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Abstract9

Some authors have repeatedly pointed out that the use of the accuracy, in particular for com-
paring classi2ers, is not adequate. The main argument concerns some assumptions of seldom11
validity or correctness underlying the use of this criterion. In this paper, we study the com-
putational burden of the accuracy’s replacement for building and comparing classi2ers, using13
the framework of Inductive Logic Programming. Replacement is investigated in three ways:
completion of the accuracy with an additional requirement, replacement of the accuracy with15
a bi-criterion recently introduced from statistical decision theory: the Receiver Operating Char-
acteristic analysis, and replacement of the accuracy by a single criterion. We prove very hard17
results for most of the possible replacements. A 2rst result shows that allowing the arbitrary
multiplication of clauses appears to be totally useless. “Arbitrary” is to be taken in its broadest19
meaning, in particular exponential. The second point is the sudden appearance of the negative
result, which is not a function of the criteria’s demands. The third point is the equivalence in21
di=culty of all these di>erent criteria. In contrast, the single accuracy’s optimization appears to
be tractable in this framework.23
c© 2002 Published by Elsevier Science B.V.

1. Introduction25

An essential task of Machine Learning (ML) and Data Mining (DM) systems is
related to classi2cation. This basically consists in giving the most accurate answer27

∗ Tel.: +33-596-72-73-64; fax: +33-596-72-73-62.
E-mail address: rnock@martinique.univ-ag.fr (R. Nock).
URL: http://www.martinique.univ-ag.fr/∼rnock

0304-3975/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0304 -3975(02)00573 -X

mailto:rnock@martinique.univ-ag.fr
http://www.martinique.univ-ag.fr/~rnock


UNCORRECTED P
ROOF

2 R. Nock / Theoretical Computer Science ( ) –

TCS4562

ARTICLE IN PRESS

to the a>ectation of some observations (or patterns) to a 2nite number of classes.1
Historically, measuring the quality of the system’s answer has mostly been a matter of
computing its accuracy, i.e., the frequency (or probability) of correct predictions made3
[3,17]. The advent of new technological media authorizing the storing of databases of
huge sizes, together with the increasing diversity of the problems (and goals) addressed,5
have favored the emergence of a research trend in ML and DM. This trend discusses,
mostly experimentally, this standardized use of the accuracy to assess the merit of a7
system (see e.g. [17]), as well as to compare di>erent classi2er learning algorithms to
decide which one should be used preferentially (see e.g. [22]). Following this trend, we9
question again the replacement of the accuracy itself by other performance measures.
However, apart from our purely theoretical standpoint on this question, we deem our11
approach original and distinguished from the others in that it is, to our knowledge, the
2rst to evaluate the computational burden of the accuracy’s replacement=completion.13
The primary inadequacy of the accuracy stems from a tacit assumption that the

overall accuracy controls by-class accuracies, or similarly that class distributions among15
examples are constant and relatively balanced, see for example [20]. This is obviously
not true: skewed distributions are frequent in agronomy, or more generally in life or17
earth sciences. For example, no more than 6% of the human DNA represents coding
genes [22]. Another example is the oil spill detection problem of [17], in which roughly19
4% of the data represent oil slicks, the remaining being lookalikes. Even more extreme
cases exist, in information retrieval, in which the minority class can scarcely represent21
0:2% of the data [17]. In all these cases, the interesting, unusual class is often the rare
one, and the well-balanced hypothesis may simply lead to the elusion of its elements23
when building a classi2er. In [17], a simple classi2er labeling all patterns as lookalikes
(this is the so-called majority rule) would achieve an accuracy of 96%. As pointed out25
by Kubat et al. [17], this looks like a high accuracy, but the classi2er is totally useless
since it completely fails to achieve the goal of oil spill detection. On the other hand,27
a system achieving only 94% detection on oil spills, and 94% detection on lookalikes,
would have a worse accuracy, and yet would be deemed highly successful [17].29
This last example shows two important and typical phenomena in real-world

problems. First, the balanced distributions assumption is actually false. Second, the31
misclassi2cation of some examples may be of heavy consequences, a cost which is not
integrated in the accuracy. Fraud detection is another good example of such a cost-33
sensitive situation [22], but there are many others. In database marketing, a prominent
application consists in targeting the people likely to respond to a mailing. In that case,35
the cost of mailing to a non-respondent is small, but the cost of not mailing to someone
who would respond is the entire pro2t lost [3]. Solving the cost problem by the inte-37
gration of the costs in the accuracy, to shift its behavior towards the crucial examples,
is also far from being obvious, as it involves “multiple considerations whose units are39
incommensurable” [17].
Furthermore, the accuracy may be inadequate in some cases because other parameters41

are to be taken into account. Some works [16] report the need to add an information
measure to the accuracy, to eliminate the inOuence of prior probabilities. Constraints43
on size parameters (see [18,19]) are sometimes to be used because we want to obtain
small formulas, to ease their interpretability by the system end-user.45
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Finally, some works also report the experimental convenience that reducing the size1
of the data itself can have when simply optimizing the accuracy [24]. Indeed, it is
well known in ML and DM that removing some parts of the data, such as features3
(or variables), is a good experimental solution to reduce the size of the models built
afterwards, while avoiding to damage their accuracy too much. Sometimes, it can5
even provide a way to improve their accuracy on hard problems. Whereas experiments
show that feature reduction can be a good criterion to optimize in conjunction with7
the accuracy, one may wonder how these two constraints computationally interact.
To examine the possible inOuence of all these completion=replacement criteria, we9

have chosen as our framework a 2eld particularly sensitive to the computational com-
plexity factor, Inductive Logic Programming (ILP). ILP is a rapidly growing research11
2eld, concerned with the use of variously restricted subclasses of Horn clauses to
build ML algorithms. According to a census of [26], in 1998, almost 70 applications13
were using ILP formalism, 20 of which were science applications, which can be par-
titioned into biological (four) and drug design (16) applications. With the increasing15
popularity of ILP, in particular to address complex domains, this number has certainly
increased since then. ILP–ML algorithms have been applied with some success in17
areas of biochemistry and molecular biology [26]. Using ILP formalism, we argue that
the replacement of the accuracy raises computational complexity issues. This is all the19
more important in ILP studies, as ILP is a 2eld which can be naturally concerned with
intractability or even undecidability issues [13], and keeping tractability is of primary21
importance to keep the ILP formalism power a>ordable to practical learning systems.
For this reason, ILP is certainly a domain of choice for a computational study of23
the accuracy’s replacement/completion. More precisely, here is the structuring of the
argument.25
First, we explain that the single accuracy requirement can be completed by an addi-

tional requirement to provide more adequate criteria. We integrate various constraints27
over two important kind of parameters: by-class error functions, and representation
parameters such as feature selection ratios, size constraints. These criteria are inspired29
by the works of [17–19,24]. We do not integrate in our criteria the information measure
of [16], as it is mainly designed to handle classi2ers with probabilistic answers, and31
is therefore not suited to ordinary Horn clauses.
Then, we study the replacement of the accuracy criterion using a general method33

derived from statistical decision theory, based on a speci2c bi-criteria optimization (see
e.g. [20–22]).35
Finally, we investigate the replacement of the error by a single replacement criterion.

