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Abstra
tEÆ
ient storage of types within a 
ompiler is ne
essary to avoid large blowups in spa
e during 
ompi-lation. Re
ursive types in parti
ular are important to 
onsider, as naive representations of re
ursive typesmay be arbitrarily larger than ne
essary through unfolding. Hash-
onsing has been used to eÆ
ientlystore non-re
ursive types [7℄. Deterministi
 �nite automata te
hniques have been used to eÆ
ientlyperform various operations on re
ursive types [4℄. We present a new system for storing re
ursive types
ombining hash-
onsing and deterministi
 �nite automata te
hniques. The spa
e requirements are linearin the number of distin
t types. Both update and lookup operations take polynomial time and linearspa
e and type equality 
an be 
he
ked in 
onstant time on
e both types are in the system.

1 Introdu
tionA re
ent trend in 
ompilers is the use of typed intermediate languages while 
ompiling to generate safer andmore optimized 
ode. One disadvantage to this approa
h is that saving type information 
an easily 
ause alarge blowup in the spa
e used by a 
ompiler. Types of simple expressions 
an blowup exponentially whenrepresented using a tree data stru
ture. Re
ursive types allow arbitrary expansion through simple unfolding.We use the idea of hash-
onsing to maintain a set of types in whi
h all equivalent types share the samerepresentation. [7℄ reports su
essful appli
ations of these te
hniques. We take the idea one step farther andadd DFA te
hniques to allow the same bene�ts to be extended to re
ursive types.DFA te
hniques have been used for various operations on re
ursive types [4℄. We use them to minimizere
ursive type representations and avoid dupli
ate representations. We also present a 
anoni
al orderingalgorithm to avoid the \isomorphi
 under permutations of states" 
lause in many presentations of DFAminimization algorithms. Use of 
anoni
al orderings allows linear time DFA 
omparisons and simpli�es
omparing re
ursive types.Given a set S of types and a type � , our system allows eÆ
ient update and lookup operations to beperformed in two steps: a pre-pro
essing step taking O(j� j2) time and a step a
tually a

essing S usingO(j� j log jSj) time. The spa
e required to represent S is linear in the number of rea
hable distin
t types soit is asymptoti
ally optimal in spa
e.This work was done during the period of O
tober 1999 to De
ember 1999. In the mean time, LaurentMauborgne defended his PhD thesis on representing sets of in�nite trees [5℄ and submitted an ex
erpt [6℄ forpubli
ation in ESOP 2000. The 
ore algorithm for eÆ
iently 
onstru
ting in�nite trees is virtually identi
alto the algorithm given here for representing re
ursive types, though the presentation is drasti
ally di�erent.The key di�eren
e between the two representations is the spa
e utilization - ignoring logarithmi
 fa
tors, thesize used per distin
t type is 
onstant in the representation presented here and dependent on the number ofmutually re
ursive trees in the representation of Mauborgne.
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2 Re
ursive Types2.1 SyntaxThe 
ommon syntax of re
ursive types is� ::= b j � ! � j �v:� j vwhere b is a base type and v is a type variable. We generalize this syntax to in
lude arbitrary type 
onstru
-tors, in addition to \!".Let B be a �nite set of base types and C a �nite set of type 
onstru
tors. B and C are disjoint. Let Vbe the set of type variables. � ::= b j 
(�; : : :) j �v:� j vwhere b 2 B, 
 2 C, and v 2 V .2.2 Equivalen
eInformally, we de�ne two types to be equivalent if their 
orresponding labeled in�nite trees are the same.We will formally de�ne the labeled in�nite tree 
orresponding to a re
ursive type in 3.3.
3 In�nite TreesIn des
ribing in�nite trees, we will use the notation that ~i, ~j, and ~k are strings of positive integers and i, j,and k are individual positive integers. Let P be the set of positive integers. � is the empty string and P � isthe set of all strings of positive integers. � is an overloaded string 
on
atenation operator. Given I; J 2 P �,I � J = n~i �~jj(~i 2 I) ^ (~j 2 J)o.3.1 TreesDe�nition 3.1 (Trees) T is a tree if the following are true:1. T is a non-empty set of strings built from positive integers - ; � T � P �.2. T is pre�x-
losed - 8~i;~j ��~i �~j 2 T�! �~i 2 T��.3. T is leftward-
losed - 8~i; j; k �(j � k)! �~i � k 2 T�! �~i � j 2 T��.We 
all the strings in T the paths of T . Note that the �rst two properties imply that � is a path of T . Inwords, � identi�es the root node of T and T is a potentially in�nite set of �nite paths.De�nition 3.2 (Subtrees) Let T be a tree and ~t a path in T . The subtree of T rea
hed by ~t is de�ned asfollows: subtree �T;~t� = n~i j �~t �~i 2 T�oLemma 3.3 Let T be a tree and ~t a path of T . Then, subtree(T;~t) is a tree.Proof Sket
h:If ~s is a witness that subtree(T;~t) is not a tree, ~t � ~s is similarly a witness that T is not a tree.De�nition 3.4 (Degree) Let T be a tree. The degree of T is de�ned as follows:degree(T ) = jT \ P jIn words, degree(T ) is the number of 
hildren of the root node of T .2



