
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

SNOOPY CALENDAR QUEUE

Kah Leong Tan
Li-Jin Thng

Department of Electrical and Computer Engineering

10 Kent Ridge Crescent
National University of Singapore

Singapore 119260

ABSTRACT

Discrete event simulations often require a future event list
structure to manage events according to their timestamp.
The choice of an efficient data structure is vital to the
performance of discrete event simulations as 40% of the
time may be spent on its management. A Calendar Queue
(CQ) or Dynamic Calendar Queue (DCQ) are two data
structures that offers O(1) complexity regardless of the
future event list size. CQ is known to perform poorly over
skewed event distributions or when event distribution
changes. DCQ improves on the CQ structure by detecting
such scenarios in order to redistribute events. Both CQ and
DCQ determine their operating parameters (bucket widths)
by sampling events. However, sampling technique will fail
if the samples do not accurately reflect the inter-event gap
size. This paper presents a novel and alternative approach
for determining the optimum operating parameter of a
calendar queue based on performance statistics. Stress
testing of the new calendar queue, henceforth referred to as
the Statistically eNhanced with Optimum Operating
Parameter Calendar Queue (SNOOPy CQ), with widely
varying and severely skewed event arrival scenarios show
that SNOOPy CQ offers a consistent O(1) performance and
can execute up to 100 times faster than DCQ and CQ in
certain scenarios.

1 INTRODUCTION

Discrete event simulations are widely used in many
research areas to model a complex system�s behavior. In
discrete event simulation a system is modeled as a number
of logical processes that interact among themselves by
generating event messages with an execution timestamp
associated with each of the messages. The pending event
set (PES) is a set of all generated event messages that have
not been serviced yet. A PES can be represented by a
priority queue with messages with the smallest timestamp
having the highest priority and vice versa. The choice of a

data structure to represent the PES can affect the
performance of a simulation greatly. If the number of
events in the PES is huge as in the case of a fine-grain
simulation, it has been shown that up to 40% of the
simulation execution time may be spent on the
management of the PES alone [Comfort, 1984].

A CQ is a data structure that offers O(1) time
complexity regardless of the number of events in the PES.
To achieve this, the CQ, which consists of an array of
linked lists, tries to maintain a small number of events over
each list. However, the CQ performs poorly when event
distributions are highly skewed or when event distribution
changes.

A DCQ [Oh and Ahn, 1999] has been proposed to
solve the above-mentioned problem by adding a
mechanism for detecting uneven distribution of events over
its array of linked lists. Whenever this is detected, DCQ re-
computes a new operating parameter for the calendar
queue and redistributes events over a newly created array
of linked lists.

Both the DCQ and CQ compute their operating
parameter based on sampling a number of events in the
PES. Sometimes the choices of samples are not sufficiently
reflective of the optimum bucket width to use for the PES.
When this occurs, performance of the DCQ and CQ
degrade significantly and the newly resized calendar will
not be able to maintain their O(1) processing complexity.

This paper proposes a novel approach in estimating an
optimum operating parameter for a calendar queue. This
approach is based on the past performance metrics of the
calendar queue which can be obtained statistically. This
approach provides an O(1) processing complexity for the
calendar queue under all standard benchmarking
distributions. It is also not susceptible to estimation error
associated with the sampling method used in DCQ and CQ.

This paper is organized as follows. In section 2 we
present in detail how a conventional CQ and DCQ
operates, and their associated shortcomings. In section 3
we derive theoretically the optimum operating parameter

Tan and Thng

for a calendar queue. Utilizing the derived equations,
section 4 describes the SNOOPy CQ mechanism. In
section 5, the performance graphs of SNOOpy CQ, DCQ
and CQ under different event arrival distributions are
presented, compared and analyzed. Finally section 6
summarizes the contents of this paper and list down several
recommendations for future work.

2 CQ AND DCQ

Sections 2 describes the operation of CQ and DCQ

2.1 Basic Calendar Queue Stucture.

Figure 1 illustrates the basic structure of a CQ consisting of
an array of linked lists. An element in the array is often
referred to as a bucket and each bucket stores several
events using a single linked list structure. For notational
conveniences, we define the following symbols:

NB = Number of buckets in the CQ
BW = Bucket width in seconds
DY = Duration of a year in seconds = NB× BW
Bk = kth bucket of the calendar queue where 0≤k≤

 NB-1

For example, in Figure 1, the CQ has NB=5 buckets, i.e.
B[0], B[1],�, B[4], each of width BW = 1 second,
representing an overall calendar year of duration DY = 5
seconds.