Two candidates we study are criteria proposed in [20], and used in [17].37
In this paper, we show that any of such integration leads to a very negative structural

complexity result, which is not faced by the accuracy optimization alone. The result39
has a side e>ect which can be presented as a “loss” in the formalism’s expressiveness,
a seldom property in classical ML complexity issues. Indeed, it authorizes the construc-41
tion of Horn clauses sets of unbounded size (even exponential), but, which we prove,
having no more expressive power than a single Horn clause. We prove a threshold43
in intractability since it appears immediately with the additional requirement, and is
not a function of its tightness. Furthermore, the e>ects of the constraints on optimal45
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accuracies vanish as the number of predicates increases, since optimal accuracies with1
or without the additional constraints are asymptotically equal. This phenomenon tends
to strengthen the threshold e>ect in intractability. Finally, for some criteria, their blend-3
ing with the accuracy brings the most negative result: not only does the intractability
appears immediately with the criterion, but also the error cannot be dropped down5
under that of the unbiased coin.
The reductions are presented for a subclass of Horn formalism simple enough to be7

an element of the intersection of all classically encountered in theoretical ILP studies or
practical ILP learning systems. As a consequence, our results also hold in all these other9
settings. The following section details the bases of learnability and ILP. It is followed
by a section introducing the possible criteria to address the accuracy’s drawbacks, and11
the tools used in our proofs. Then, all the results are presented in the last section,
along with some possible extensions to other formalisms, or to learning models. For13
the reader’s convenience, the proofs and technical aspects, not necessary to understand
the results, have been bulked in the two appendices. The 2rst presents a synthetic view15
of all proofs, the second presents in-depth reductions. In order not to laden the paper
with a collection of extensive proofs, some cases have been voluntarily omitted.17

2. Learnability and ILP

Denote as C and H two classes of concept representations, respectively called target19
class and hypothesis concept class. Informally, our objective is to build a concept from
the hypothesis class, approximating as best as possible an unknown concept c, called21
the target concept, element of C. In real-world domains, we do not know the target
concept’s class, that is why we have to make ad hoc choices for H with a powerful23
enough formalism, yet ensuring tractability. Even if some benchmark problems appear
to be easily solvable [10], ML applications, and particularly ILP, face more di=cult25
problems [26], for which the choice of H is crucial.
After the choice of H, approximating the target concept can only be achieved by27

catching a glimpse of it, through its extensional representation, i.e. by drawing exam-
ples, classi2ed according to c. Generally, the data collected can only account for a29
small part of this very large set, and the objective is then to build the intensional rep-
resentation of some hypothesis, whose extensional representation shall hopefully match31
as best as possible the target concept’s. Most of the studies dealing with the accuracy’s
replacement, as well as computational complexity results in ML, have been investigated33
with two classes [22,21]. We also consider a two-class setting. It is not really important
for us, as results already become hard in that setting.35
We shall see later in this section how examples and concepts are described in the

context of ILP. Before, it is important to clarify the way we “collect” the examples,37
and then use it to obtain either positive or negative results in ML or DM. Theoretically
speaking, a large part of the modern approaches to obtain positive results for ML=DM39
algorithms draws its roots in two fundamental bodies, the so-called Probably Approx-
imately Correct (PAC) learning model of [27], and the Statistical Learning Theory,41
fathered by Vapnik [29]. The principle is that the examples are drawn from some
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unknown, but 2xed distribution D, and labeled according to an unknown c∈C. If we1
suppose that the representation space is discretized, then we can denote the accuracy
of some h∈H with respect to (w.r.t.) c by PD(h= c)=

∑
h(x) = c(x) D(x) (here x is an3

observation and h(x), c(x) are, respectively, the classes given to x by h and c). Note
that this quantity is measured over the whole set of possible examples, a domain to5
which we do not have access, as speci2ed before. We have only access to its estimator
over the sample collected. This raises statistical issues to evaluate the quality of this7
estimator (and h), issues discussed in many papers (see e.g. [29]). The objective of our
paper is not to discuss the statistical burden of the theory, but its computational issues.9
Proving most negative complexity-theoretic results for ML/DM follows a quite stan-

dardized approach. It consists in building a particular set of examples, supposed to be11
the set collected, and giving a frequency distribution over these examples “mimick-
ing” D (a seminal paper to this approach is [12]), and then proving the result on the13
basis of this particular instance of the problem. Our results also rely on this scheme.
It is important to note that the negative results are, in that case, complexity-theoretic,15
i.e. they raise the hardness of 2nding e=cient (e.g. polynomial) algorithms to address
the problem. As brieOy exposed before, they do not address the statistical hardness of17
building h, since the instance built boils down to having access to the whole domain
knowledge (all examples that are not present in the set are supposed to have zero prob-19
ability of occurrence). An interesting fact in negative computational results in ML/DM
is that they may have two consequences. The 2rst is what motivates this paper, i.e. the21
inexistence of a>ordable practical algorithms to solve these problems. The second is
the extension of these results to negative results for learning in models derived from23
the PAC model of [27]. Some of our results can be extended to negative results on
the PAC-derived robust learning model of [9,11]. This is described later.25
We now introduce our formalism for the examples and the hypotheses, ILP. The

2eld of ILP is concerned with the induction of 2rst-order Horn clauses from examples27
and background knowledge. A Horn clause has the following form:

q(:::)← a1(:::) ∧ a2(:::) ∧ ::: ∧ an(:::)29

q(: : :) is called the head of the clause and the conjunction a1(: : :)∧ a2(: : :)∧ : : : ∧ an(: : :)
is called the body of the clause. A Horn clause with no body is unit. A clause with no31
variable is ground. Given a Horn clause language L and a correct inference relation
on L, the problem can be formalized in a general way as follows [11]:33

De�nition 1. Given:
• A background knowledge BK expressed in a language LB⊆L,35
• A set of examples S in a language LS⊆L, consisting of positive examples,
S+, and negative examples, S−, such that B �|=S+ (B does not entail the positive37
examples) and B;S �|=✷ (S is consistent with B).
• A hypothesis class H described over a language LH⊆L,39
2nd a hypothesis h∈H such that

B ∧ h |=S+; (1)41

B ∧ h �|=S− (2)
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i.e., B and h explain the positive examples whereas they do not explain the negative1
examples.

