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ABSTRACT  
 
Discrete event simulations often require a future event list 
structure to manage events according to their timestamp. 
The choice of an efficient data structure is vital to the 
performance of discrete event simulations as 40% of the 
time may be spent on its management. A Calendar Queue 
(CQ) or Dynamic Calendar Queue (DCQ) are two data 
structures that offers O(1) complexity regardless of the 
future event list size. CQ is known to perform poorly over 
skewed event distributions or when event distribution 
changes. DCQ improves on the CQ structure by detecting 
such scenarios in order to redistribute events. Both CQ and 
DCQ determine their operating parameters (bucket widths) 
by sampling events. However, sampling technique will fail 
if the samples do not accurately reflect the inter-event gap 
size. This paper presents a novel and alternative approach 
for determining the optimum operating parameter of a 
calendar queue based on performance statistics. Stress 
testing of the new calendar queue, henceforth referred to as 
the Statistically eNhanced with Optimum Operating 
Parameter Calendar Queue (SNOOPy CQ), with widely 
varying and severely skewed event arrival scenarios show 
that SNOOPy CQ offers a consistent O(1) performance and 
can execute up to 100 times faster than DCQ and CQ in 
certain scenarios. 
 
1 INTRODUCTION 
 
Discrete event simulations are widely used in many 
research areas to model a complex system�s behavior. In 
discrete event simulation a system is modeled as a number 
of logical processes that interact among themselves by 
generating event messages with an execution timestamp 
associated with each of the messages. The pending event 
set (PES) is a set of all generated event messages that have 
not been serviced yet. A PES can be represented by a 
priority queue with messages with the smallest timestamp 
having the highest priority and vice versa. The choice of a 

data structure to represent the PES can affect the 
performance of a simulation greatly. If the number of 
events in the PES is huge as in the case of a fine-grain 
simulation, it has been shown that up to 40% of the 
simulation execution time may be spent on the 
management of the PES alone [Comfort, 1984]. 

A CQ is a data structure that offers O(1) time 
complexity regardless of the number of events in the PES. 
To achieve this, the CQ, which consists of an array of 
linked lists, tries to maintain a small number of events over 
each list. However, the CQ performs poorly when event 
distributions are highly skewed or when event distribution 
changes.  

A DCQ [Oh and Ahn, 1999] has been proposed to 
solve the above-mentioned problem by adding a 
mechanism for detecting uneven distribution of events over 
its array of linked lists. Whenever this is detected, DCQ re-
computes a new operating parameter for the calendar 
queue and redistributes events over a newly created array 
of linked lists.  

Both the DCQ and CQ compute their operating 
parameter based on sampling a number of events in the 
PES. Sometimes the choices of samples are not sufficiently 
reflective of the optimum bucket width to use for the PES. 
When this occurs, performance of the DCQ and CQ 
degrade significantly and the newly resized calendar will 
not be able to maintain their O(1) processing complexity. 

This paper proposes a novel approach in estimating an 
optimum operating parameter for a calendar queue. This 
approach is based on the past performance metrics of the 
calendar queue which can be obtained statistically. This 
approach provides an O(1) processing complexity for the 
calendar queue under all standard benchmarking 
distributions. It is also not susceptible to estimation error 
associated with the sampling method used in DCQ and CQ. 

This paper is organized as follows. In section 2 we 
present in detail how a conventional CQ and DCQ 
operates, and their associated shortcomings. In section 3 
we derive theoretically the optimum operating parameter 
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for a calendar queue. Utilizing the derived equations, 
section 4 describes the SNOOPy CQ mechanism. In 
section 5, the performance graphs of SNOOpy CQ, DCQ 
and CQ under different event arrival distributions are 
presented, compared and analyzed. Finally section 6 
summarizes the contents of this paper and list down several 
recommendations for future work. 

 
2 CQ AND DCQ 
 
Sections 2 describes the operation of CQ and DCQ 
 
2.1 Basic Calendar Queue Stucture. 
 
Figure 1 illustrates the basic structure of a CQ consisting of 
an array of linked lists. An element in the array is often 
referred to as a bucket and each bucket stores several 
events using a single linked list structure. For notational 
conveniences, we define the following symbols: 
 

NB    = Number of buckets in the CQ 
BW  = Bucket width in seconds  
DY   = Duration of a year in seconds = NB× BW 
Bk    = kth bucket of the calendar queue where    0≤k≤ 

    NB-1 
 
For example, in Figure 1, the CQ has NB=5 buckets, i.e. 
B[0], B[1],�, B[4], each of width BW = 1 second, 
representing an overall calendar year of duration DY = 5 
seconds.  
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Figure 1:  A Conventional Calendar Queue 
 
 To enqueue events with timestamp greater than or 
equal to a year�s duration, a modulo-DY division is 
performed on the timestamp to determine the right bucket 
to insert the event. Therefore, any events falling on the 
same day, regardless of their year, is inserted into the same 
bucket and sorted in increasing time order as illustrated in 
Figure 1 and Table 1. To dequeue events, the CQ keeps 
track of the current calendar year and day it is in. It then 
searches for the earliest event that falls on the current year 
and day starting at bucket B[0]. If the event at the head 

node of the linked list at B[0] does not have the current 
year�s timestamp, the search then turns to the head node of 
the linked list at B[1] and proceeds in this manner until 
B[NB �1] is reached. When all the buckets have been 
cycled through, the current year will be incremented by 1 
and the current day will be reset back to day 0 (i.e. bucket 
B[0]). For example, the event with timestamp 10.3 seconds 
in Figure 1 is only dequeued at the start of the third cycle. 
 