3.2 Labeled TreesDe�nition 3.5 (Labeled Trees) Let arity be a fun
tion from C to P returning the arity of its input andlet k be the maximum value returned by arity. We de�ne labeled trees as follows - T = (T; l) is a tree if thefollowing are true:1. T is a tree.2. l is a fun
tion from P � to B [ C su
h that� 8t((t 2 T )! (l(t) 2 B)! (degree(subtree(T; t)) = 0)� 8t((t 2 T )! (l(t) 2 C)! (degree(subtree(T; t)) = arity(l(t)))De�nition 3.6 (Labeled Subtrees) Let T = (T; l) be a labeled tree and ~t a path of T . The labeled subtreeof T rea
hed by ~t is de�ned as follows:labeledsubtree �T;~t� = �n~i j �~t �~i 2 T�o ; �x:l �~tx��Lemma 3.7 Let T = (T; l) be a labeled tree and ~t a path of T . Then, labeledsubtree �T ;~t� is a labeled tree.De�nition 3.8 (Labeled Paths) Let T = (T; l) be a labeled tree. The labeled paths of T is de�ned asfollows: paths(T ) = ��~t; x� j �~t 2 T � ^ (x = l(t))	De�nition 3.9 (Labeled Tree Isomorphism) Let T1 = (T1; l1) and T2 = (T2; l2) be labeled trees. T1and T2 are isomorphi
 i� T1 = T2 and 8~t ��~t 2 T1�! �l1 �~t� = l2 �~t���.3.3 Labeled Tree Constru
tion from Re
ursive TypesDe�nition 3.10 (unfold) Let � be a re
ursive type. We de�ne the fun
tion unfold as follows:1unfold(�) = � [�t:�=t℄�if � = �t:��otherwiseDe�nition 3.11 (re
 unfold) Let � be a re
ursive type. We de�ne the fun
tion re
 unfold as follows:2
re
 unfold(�) = 8>><>>:

b if � = b 2 B
(re
 unfold(�1); : : :) if � = 
(�1; : : :)v if � = v 2 Vunfold(�t:re
 unfold(�)) if � = �t:�De�nition 3.12 (Finite Trees of Re
ursive Types) Let � be a re
ursive type. We de�ne the �nite treeof � as follows:
�nite tree(�) = 8>><>>:

f�g if � 2 B[i(i � �nite tree(�i)) [ f�g if � = 
(�1; : : :)f�g if � 2 V�nite tree(�) if � = �t:�In words, �nite tree(�) is the �nite set of all �nite paths traversing � without unfolding. Later, a similarbut potentially in�nite set will be des
ribed.1The 
ommon axiom �t:� �= [�t:�=t℄�, where �= denotes equivalen
e, allows one to prove � �= unfold(�).2As with unfold , � �= re
 unfold . 3