We now give some precisions on this de2nition. The background knowledge in ILP3
is usually restricted in order to avoid undecidability problems about the deduction
process [13,4]. A usual restriction makes use of ground background knowledge, i.e.,5
consisting of ground unit clauses. A clause is ground if it does not contain any variables.
Therefore, to ensure tractability, we suppose that the background knowledge consists7
of ground unit clauses, and examples are ground unit clauses too. Another restriction
commonly encountered consists in preventing the use of function symbols of arity ¿0:9

De�nition 2. A clause is called function-free i> all its arguments are either variables11
or constants (function symbols of arity 0).

As in [14], we use 
-subsumption as the inference relation. 
-subsumption is a13
correct and complete inference procedure between function-free Horn clauses (h |= h′
i> h
⊆ h′). This however leads to a modi2cation of the learning problem, as stated in15
the following lemma:

Lemma 3 (Kietz, [13]). The learning problem is equivalent to learning the same pro-17
gram with 
-subsumption, and empty background knowledge and examples de�ned
as ground Horn clauses of the form e← b, where e∈S and b∈BK.19

This lemma allows us to incorporate the background knowledge in the new exam-
ples (and is thus empty). Our results make use of a simple subclass of Horn clause21
formalism. Its property is that it is an element of common subclasses of Horn clause
formalisms usually encountered in practice or in theoretical learning studies. Therefore,23
since our results are essentially negative, they hold also for all these other subclasses.
The most important property of our subclass is that the predicates arity is one. There-25
fore,
• we can suppose that the Horn clauses contain the same variable, say X . In other27
words, the clauses are constrained.
• the clauses are 01-determinate as de2ned in [13,4]. In other words, the maximum29
predicate arity is 1 and the depth of each term is that of the head, 0. This represents
the easiest case of determinacy.31
• BK does not contain the predicate to be inferred, and the Horn clauses are non-
recursive.33
The principle of our negative results, from an ILP point of view, is quite simple:

we create a formalism so simple such that, given the constraints, there cannot always35
exist a set of Horn clauses solution of the learning problem. From that, the goal of the
learning problem is relaxed to that of an approximation problem well known in robust37
learning [11]: 2nd a hypothesis h∈H such that

B ∧ h |=S+; (3)39

B ∧ h �|=S− (4)

for the largest part of the examples in S.41
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3. Replacement criteria and the hardness technique1

3.1. Extending the accuracy

For any 2xed positive rational �, we use the following adequate notion of distance3
[1] between two reals u; v: d�(u; v)= |u− v|=(u+ v+ �). We also use eight rates on the
examples (de2nitions di>er slightly from [22]):5

TP =
∑

h(x)=1=c(x)
D(x); TPR =

TP∑
c(x)=1 D(x)

;

FP =
∑

h(x)=1�=c(x)
D(x); FPR =

FP∑
c(x)=0 D(x)

;
7

TN =
∑

h(x)=0=c(x)
D(x); TNR =

TN∑
c(x)=0 D(x)

;

FN =
∑

h(x)=0�=c(x)
D(x); FNR =

FN∑
c(x)=1 D(x)

:
9

In many DM=ML domains, the user’s desiderata are often the optimization of more than
one basic criterion (accuracy, precision, recall, sizes, etc.). Various composed criteria11
exist, combining some of these, but it is hard to obtain a suitable combination into one
criterion, so as to optimize in one step more than one of these basic demands. The13
accuracy is typical, but others are well known, such as the geometrical mean of Kubat
et al. [17], which ignores precision. Some authors, such as [16], have proposed to take15
into account more than one criterion, such as information measures for probabilistic
classi2ers. In order to complete the accuracy requirements, we imagine seven types of17
additional constraints aiming at controlling the well-balanced drawback of the accuracy
alone [20], or precision or recall measures [20,17], or size parameters [18,24]. Each of19
them is parameterized by a number � (between 0 and 1), and de2nes a subset of H,
which shall be parameterized by D if the distribution controls the subset through the21
constraint. The 2rst three subsets of H contain hypotheses for which the FP and FN
are not far from each other, or a one-side error is upper bounded:23

HD;1(�) = {h ∈ H |d�(FP; FN )6 �}; (5)

HD;2(�) = {h ∈ H |FN 6 �}; (6)25

HD;3(�) =
{
h ∈ H |FN 6 1

�
FP
}
: (7)

The two following subsets are parameterized by constraints equivalent to some fre-27
quently encountered in the information retrieval community [25], respectively (1 minus)
the precision and (1 minus) the recall criteria.29

HD;4(�) =
{
h ∈ H | FP

TP + FP
6 �

}
; (8)
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HD;5(�) =
{
h ∈ H | FN

TP + FN
6 �

}
: (9)1

Now, we give two more constraints speci2c to Horn clauses. Horn clauses shall be
extensively de2ned in a section devoted to ILP formalism. We give some preliminary3
and necessary de2nitions for the two constraints we de2ne. A Horn clause (a de2nite
program clause) [4] has the following form:5

q(:::)← a1(:::) ∧ a2(:::) ∧ ::: ∧ an(:::):
Here, q, a1; a2; : : : ; an are predicate symbols. De2ne #Predicates(h) as the total num-7
ber of di>erent predicates of h, #Whole predicates(h) as the overall number of
predicates of h (if one predicate is present k times, it is counted k times), and9
#Total predicates as the total number of di>erent available predicates to build a
Horn clause for our speci2c problem. The two last subsets of H are parameterized by11
formulas, respectively, having a su=ciently small fraction of the available predicates,
or having a su=ciently small overall size:13

H6(�) =
{
h ∈ H | #Predicates(h)

#Total predicates
6 �

}
; (10)

H7(�) =
{
h ∈ H | #Whole predicates(h)

#Total predicates
6 �

}
: (11)15

The division by the total number of di>erent predicates in H7(�) is made only for
technical reasons: to obtain hardness results for small values of �. The 2rst problem17
we address can be summarized as follows:

Problem 1. Given � and i∈{1; 2; : : : ; 7}, can we �nd an algorithm returning a set19
of Horn clauses from H(D;)i(�) whose error is no more than a given �, if such a
hypothesis exists?21