Table 1:  Event Timestamp Mapping 
Event timestamp  Calendar 

Year 
Calendar Day 

0.3  0 1 
0.4  0 1 
5.3  1 1 

10.3  2 1 
3.3  0 4 

 
2.2 CQ Resize Operation 
 
To simplify the resize operation, the number of buckets in 
a CQ is often chosen to be of the power of two, i.e. 
 

NB = 2n , n∈ Z, n≥ 0                           (1) 
 
The number of buckets are doubled or halved each time the 
number of events NE exceeds 2NB or decreases below NB/2 
respectively, i.e. 
 

If NE > 2NB, NB:=2 NB 
                          If NE < NB/2, NB:= NB/2             (2) 

 
When NB is resized, a new operating parameter, i.e. BW, has 
to be calculated as well. The new BW that is adopted will be 
estimated by sampling the average inter-event time gap 
from the first few hundred events starting at the current 
bucket position. Thereafter, a new CQ is created and all the 
events in the old calendar will be recopied over. The resize 
heuristic obtained by sampling suffers from the following 
problems: 
 

1) Since resizing is done only when the number of 
events doubles or halves that of NB, this means 
that as long as NE stays between NB/2 and 2NB, the 
CQ will not adapt itself even if there is a drastic 
change in event arrivals causing heavily skewed 
event distributions to occur. 

2) Sampling the first few hundred events starting at the 
current bucket position to estimate an appropriate 
bucket width is highly sub-optimal especially when 
event distributions are highly skewed. 
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2.3 DCQ Resize Operation 
 
The DCQ improves on the conventional CQ by adding a 
mechanism to detect skewed event distributions and initiate 
a resize. The DCQ maintains two cost metrics CE and CE, 
where 
 
 CE = Average Enqueue Cost 
 CD = Average Dequeue Cost 
 
The average enqueue cost is the average number of events 
that is required to be traversed before an insertion can be 
made on a linked list. The average dequeue cost is the 
average number of buckets that needs to be searched 
through before the event with the earliest timestamp can be 
found. The implementation aspects of updating the CE 
metric and CD metric is deferred until a later section. For 
the time being, it is sufficient to assume that these metrics 
are available. Now, a change in event distribution is 
detected whenever CE or CD exceeds some preset 
thresholds, e.g. 2, 3. If this should occur, DCQ initiates a 
resize on the width of buckets BW, the number of buckets, 
NB, remaining the same before and after the resize.  

The DCQ structure also makes a small modification to 
the bucket width calculation of the CQ structure. Recall 
that for the case of CQ, the bucket width is estimated by 
sampling the first few hundred events of the current 
bucket. However, in DCQ, the bucket width is obtained by 
sampling the first few hundred events starting with the 
most populated bucket of the calendar queue structure.  It 
is noted again that in the DCQ bucket width resize 
heuristic, sampling is again employed but this time on the 
most populated bucket. Therefore its performance is again 
dependent on how well the optimal inter-event gap size can 
be represented by these samples. If samples in the most 
populated bucket are constantly highly skewed, the DCQ 
resize operation is no better than the conventional CQ 
resize. This point is demonstrated later in our numerical 
studies presented in Section 6. In the next section, we will 
describe how SNOOPy CQ initiates a bucket width resize 
and then calculates the optimal bucket width. 

 
3 SNOOPY CQ ALGORITHM 
 
There are two parts to the SNOOPy CQ mechanism, 
namely, the SNOOPy triggering process which is 
responsible for initiating a bucket width resize and 
secondly, the SNOOPy bucket width optimisation process 
which is responsible for calculating the optimum bucket 
width when a resize operation has been initiated. As the 
triggering process is very much dependent on the bucket 
width optimisation process, we will proceed with 
explaining the second process first. 
 