Lemma 3.13 Let � be a re
ursive type. Then, �nite tree(�) is a tree.Proof Sket
h:This lemma may be proven using stru
tural indu
tion over � .Lemma 3.14 Let � be a re
ursive type. Then, �nite tree(�) � �nite tree(re
 unfold(�)).De�nition 3.15 (In�nite Trees of Re
ursive Types) Let � be a re
ursive type. Let �i = re
 unfold i(�),the result of applying re
 unfold to � i times. Let pi = �nite tree(�i). The in�nite tree of � is de�ned asfollows: in�nite tree(�) = [ipiIn words, in�nite tree(�) is the potentially in�nite set of all �nite paths traversing � unfolded an in�nitenumber of types. If � is not re
ursive, in�nite tree(�) = �nite tree(�), a �nite set.Lemma 3.16 Let � be a re
ursive type. Then, in�nite tree(�) is a tree.Proof Sket
h:This lemma follows from lemmas 3.13 and 3.14.Lemma 3.17 Let � be a re
ursive type. Then, in�nite tree(�) is de
idable.Proof Sket
h:Note that ~t 2 in�nite tree(�) i� ~t 2 �nite tree(re
 unfold j~tj(�)).Let 
 be a distinguished symbol whi
h stands for an unde�ned result.De�nition 3.18 (Finite Labeling of Re
ursive Types) Let � be a re
ursive type and x a path. Wede�ne the �nite labeling of � as follows:
�nite labeling(�)(x) = 8>><>>:

b if � = b 2 B and x = ��nite labeling(�i)(x0) if � = 
(�1; : : :) and x = i � x0
 if � 2 V�nite labeling(�)(x) if � = �t:�De�nition 3.19 (In�nite Labeling of Re
ursive Types) Let � be a re
ursive type and x be a path.The in�nite labeling of � is de�ned as follows:in�nite labeling(�)(x) = � y if there exists i su
h that �nite labeling(re
 unfold i(�))(x) = y
 otherwiseNote in�nite labeling(�) has an in�nite domain i� in�nite tree(�) is in�nite.Lemma 3.20 Let � be a re
ursive type. Then, in�nite labeling(�) is a well de�ned and total 
omputablefun
tion.Proof Sket
h:Note �nite labeling(�)(x) = y implies �nite labeling(re
 unfold(�))(x) = y and the number of appli
a-tions of re
 unfold ne
essary is bounded by the length of x.Lemma 3.21 Let � be a re
ursive type. Let T = in�nite tree(�) and l = in�nite labeling(�). Then,T = (T; l) is a labeled tree.De�nition 3.22 (Re
ursive Type Labeled In�nite Trees) Let � be a re
ursive type. Let T = in�nite tree(�)and l = in�nite labeling(�). The labeled in�nite tree 
orresponding to � is de�ned to be T = (T; l).
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4 Deterministi
 Finite AutomataOther work has been done using deterministi
 �nite automata (DFA's) to eÆ
iently implement operationssu
h as subtyping [4℄. We start with DFA's for pro
essing strings and modify them to establish a 
orrespon-den
e with types in our system. We 
an then use adaptations of standard DFA algorithms to minimize thesize of the types and traditional graph algorithms to analyze relations between types.4.1 Standard DFA'sTraditionally, a string pro
essing DFA 
an be 
onsidered as a dire
ted multi-graph with ea
h edge labeledwith a member of the input alphabet. Ea
h node 
orresponds to a state of the DFA and is labeled �nal ornon-�nal. Stri
tly speaking, ea
h node has exa
tly one outgoing edge for ea
h member of the input alphabet.However, it is 
ommon pra
tive to leave out edges to \error" states, non-�nal states in whi
h all edges areself-loops, sin
e on
e an error state is rea
hed, it is impossible to rea
h a �nal state [3℄.When pro
essing strings with standard DFA's, one node of the graph is designated as the start state ofthe DFA. Input to the DFA is read one 
hara
ter at a time and the 
orresponding edge is followed. Whenthe end of input is rea
hed, the sDFA a