3.2. Replacing the accuracy: the ROC analysis

Receiver Operating Characteristic (ROC) analysis is a traditional methodology from23
signal detection theory [5]. It has been used in machine learning recently [20–22] in or-
der to correct the main drawbacks of the accuracy. In ROC space (this is the coordinate25
system), we visualize the performance of a classi2er by plotting TPR on the Y -axis,
and FPR on the X -axis. Fig. 1 presents the ROC analysis, along with three possible27
outputs which we present and analyze now. If a classi2er produces a continuous output
(such as an estimate of posterior probability of an instance’s class membership [22],29
or a real-valued con2dence such as in AdaBoost [23], for any possible value of FPR,
we can get a value for TPR, by thresholding the output between its extreme bounds. If31
a classi2er produces a discrete output (such as Horn clauses), then the classi2er gives
rise to a single point. If the classi2er is the random choice of the class, either (if it is33
continuous) the curve is the line y= x, or (if it is discrete) there is a single dot, on
the line y= x. One important thing to note is that the ROC representation gives the35
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Fig. 1. The ROC analysis of a learning algorithm, with three general classi2cations: discrete, continuous,
and default.

behavior of an algorithm without regarding the class distribution or the error cost [20].1
And it allows to choose the best of some classi2ers, by the following procedure. Fix
as K+ the cost of misclassifying a positive example, and K− the cost of misclassifying3
a negative example (these two costs depend on the problem). Then the expected cost
of some classi2er represented by point (FPR; TPR) is given by the following formula:5

∑
c(x)=1

D(x)(1− TPR)K+ + ∑
c(x)=0

D(x)FPRK−: (12)

Two algorithms, whose corresponding point are, respectively (FPR1; TPR1) and (FPR2;7
TPR2), have the same expected cost i>

TPR2 − TPR1
FPR2 − FPR1 =

∑
c(x)=1 D(x)K

+∑
c(x)=0 D(x)K

− : (13)
9

This gives the slope of an isoperformance line, which only depends on the rela-
tive weights of the examples, and the respective misclassi2cation costs. Given one11
point on the ROC, the classi2ers performing better are those on the “northwest” of
the isoperformance line with the preceding slope, and to which the point belongs. If we13
want to 2nd an algorithm A performing surely better than an algorithm B, we therefore
should strive to 2nd A such that its point lies into the rectangle whose opposite vertices15
are the (0,1) point (the perfect classi2cation) and B’s point (a grey rectangle is shown
on the top left of Fig. 1). From that, the second problem we address is the following:17

Problem 2. Given one point (TPRx; FPRx) on the ROC, can we �nd an algorithm19
returning a set of Horn clauses whose point falls into the rectangle with opposite
vertices (0; 1) and (TPRx; FPRx), if such a hypothesis exists?21

Note that the problem we address is based on weak constraints: indeed, we only
require the algorithm to work on a single point (TPRx; FPRx).23
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3.3. Replacing the accuracy by a single criterion1

The ROC analysis is based on two criteria, controlling FPR and TPR. The question
of whether the accuracy can be replaced by a single criterion instead of two has3
been raised in [20]. Some researchers [20] propose the use of the following criterion:
(1 − FPR) × TPR. A geometric interpretation of the criterion is the following [20]:5
it corresponds to the area of a rectangle whose opposite vertices are (FPR; TPR) and
(1; 0). The typical isoperformance curve is now a hyperbola. The third problem we7
address is therefore:

Problem 3. Given �, can we �nd an algorithm returning a set of Horn clauses such9
that (1− FPR)×TPR¿�, if such a hypothesis exists?

In [17], a criterion is maximized which is the square-root of our criterion. Because11
of the monotonicity properties of this function, our negative results on problem 3 shall
also hold for the criterion of [17].13

3.4. Basic tools for the hardness results

Concerning problem 1, 2x a∈{1; 2; 3; 4; 5; 6; 7}. We want to approximate the best15
concept in H(D;)a(�) by one still in H(D;)a(�). However, the best concept in H(D;)a(�)
generally does not have an error equal to the optimal one over H given D, optHD

(c).17
In fact, it has an error that we can denote

optH(D;)a(�)(c) = min
h′∈H(D;)a(�)

∑
h(x)�=c(x)

D(x):

¿ optHD
(c)

The goodness of the accuracy of a concept taken from H(D;)a(�) should be appreciated19
with respect to this “constrained” optimum. Our results on problem 1 are all obtained
by showing the hardness of solving the following decision problem:21

De�nition 4 (Approx-Constrained(H; (a; �))). • Name: Approx-Constrained(H; (a; �)).
• Instance: A set of negative examples S−, a set of positive examples S+, a rational23
weight 0¡w(xi)= ni=di¡1 for each example xi, a rational 06�¡1. We assume that∑

x∈S+∪S− w(xi) = 1.25
• Question: Does there exist a hypothesis h∈H(D;)a(�) that satis2es

∑
h(x)�=c(x) w(x)

6�?27

De2ne as ne the size of the largest example we dispose of. Note that when the
constraint is too tight, it can be the case that no hypothesis can actually satisfy it, and29
therefore

H(D;)a(�) = ∅: (14)31
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De2ne as |h| the size of some h∈H (in our case, it is the number of Horn clauses1
of h). In the non-empty subset of H where formulas are the most constrained (i.e.
strengthening further the constraint gives an empty subset), de2ne n∗H(D;)a(�) as the size3
of the smallest hypothesis in H(D;)a(�) (therefore, it is the smallest hypothesis which
satis2es the constraint). Then, our reductions all satisfy5

n∗H(D;)a(�) 6 (ne)3: (15)

Note that the constraint makes generally7

optH(D;)a(�)(c)¿ optHD
(c); (16)

which might seem to be a negative e>ect of the constraints. However, the reductions9
all satisfy

d�(optHD
(c); optH(D;)a(�)(c)) = o(1) (17)11

i.e. asymptotic optimal accuracies coincide with or without the constraints; here, the
limit is taken as the number of distinct predicates of the problem grows towards13
in2nity (#Total predicates → ∞). In addition, a principal corollary to all our
results is that we can suppose that the whole time used to write the total set of15
Horn clauses is assimilated to O(ne), for any set. By writing time, we mean time
of a y procedure consisting only in writing down clauses. Examples of such a pro-17
cedure are “write down all clauses having k literals”, or even “write down all Horn
clauses”. Such procedures can be viewed as for-to, or repeat algorithms. This prop-19
erty authorizes the construction of Horn clause sets having arbitrary sizes, even
exponential.21
Problem 2 is addressed by studying the complexity of the following decision problem.

23
De�nition 5 (Approx-Constrained-ROC(H; �FPR; �TPR)). •Name: Approx-Constrained-
ROC(H; �FPR; �TPR).25
• Instance: A set of negative examples S−, a set of positive examples S+, a rational
weight 0¡w(xi)= ni=di¡1 for each example xi. We assume that

∑
x∈S+∪S− w(xi)27

= 1.
• Question: Does there exist a hypothesis h∈H satisfying 1 − FPR¿1 − �FPR and29
TPR¿�TPR?
Concerning problem 3, the reductions study a single replacement criterion %, and31

the following decision problem.