3.1 SNOOPy CQ Bucket Width 
Optimisation Process 

 
The cost function that SNOOPy CQ aims to minimize 
when a bucket width resize is initiated is the sum of the 
average enqueue cost and average dequeue cost as follows: 
 

C
WB

min  = CE + CD,  subject to NB fixed  (3) 

 
The variable to optimize is the bucket width BW. To 
optimize BW, notice that if BW is increased by a positive 
factor k , i.e. bucket width sizes are now larger in the 
system, 
 

BW  := kBW      (4) 
 
then the average dequeue cost and the average enqueue 
cost are expected to increase and decrease respectively in 
the new queue. Hence the optimization problem in (3) 
transforms to the optimization of the factor k to minimize 
the following objective function: 
 

min min min' ' '

k k D E k

D
EC C C C

g k
g k C= + = +

1
2b g b g    (5) 

 
where g1(k) and g2(k)≥1 and have to be some 
monotonically increasing functions of k. In addition, g1(k) 
and g2(k) should also satisfy the following boundary 
conditions: 
 

g g1 21 1 1b g b g= =             (6) 
 
Note that the new average cost metrics CD

'  and CE
'  may 

remain optimized only for that short time period 
immediately after the bucket width upsize event has 
occurred, i.e queue distributions has not changed much 
before and after the upsize event. To handle a growing or 
declining PES  scenario, more such optimizations can be 
triggered at appropriate times.  

Now, the functions g1  and g2  not only depends on 
the event distribution of the queue at that particular instant, 
they may also depend on the factor k as well, i.e. different k 
factor upsize may demand different g1  and g2  functions. 
It is clear that to determine the exact functional in the face 
of statistical variations is not worthwhile. In order to 
proceed from this point forth, we take the approach of 
having no a priori knowledge of the event distribution and 
consider the best case and worst case cost 
decrements/increments after an upsize event. Once the 
bounds have been identified, an average objective function 
can be established for optimizing k.  
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For the case of the average dequeue cost, we note that 
increasing the bucket width packs events together. Hence 
the new average dequeue cost CD

'  (within that short time 
period after the upsize) should range between 
 

C
k

C CD
D D≤ ≤'             (7) 

 
The upper bound in (7) indicates that in the worst case, 
there may be no reduction to the average dequeue cost 
even if the bucket width is increased. Such a scenario may 
occur as illustrated in Figure 2 where events are 
concentrated in only two buckets, i.e. 3 and 7, and events 
have time stamps such that the dequeue mechanism must 
alternate between these two buckets for every event that is 
dequeued. In Figure 2, increasing the bucket width moves 
the two bucket of events together but leaves a longer tail of 
empty buckets in the new calendar queue. As the old queue 
and the new queue have the same number of buckets N B , 
it is clear that the number of empty buckets that is 
traversed so as to dequeue alternate events (residing 
respectively in the two buckets) is exactly the same. 
Conversely, the lower bound in (7) indicates the most ideal 
average dequeue cost reduction when the bucket width is 
upsized by k, subject to this condition - that the upsize 
does not cause the onset of a degenerate queue structure. 
A degenerate queue structure occurs when k is so large 
such that after resizing, all the elements are merged into a 
single bucket. Consequently, the average dequeue cost 
decreases to 0 but the calendar queue degenerates into a 
single linked list structure which is undesirable. To avoid 
the degenerate scenario, the lower bound for the reduction 
in the average dequeue cost has to be constrained (which 
will in turn limit the size of k). Now, the best possible 
reduction only occurs, without the onset of degeneration, 
when the k factor upsize causes the distance between the 
previous linked list structures to be k-times closer to each 
other in the new queue structure but does not cause any of 
the previous linked list structure to merge, and all events 
dequeued belong to the current year so that there is no need 
to traverse the tail of empty buckets. Under this ideal 
scenario, we note that upsizing the bucket width by k 
would cause the number of empty buckets between filled 
buckets to be divided by k. Hence each subsequent 
dequeue operation in the new structure would traverse k-
times less empty buckets compared to previous traversals 
in the old queue. 
 
 
 
 
 
 
 
 

 

Figure 2:  Worst case CD  reduction after bucket width 
upsizing 
 
Increasing the bucket width merges events, resulting in 
longer linked lists in the new calendar queue structure. 
Hence the new average enqueue cost CE

'  (within that short 
time period after the upsize) should increase and range 
between 
 

C C kCE E E≤ ≤'

                            (8) 

The lower bound in (8) indicates the best case situation in 
that the enqueue cost does not increase after the upsizing. 
Such situations occur when the upsize factor is not large 
enough to cause linked list structures of the previous queue 
to merge. Consequently, the linked list structures of the old 
queue are all preserved in the new queue. The only 
difference is that the new linked list structures are now 
assigned to buckets with smaller indexes (which affects the 
dequeue cost but not the enqueue cost). Conversely, the 
upper bound in (8) indicates that in the worst case 
situation, the average enqueue cost increases k times its 
previous. This situation occurs when prior to the upsizing, 
all non- empty buckets are clustered to each other as shown 
in Figure 3. After the upsizing, all the events should now 
be found in a cluster of buckets which is k-times smaller. 
Since N E  is identical in that short time before and after the 
bucket upsize, the length of each linked list in the new 
queue should on average grow by k .  
 

 
 

Figure 3:  Worst case CE  increase after bucket width upsizing 
 
With the bounds for CD

'  and CE
'  defined in (7) and (8), 

these bounds can be permutated to form four possible 
limiting cases of cost decrements/increments after a bucket 
upsize event. Taking the average of these four possible 
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