epts the input string i� last state of the traversal is a �nal state.We avoid a formal de�nition of DFA's whi
h 
an be found in many textbooks on automata theory. Unlessotherwise spe
i�ed, we follow the terminology of [3℄.In 
ontrast to the modi�ed DFA's of 4.2, we will refer to standard DFA's as sDFA's.4.2 Modi�ed DFA'sInstead of using sDFA's, we use a modi�ed DFA (mDFA) with a more general labeling s
heme beyond�nal/non-�nal. mDFA's a

ept strings built from members of f1; : : : ; kg. Ea
h state is labeled with theidenti�er of either a type 
onstru
tor or a base type. In 4.3, it will be seen that type 
onstru
tor labels andbase type labels will be distinguishable by the number of outgoing edges. The presen
e of a sink state isimplied but not used; all missing edges go to this sink state.String pro
essing with mDFA's is similar to that with sDFA's. Traversal of the mDFA graph is the sameas with a DFA, but the output is di�erent. If the last state rea
hed is a sink state, the mDFA reje
ts.Otherwise, it a

epts and outputs the state's label.De�nition 4.1 (mDFA Output) LetA be an mDFA. The output of A is the set of pairs of strings a

eptedby A and the asso
iated output.output(A) = f(~x; y) j A a

epts ~x and A outputs y given ~xg4.3 mDFA Constru
tion from Re
ursive TypesDe�nition 4.2 (mDFA/Re
ursive Type Equivalen
e) Let � be a re
ursive type and A be an mDFA.Let T be the labeled tree 
orresponding to type � . We de�ne A and � to be equivalent i� output(A) =paths(T ).To 
onvert a re
ursive type � into an mDFA A, the tree stru
ture of � is essentially 
opied into an mDFAgraph and ba
k referen
es are added to repla
e bound type variables.Lemma 4.3 (mDFA Constru
tion from Re
ursive Types Algorithm) Let � be a re
ursive type. Thereexists an algorithm running in O(j� j log j� j) time and O(j� j) spa
e outputting mDFA A su
h that A is equiv-alent to � and if A has n states, n 2 O(j� j).Proof Sket
h:A 
an be built using two traversals of the tree representation of � . The �rst pass assigns states to
omponents of � and the se
ond builds A. 5



The �rst pass annotates the tree representation of � with state numbers in a bottom up fashion. Freshstates are assigned to base types and appli
ations of type 
onstru
tors and passed ba
k up the tree. Typebindings are annotated with the state passed up by the body of binding and this state is passed up the treeagain. This pass takes O(j� j) time. Bound type variables are not assigned states.The se
ond pass a
tually generates the adja
en
y list representation of the mDFA graph. � is traversedin a depth �rst manner passing a binding environment down to ea
h 
hild. When a base type is rea
hed, anappropriately labeled state with no outgoing edges is 
reated. When an appli
ation of a type 
onstru
toris rea
hed, an appropriately labeled state with a numbered edge to ea
h 
hild is 
reated; if the 
hild wasnot assigned a state in the �rst pass, it is a bound type variable and looked up in the binding environment(if it is not in the binding environment, � is invalid). When a type binding is rea
hed, a binding of thetype variable to the assigned state is added to the environment that will be passed to the body of the typebinding. Again, no a
tion is taken when a bound type variable is rea
hed. This pass takes O(j� j log j� j) timeusing a balan
ed tree representation for the environment.This pro
ess preserves the tree stru
ture of � ex
ept when type variables are bound and used. Ignoringuses of bound type variables for a moment, the semanti
s of a type binding give it the same stru
ture asits body so sharing the state of its body is semanti
ally 
orre
t. Considering uses of bound type variablesagain, the semanti
s of using a bound type variable are that it is equivalent to the inner most binding ofthat type variable so using the state the type variable is 
urrently bound too is also 
orre
t.4.4 Minimization of mDFA'sDe�nition 4.4 (mDFA Equivalen
e) Let A and B be mDFA's. Then, A and B are de�ned to be equiv-alent i� output(A) = output(B).Lemma 4.5 (mDFA Minimization Algorithm) Let A be an mDFA with n states. There exists an al-gorithm running in O(n logn) and O(n) spa
e outputing an mDFA B su
h that A and B are equivalent andB is minimal. That is, for all mDFAs C, if A and C are equivalent and C has m states, then n � m.Proof Sket
h:An sDFA is usually minimized by 
al
ulating the equivalen
e relation or equivalen
e 
lasses of states [8℄.3On
e the equivalen
e 
lasses of an sDFA A are known, it is straightforward to 
reate a minimal equivalentsDFA B using a homomorphism mapping ea
h equivalen
e 
lass of A to a distin
t state in B.The �rst approximation of the equivalen
e 
lasses is a partitionning of the states a