De�nition 6 (Approx-Constrained-Single(H; %; �)). • Name: Approx-Constrained-33
Single(H; %; �).
• Instance: A set of negative examples S−, a set of positive examples S+, a ra-35
tional weight 0¡w(xi)= ni

di
¡1 for each example xi. We assume that

∑
x∈S+∪S−

w(xi) = 1.37
• Question: Does there exist a hypothesis h∈H satisfying %(h)6�?
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4. Results1

For the sake of simplicity in stating our results, we abbreviate “Function free Horn
Clauses” by the acronym “FfHC”.3

4.1. Extending the accuracy

Theorem 5. We have:5
(i) [1] ∀0¡�¡1, Approx-Constrained(FfHC; (1; �)) is Hard, when �¡(1− �)=�
(ii) [2] ∀0¡�¡ 1

2 , Approx-Constrained(FfHC; (2; �)) is Hard.7
(iii) [3] ∀0¡�¡1, Approx-Constrained(FfHC; (3; �)) is Hard.
(iv) [4] ∀0¡�¡1, Approx-Constrained(FfHC; (4; �)) is Hard.9
(v) [5] ∀0¡�¡1, Approx-Constrained(FfHC; (5; �)) is Hard.
(vi) [6] ∀0¡�¡1, Approx-Constrained(FfHC; (6; �)) is Hard.11
(vii) [7] ∀0¡�¡1, Approx-Constrained(FfHC; (7; �)) is Hard.

At that point, the notion of “hardness” needs to be clari2ed. By “Hard” we mean13
“cannot be solved in polynomial time under some particular complexity assumption”.
The hypothesis we use is the same as [8] (NP �⊂ZPP), which involves randomized15
complexity classes. We refer the reader to the paper of [8] for further details, not
needed here.17
Due to the fact that all proofs are essentially based on the same properties, only

proof of point [1] is presented in details in Appendix B; the other results presented19
strictly use the same type of reduction, and are eventually sketched [6,7]. Also, in
Appendix A, we give the proof that all distributions under which our negative results21
are proven lead to trivial positive results for the same problem when we remove the
additional constraint, and optimize the accuracy alone.23
Beyond the range of constraints that our negative results cover, note that any other

additional constraint aside from the accuracy is a natural candidate to test the exis-25
tence of negative results, unless pathological situations are created, such as when the
constraint is so tight and removes so many hypotheses that the set of constrained27
hypotheses has small size (e.g. polynomial), and can be explored in polynomial time.
Therefore, another incidence of our results is that in between the two extreme situa-29
tions (no=over constrained requirement), optimizing the accuracy under constraint is a
strictly more di=cult problem, with non-trivial additional drawbacks. Furthermore, the31
upperbound error value (� in De2nition 4) in constraints 4–6 can be 2xed arbitrarily in
]0; 1=2[, which shows that almost removing the accuracy’s constraint does not make the33
problem easier: requiring the Horn clauses to perform slightly better than the unbiased
coin leads also to intractability.35

4.2. Replacing the accuracy: the ROC analysis

In this section, we show that the classical ROC components as described by Provost37
et al. [22] and Provost and Fawcett [21] lead to the same results as those we claimed
for the preceding bi-criteria optimizations. The problem is all the more di=cult as the39



UNCORRECTED P
ROOF

TCS4562

ARTICLE IN PRESS
R. Nock / Theoretical Computer Science ( ) – 13

di=culty appears as soon as we choose to use ROC analysis, and is not a function of1
the ROC bounds.

Theorem 6. ∀0¡�FPR; �TPR¡1, Approx-Constrained-ROC(FfHC; �FPR; �TPR) is hard.3

The distribution under which the negative result is proven is an easy distribution for
the accuracy’s optimization alone, similarly to those of Section 4.1.5

4.3. Replacing the accuracy by a single criterion

The negative result stated in the following theorem is to be read with all additional7
drawbacks mentioned for the seven constraints. Again, the distribution under which the
theorem is proven is an easy distribution when optimizing the accuracy alone.9

Theorem 7. ∃�max¿0 such that ∀0¡�¡�max, Approx-Constrained-Single(FfHC;
(1− FPR)× TPR; �) is Hard.11

(Proof included in Appendix B). As far as we know, �max¿ 175
41;616 (roughly 4:2×

10−3), but we think that this bound can be much improved. The accuracy can some-13
times be conveniently replaced by the F) statistics [2], which is an accurate composition
of precision and recall (see Section 3.1 for their de2nition), useful for text categoriza-15
tion problems [2]. So far, we have not been able to conclude to the hardness of using
this criterion in our framework.17

4.4. Beyond computational complexity and ILP

It is well known since [12] that negative results on such problems can sometimes be19
extended to negative results for PAC-type learning models [27]. Such a model typically
brings a statistical and a computational constraint for an algorithm to be quali2ed as a21
learning algorithm. Consider for example De2nition 4, and the following learning model
arising in exactly the same setting, but in which we replace the set of examples by a so-23
called oracle [12], drawing examples on demand, following a probability distribution D
unknown, but 2xed. Suppose that the requirement on the constraint de2ning H(D;)a(�)25
remains exactly the same, but the one limiting the accuracy on the “learning” sample is
replaced by a condition which states that, with su=ciently high probability (¿1− *),27
the accuracy over the whole domain is lower than some threshold (¡optH(D;)a(�)(c)++),
for some parameters +; *¿0. If we require that the computational time be a polynomial29
in 1=+; 1=*, as well as in ne and the (smallest) size of the optimal constrained hypothesis,
then the learning model we obtain corresponds to the robust learning model of [9,11],31
to which add the requirement that the outputs satisfy a constraint (among our seven
2rst constraints). In that case, following a standardized approach [9,11,12], it is easy33
to show that a negative result regarding De2nition 4 can be translated to a negative
constrained robust learning result.35
Apart from the extension of the results to learning models, a natural question is

their extension to other formalisms, outside the ILP 2eld. So far, as ILP is a complex37
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formalism, the results can be extended to simpler formalisms such as some subclasses1
of Boolean formulas. One example is the subclass of DNF (disjunctive normal form
formulas [28]) containing all monotonous formulas (without negative literals). Note3
that we do not put any restriction on the size of the formulas, a very seldom result in
the huge quantity of theoretical ML results on DNF. Indeed, DNF is one of the most5
central classes to the PAC learning model of [27], studied early by Valiant himself
[28], and still raising some of the most important problems in computational learning7
theory [15], in particular for its learnability or approximability properties. In that setting,
removing the monotonicity constraint in our results is certainly a problem which would9
deserve further investigations.