{ } { }5,1,5,, =YWB DBN

Figure 1: A Conventional Calendar Queue

 To enqueue events with timestamp greater than or
equal to a year�s duration, a modulo-DY division is
performed on the timestamp to determine the right bucket
to insert the event. Therefore, any events falling on the
same day, regardless of their year, is inserted into the same
bucket and sorted in increasing time order as illustrated in
Figure 1 and Table 1. To dequeue events, the CQ keeps
track of the current calendar year and day it is in. It then
searches for the earliest event that falls on the current year
and day starting at bucket B[0]. If the event at the head

node of the linked list at B[0] does not have the current
year�s timestamp, the search then turns to the head node of
the linked list at B[1] and proceeds in this manner until
B[NB �1] is reached. When all the buckets have been
cycled through, the current year will be incremented by 1
and the current day will be reset back to day 0 (i.e. bucket
B[0]). For example, the event with timestamp 10.3 seconds
in Figure 1 is only dequeued at the start of the third cycle.

Table 1: Event Timestamp Mapping
Event timestamp Calendar

Year
Calendar Day

0.3 0 1
0.4 0 1
5.3 1 1

10.3 2 1
3.3 0 4

2.2 CQ Resize Operation

To simplify the resize operation, the number of buckets in
a CQ is often chosen to be of the power of two, i.e.

NB = 2n , n∈ Z, n≥ 0 (1)

The number of buckets are doubled or halved each time the
number of events NE exceeds 2NB or decreases below NB/2
respectively, i.e.

If NE > 2NB, NB:=2 NB
 If NE < NB/2, NB:= NB/2 (2)

When NB is resized, a new operating parameter, i.e. BW, has
to be calculated as well. The new BW that is adopted will be
estimated by sampling the average inter-event time gap
from the first few hundred events starting at the current
bucket position. Thereafter, a new CQ is created and all the
events in the old calendar will be recopied over. The resize
heuristic obtained by sampling suffers from the following
problems:

1) Since resizing is done only when the number of
events doubles or halves that of NB, this means
that as long as NE stays between NB/2 and 2NB, the
CQ will not adapt itself even if there is a drastic
change in event arrivals causing heavily skewed
event distributions to occur.

2) Sampling the first few hundred events starting at the
current bucket position to estimate an appropriate
bucket width is highly sub-optimal especially when
event distributions are highly skewed.

Tan and Thng

2.3 DCQ Resize Operation

The DCQ improves on the conventional CQ by adding a
mechanism to detect skewed event distributions and initiate
a resize. The DCQ maintains two cost metrics CE and CE,
where

 CE = Average Enqueue Cost
 CD = Average Dequeue Cost

The average enqueue cost is the average number of events
that is required to be traversed before an insertion can be
made on a linked list. The average dequeue cost is the
average number of buckets that needs to be searched
through before the event with the earliest timestamp can be
found. The implementation aspects of updating the CE
metric and CD metric is deferred until a later section. For
the time being, it is sufficient to assume that these metrics
are available. Now, a change in event distribution is
detected whenever CE or CD exceeds some preset
thresholds, e.g. 2, 3. If this should occur, DCQ initiates a
resize on the width of buckets BW, the number of buckets,
NB, remaining the same before and after the resize.

The DCQ structure also makes a small modification to
the bucket width calculation of the CQ structure. Recall
that for the case of CQ, the bucket width is estimated by
sampling the first few hundred events of the current
bucket. However, in DCQ, the bucket width is obtained by
sampling the first few hundred events starting with the
most populated bucket of the calendar queue structure. It
is noted again that in the DCQ bucket width resize
heuristic, sampling is again employed but this time on the
most populated bucket. Therefore its performance is again
dependent on how well the optimal inter-event gap size can
be represented by these samples. If samples in the most
populated bucket are constantly highly skewed, the DCQ
resize operation is no better than the conventional CQ
resize. This point is demonstrated later in our numerical
studies presented in Section 6. In the next section, we will
describe how SNOOPy CQ initiates a bucket width resize
and then calculates the optimal bucket width.

3 SNOOPY CQ ALGORITHM

There are two parts to the SNOOPy CQ mechanism,
namely, the SNOOPy triggering process which is
responsible for initiating a bucket width resize and
secondly, the SNOOPy bucket width optimisation process
which is responsible for calculating the optimum bucket
width when a resize operation has been initiated. As the
triggering process is very much dependent on the bucket
width optimisation process, we will proceed with
explaining the second process first.