ording to whetherthey are labeled �nal or not. This approximation is re�ned further by splitting equivalen
e 
lasses a

ordingto the states various inputs bring them to. If there are n states in jAj, at most n splits are ne
essary, andthere are many sDFA minimization algorithms running in O(n2) time. Most of these sDFA minimizationalgorithms also run in O(n) spa
e.4Adapting these algorithms to mDFA's simply 
onsists of repla
ing the original partitionning with onea

ording to the mDFA labels. There may be as many sets in the partition as there are type 
onstru
tors andbase types, as opposed to merely two with sDFA's. This partitionning is exa
tly that produ
ed by 
he
king0-distinguishability.5 Sin
e this is the 
riteria used for proving the 
orre
tness of the original partitionning insDFA algorithms, the 
orre
tness proof for the sDFA algorithm 
an be trivially transformed into a 
orre
tnessproof for the mDFA algorithm. This gives many algorithms for transforming an mDFA A into a minimalequivalent mDFA B in O(n2) time and O(n) spa
e. Hop
roft's O(n logn) time algorithm 
an be transformedin the same fashion.3A notable ex
eption is the algorithm in [3℄ whi
h 
al
ulates the di�eren
e relation from whi
h it is trivial to 
al
ulate theequivalen
e relation.4The algorithm in [3℄ is an ex
eption again sin
e it uses O(n2) spa
e to 
al
ulate the distinguishability relation.5A and B are k-distinguishable if there is a string of length k that is a 
ounter example to A being equivalent to B.
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4.5 Re
onstru
tion of Re
ursive Types from mDFA'sOn
e � has been 
onverted into an mDFA A and minimized to get another mDFA B, we may want tore
onstru
t a minimal tree representation of a type � whi
h is equivalent to � .Lemma 4.6 (Re
onstru
tion of Re
ursive Types from mDFA's) Let A be an mDFA with n states.There exists an algorithm outputing a re
ursive type � su
h that A and � are equivalent, � is minimal, andthe algorithm runs in O(j� j logn) and O(j� j) spa
e.Proof Sket
h:The tree stru
ture of � 
an be generated by a depth �rst traversal of B allowing nodes to be visited morethan on
e. An environment 
ontaining all an
estors in the traversal is passed down the traversal to dete
tba
k referen
es. Subtrees and the set of all states referen
ed is passed ba
k up the tree.At ea
h state visited, if the state is an an
estor of itself, the state is 
onverted into a bound variable andpassed ba
k up the tree with the singleton set of that state being the only referen
ed state. If the state is notan an
estor of itself and has a base type label, the base type is passed ba
k with an empty set of referen
edstates. If the state is not an an
estor of itself and has a type 
onstru
tor label, its 
hildren are generatedand their sets of free referen
es are unioned together. The type 
onstru
tor is applied to the 
hild subtrees.If the state is in the set of free referen
es, a type binding is added and it is removed from the set of freereferen
es. Both the type and set of free referen
es are then passed ba
k.All set operations ex
ept union take O(log jBj) time. Union takes O(jBj) time, so O(jBj) is spent at ea
hnode of �. The entire pro
ess takes O(j�jjBj) time. In terms of � , this is O(j� j2) time.� will have the same in�nite tree stru
ture as � , but ea
h in�nite bran
h will be terminated at the �rstnode equivalent to a parent. The tree stru
ture of � is provably minimal type sin
e earlier terminationimplies di�erent stru
ture from � and later termination is not minimal. The � bindings in � are determinedby the nodes at whi
h � is terminated: the � bindings present are exa
tly the bindings used.4.6 Graph PropertiesIt is interesting to 
onsider some properties of the graph indu
ed by the mDFA edges. We mention somewithout proof but they should be intuitive.� If a state 
an rea
h itself, the 
orresponding type is re
ursive.� If two states 
an rea
h ea
h other, their 
orresponding types are mutually re
ursive.� If one state 
an not rea
h a se
ond state, then the type 
orresponding to the �rst state may be analyzedindependently of the type 
orresponding to the se
ond.
5 Hash-ConsingHistori
ally, hash 
onsing is a te
hnique originally used in LISP to avoid dupli
ation of lists. In LISP, liststru
tures are only 
reated by the 
ons operation. By modifying 
ons with the help of hashing te
hniques,no two invo
ations of 
ons would ever return distin
t 
opies of the same data. An early example of thiste
hnique is presented in [2℄. While limiting the ability to modify lists generated in su
h a manner, thiste
hnique allows greater spa
e eÆ
ien
y and 
onstant time equality 
he
king [1℄.We use similar ideas to represent a set of types S. The equivalen
e 
lass 
(�) of a type � is the set of alltypes equivalent to � ; a set C of types is an equivalen
e 
lass if C = 
(�) for some type � . We think of S asa �nite 
olle
tion of equivalen
e 
lasses, where ea
h equivalen
e 
lass is uniquely represented by a 
anoni
almember of the 
lass and a