5. Conclusion11

In this paper, we have presented a new approach to the problem of the accuracy’s
replacement in ML and DM, a problem recently addressed in a growing number of13
papers. We have argued that the usual criticisms, against the use of the accuracy for
comparing the reliability of classi2ers as well as for being optimized to build classi-15
2ers, face complexity issues. The case against accuracy, as initially brought in [22], is
therefore more complicated than usually presented in ML or DM papers. This justi2es17
the title of our paper, which can be read in two ways, either presenting new aspects of
the di=culty (complexity) of the task to 2nd new criteria to replace the accuracy, or19
presenting (structural) complexity issues about the possible replacements=completions.
One important thing about our results is that the complexity results go beyond the21
usual intractability results related to ML (or DM). In our case indeed, there are some
side e>ects, rather surprising, proving that the di=culty of the learning task, when23
the accuracy is replaced, is accompanied by severe drawbacks on the formalism’s
expressiveness. In deep contrast, the optimization of the accuracy alone in our setting25
is trivial, since the optimal solutions can be found directly without any algorithmic
e>ort.27
Recently, a new approach to building classi2ers has been proposed, arguing against

the use of the accuracy as the optimization criterion for the induction of classi2ers29
[23]. This approach, called boosting, has been plebiscited as one of the best currently
available in classi2cation [6]. However, it raises conjectures about the tractability of31
the optimization of these new criteria [23] in some cases. This shall certainly be the
subject of future studies.33

Appendix A. the global reduction

Reductions are achieved from the NP-Complete problem “Clique” [7]:35

De�nition 8 (Clique). • Name: Clique.
• Instance: A graph G=(X; E), an integer k.37
• Question: Does there exists a clique of size ¿k in G?
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Of course, “Clique” is not hard to solve for any value of k. The following lemma1
establishes values of k for which we can suppose that the problem is hard to solve
(( nk ) = n!=((n− k)!k!) is the binomial coe=cient):3

Theorem 9. (i) We can suppose that ( k2 )6|E|, and k is not a constant, otherwise
“Clique” is polynomial. (ii) For any .∈ ]0; 1[, “Clique” is hard for the value k = .|X |5
or k = |X |..

Proof. (i) is immediate; (ii) follows from [8]: it is proven that the largest clique7
size is not approximable to within |X |), for any constant 0¡)¡1. Therefore, the
graphs generated have a clique number which is either l, or greater than l× |X |), with9
l¡|X |1−). The idea is then to make k fall somewhere in between l and l× |X |). For
k = |X |. (.∈ ]0; 1[), this is immediate (if .¿ 1

2 , we pick 1¿)¿. and if .61=2, we11
pick 1¿)¿1 − .); for k = .|X |, whenever the graph is large enough and satis2es
l× |X |)¡.|X |, then we simply add u new vertices, each linked to all other vertices.13
Picking u=(.=(1 − .))|X | − l(1 + |X |))=(2(1 − .)) is enough to make k fall in the
interval ]l+ u; l|X |) + u[. This ends the proof of the theorem.15

The structure of the examples is the same for any of our reductions.
• De2ne a set of |X | unary literals a1(:); : : : ; a|X |(:), in bijection with the vertices of G.17
To this set of literals, we add two unary literals, s(:) and t(:). The inferred predicate
is denoted q. The choice of unary predicates is made only for a simplicity purpose.19
We could have replaced each of them by l-ary predicates without changing our
proof.21
• De2ne a set of constant symbols useful for the description of the examples:

{li;j ;∀(i; j) ∈ E} ∪ {l1; l2; l3; l4} ∪ {mi;∀i ∈ {1; : : : ; |X |}}:23

Examples are described in the following way:
• Positive examples from S+:25

∀(i; j) ∈ E; pi;j = q(li;j)← ∧k∈{1;:::;|X |}\{i;j}ak(li;j) ∧ t(li;j); (A.1)

p1 = q(l1)← ∧k∈{1;:::;|X |}ak(l1) ∧ t(l1); (A.2)27

p2 = q(l2)← a1(l2): (A.3)

• Negative examples from S−:29

∀i ∈ {1; : : : ; |X |}; ni = q(mi)← ∧k∈{1;:::;|X |}\{i}ak(mi) ∧ t(mi) (A.4)

n′1 = q(l3)← ∧k∈{1;:::;|X |}ak(l3) ∧ s(l3) ∧ t(l3) (A.5)31

n′2 = q(l4)← ∧k∈{1;:::;|X |}ak(l4) ∧ s(l4): (A.6)

It comes that we always have nH(D;)a(�) =O(|X |3) (this is the coding size of the33
positive examples) and ne=O(|X |). Non-uniform weights are given to each example,
depending on the constraint to be tackled with. The common-point to all reductions is35
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that the weights of all examples nj (resp. all pi;j) are equal (resp. to w− and w+). In1
each reduction, examples and clauses satisfy:
H1 p2 is forced to be badly classi2ed.3
H2 n′1 is always badly classi2ed.
H3 w(n′2) ensures that n

′
2 is always given the right class, forcing any clause to contain5

literal t(:).
When we remove n′2, we also ensure that p2 is removed too.7

Lemma 10. Any clause containing literal s(:) can be removed.

Proof. Suppose that one clause contains s(:). Then it can be 
-subsumed by n′1 and by9
no other example (even if n′2 exists, because of H3); but n′1 
-subsumes any clauses
and also the empty clause. Therefore, removing the clause does not modify the value11
of any criteria based on the examples weights. Concerning the sixth (resp. seventh)
constraint, the fraction of predicates used after removing the clause is at most the one13
before, thus, if the clause is an element of H6(�) (resp. H7(�)) before, it is still an
element after.15

As a consequence, p1 is always given the positive class (even by the empty clause!).
We now give a general outline of the proof for Problem 1; reductions are similar17

for the other problems. Given h= {h1; : : : ; hl} a set of Horn clauses, we de2ne the set
I = {i ∈ {1; : : : ; |X |}: ∃j ∈ {1; : : : ; l}; ai(:) =∈ hj}19

and we 2x |I|= k ′. In our proofs, we de2ne two functions taking rational values,
E(k ′) and Fa(k ′) (k ′ ∈{1; : : : ; |X |}, a=1; 2; 3; 4; 5; 6; 7). They are chosen such that:21
• E(k ′) is strictly increasing, ∑(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x)¿E(k