3.1 SNOOPy CQ Bucket Width
Optimisation Process

The cost function that SNOOPy CQ aims to minimize
when a bucket width resize is initiated is the sum of the
average enqueue cost and average dequeue cost as follows:

C
WB

min = CE + CD, subject to NB fixed (3)

The variable to optimize is the bucket width BW. To
optimize BW, notice that if BW is increased by a positive
factor k , i.e. bucket width sizes are now larger in the
system,

BW := kBW (4)

then the average dequeue cost and the average enqueue
cost are expected to increase and decrease respectively in
the new queue. Hence the optimization problem in (3)
transforms to the optimization of the factor k to minimize
the following objective function:

min min min' ' '

k k D E k

D
EC C C C

g k
g k C= + = +

1
2b g b g (5)

where g1(k) and g2(k)≥1 and have to be some
monotonically increasing functions of k. In addition, g1(k)
and g2(k) should also satisfy the following boundary
conditions:

g g1 21 1 1b g b g= = (6)

Note that the new average cost metrics CD

' and CE
' may

remain optimized only for that short time period
immediately after the bucket width upsize event has
occurred, i.e queue distributions has not changed much
before and after the upsize event. To handle a growing or
declining PES scenario, more such optimizations can be
triggered at appropriate times.

Now, the functions g1 and g2 not only depends on
the event distribution of the queue at that particular instant,
they may also depend on the factor k as well, i.e. different k
factor upsize may demand different g1 and g2 functions.
It is clear that to determine the exact functional in the face
of statistical variations is not worthwhile. In order to
proceed from this point forth, we take the approach of
having no a priori knowledge of the event distribution and
consider the best case and worst case cost
decrements/increments after an upsize event. Once the
bounds have been identified, an average objective function
can be established for optimizing k.

Tan and Thng

For the case of the average dequeue cost, we note that
increasing the bucket width packs events together. Hence
the new average dequeue cost CD

' (within that short time
period after the upsize) should range between

C
k

C CD
D D≤ ≤' (7)

The upper bound in (7) indicates that in the worst case,
there may be no reduction to the average dequeue cost
even if the bucket width is increased. Such a scenario may
occur as illustrated in Figure 2 where events are
concentrated in only two buckets, i.e. 3 and 7, and events
have time stamps such that the dequeue mechanism must
alternate between these two buckets for every event that is
dequeued. In Figure 2, increasing the bucket width moves
the two bucket of events together but leaves a longer tail of
empty buckets in the new calendar queue. As the old queue
and the new queue have the same number of buckets N B ,
it is clear that the number of empty buckets that is
traversed so as to dequeue alternate events (residing
respectively in the two buckets) is exactly the same.
Conversely, the lower bound in (7) indicates the most ideal
average dequeue cost reduction when the bucket width is
upsized by k, subject to this condition - that the upsize
does not cause the onset of a degenerate queue structure.
A degenerate queue structure occurs when k is so large
such that after resizing, all the elements are merged into a
single bucket. Consequently, the average dequeue cost
decreases to 0 but the calendar queue degenerates into a
single linked list structure which is undesirable. To avoid
the degenerate scenario, the lower bound for the reduction
in the average dequeue cost has to be constrained (which
will in turn limit the size of k). Now, the best possible
reduction only occurs, without the onset of degeneration,
when the k factor upsize causes the distance between the
previous linked list structures to be k-times closer to each
other in the new queue structure but does not cause any of
the previous linked list structure to merge, and all events
dequeued belong to the current year so that there is no need
to traverse the tail of empty buckets. Under this ideal
scenario, we note that upsizing the bucket width by k
would cause the number of empty buckets between filled
buckets to be divided by k. Hence each subsequent
dequeue operation in the new structure would traverse k-
times less empty buckets compared to previous traversals
in the old queue.

Figure 2: Worst case CD reduction after bucket width
upsizing

Increasing the bucket width merges events, resulting in
longer linked lists in the new calendar queue structure.
Hence the new average enqueue cost CE

' (within that short
time period after the upsize) should increase and range
between

C C kCE E E≤ ≤'

 (8)

The lower bound in (8) indicates the best case situation in
that the enqueue cost does not increase after the upsizing.
Such situations occur when the upsize factor is not large
enough to cause linked list structures of the previous queue
to merge. Consequently, the linked list structures of the old
queue are all preserved in the new queue. The only
difference is that the new linked list structures are now
assigned to buckets with smaller indexes (which affects the
dequeue cost but not the enqueue cost). Conversely, the
upper bound in (8) indicates that in the worst case
situation, the average enqueue cost increases k times its
previous. This situation occurs when prior to the upsizing,
all non- empty buckets are clustered to each other as shown
in Figure 3. After the upsizing, all the events should now
be found in a cluster of buckets which is k-times smaller.
Since N E is identical in that short time before and after the
bucket upsize, the length of each linked list in the new
queue should on average grow by k .

Figure 3: Worst case CE increase after bucket width upsizing

With the bounds for CD

' and CE
' defined in (7) and (8),

these bounds can be permutated to form four possible
limiting cases of cost decrements/increments after a bucket
upsize event. Taking the average of these four possible

After Upsizing Bucket Before Upsizing Bucket

531

642

3

7

531

642

1

2