essed through a unique handle. Internally, S is represented by� A mapping from base type identi�ers to handles (natural numbers). Given a total order of base types,this mapping a

esible in O(S) time. Typi
ally there will be a �xed number of base types so this willbe a

essible in O(1) time. 7



� A mapping from tuples of type 
onstru
tors and the handles of their 
hildren to handles. Given atotal order of type 
onstru
tors, there is a total order of these tuples and this mapping is a

essible inO(log jSj) time.� A mapping from 
anoni
ally ordered mDFA's to handles. These mDFA's have a slight modi�
ationfrom the mDFA's dis
ussed in 4.2: base type identi�ers in labels are repla
ed with hash-
ons handles.Sin
e the states of the mDFA's have a 
anoni
al order, the mDFA's 
an be given a meaningful totalorder. For an mDFA A, this mapping is a

essible in O(jAj log jSj) time.Semanti
ally, ea
h mDFA maps to the handle of its �rst state and su

essive states are mapped tosu

essive handles.� A mapping inverting the union of the previous mappings. This mapping 
an be sorted by handle anda

essed in O(log jSj) time.5.1 Hash-Consed Re
ursive TypesWhen hash-
onsing re
ursive types, two modi�
ations from the syntax given in 2.1 are used. First, handlesof hash-
onsed types are added to the allowed syntax for re
ursive types. Se
ond, free type variables arerepla
ed with extra base types to allow uniform treatment of type variables in 5.4.5.2 Hash-Consing Base TypesLemma 5.1 There is an algorithm to hash-
ons base types in O(log jSj) time. If the set of base types is�nite and �xed, there is an algorithm to hash-
ons base types in O(1) time.Proof Sket
h:Base types are a trivial 
ase. Sin
e base types are unrelated to other types, the data stru
tures of S 
anbe updated in O(log jSj) time. If the set of base types is �xed and the base types are hash-
onsed ahead oftime, this improves to O(1) time.5.3 Hash-Consing Type Constru
tor Appli
ationsLemma 5.2 Let � be a re
ursive type without any type bindings or bound type variables. There is analgorithm to hash-
ons � in O(j� j log jSj) time.Proof Sket
h:� 
an be hash-
onsed in a bottom up manner using O(log jSj) time per subtree. The total time isO(j� j log jSj).5.4 Hash-Consing Re
ursive TypesLemma 5.3 Let � be a re
ursive type. Let h be the last hash-
ons handle6 mentionned in � . Let m be thenumber of states of the mDFA refered to by h or 0 if h is not re
ursive or there are no hash-
ons handles in� . There is an algorithm to hash-
ons � in O(j� j2 + j� jm+ j� j log jSj) time.Proof Sket
h:It is useful to separate the subtrees of � whi
h have no free variables and 
onsider them independently.When 
al
ulating sets of free variables in the traditional bottom up fashion, any subtree of � with no freevariables 