′) and E(k)= �.
• Fa(k ′) is strictly decreasing, it is a lowerbound of the function inside H(D;)a(�), and23
Fa(k)= � (excepted for a=3, F3(k)= 1=�)

∀a∈{1; 2; 3; 4; 5; 6; 7}, if there exists an unbounded set of Horn clauses h∈H(D;)a(�)25
satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x) = 1) w(x)6�, its error rate implies k

′6k and con-
straint implies k ′¿k. So |I|= k ′= k. The interest of the weights is then to force (k2)27
positive examples from the set {pi;j}(i;j)∈E to be well classi2ed, while we ensure the
misclassi2cation of at most k negative examples of the set {ni}i∈{1;:::;|X |}. It comes29
that the ( k2 ) correspond to the (

k
2 ) edges linking the |I|= k vertices corresponding to

negative examples badly classi2ed. We therefore dispose of a clique of size ¿k.31
Conversely, ∀a∈{1; 2; 3; 4; 5; 6; 7}, given some clique of size k whose set of vertices

is denoted I, we show that the singleton33

h = q(X )← ∧i∈{1;:::;|X |}\Iai(X ) ∧ t(X )
is an element from H(D;)a(�) satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x)6�. In this35

case, nH(D;)a(�) drops down to O(ne).
All distributions used in Theorems 5 and 7 are such that w+¡w−=|X |, at least37

for graphs exceeding a 2xed constant size. Also, due to the negative examples of
weights w−, if we remove the additional constraints and optimize the accuracy alone,39
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we can suppose that the optimal Horn clause is a singleton: merging all clauses by1
keeping among predicates aj(:) only those present in all clauses does not decrease
the accuracy. Under such a distribution, the optimal Horn clause necessarily contains3
all predicates aj(:), and the problem becomes trivial. The distribution in Theorem 6
satis2es w+ =w−. This is also a simple distribution for the accuracy’s optimization5
alone: indeed, the optimal Horn clause over predicates aj(:) is such that it contains
no predicates aj(:) that does not appear at least in one positive example. If the graph7
instance of “Clique” is connex (and we can suppose so, otherwise the problem boils
down to 2nd the largest clique in one of the connected components), then the optimal9
Horn clause does not contain any of the aj(:).

Appendix B. proofs of negative results11

B.1. Proof of point [1], Theorem 5

We 2x the following weights for positive examples:13

w(p2) =
1

2(1− �) (��+ |X |
2w−(1 + �));

∀(i; j) ∈ E; w(pi;j) = w+ =
w−

(|X |+ k)2 ;15

w(p1) =
1
2

(
1− ��

1− �
)

−1
2

(
w−
[
|X |2

(
1 + �
1− � + |X | − k

)])

−1
2

(
w+
[
1− �
1 + �

(
|X | −

(
k
2

))
+ |X |

])
:

We 2x the following weights for negative examples:

w(n′2) =
1
217

∀j ∈ {1; : : : ; |X |}; w(nj) = w− =
1

|X |2|E|2 ;

w(n′1) =
1
2

(
1− �
1 + �

(
|E| −

(
k
2

))
w+ + (|X |2 − k)w−

)
:19

Fix �=w(p2) + w(n′1) + kw− + (|E| − ( k2 ))w+=2 (note that w(n′2) ensures that n′2 is
given the right class), and kmax = 1 + max

26k′′6|X |;|E|−( k
′′
2 )¿0

k ′′. From the choice of21
weights, lcm(

⋃
xi∈S+∪S− di)=O(|X |8) (“lcm” is the least common multiple), which23
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is polynomial. De2ne the functions:1

∀k ′ ∈ {0; 1}; E(k ′) = |E|w+ + k ′w− + w(p2) + w(n1);

∀26 k ′ 6 kmax; E(k ′) =
(
|E| −

(
k ′

2

))
w+ + k ′w− + w(p2) + w(n1);3

∀kmax ¡ k ′ 6 |X |; E(k ′) = k ′w− + w(p2) + w(n1)

(from the choice of weights, E(k)= �),5

∀k ′ ∈ {0; 1}; F1(k ′) = ||E|w+ − k ′w− + w(p2)− w(n1)|
�+ |E|w+ + k ′w− + w(p2) + w(n1)

;

∀26 k ′ 6 kmax; F1(k ′) =
|
(
|E| − (k′2 ))w+ − k ′w− + w(p2)− w(n1)|
�+ |E|w+ + k ′w− + w(p2) + w(n1)

;

∀kmax ¡ k ′ 6 |X |; F1(k ′) = | − k ′w− + w(p2)− w(n1)|
�+ |E|w+ + k ′w− + w(p2) + w(n1)

(from the choice of weights, F1(k)= �).
The equation obtained when k ′¡kmax takes its maximum for integer values when7

k ′=(|X |+ k)2 + 0:5± 0:5¿|X |. Furthermore,

∀16 kmax 6 |X |;
(
|E| −

(
kmax − 1
2

))
w+ ¡ w−;9

which leads to E(kmax−1)¡E(kmax). In a more general way, E(k ′) is strictly increasing
over natural integers. Now remark that the numerator of F1(k ′) is strictly decreasing,11
and its denominator strictly increasing. Therefore, F1(k ′) is strictly decreasing. Further-
more13

d�

( ∑
h(x)�=1=c(x)

w(x);
∑

h(x)�=0=c(x)
w(x)

)
¿ F1(k ′):

If ∃ h∈H{wi};1(�) satisfying
∑

h(x)�=c(x) w(x)6�, the error rate implies k
′6k and the15

constraint implies k ′¿k. Thus |I|= k ′= k. As pointed out in the preceding appendix,
this leads to the existence of a clique of size ¿k.17
Reciprocally, the Horn clause h constructed in Appendix A satis2es both relations

h∈H{wi};1(�), and
∑

h(x)�=c(x) w(x)6�. Indeed, we have19

∑
h(x)�=1=c(x)

w(x) =
(
|E| −

(
k
2

))
w+ + w(p2)

but also21 ∑
h(x)�=0=c(x)

w(x) = kw− + w(n1):
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Therefore,1

d�

( ∑
h(x)�=1=c(x)

w(x);
∑

h(x)�=0=c(x)
w(x)

)
= F1(k) = �

and h∈H{wi};1(�). We also have
∑

h(x)�=c(x) w(x) = E(k) = �.3
The reduction is achieved. We end by a remark on d�(optH{wi}

(c); optH{wi};1(�)
(c)).

