that are k-distinguishable. It is trivial to verifythat the states are ordered by the �rst string distinguishing them (note states distinguished by shorter stringsare already ordered).11
Referenes[1℄ John Allen. Anatomy of LISP. MGraw-Hill Book Company, New York, 1978.10Here, we say two DFAs are idential if their internal representations inluding labeling are idential.11Here, we order strings primarily by length and seondarily by lexiographi order.

10

[2℄ E. Goto. Monoopy and Assoiative Algorithms in an Extended Lisp. University of Tokyo, Japan, May1974.[3℄ John E. Hoproft, Je�rey D. Ullman. Introdution to Automata Theory, Languages, and Computation.Addison-Wesley Publishing Company, In., Reading, Massahuesetts, 1979.[4℄ Dexter Kozen, Jens Palsberg, Mihael I. Shwartzbah. EÆient Reursive Subtyping. In MathematialStrutures in Computer Siene, 5(1):113-125, 1995.[5℄ Laurent Mauborgne. Representation of Sets of Trees for Abstrat Interpretation.http://www.di.ens.fr/ mauborgn/t.ps.gz, November 1999.[6℄ Laurent Mauborgne. Improving the Representation of In�nite Trees to Deal with Sets of Trees. to appearin ESOP 2000.[7℄ Zhong Shao, Christopher League, and Stefan Monnier. Implementing Typed Intermediate Languages. InPro. 1998 ACM SIGPLAN International Conferene on Funtional Programming (ICFP'98), Baltimore,Maryland, pages 313-323, September 1998.[8℄ Brue W. Watson. A taxonomy of �nite automata minimization algorithms. Computing Siene Report93/44, Faulty of Mathematis and Computing Siene, Eindhoven University of Tehnology, Eindhoven,The Netherlands, 1993.

11