an be 
onsidered independently of the rest of � . These subtrees 
an be hash-
onsed and repla
edwith their handle leaving a smaller but equivalent version of � to examine.6Hash-
ons handles are ordered in the same way as natural numbers and allo
ated squentially in in
reasing order.
8



Suppose � is su
h a subtree of � . If �'s 
hildren have no free variables, then � 
an be hash-
onsednormally as dis
ussed in 5.2 and 5.3. Otherwise, � is a re
ursive type and the subtrees of � that have notbeen hash-
onsed represent a set of mutually re
ursive types. This is easily veri�ed by indu
tion over thestru
ture of � by noting that ea
h su
h subtree has at least one free variable whi
h must refer to an an
estorin the tree.� is 
onverted into an mDFA7 A and minimized with a 
anoni
al ordering to get mDFA B. All statesin B not labeled with handles 
orrespond to types that are mutually re
ursive with ea
h other. However,it is not known yet whether states remaining to be hash-
onsed are mutually re
ursive with any previouslyhash-
onsed states.8Che
king all states of hash-
onsed mDFA's represented by handles in � is prohibitively expensive: thereare O(jBj) possible handles, O(jBj) states that need to be 
he
ked for ea
h possible form of mutual re
ursion,and the size m of the largest mDFA represented by a handle is arbitrarily large. In pra
ti
e, these 
he
ksshould be prunable but this is still O(jBj2m) time. By noting that only the mDFA represented by thegreatest handle in � 
an be mutually re
ursive with the states of B,9 this 
an be brought down to O(jBjm)time.If � is mutually re
ursive with a previously hash-
onsed state, then the 
erti�
ate (a su

essful traversalmapping � to previously hash-
ons handles) gives the handle of �. Otherwise hash-
onsing � and B's statesremaining to be hash-
onsed in O(j�j log jSj) time.On
e � is separated from � , O(j�jm+ j�j log jSj) time is spent hash-
onsing �. Separating � into subtreestakes O(j� j2) time and the total time hash-
onsing � is O(j� j2+ j� jm+ j� j log jSj). When � has no hash-
onshandles, this is O(j� j2 + j� j log jSj) and O(j� j) spa
e.Theorem 5.4 (Re
ursive Type Hash-Consing Algorithm) Let � be a re
ursive type with no referen
esto hash-
onsed types. There is an algorithm to hash-
ons � in O(j� j2 + j� j log jSj) time and O(j� j) spa
e.Proof Sket
h:This theorem follows from lemmas 5.1, 5.1, and 5.3.5.5 HashingHashing te
hniques have been ignored so far but 
an be used to speed up the average 
ase of variouslookups. [7℄ reports great su

ess with using hashing in their hash-
onsing s
heme. If the base types andtype 
onstru
tors are �xed before hand, the mappings from hash-
ons entry to handle 
an be split a