We have5

|optH{wi}
(c)− optH{wi};1(�)

(c)|6 1− w(p1)− w(p2)− w(n′1)− w(n′2)

6 |E|w+ + |X |w−

and

optH{wi}
(c) + optH{wi};1(�)

(c) + �¿ 2(w(p2) + w(n′1)) + �

¿
��

(1− �) + �:

Therefore, we get7

d�(optH{wi}
(c); optH{wi};1(�)

(c)) = o(1):

B.2. Sketch of proof of points [6] and [7], Theorem 59

The proof of these two points is easier than the others. Let us consider the sixth
constraint to illustrate it. The function F6 is exactly a decreasing function of the “holes”11
k ′, which we can write

∀k ′ ∈ {0; 1; |X |}; F6(k ′) = |X | − k
′

|X | :13

Fix � strictly between 0 and 1
2 (thus, the error is only slightly better than that of the

unbiased coin). Weights are as follows for positive examples (we do not use p1):15

∀(i; j) ∈ E; w(pi;j) = w+ =
w−

(|X |+ k)2 ;

w(p2) = �− kw− −
(
|E| −

(
k
2

))
w+:17

Weights are as follows for negative examples (we do not use n′1):

∀j ∈ {1; : : : ; |X |}; w(nj) = w− =
1

|X |2|E|2 ;19

w(n′2) = 1− �− (|X | − k)w− −
(
k
2

)
w+:
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Fix kmax = 1 +max
26k′′6|X |;|E|−(( k

′′
2 )¿0

k ′′. From the weights, lcm(∪xi∈S+ ∪S−di)=O1
(|X |8), which is polynomial. De2ne the function:

∀k ′ ∈ {0; 1}; E(k ′) = |E|w+ + k ′w− + w(p2);3

∀26 k ′ 6 kmax; E(k ′) =
(
|E| −

(
k′

2

))
w+ + k ′w− + w(p2);

∀kmax ¡ k ′ 6 |X |; E(k ′) = k ′w− + w(p2);5

(We have E(k)= �). From that, it comes that the predicates that are not used can form
a clique.7
There remains to check the constraint values � which we allowed to take any value

in ]0; 1[. From Lemma 10, we may use k = 
(|X |.), for any 0¡.¡1. The fraction of9
authorized predicates is therefore upperbounded by

|X | − k
|X | 6 1− 1

|X |. →∞ 1:11

By considering su=ciently large sized graphs, the right side is greater than any chosen
constant 0¡�¡1. Point [7] is achieved in the same way.13

B.3. Proof of Theorem 7

Remark that TPR× (1 − FPR)=TPR × TNR. Weights are as follows for positive15
examples (we do not use p2):

∀(i; j) ∈ E; w(pi;j) = w+

=
�

(|X | − k)w− ×
(
( k2 ) +

(|X |+ 1)2 − (k − |X |+1
3 )2 − 3|X |

6

) ;

w(p1) = w+ ×



(|X |+ 1)2 −

(
k −

( |X |+ 1
3

))2
− 3|X |

6


 :

17

Weights are as follows for negative examples (we do not use n′2):

∀j ∈ {1; : : : ; |X |}; w(nj) = w− =
1

|X |+ k ;19

w(n′1) = 1− |E|w+ − |X |w− − w(p1):
The choice of �max comes from the necessity of a tight calculation of the weights, in21
order to keep them in correct limits. In order to illustrate this, we proceed through the
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proof of the correct values for the weights. The positive values of all weights (except1
from n′1, whose correctness stems from the study of all the other weights) is easily
checked. However, we need to prove that they all take values which do not give a3
negative weight value to n′1.
Fix k = .|X |, where . takes the adequate value .= 5

12 (other ones are possible, also5
valid according to Theorem 9, but we concentrate on this one).
Remark that |X |w−= 1

(1+.) =
12
17 ¡ 1. Now, we study |E|w+. We have7

w+ =
�(|X |+ k)

(|X | − k)
(
( k2 ) +

(|X |+ 1)2 − (k − |X |+1
3 )2 − 3|X |

6

) :

Note that �(|X |+ k)=(|X | − k)= 17�=7. Suppose we choose �61=17× 7× 25=17× 1449
(details of � are given for the sake of clarity in the proof). Then, with such values,
we have for the denominator of w+:11 ((

k
2

)
+
(|X |+ 1)2 − (k − |X |+1

3 )2 − 3|X |
6

)
6

25
144× 2 |X |

2;

which leads to an upperbound for |E|w+ which is (taking into account that |E|¡|X |2=2):13

|E|w+ ¡ �
17
7
144× 2
25× 2 =

1
17
:

An upperbound of �× 17=7× 144× 2=25× |X |2 is also available for w+, which leads15
to (for w(p1)):

w(p1)¡ �
17
7
144× 2
25× |X |2

|X |2
6

¡
1
17
:17

This shows that the weight of n′1 is positive, as we claimed.
Now, we explain more in depth the proof scheme by describing a polynomial of order19

3, F(k ′) which upperbounds TPR× TNR, and of course has the desirable property of
having its maximum for k ′ = k, with value �, and with no other equal or greater values21
on the interval [0; |X |]. Similarly to the other proofs, the value � can only be reached
when k ′ = k represents k “holes” among predicates {aj(:)}, and this induces a size-k23
clique in the graph.
Fix kmax = 1 + max26k′′6|X |;|E|−( k2 )¿0

k ′′. From the weights, lcm(
⋃
xi∈S+∪S− di) =25

O(|X |8), which is polynomial. De2ne the function:
∀k ′ ∈ {0; 1}; F(k ′) = w(p1)× (|X | − k ′)w−;27

∀26 k ′ 6 kmax; F(k ′) =
((

k ′

2

)
w+ + w(p1)

)
× (|X | − k ′)w−;

∀kmax ¡ k ′ 6 |X |; F(k ′) = (|E|w+ + w(p1))× (|X | − k ′)w−:29
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Fig. 2. Scheme of F(k′).

With our choice of weights, and inside the values of k ′ for which we described k1
(clearly, in the second curve), F describes a polynomial of degree 3, with a second-
order derivative taking its zero for k ′= k ′′= |X |+1=3. Its 2rst-order derivative takes its3
zeroes, respectively, for k ′= k ′0 ∈ [0; k ′′] and k ′= k ′1 = k¿k ′′ (note that the choice of .
respects this latter inequality). Outside [k ′0; k], F is decreasing, and increasing inside.5
Since the choice of weights was also made so as to have F(0) ¡ �, and F(k)= �, it
is su=cient to prove that there is only one point for k ′= k where F takes a value of7
�, with lower values elsewhere (Fig. 2 shows a simpli2ed view of the function, for
the sake of clarity). As we pointed out before, F upperbounds the product of TPR and9
TNR of any set of Horn clauses, which leads to a single favorable case: the “holes”
inside the set of Horn clauses describe a clique of size k in the graph.11
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