ordingto base type or type 
onstru
tor and the 
orre
t mapping 
an be 
hosen in 
onstant time.
6 Con
lusionWe have presented an eÆ
ient system for managing types. Key features of this system in
lude asymptoti
allyoptimal spa
e usage and 
onstant time type equality tests. While the 
omponent ideas of hash-
onsing andrepresenting re
ursive types as DFA's have both been used before, we believe that their 
ombination tosupport re
ursive types while hash-
onsing is new.An earlier form of this system has been implemented in SML. All 
hanges sin
e this implementation havebeen both simpli�
ations and algorithmi
 improvements. Later, we plan to adapt this system for use in theChur
h Proje
t SML 
ompiler.7� is 
onverted into a variant of mDFA's using hash-
ons handles in pla
e of base type identi�ers8A re
ursive type may be de�ned in terms of a previous de�nition of itself.9The manner in whi
h handles are assigned to mDFA's embeds the partial order indu
ed by mDFA dependen
ies.
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A DFA Canoni
al OrderingDe�nition A.1 (DFA Canoni
al Ordering) A fun
tion f : DFA! DFA gives a 
anoni
al ordering tomDFA's i� forall mDFAs A and B, A and B are equivalent i� f(A) and f(B) are identi
al.10 This de�nitionapplies to all DFA variants we have dis
ussed.Lemma A.2 (DFA Canoni
al Ordering Algorithm) Given an mDFA A with n states, there is an al-gorithm running in O(n2) time and O(n) spa
e outputing B su
h that B is minimal and B = f(A) for some
anoni
al ordering f .Proof Sket
h:We present an algorithm to minimize a DFA to produ
e an minimum isomorphi
 DFA with a 
anoni
alstate ordering. The algorithm given is for standard DFA's, but is appli
able to all DFA variants we havementionned. The algorithm 
onstru
ts a 
anoni
ally ordered DFA in a manner similar to the way it isminimized - the main distin
tion from DFA minimization is that the partitions approximating the equivalen
erelation are ordered internally.First, the sets of the original partition are totally ordered, pla
ing the set of �nal sets before the set ofnon-�nal sets. As sets are split a

ording to the previous partitionning, the subsets are ordered a

ording tothe sets that split them. Details of this splitting and ordering pro
ess follow.Approximations of the equivalen
e relation are represented as lists of sets of states. Given su
h a list L,the n states are given a partial ordering by mapping all states in the ith set in L to i. States are 
omparedby 
omparing their asso
iated values. The mapping 
an be 
reated in O(n) time and a

essed in O(1) timeusing an array indexed by state number.An element S of L is split if the members of S do not have their 
hildren mapped to the same sets. Thatis, ea
h element s of S is 
hara
terized by the values its 
hildren are mapped to. The 
hara
terization of anelement s 
an be determined in O(1) time sin
e there is a 
onstant upper bound on the number of 
hildren.Che
king whether S needs to be split (i.e. 
he
king whether some of the 
hara
terizations are di�erent) 
anbe done in O(jSj) time. If S needs to be split, it 
an be split in O(n) time using pigeon-hole sort. When sis split, the subsets are ordered a

ording to the 
hildren that split them. Splits based on di�erent 
hildrenare done separately in a 
onsistent order.The total number of approximations is at most n sin
e there are at most n non-isomorphi
 states andea
h approximation must add at least one split. The total time 
he
king an approximation for splits is O(n)time so the total time 
he
king for splits is O(n2). The total time performing splits is O(n2) sin
e there areat most n splits and ea
h split takes O(n) time. Therefore, the total time is O(n2).The proof of this algorithm's 
orre
tness is similar to that of the 
orresponding minimization whi
h doesnot order the sets. The kth approximation separates states that are k-distinguishable. It is trivial to verifythat the states are ordered by the �rst string distinguishing them (note states distinguished by shorter stringsare already ordered).11
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